heuristic: the value is already live at the new memory operation if
it is used by some other instruction in the memop's block. This is
cheap and simple to compute (moreso than full liveness).
This improves the new heuristic even more. For example, it cuts two
out of three new instructions out of 255.vortex:DbmFileInGrpHdr,
which is one of the functions that the heuristic regressed. This
overall eliminates another 40 instructions from 403.gcc and visibly
reduces register pressure in 255.vortex (though this only actually
ends up saving the 2 instructions from the whole program).
llvm-svn: 60084
phrased in terms of liveness instead of as a horrible hack. :)
In pratice, this doesn't change the generated code for either
255.vortex or 403.gcc, but it could cause minor code changes in
theory. This is framework for coming changes.
llvm-svn: 60082
-enable-smarter-addr-folding to llc) that gives CGP a better
cost model for when to sink computations into addressing modes.
The basic observation is that sinking increases register
pressure when part of the addr computation has to be available
for other reasons, such as having a use that is a non-memory
operation. In cases where it works, it can substantially reduce
register pressure.
This code is currently an overall win on 403.gcc and 255.vortex
(the two things I've been looking at), but there are several
things I want to do before enabling it by default:
1. This isn't doing any caching of results, so it is much slower
than it could be. It currently slows down release-asserts llc
by 1.7% on 176.gcc: 27.12s -> 27.60s.
2. This doesn't think about inline asm memory operands yet.
3. The cost model botches the case when the needed value is live
across the computation for other reasons.
I'll continue poking at this, and eventually turn it on as llcbeta.
llvm-svn: 60074
optimize addressing modes. This allows us to optimize things like isel-sink2.ll
into:
movl 4(%esp), %eax
cmpb $0, 4(%eax)
jne LBB1_2 ## F
LBB1_1: ## TB
movl $4, %eax
ret
LBB1_2: ## F
movzbl 7(%eax), %eax
ret
instead of:
_test:
movl 4(%esp), %eax
cmpb $0, 4(%eax)
leal 4(%eax), %eax
jne LBB1_2 ## F
LBB1_1: ## TB
movl $4, %eax
ret
LBB1_2: ## F
movzbl 3(%eax), %eax
ret
This shrinks (e.g.) 403.gcc from 1133510 to 1128345 lines of .s.
Note that the 2008-10-16-SpillerBug.ll testcase is dubious at best, I doubt
it is really testing what it thinks it is.
llvm-svn: 60068
(a) Remove conditionally removed code in SelectXAddr. Basically, hope for the
best that the A-form and D-form address predicates catch everything before
the code decides to emit a X-form address.
(b) Expand vector store test cases to include the usual suspects.
llvm-svn: 60034
can recursively match things) and scales by 0 by ignoring them.
This triggers once in 403.gcc, saving 1 (!!!!) instruction in the
whole huge app.
llvm-svn: 60013
into a new AddressingModeMatcher class. This makes it easier
to reason about and reduces passing around of stuff, but has
no functionality change.
llvm-svn: 60012
introduce any new spilling; it just uses unused registers.
Refactor the SUnit topological sort code out of the RRList scheduler and
make use of it to help with the post-pass scheduler.
llvm-svn: 59999
(a) Slight rethink on i64 zero/sign/any extend code - use a shuffle to
directly zero-extend i32 to i64, but use rotates and shifts for
sign extension. Also ensure unified register consistency.
(b) Add new test harness for i64 operations: i64ops.ll
llvm-svn: 59970
(a) Improve the extract element code: there's no need to do gymnastics with
rotates into the preferred slot if a shuffle will do the same thing.
(b) Rename a couple of SPUISD pseudo-instructions for readability and better
semantic correspondence.
(c) Fix i64 sign/any/zero extension lowering.
llvm-svn: 59965
(this doesn't happen that often, since most code
does not use illegal types) then follow it by a
DAG combiner run that is allowed to generate
illegal operations but not illegal types. I didn't
modify the target combiner code to distinguish like
this between illegal operations and illegal types,
so it will not produce illegal operations as well
as not producing illegal types.
llvm-svn: 59960
value. It must now be as if the pointer were allocated and has not escaped to
the caller. Thanks to Dan Gohman for pointing out the error in the original
and helping devise this definition.
llvm-svn: 59940
indicate functions that allocate, such as operator new, or list::insert. The
actual definition is slightly less strict (for now).
No changes to the bitcode reader/writer, asm printer or verifier were needed.
llvm-svn: 59934