Ensure that symbols explicitly* assigned a section name are placed into
a section with a compatible entry size.
This is done by creating multiple sections with the same name** if
incompatible symbols are explicitly given the name of an incompatible
section, whilst:
- Avoiding using uniqued sections where possible (for readability and
to maximize compatibly with assemblers).
- Creating as few SHF_MERGE sections as possible (for efficiency).
Given that each symbol is assigned to a section in a single pass, we
must decide which section each symbol is assigned to without seeing the
properties of all symbols. A stable and easy to understand assignment is
desirable. The following rules facilitate this: The "generic" section
for a given section name will be mergeable if the name is a mergeable
"default" section name (such as .debug_str), a mergeable "implicit"
section name (such as .rodata.str2.2), or MC has already created a
mergeable "generic" section for the given section name (e.g. in response
to a section directive in inline assembly). Otherwise, the "generic"
section for a given name is non-mergeable; and, non-mergeable symbols
are assigned to the "generic" section, while mergeable symbols are
assigned to uniqued sections.
Terminology:
"default" sections are those always created by MC initially, e.g. .text
or .debug_str.
"implicit" sections are those created normally by MC in response to the
symbols that it encounters, i.e. in the absence of an explicit section
name assignment on the symbol, e.g. a function foo might be placed into
a .text.foo section.
"generic" sections are those that are referred to when a unique section
ID is not supplied, e.g. if there are multiple unique .bob sections then
".quad .bob" will reference the generic .bob section. Typically, the
generic section is just the first section of a given name to be created.
Default sections are always generic.
* Typically, section names might be explicitly assigned in source code
using a language extension e.g. a section attribute: _attribute_
((section ("section-name"))) -
https://clang.llvm.org/docs/AttributeReference.html
** I refer to such sections as unique/uniqued sections. In assembly the
", unique," assembly syntax is used to express such sections.
Fixes https://bugs.llvm.org/show_bug.cgi?id=43457.
See https://reviews.llvm.org/D68101 for previous discussions leading to
this patch.
Some minor fixes were required to LLVM's tests, for tests had been using
the old behavior - which allowed for explicitly assigning globals with
incompatible entry sizes to a section.
This fix relies on the ",unique ," assembly feature. This feature is not
available until bintuils version 2.35
(https://sourceware.org/bugzilla/show_bug.cgi?id=25380). If the
integrated assembler is not being used then we avoid using this feature
for compatibility and instead try to place mergeable symbols into
non-mergeable sections or issue an error otherwise.
Differential Revision: https://reviews.llvm.org/D72194
Summary:
This verifier tries to ensure that DebugLoc's don't just disappear as
we transform the MIR. It observes the instructions created, erased, and
changed and at checkpoints chosen by the client algorithm verifies the
locations affected by those changes.
In particular, it verifies that:
* Every DebugLoc for an erased/changing instruction is still present on
at least one new/changed instruction
* Failing that, that there is a line-0 location in the new/changed
instructions. It's not possible to confirm which locations were merged so
it conservatively assumes all unaccounted for locations are accounted
for by any line-0 location to avoid false positives.
If that fails, it prints the lost locations in the debug output along with
the instructions that should have accounted for them.
In theory, this is usable by the legalizer, combiner, selector and any other
pass that performs incremental changes to the MIR. However, it has so far
only really been tested on the legalizer (not including the artifact
combiner) where it has caught lots of lost locations, particularly in Custom
legalizations. There's only one example here as my initial testing was on an
out-of-tree target and I haven't done a pass over the in-tree targets yet.
Depends on D77575, D77446
Reviewers: bogner, aprantl, vsk
Subscribers: jvesely, nhaehnle, mgorny, rovka, hiraditya, volkan, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77576
Summary:
This will allow us to fix the issue where the lost locations
verifier causes CodeGen changes on lost locations because it
falls back on DAGISel
Reviewers: qcolombet, bogner, aprantl, vsk, paquette
Subscribers: rovka, hiraditya, volkan, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78261
The Float2IntPass got a class member called Roots, but Roots
was also passed around to member function as a reference. This
patch simply remove those references.
Reduce StringRef.h/Error.h includes to just the necessary STLExtras.h include and StringRef/Twine forward declarations
Remove unused Expected<> forward declaration
Parser.h - Reduce MemoryBuffer.h include to just the necessary StringRef.h include and MemoryBufferRef forward declaration
Parser.cpp - Remove unused raw_ostream.h include
Remove unused BasicBlock forward declaration from Pass.h and Attributes/BasicBlock includes from Pass.cpp
Add BasicBlock forward declaration to UnifyFunctionExitNodes.h which was relying on Pass.h
Imagine we have the following invocation:
`FileCheck -check-prefix=UNKNOWN-PREFIX -implicit-check-not=something`
When the check prefix does not exist it does not fail.
This patch fixes the issue.
Differential revision: https://reviews.llvm.org/D78024
Summary:
The INLINEASM MIR instructions use immediate operands to encode the values of some operands.
The MachineInstr pretty printer function already handles those operands and prints human readable annotations instead of the immediates. This patch adds similar annotations to the output of the MIRPrinter, however uses the new MIROperandComment feature.
Reviewers: SjoerdMeijer, arsenm, efriedma
Reviewed By: arsenm
Subscribers: qcolombet, sdardis, jvesely, wdng, nhaehnle, hiraditya, jrtc27, atanasyan, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78088
Summary:
The current handleMoveIntoBundle implementation is unusable,
it attempts to access the slot indexes of bundled instructions.
It also leaves bundled instructions with slot indexes assigned.
Replace handleMoveIntoBundle this with a more explicit
handleMoveIntoNewBundle function which recalculates the live
intervals for all instructions moved into a newly formed bundle,
and removes slot indexes from these instructions.
Reviewers: arsenm, MaskRay, kariddi, tpr, qcolombet
Reviewed By: qcolombet
Subscribers: MatzeB, wdng, hiraditya, arphaman, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77969
The AAMap.lookup() call created a temporary value if the key was not
present. Since the value was another map it was not free to create it.
Instead of a lookup we now use find and compare the result against the
end iterator explicitly. The result is the same but we never need to
create a temporary map.
Since we use the fact that some uses are droppable in the Attributor we
need to handle them explicitly when we replace uses. As an example, an
assumed dead value can have live droppable users. In those we cannot
replace the value simply by an undef. Instead, we either drop the uses
(via `dropDroppableUses`) or keep them as they are. In this patch we do
both, depending on the situation. For values that are dead but not
necessarily removed we keep droppable uses around because they contain
information we might be able to use later. For values that are removed
we drop droppable uses explicitly to avoid replacement with undef.
For `.bss; nop`, MC inappropriately calls abort() (via report_fatal_error()) with a message
`cannot have fixups in virtual section!`
It is a bug to crash for invalid user input. Fix it by erroring out early in EmitInstToData().
Similarly, emitIntValue() in a virtual section (SHT_NOBITS in ELF) can crash with the mssage
`non-zero initializer found in section '.bss'` (see D4199)
It'd be nice to report the location but so many directives can call emitIntValue()
and it is difficult to track every location.
Note, COFF does not crash because MCAssembler::writeSectionData() is not
called for an IMAGE_SCN_CNT_UNINITIALIZED_DATA section.
Note, GNU as' arm64 backend reports ``Error: attempt to store non-zero value in section `.bss'``
for a non-zero .inst but fails to do so for other instructions.
We simply reject all instructions, even if the encoding is all zeros.
The Mach-O counterpart is D48517 (see `test/MC/MachO/zerofill-text.s`)
Reviewed By: rnk, skan
Differential Revision: https://reviews.llvm.org/D78138
Before, we eagerly analyzed all the functions to collect information
about them, e.g. what instructions may read/write memory. This had
multiple drawbacks:
- In CGSCC-mode we can end up looking at a callee which is not in the
SCC but for which we need an initialized cache.
- We end up looking at functions that we deem dead and never need to
analyze in the first place.
- We have a implicit dependence which is easy to break.
This patch moves the function analysis into the information cache and
makes it lazy. There is no real functional change expected except due to
the first reason above.
I plan to use MCSection::getName() in D78138. Having the function in the base class is also convenient for debugging.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D78251
Summary:
Instead of storing a vptr in each FoldingSet instance, form an
equivalent struct and pass it implicitly from FoldingSet into the
various FoldingSetBase methods.
This has three benefits:
* FoldingSet becomes one pointer smaller.
* Under LTO, the "virtual" functions are much easier to inline.
* The element type no longer needs to be complete when instantiating
FoldingSet<T>, only when instantiating an insert / lookup member.
Reviewers: rnk
Subscribers: hiraditya, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78247
Summary:
We can and should remove deleted nodes from their respective SCCs. We
did not do this before and this was a potential problem even though I
couldn't locally trigger an issue. Since the `DeleteNode` would assert
if the node was not in the SCC, we know we only remove nodes from their
SCC and only once (when run on all the Attributor tests).
Reviewers: lebedev.ri, hfinkel, fhahn, probinson, wristow, loladiro, sstefan1, uenoku
Subscribers: hiraditya, bollu, uenoku, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77855
Summary:
While it is uncommon that the ExternalCallingNode needs to be updated,
it can happen. It is uncommon because most functions listed as callees
have external linkage, modifying them is usually not allowed. That said,
there are also internal functions that have, or better had, their
"address taken" at construction time. We conservatively assume various
uses cause the address "to be taken". Furthermore, the user might have
become dead at some point. As a consequence, transformations, e.g., the
Attributor, might be able to replace a function that is listed
as callee of the ExternalCallingNode.
Since there is no function corresponding to the ExternalCallingNode, we
did just remove the node from the callee list if we replaced it (so
far). Now it would be preferable to replace it if needed and remove it
otherwise. However, removing the node has implications on the CGSCC
iteration. Locally, that caused some other nodes to be never visited
but it is for sure possible other (bad) side effects can occur. As it
seems conservatively safe to keep the new node in the callee list we
will do that for now.
Reviewers: lebedev.ri, hfinkel, fhahn, probinson, wristow, loladiro, sstefan1, uenoku
Subscribers: hiraditya, bollu, uenoku, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77854
Summary:
The renaming is necessary to make the naming scheme uniform with other
gather/scatter load/stores SVE intrinsics.
The naming of variables and functions have been adapted to make it
explicit whether we are dealing with a scalar offset (which is
unscaled) or an index (which is scaled according to the data type of
the lanes of the vector).
Reviewers: andwar, sdesmalen, rengolin
Reviewed By: andwar
Subscribers: tschuett, hiraditya, arphaman, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77839
This commit fixes using functions in `IRObjectFile` to load bitcode from
wasm objects by recognizing the file magic for wasm and also inheriting
the default implementation of classifying sections as bitcode.
Patch By: alexcrichton
Differential Revision: https://reviews.llvm.org/D78199
The current strategy LICM uses when sinking for debuginfo is
that of picking the debug location of one of the uses.
This causes stepping to be wrong sometimes, see, e.g. PR45523.
This patch introduces a generalization of getMergedLocation(),
that operates on a vector of locations instead of two, and try
to merge all them together, and use the new API in LICM.
<rdar://problem/61750950>
MCExpr has a bunch of free space that is currently going to waste.
Repurpose it as 24 bits of subclass data, which is enough to reduce
the size of all subclasses by 8 bytes. This gives us some respectable
savings for debuginfo builds. Here are the max-rss reductions for the
fat LTO link step:
kc.link 238MiB 231MiB (-2.82%)
sqlite3.link 258MiB 250MiB (-3.27%)
consumer-typeset.link 152MiB 148MiB (-2.51%)
bullet.link 197MiB 192MiB (-2.30%)
tramp3d-v4.link 578MiB 567MiB (-1.92%)
pairlocalalign.link 92MiB 90MiB (-1.98%)
clamscan.link 230MiB 223MiB (-2.81%)
lencod.link 242MiB 235MiB (-2.67%)
SPASS.link 235MiB 230MiB (-2.23%)
7zip-benchmark.link 450MiB 435MiB (-3.25%)
Differential Revision: https://reviews.llvm.org/D77939
We generally only combine starting from users to defs in the artifact combiner,
but this doesn't catch cases where at the point of combining a G_UNMERGE we don't
yet have the opposite G_MERGE on input yet since we haven't legalized that far.
This change adds the users of a G_MERGE to the artifact combiner worklist if one
of the uses is a G_UNMERGE or G_TRUNC.
Differential Revision: https://reviews.llvm.org/D77931
Summary:
The combine for unmerge(cast(merge)) is only valid for vectors, but was
missing a corresponding check. Add a check that the operands are vectors
to avoid an invalid combine.
Without this check, the combiner would emit incorrect code for scalars
and pointers because the artifact cast (trunc/ext) only affects bits at
the end of the type, while this combine assumes that the casted bits
appear between meaningful bits.
This also uncovered a segmentation fault in the AMDGPU
InstructionSelector. The tests triggering this bug have been moved to
their own file and a check for the segmentation fault has been added.
Reviewers: arsenm, dsanders, aemerson, paquette, aditya_nandakumar
Reviewed By: arsenm
Subscribers: tpr, jvesely, wdng, nhaehnle, rovka, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78191
Summary:
As a follow up to https://reviews.llvm.org/D29014, add translation
support for freeze.
Introduce a new generic instruction G_FREEZE and translate freeze to it.
Reviewers: dsanders, aqjune, arsenm, aditya_nandakumar, t.p.northover, lebedev.ri, paquette, aemerson
Reviewed By: aqjune, arsenm
Subscribers: fhahn, lebedev.ri, wdng, rovka, hiraditya, jfb, volkan, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77795
Summary:
This patch is to fix the parsing of long double literals encoded with the e prefix on PowerPC and S390. For both PowerPC and S390, type code e is used for 64-bit long double literals and g is used for 128-bit long double literals. libcxxabi test case test_demangle.pass.cpp fails without the fix.
Authored by: xingxue-ibm
Reviewers: hubert.reinterpretcast, jasonliu, erik.pilkington, uweigand, mclow.li
sts, libc++abi
Reviewed by: hubert.reinterpretcast, erik.pilkington
Differential Revision: https://reviews.llvm.org/D74163
Summary:
No error or warning is emitted when specific reserved registers are
written to in inline assembly. Therefore, writes to the program counter
or to the frame pointer, for instance, were permitted, which could have
led to undesirable behaviour.
Example:
int foo() {
register int a __asm__("r7"); // r7 = frame-pointer in M-class ARM
__asm__ __volatile__("mov %0, r1" : "=r"(a) : : );
return a;
}
In contrast, GCC issues an error in the same scenario.
This patch detects writes to specific reserved registers in inline
assembly for ARM and emits an error in such case. The detection works
for output and input operands. Clobber operands are not handled here:
they are already covered at a later point in
AsmPrinter::emitInlineAsm(const MachineInstr *MI). The registers
covered are: program counter, frame pointer and base pointer.
This is ARM only. Therefore the implementation of other targets'
counterparts remain open to do.
Reviewers: efriedma
Reviewed By: efriedma
Subscribers: kristof.beyls, hiraditya, danielkiss, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76848