Remove redundant map searches.
For example, every call to "operator[]" is actually translated to a
"find" call, and 2 consecutive calls to the operator, without changing
the map in-between, is just redundant, and inefficient.
Differential Revision: https://reviews.llvm.org/D69337
This patch adds support for debug_loclists.dwo section in llvm and llvm-dwarfdump.
Also Fixes PR43622, PR43623.
Reviewers: dblaikie, probinson, labath, aprantl, jini.susan.george
https://reviews.llvm.org/D69462
This saves 2.4% of CPU time compiling opt, according to
ClangBuildAnalyzer. These helpers being inlined in the header was
triggering the instantiation of concat_iterator in every TU using
Module.h (~1118 TUs): https://reviews.llvm.org/P8171$35
**** Templates that took longest to instantiate:
76187 ms: llvm::AnalysisManager<llvm::Function>::getResult<llvm::TargetLibrary... (396 times, avg 192 ms)
73609 ms: llvm::AnalysisManager<llvm::Function>::getResultImpl (420 times, avg 175 ms)
49657 ms: llvm::detail::concat_range<llvm::GlobalValue, llvm::iterator_range<l... (1118 times, avg 44 ms)
49376 ms: llvm::detail::concat_range<const llvm::GlobalValue, llvm::iterator_r... (1118 times, avg 44 ms)
48167 ms: llvm::iterator_range<llvm::concat_iterator<llvm::GlobalValue, llvm::... (1118 times, avg 43 ms)
48125 ms: llvm::iterator_range<llvm::concat_iterator<const llvm::GlobalValue, ... (1118 times, avg 43 ms)
48061 ms: llvm::concat_iterator<llvm::GlobalValue, llvm::ilist_iterator<llvm::... (1118 times, avg 42 ms)
48014 ms: llvm::concat_iterator<const llvm::GlobalValue, llvm::ilist_iterator<... (1118 times, avg 42 ms)
...
I haven't measured, but I don't think these helpers are performance
critical. The iterator advance call can still be inlined, which is what
matters for performance.
Remove global_(objects|values)_(begin|end), since they were dead and
would have to be out of line anyway.
When parsing bitstream remarks, allow external remark files to be
empty, which means there are no remarks to be parsed.
In the same way, dsymutil should not produce a remark file.
For lldb and dsymutil, the command guide is essentially a copy of its
help output generated by libOption. Making sure the two stay in sync is
tedious and error prone. Given that we already generate the help from a
tablegen file, we might as well generate the RST as well.
This adds a tablegen backend for generating Sphinx/RST command guides
from the tablegen file.
Differential revision: https://reviews.llvm.org/D70610
This header fragment is useful on its own for any consumer that wants
to use custom instruction profile runtime with the LLVM instrumentation.
The concrete use case is in Fuchsia's kernel where we want to use
instruction profile instrumentation, but we cannot use the compiler-rt
runtime because it's not designed for use in the kernel environment.
This change allows installing this header as part of compiler-rt.
Differential Revision: https://reviews.llvm.org/D64532
moved before another instruction.
Summary:Added an API to check if an instruction can be safely moved
before another instruction. In future PRs, we will like to add support
of moving instructions between blocks that are not control flow
equivalent, and add other APIs to enhance usability, e.g. moving basic
blocks, moving list of instructions...
Loop Fusion will be its first user. When there is intervening code in
between two loops, fusion is currently unable to fuse them. Loop Fusion
can use this utility to check if the intervening code can be safely
moved before or after the two loops, and move them, then it can
successfully fuse them.
Reviewer:kbarton,jdoerfert,Meinersbur,bmahjour,etiotto
Reviewed By:bmahjour
Subscribers:mgorny,hiraditya,llvm-commits
Tag:LLVM
Differential Revision:https://reviews.llvm.org/D70049
Enlarge the size of ExponentType from 16bit integer to 32bit. This is
required to prevent exponent overflow/underflow.
Note that IEEEFloat size and alignment don't change in 64bit or 32bit
compilation targets (and in turn, neither does APFloat).
Fixes PR34851.
Differential Revision: https://reviews.llvm.org/D69771
Summary:
Revert "Rollback of commit "Repress sanitization on User dtor.""
There is no point in keeping an active MSan error in the codebase.
PR24578 tracks the actual UB in LLVM code; this change enables testing
of LLVM with MSAN + -fsanitize-memory-use-after-dtor.
This reverts commit 21c1bc46aee2b69c2c48db8e961f0ce8394f21e1.
Reviewers: vitalybuka
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70611
Fix incorrect determination of the bigger number out of the two
subtracted, while subnormal numbers are involved.
Fixes PR44010.
Differential Revision: https://reviews.llvm.org/D69772
Summary:
Vector aggregate is homogeneous aggregate of vectors like `{ <2 x float>, <2 x float> }`.
This patch allows `findBuildAggregate()` to consider vector aggregates as
well as scalar ones. For instance, `{ <2 x float>, <2 x float> }` maps to `<4 x float>`.
Fixes vector part of llvm.org/PR42022
Reviewers: RKSimon
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70068
Summary:
This follows from the discussion at D70095.
D70095 moves hasOptSize calls into SelectionDAG::shouldOptForSize to allow
querying size optimization conditions together with profile guided size
optimization.
Since it appears that size optimizations for WebAssembly SelectionDAG haven't
been implemented yet and thus ForCodeSize is unused, and it would not make a lot
of sense to call shouldOptForSize here as the necessary profile data like
PSI/BFI aren't available at this point, it seems good and less confusing to
remove this for now and use shouldOptForSize when they are implemented in the
future.
Subscribers: dschuff, sbc100, jgravelle-google, hiraditya, aheejin, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70567
Summary:
With this patch, we no longer cache F.hasProfileData(). We simply
call the function again.
I'm doing this because:
- JumpThreadingPass also has a member variable named HasProfileData,
which is very confusing,
- the function is very lightweight, and
- this patch makes JumpThreading::runOnFunction more consistent with
JumpThreadingPass::run.
Subscribers: hiraditya, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70602
Summary:
Without this patch, the jump threading pass ignores profiling data
whenever we invoke the pass with the new pass manager.
Specifically, JumpThreadingPass::run calls runImpl with class variable
HasProfileData always set to false. In turn, runImpl sets
HasProfileData to false again:
HasProfileData = HasProfileData_;
In the end, we don't use profiling data at all with the new pass
manager.
This patch fixes the problem by passing F.hasProfileData() to runImpl.
The bug appears to have been introduced at:
https://reviews.llvm.org/D41461
which removed local variable HasProfileData in JumpThreadingPass::run
even though there was one more use left in the same function. As a
result, the remaining use ended referring to the class variable
instead.
Note that F.hasProfileData is an extremely lightweight function, so I
don't see the need to cache its result. Once this patch is approved,
I'm planning to stop caching the result of F.hasProfileData in
runOnFunction.
Reviewers: wmi, eli.friedman
Subscribers: hiraditya, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70509
Commit a0841dfe8594 ("[BPF] Fix a bug in peephole optimization")
fixed a bug in peephole optimization. Recursion is introduced
to handle COPY and PHI instructions.
Unfortunately, multiple PHI instructions may form a cycle
and this will cause infinite recursion, eventual segfault.
For Commit a0841dfe8594, I indeed tried a few loops to ensure
that I won't see the recursion, but I did not try with
complex control flows, which, as demonstrated with the test case
in this patch, may introduce PHI cycles.
This patch fixed the issue by introducing a set to remember
visited PHI instructions. This way, cycles can be properly
detected and handled.
Differential Revision: https://reviews.llvm.org/D70586
Summary:
This patch is a follow up on read-only assembly patch D70182.
It intends to enable object file generation for the read-only data section on AIX.
Reviewers: DiggerLin, daltenty
Differential Revision: https://reviews.llvm.org/D70455
Summary: Working towards Johannes's suggestion for fixme, in Attributor's Noalias attribute deduction.
(ii) Check whether the value is captured in the scope using AANoCapture.
FIXME: This is conservative though, it is better to look at CFG and
// check only uses possibly executed before this call site.
A Reachability abstract attribute answers the question "does execution at point A potentially reach point B". If this question is answered with false for all other uses of the value that might be captured, we know it is not *yet* captured and can continue with the noalias deduction. Currently, information AAReachability provides is completely pessimistic.
Reviewers: jdoerfert
Reviewed By: jdoerfert
Subscribers: uenoku, sstefan1, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D70233
Summary:
This is a preparatory cleanup before i add more
of this fold to deal with comparisons with non-zero.
In essence, the current lowering is:
```
Name: (X % C1) == 0 -> X * C3 <= C4
Pre: (C1 u>> countTrailingZeros(C1)) * C3 == 1
%zz = and i8 C3, 0 ; trick alive into making C3 avaliable in precondition
%o0 = urem i8 %x, C1
%r = icmp eq i8 %o0, 0
=>
%zz = and i8 C3, 0 ; and silence it from complaining about said reg
%C4 = -1 /u C1
%n0 = mul i8 %x, C3
%n1 = lshr i8 %n0, countTrailingZeros(C1) ; rotate right
%n2 = shl i8 %n0, ((8-countTrailingZeros(C1)) %u 8) ; rotate right
%n3 = or i8 %n1, %n2 ; rotate right
%r = icmp ule i8 %n3, %C4
```
https://rise4fun.com/Alive/oqd
It kinda just works, really no weird edge-cases.
But it isn't all that great for when comparing with non-zero.
In particular, given `(X % C1) == C2`, there will be problems
in the always-false tautological case where `C2 u>= C1`:
https://rise4fun.com/Alive/pH3
That case is tautological, always-false:
```
Name: (X % Y) u>= Y
%o0 = urem i8 %x, %y
%r = icmp uge i8 %o0, %y
=>
%r = false
```
https://rise4fun.com/Alive/ofu
While we can't/shouldn't get such tautological case normally,
we do deal with non-splat vectors, so unless we want to give up
in this case, we need to fixup/short-circuit such lanes.
There are two lowering variants:
1. We can blend between whatever computed result and the correct tautological result
```
Name: (X % C1) == C2 -> X * C3 <= C4 || false
Pre: (C2 == 0 || C1 u<= C2) && (C1 u>> countTrailingZeros(C1)) * C3 == 1
%zz = and i8 C3, 0 ; trick alive into making C3 avaliable in precondition
%o0 = urem i8 %x, C1
%r = icmp eq i8 %o0, C2
=>
%zz = and i8 C3, 0 ; and silence it from complaining about said reg
%C4 = -1 /u C1
%n0 = mul i8 %x, C3
%n1 = lshr i8 %n0, countTrailingZeros(C1) ; rotate right
%n2 = shl i8 %n0, ((8-countTrailingZeros(C1)) %u 8) ; rotate right
%n3 = or i8 %n1, %n2 ; rotate right
%is_tautologically_false = icmp ule i8 C1, C2
%res = icmp ule i8 %n3, %C4
%r = select i1 %is_tautologically_false, i1 0, i1 %res
```
https://rise4fun.com/Alive/PjT5https://rise4fun.com/Alive/1KV
2. We can invert the comparison result
```
Name: (X % C1) == C2 -> X * C3 <= C4 || false
Pre: (C2 == 0 || C1 u<= C2) && (C1 u>> countTrailingZeros(C1)) * C3 == 1
%zz = and i8 C3, 0 ; trick alive into making C3 avaliable in precondition
%o0 = urem i8 %x, C1
%r = icmp eq i8 %o0, C2
=>
%zz = and i8 C3, 0 ; and silence it from complaining about said reg
%C4 = -1 /u C1
%n0 = mul i8 %x, C3
%n1 = lshr i8 %n0, countTrailingZeros(C1) ; rotate right
%n2 = shl i8 %n0, ((8-countTrailingZeros(C1)) %u 8) ; rotate right
%n3 = or i8 %n1, %n2 ; rotate right
%is_tautologically_false = icmp ule i8 C1, C2
%C4_fixed = select i1 %is_tautologically_false, i8 -1, i8 %C4
%res = icmp ule i8 %n3, %C4_fixed
%r = xor i1 %res, %is_tautologically_false
```
https://rise4fun.com/Alive/2xChttps://rise4fun.com/Alive/jpb5
3. We can expand into `and`/`or`:
https://rise4fun.com/Alive/WGnhttps://rise4fun.com/Alive/lcb5
Blend-one is likely better since we avoid having to load the
replacement from constant pool. `xor` is second best since
it's still pretty general. I'm not adding `and`/`or` variants.
Reviewers: RKSimon, craig.topper, spatel
Reviewed By: RKSimon
Subscribers: nick, hiraditya, xbolva00, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70051
Summary:
Instead of going to the debug_loc section directly, use new
DWARFDie::getLocations instead. This means that the code will now
automatically support debug_loclists sections.
This is the last usage of the old debug_loc methods, and they can now be
removed.
Reviewers: dblaikie, JDevlieghere, aprantl, SouraVX
Subscribers: hiraditya, probinson, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70534
Power9 has instructions to implement the semantics of SIGN_EXTEND_INREG for vector type.
Mark it as legal and add the match pattern.
Differential Revision: https://reviews.llvm.org/D69601
On RHEL, the OS tooling (ar, ranlib) is not deterministic by default.
Therefore, we cannot get bit-for-bit identical builds.
The goal of this patch is that it adds the flags required to force determinism.
Differential Revision: https://reviews.llvm.org/D64817
Add explicit setOperation actions for some to match their none
strict counterparts. This isn't required, but makes the code
self documenting that we didn't forget about strict fp. I've
used LibCall instead of Expand since that's more explicitly what
we want.
Only lrint/llrint/lround/llround are missing now.
float node
This patch add an option 'disable-strictnode-mutation' to prevent strict
node mutating to an normal node.
So we can make sure that the patch which sets strict-node as legal works
correctly.
Patch by Chen Liu(LiuChen3)
Differential Revision: https://reviews.llvm.org/D70226
The verification inside loop passes should be done under the
VerifyMemorySSA flag (enabled by EXPESIVE_CHECKS or explicitly with
opt), in order to not add to compile time during regular builds.