mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 04:02:41 +01:00
8830999b87
The test is based on a miscompile example in: https://llvm.org/PR51321 Differential Revision: https://reviews.llvm.org/D107692 (cherry picked from commit e1e4bf174b09bcd4b25cd624f177537890bff785)
23437 lines
900 KiB
C++
23437 lines
900 KiB
C++
//===- DAGCombiner.cpp - Implement a DAG node combiner --------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass combines dag nodes to form fewer, simpler DAG nodes. It can be run
|
|
// both before and after the DAG is legalized.
|
|
//
|
|
// This pass is not a substitute for the LLVM IR instcombine pass. This pass is
|
|
// primarily intended to handle simplification opportunities that are implicit
|
|
// in the LLVM IR and exposed by the various codegen lowering phases.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/APFloat.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/IntervalMap.h"
|
|
#include "llvm/ADT/None.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallBitVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/MemoryLocation.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/VectorUtils.h"
|
|
#include "llvm/CodeGen/DAGCombine.h"
|
|
#include "llvm/CodeGen/ISDOpcodes.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/CodeGen/RuntimeLibcalls.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/CodeGen/SelectionDAGAddressAnalysis.h"
|
|
#include "llvm/CodeGen/SelectionDAGNodes.h"
|
|
#include "llvm/CodeGen/SelectionDAGTargetInfo.h"
|
|
#include "llvm/CodeGen/TargetLowering.h"
|
|
#include "llvm/CodeGen/TargetRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
|
#include "llvm/CodeGen/ValueTypes.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CodeGen.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/KnownBits.h"
|
|
#include "llvm/Support/MachineValueType.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <functional>
|
|
#include <iterator>
|
|
#include <string>
|
|
#include <tuple>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "dagcombine"
|
|
|
|
STATISTIC(NodesCombined , "Number of dag nodes combined");
|
|
STATISTIC(PreIndexedNodes , "Number of pre-indexed nodes created");
|
|
STATISTIC(PostIndexedNodes, "Number of post-indexed nodes created");
|
|
STATISTIC(OpsNarrowed , "Number of load/op/store narrowed");
|
|
STATISTIC(LdStFP2Int , "Number of fp load/store pairs transformed to int");
|
|
STATISTIC(SlicedLoads, "Number of load sliced");
|
|
STATISTIC(NumFPLogicOpsConv, "Number of logic ops converted to fp ops");
|
|
|
|
static cl::opt<bool>
|
|
CombinerGlobalAA("combiner-global-alias-analysis", cl::Hidden,
|
|
cl::desc("Enable DAG combiner's use of IR alias analysis"));
|
|
|
|
static cl::opt<bool>
|
|
UseTBAA("combiner-use-tbaa", cl::Hidden, cl::init(true),
|
|
cl::desc("Enable DAG combiner's use of TBAA"));
|
|
|
|
#ifndef NDEBUG
|
|
static cl::opt<std::string>
|
|
CombinerAAOnlyFunc("combiner-aa-only-func", cl::Hidden,
|
|
cl::desc("Only use DAG-combiner alias analysis in this"
|
|
" function"));
|
|
#endif
|
|
|
|
/// Hidden option to stress test load slicing, i.e., when this option
|
|
/// is enabled, load slicing bypasses most of its profitability guards.
|
|
static cl::opt<bool>
|
|
StressLoadSlicing("combiner-stress-load-slicing", cl::Hidden,
|
|
cl::desc("Bypass the profitability model of load slicing"),
|
|
cl::init(false));
|
|
|
|
static cl::opt<bool>
|
|
MaySplitLoadIndex("combiner-split-load-index", cl::Hidden, cl::init(true),
|
|
cl::desc("DAG combiner may split indexing from loads"));
|
|
|
|
static cl::opt<bool>
|
|
EnableStoreMerging("combiner-store-merging", cl::Hidden, cl::init(true),
|
|
cl::desc("DAG combiner enable merging multiple stores "
|
|
"into a wider store"));
|
|
|
|
static cl::opt<unsigned> TokenFactorInlineLimit(
|
|
"combiner-tokenfactor-inline-limit", cl::Hidden, cl::init(2048),
|
|
cl::desc("Limit the number of operands to inline for Token Factors"));
|
|
|
|
static cl::opt<unsigned> StoreMergeDependenceLimit(
|
|
"combiner-store-merge-dependence-limit", cl::Hidden, cl::init(10),
|
|
cl::desc("Limit the number of times for the same StoreNode and RootNode "
|
|
"to bail out in store merging dependence check"));
|
|
|
|
static cl::opt<bool> EnableReduceLoadOpStoreWidth(
|
|
"combiner-reduce-load-op-store-width", cl::Hidden, cl::init(true),
|
|
cl::desc("DAG cominber enable reducing the width of load/op/store "
|
|
"sequence"));
|
|
|
|
static cl::opt<bool> EnableShrinkLoadReplaceStoreWithStore(
|
|
"combiner-shrink-load-replace-store-with-store", cl::Hidden, cl::init(true),
|
|
cl::desc("DAG cominber enable load/<replace bytes>/store with "
|
|
"a narrower store"));
|
|
|
|
namespace {
|
|
|
|
class DAGCombiner {
|
|
SelectionDAG &DAG;
|
|
const TargetLowering &TLI;
|
|
const SelectionDAGTargetInfo *STI;
|
|
CombineLevel Level;
|
|
CodeGenOpt::Level OptLevel;
|
|
bool LegalDAG = false;
|
|
bool LegalOperations = false;
|
|
bool LegalTypes = false;
|
|
bool ForCodeSize;
|
|
bool DisableGenericCombines;
|
|
|
|
/// Worklist of all of the nodes that need to be simplified.
|
|
///
|
|
/// This must behave as a stack -- new nodes to process are pushed onto the
|
|
/// back and when processing we pop off of the back.
|
|
///
|
|
/// The worklist will not contain duplicates but may contain null entries
|
|
/// due to nodes being deleted from the underlying DAG.
|
|
SmallVector<SDNode *, 64> Worklist;
|
|
|
|
/// Mapping from an SDNode to its position on the worklist.
|
|
///
|
|
/// This is used to find and remove nodes from the worklist (by nulling
|
|
/// them) when they are deleted from the underlying DAG. It relies on
|
|
/// stable indices of nodes within the worklist.
|
|
DenseMap<SDNode *, unsigned> WorklistMap;
|
|
/// This records all nodes attempted to add to the worklist since we
|
|
/// considered a new worklist entry. As we keep do not add duplicate nodes
|
|
/// in the worklist, this is different from the tail of the worklist.
|
|
SmallSetVector<SDNode *, 32> PruningList;
|
|
|
|
/// Set of nodes which have been combined (at least once).
|
|
///
|
|
/// This is used to allow us to reliably add any operands of a DAG node
|
|
/// which have not yet been combined to the worklist.
|
|
SmallPtrSet<SDNode *, 32> CombinedNodes;
|
|
|
|
/// Map from candidate StoreNode to the pair of RootNode and count.
|
|
/// The count is used to track how many times we have seen the StoreNode
|
|
/// with the same RootNode bail out in dependence check. If we have seen
|
|
/// the bail out for the same pair many times over a limit, we won't
|
|
/// consider the StoreNode with the same RootNode as store merging
|
|
/// candidate again.
|
|
DenseMap<SDNode *, std::pair<SDNode *, unsigned>> StoreRootCountMap;
|
|
|
|
// AA - Used for DAG load/store alias analysis.
|
|
AliasAnalysis *AA;
|
|
|
|
/// When an instruction is simplified, add all users of the instruction to
|
|
/// the work lists because they might get more simplified now.
|
|
void AddUsersToWorklist(SDNode *N) {
|
|
for (SDNode *Node : N->uses())
|
|
AddToWorklist(Node);
|
|
}
|
|
|
|
/// Convenient shorthand to add a node and all of its user to the worklist.
|
|
void AddToWorklistWithUsers(SDNode *N) {
|
|
AddUsersToWorklist(N);
|
|
AddToWorklist(N);
|
|
}
|
|
|
|
// Prune potentially dangling nodes. This is called after
|
|
// any visit to a node, but should also be called during a visit after any
|
|
// failed combine which may have created a DAG node.
|
|
void clearAddedDanglingWorklistEntries() {
|
|
// Check any nodes added to the worklist to see if they are prunable.
|
|
while (!PruningList.empty()) {
|
|
auto *N = PruningList.pop_back_val();
|
|
if (N->use_empty())
|
|
recursivelyDeleteUnusedNodes(N);
|
|
}
|
|
}
|
|
|
|
SDNode *getNextWorklistEntry() {
|
|
// Before we do any work, remove nodes that are not in use.
|
|
clearAddedDanglingWorklistEntries();
|
|
SDNode *N = nullptr;
|
|
// The Worklist holds the SDNodes in order, but it may contain null
|
|
// entries.
|
|
while (!N && !Worklist.empty()) {
|
|
N = Worklist.pop_back_val();
|
|
}
|
|
|
|
if (N) {
|
|
bool GoodWorklistEntry = WorklistMap.erase(N);
|
|
(void)GoodWorklistEntry;
|
|
assert(GoodWorklistEntry &&
|
|
"Found a worklist entry without a corresponding map entry!");
|
|
}
|
|
return N;
|
|
}
|
|
|
|
/// Call the node-specific routine that folds each particular type of node.
|
|
SDValue visit(SDNode *N);
|
|
|
|
public:
|
|
DAGCombiner(SelectionDAG &D, AliasAnalysis *AA, CodeGenOpt::Level OL)
|
|
: DAG(D), TLI(D.getTargetLoweringInfo()),
|
|
STI(D.getSubtarget().getSelectionDAGInfo()),
|
|
Level(BeforeLegalizeTypes), OptLevel(OL), AA(AA) {
|
|
ForCodeSize = DAG.shouldOptForSize();
|
|
DisableGenericCombines = STI && STI->disableGenericCombines(OptLevel);
|
|
|
|
MaximumLegalStoreInBits = 0;
|
|
// We use the minimum store size here, since that's all we can guarantee
|
|
// for the scalable vector types.
|
|
for (MVT VT : MVT::all_valuetypes())
|
|
if (EVT(VT).isSimple() && VT != MVT::Other &&
|
|
TLI.isTypeLegal(EVT(VT)) &&
|
|
VT.getSizeInBits().getKnownMinSize() >= MaximumLegalStoreInBits)
|
|
MaximumLegalStoreInBits = VT.getSizeInBits().getKnownMinSize();
|
|
}
|
|
|
|
void ConsiderForPruning(SDNode *N) {
|
|
// Mark this for potential pruning.
|
|
PruningList.insert(N);
|
|
}
|
|
|
|
/// Add to the worklist making sure its instance is at the back (next to be
|
|
/// processed.)
|
|
void AddToWorklist(SDNode *N) {
|
|
assert(N->getOpcode() != ISD::DELETED_NODE &&
|
|
"Deleted Node added to Worklist");
|
|
|
|
// Skip handle nodes as they can't usefully be combined and confuse the
|
|
// zero-use deletion strategy.
|
|
if (N->getOpcode() == ISD::HANDLENODE)
|
|
return;
|
|
|
|
ConsiderForPruning(N);
|
|
|
|
if (WorklistMap.insert(std::make_pair(N, Worklist.size())).second)
|
|
Worklist.push_back(N);
|
|
}
|
|
|
|
/// Remove all instances of N from the worklist.
|
|
void removeFromWorklist(SDNode *N) {
|
|
CombinedNodes.erase(N);
|
|
PruningList.remove(N);
|
|
StoreRootCountMap.erase(N);
|
|
|
|
auto It = WorklistMap.find(N);
|
|
if (It == WorklistMap.end())
|
|
return; // Not in the worklist.
|
|
|
|
// Null out the entry rather than erasing it to avoid a linear operation.
|
|
Worklist[It->second] = nullptr;
|
|
WorklistMap.erase(It);
|
|
}
|
|
|
|
void deleteAndRecombine(SDNode *N);
|
|
bool recursivelyDeleteUnusedNodes(SDNode *N);
|
|
|
|
/// Replaces all uses of the results of one DAG node with new values.
|
|
SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
|
|
bool AddTo = true);
|
|
|
|
/// Replaces all uses of the results of one DAG node with new values.
|
|
SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) {
|
|
return CombineTo(N, &Res, 1, AddTo);
|
|
}
|
|
|
|
/// Replaces all uses of the results of one DAG node with new values.
|
|
SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1,
|
|
bool AddTo = true) {
|
|
SDValue To[] = { Res0, Res1 };
|
|
return CombineTo(N, To, 2, AddTo);
|
|
}
|
|
|
|
void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO);
|
|
|
|
private:
|
|
unsigned MaximumLegalStoreInBits;
|
|
|
|
/// Check the specified integer node value to see if it can be simplified or
|
|
/// if things it uses can be simplified by bit propagation.
|
|
/// If so, return true.
|
|
bool SimplifyDemandedBits(SDValue Op) {
|
|
unsigned BitWidth = Op.getScalarValueSizeInBits();
|
|
APInt DemandedBits = APInt::getAllOnesValue(BitWidth);
|
|
return SimplifyDemandedBits(Op, DemandedBits);
|
|
}
|
|
|
|
bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits) {
|
|
TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
|
|
KnownBits Known;
|
|
if (!TLI.SimplifyDemandedBits(Op, DemandedBits, Known, TLO, 0, false))
|
|
return false;
|
|
|
|
// Revisit the node.
|
|
AddToWorklist(Op.getNode());
|
|
|
|
CommitTargetLoweringOpt(TLO);
|
|
return true;
|
|
}
|
|
|
|
/// Check the specified vector node value to see if it can be simplified or
|
|
/// if things it uses can be simplified as it only uses some of the
|
|
/// elements. If so, return true.
|
|
bool SimplifyDemandedVectorElts(SDValue Op) {
|
|
// TODO: For now just pretend it cannot be simplified.
|
|
if (Op.getValueType().isScalableVector())
|
|
return false;
|
|
|
|
unsigned NumElts = Op.getValueType().getVectorNumElements();
|
|
APInt DemandedElts = APInt::getAllOnesValue(NumElts);
|
|
return SimplifyDemandedVectorElts(Op, DemandedElts);
|
|
}
|
|
|
|
bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
|
|
const APInt &DemandedElts,
|
|
bool AssumeSingleUse = false);
|
|
bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedElts,
|
|
bool AssumeSingleUse = false);
|
|
|
|
bool CombineToPreIndexedLoadStore(SDNode *N);
|
|
bool CombineToPostIndexedLoadStore(SDNode *N);
|
|
SDValue SplitIndexingFromLoad(LoadSDNode *LD);
|
|
bool SliceUpLoad(SDNode *N);
|
|
|
|
// Scalars have size 0 to distinguish from singleton vectors.
|
|
SDValue ForwardStoreValueToDirectLoad(LoadSDNode *LD);
|
|
bool getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val);
|
|
bool extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val);
|
|
|
|
/// Replace an ISD::EXTRACT_VECTOR_ELT of a load with a narrowed
|
|
/// load.
|
|
///
|
|
/// \param EVE ISD::EXTRACT_VECTOR_ELT to be replaced.
|
|
/// \param InVecVT type of the input vector to EVE with bitcasts resolved.
|
|
/// \param EltNo index of the vector element to load.
|
|
/// \param OriginalLoad load that EVE came from to be replaced.
|
|
/// \returns EVE on success SDValue() on failure.
|
|
SDValue scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT,
|
|
SDValue EltNo,
|
|
LoadSDNode *OriginalLoad);
|
|
void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad);
|
|
SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace);
|
|
SDValue SExtPromoteOperand(SDValue Op, EVT PVT);
|
|
SDValue ZExtPromoteOperand(SDValue Op, EVT PVT);
|
|
SDValue PromoteIntBinOp(SDValue Op);
|
|
SDValue PromoteIntShiftOp(SDValue Op);
|
|
SDValue PromoteExtend(SDValue Op);
|
|
bool PromoteLoad(SDValue Op);
|
|
|
|
/// Call the node-specific routine that knows how to fold each
|
|
/// particular type of node. If that doesn't do anything, try the
|
|
/// target-specific DAG combines.
|
|
SDValue combine(SDNode *N);
|
|
|
|
// Visitation implementation - Implement dag node combining for different
|
|
// node types. The semantics are as follows:
|
|
// Return Value:
|
|
// SDValue.getNode() == 0 - No change was made
|
|
// SDValue.getNode() == N - N was replaced, is dead and has been handled.
|
|
// otherwise - N should be replaced by the returned Operand.
|
|
//
|
|
SDValue visitTokenFactor(SDNode *N);
|
|
SDValue visitMERGE_VALUES(SDNode *N);
|
|
SDValue visitADD(SDNode *N);
|
|
SDValue visitADDLike(SDNode *N);
|
|
SDValue visitADDLikeCommutative(SDValue N0, SDValue N1, SDNode *LocReference);
|
|
SDValue visitSUB(SDNode *N);
|
|
SDValue visitADDSAT(SDNode *N);
|
|
SDValue visitSUBSAT(SDNode *N);
|
|
SDValue visitADDC(SDNode *N);
|
|
SDValue visitADDO(SDNode *N);
|
|
SDValue visitUADDOLike(SDValue N0, SDValue N1, SDNode *N);
|
|
SDValue visitSUBC(SDNode *N);
|
|
SDValue visitSUBO(SDNode *N);
|
|
SDValue visitADDE(SDNode *N);
|
|
SDValue visitADDCARRY(SDNode *N);
|
|
SDValue visitSADDO_CARRY(SDNode *N);
|
|
SDValue visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn, SDNode *N);
|
|
SDValue visitSUBE(SDNode *N);
|
|
SDValue visitSUBCARRY(SDNode *N);
|
|
SDValue visitSSUBO_CARRY(SDNode *N);
|
|
SDValue visitMUL(SDNode *N);
|
|
SDValue visitMULFIX(SDNode *N);
|
|
SDValue useDivRem(SDNode *N);
|
|
SDValue visitSDIV(SDNode *N);
|
|
SDValue visitSDIVLike(SDValue N0, SDValue N1, SDNode *N);
|
|
SDValue visitUDIV(SDNode *N);
|
|
SDValue visitUDIVLike(SDValue N0, SDValue N1, SDNode *N);
|
|
SDValue visitREM(SDNode *N);
|
|
SDValue visitMULHU(SDNode *N);
|
|
SDValue visitMULHS(SDNode *N);
|
|
SDValue visitSMUL_LOHI(SDNode *N);
|
|
SDValue visitUMUL_LOHI(SDNode *N);
|
|
SDValue visitMULO(SDNode *N);
|
|
SDValue visitIMINMAX(SDNode *N);
|
|
SDValue visitAND(SDNode *N);
|
|
SDValue visitANDLike(SDValue N0, SDValue N1, SDNode *N);
|
|
SDValue visitOR(SDNode *N);
|
|
SDValue visitORLike(SDValue N0, SDValue N1, SDNode *N);
|
|
SDValue visitXOR(SDNode *N);
|
|
SDValue SimplifyVBinOp(SDNode *N);
|
|
SDValue visitSHL(SDNode *N);
|
|
SDValue visitSRA(SDNode *N);
|
|
SDValue visitSRL(SDNode *N);
|
|
SDValue visitFunnelShift(SDNode *N);
|
|
SDValue visitRotate(SDNode *N);
|
|
SDValue visitABS(SDNode *N);
|
|
SDValue visitBSWAP(SDNode *N);
|
|
SDValue visitBITREVERSE(SDNode *N);
|
|
SDValue visitCTLZ(SDNode *N);
|
|
SDValue visitCTLZ_ZERO_UNDEF(SDNode *N);
|
|
SDValue visitCTTZ(SDNode *N);
|
|
SDValue visitCTTZ_ZERO_UNDEF(SDNode *N);
|
|
SDValue visitCTPOP(SDNode *N);
|
|
SDValue visitSELECT(SDNode *N);
|
|
SDValue visitVSELECT(SDNode *N);
|
|
SDValue visitSELECT_CC(SDNode *N);
|
|
SDValue visitSETCC(SDNode *N);
|
|
SDValue visitSETCCCARRY(SDNode *N);
|
|
SDValue visitSIGN_EXTEND(SDNode *N);
|
|
SDValue visitZERO_EXTEND(SDNode *N);
|
|
SDValue visitANY_EXTEND(SDNode *N);
|
|
SDValue visitAssertExt(SDNode *N);
|
|
SDValue visitAssertAlign(SDNode *N);
|
|
SDValue visitSIGN_EXTEND_INREG(SDNode *N);
|
|
SDValue visitEXTEND_VECTOR_INREG(SDNode *N);
|
|
SDValue visitTRUNCATE(SDNode *N);
|
|
SDValue visitBITCAST(SDNode *N);
|
|
SDValue visitFREEZE(SDNode *N);
|
|
SDValue visitBUILD_PAIR(SDNode *N);
|
|
SDValue visitFADD(SDNode *N);
|
|
SDValue visitSTRICT_FADD(SDNode *N);
|
|
SDValue visitFSUB(SDNode *N);
|
|
SDValue visitFMUL(SDNode *N);
|
|
SDValue visitFMA(SDNode *N);
|
|
SDValue visitFDIV(SDNode *N);
|
|
SDValue visitFREM(SDNode *N);
|
|
SDValue visitFSQRT(SDNode *N);
|
|
SDValue visitFCOPYSIGN(SDNode *N);
|
|
SDValue visitFPOW(SDNode *N);
|
|
SDValue visitSINT_TO_FP(SDNode *N);
|
|
SDValue visitUINT_TO_FP(SDNode *N);
|
|
SDValue visitFP_TO_SINT(SDNode *N);
|
|
SDValue visitFP_TO_UINT(SDNode *N);
|
|
SDValue visitFP_ROUND(SDNode *N);
|
|
SDValue visitFP_EXTEND(SDNode *N);
|
|
SDValue visitFNEG(SDNode *N);
|
|
SDValue visitFABS(SDNode *N);
|
|
SDValue visitFCEIL(SDNode *N);
|
|
SDValue visitFTRUNC(SDNode *N);
|
|
SDValue visitFFLOOR(SDNode *N);
|
|
SDValue visitFMINNUM(SDNode *N);
|
|
SDValue visitFMAXNUM(SDNode *N);
|
|
SDValue visitFMINIMUM(SDNode *N);
|
|
SDValue visitFMAXIMUM(SDNode *N);
|
|
SDValue visitBRCOND(SDNode *N);
|
|
SDValue visitBR_CC(SDNode *N);
|
|
SDValue visitLOAD(SDNode *N);
|
|
|
|
SDValue replaceStoreChain(StoreSDNode *ST, SDValue BetterChain);
|
|
SDValue replaceStoreOfFPConstant(StoreSDNode *ST);
|
|
|
|
SDValue visitSTORE(SDNode *N);
|
|
SDValue visitLIFETIME_END(SDNode *N);
|
|
SDValue visitINSERT_VECTOR_ELT(SDNode *N);
|
|
SDValue visitEXTRACT_VECTOR_ELT(SDNode *N);
|
|
SDValue visitBUILD_VECTOR(SDNode *N);
|
|
SDValue visitCONCAT_VECTORS(SDNode *N);
|
|
SDValue visitEXTRACT_SUBVECTOR(SDNode *N);
|
|
SDValue visitVECTOR_SHUFFLE(SDNode *N);
|
|
SDValue visitSCALAR_TO_VECTOR(SDNode *N);
|
|
SDValue visitINSERT_SUBVECTOR(SDNode *N);
|
|
SDValue visitMLOAD(SDNode *N);
|
|
SDValue visitMSTORE(SDNode *N);
|
|
SDValue visitMGATHER(SDNode *N);
|
|
SDValue visitMSCATTER(SDNode *N);
|
|
SDValue visitFP_TO_FP16(SDNode *N);
|
|
SDValue visitFP16_TO_FP(SDNode *N);
|
|
SDValue visitVECREDUCE(SDNode *N);
|
|
|
|
SDValue visitFADDForFMACombine(SDNode *N);
|
|
SDValue visitFSUBForFMACombine(SDNode *N);
|
|
SDValue visitFMULForFMADistributiveCombine(SDNode *N);
|
|
|
|
SDValue XformToShuffleWithZero(SDNode *N);
|
|
bool reassociationCanBreakAddressingModePattern(unsigned Opc,
|
|
const SDLoc &DL, SDValue N0,
|
|
SDValue N1);
|
|
SDValue reassociateOpsCommutative(unsigned Opc, const SDLoc &DL, SDValue N0,
|
|
SDValue N1);
|
|
SDValue reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0,
|
|
SDValue N1, SDNodeFlags Flags);
|
|
|
|
SDValue visitShiftByConstant(SDNode *N);
|
|
|
|
SDValue foldSelectOfConstants(SDNode *N);
|
|
SDValue foldVSelectOfConstants(SDNode *N);
|
|
SDValue foldBinOpIntoSelect(SDNode *BO);
|
|
bool SimplifySelectOps(SDNode *SELECT, SDValue LHS, SDValue RHS);
|
|
SDValue hoistLogicOpWithSameOpcodeHands(SDNode *N);
|
|
SDValue SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2);
|
|
SDValue SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1,
|
|
SDValue N2, SDValue N3, ISD::CondCode CC,
|
|
bool NotExtCompare = false);
|
|
SDValue convertSelectOfFPConstantsToLoadOffset(
|
|
const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3,
|
|
ISD::CondCode CC);
|
|
SDValue foldSignChangeInBitcast(SDNode *N);
|
|
SDValue foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0, SDValue N1,
|
|
SDValue N2, SDValue N3, ISD::CondCode CC);
|
|
SDValue foldSelectOfBinops(SDNode *N);
|
|
SDValue foldSextSetcc(SDNode *N);
|
|
SDValue foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1,
|
|
const SDLoc &DL);
|
|
SDValue foldSubToUSubSat(EVT DstVT, SDNode *N);
|
|
SDValue unfoldMaskedMerge(SDNode *N);
|
|
SDValue unfoldExtremeBitClearingToShifts(SDNode *N);
|
|
SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
|
|
const SDLoc &DL, bool foldBooleans);
|
|
SDValue rebuildSetCC(SDValue N);
|
|
|
|
bool isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
|
|
SDValue &CC, bool MatchStrict = false) const;
|
|
bool isOneUseSetCC(SDValue N) const;
|
|
|
|
SDValue SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
|
|
unsigned HiOp);
|
|
SDValue CombineConsecutiveLoads(SDNode *N, EVT VT);
|
|
SDValue CombineExtLoad(SDNode *N);
|
|
SDValue CombineZExtLogicopShiftLoad(SDNode *N);
|
|
SDValue combineRepeatedFPDivisors(SDNode *N);
|
|
SDValue combineInsertEltToShuffle(SDNode *N, unsigned InsIndex);
|
|
SDValue ConstantFoldBITCASTofBUILD_VECTOR(SDNode *, EVT);
|
|
SDValue BuildSDIV(SDNode *N);
|
|
SDValue BuildSDIVPow2(SDNode *N);
|
|
SDValue BuildUDIV(SDNode *N);
|
|
SDValue BuildLogBase2(SDValue V, const SDLoc &DL);
|
|
SDValue BuildDivEstimate(SDValue N, SDValue Op, SDNodeFlags Flags);
|
|
SDValue buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags);
|
|
SDValue buildSqrtEstimate(SDValue Op, SDNodeFlags Flags);
|
|
SDValue buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags, bool Recip);
|
|
SDValue buildSqrtNROneConst(SDValue Arg, SDValue Est, unsigned Iterations,
|
|
SDNodeFlags Flags, bool Reciprocal);
|
|
SDValue buildSqrtNRTwoConst(SDValue Arg, SDValue Est, unsigned Iterations,
|
|
SDNodeFlags Flags, bool Reciprocal);
|
|
SDValue MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
|
|
bool DemandHighBits = true);
|
|
SDValue MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1);
|
|
SDValue MatchRotatePosNeg(SDValue Shifted, SDValue Pos, SDValue Neg,
|
|
SDValue InnerPos, SDValue InnerNeg,
|
|
unsigned PosOpcode, unsigned NegOpcode,
|
|
const SDLoc &DL);
|
|
SDValue MatchFunnelPosNeg(SDValue N0, SDValue N1, SDValue Pos, SDValue Neg,
|
|
SDValue InnerPos, SDValue InnerNeg,
|
|
unsigned PosOpcode, unsigned NegOpcode,
|
|
const SDLoc &DL);
|
|
SDValue MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL);
|
|
SDValue MatchLoadCombine(SDNode *N);
|
|
SDValue mergeTruncStores(StoreSDNode *N);
|
|
SDValue ReduceLoadWidth(SDNode *N);
|
|
SDValue ReduceLoadOpStoreWidth(SDNode *N);
|
|
SDValue splitMergedValStore(StoreSDNode *ST);
|
|
SDValue TransformFPLoadStorePair(SDNode *N);
|
|
SDValue convertBuildVecZextToZext(SDNode *N);
|
|
SDValue reduceBuildVecExtToExtBuildVec(SDNode *N);
|
|
SDValue reduceBuildVecTruncToBitCast(SDNode *N);
|
|
SDValue reduceBuildVecToShuffle(SDNode *N);
|
|
SDValue createBuildVecShuffle(const SDLoc &DL, SDNode *N,
|
|
ArrayRef<int> VectorMask, SDValue VecIn1,
|
|
SDValue VecIn2, unsigned LeftIdx,
|
|
bool DidSplitVec);
|
|
SDValue matchVSelectOpSizesWithSetCC(SDNode *Cast);
|
|
|
|
/// Walk up chain skipping non-aliasing memory nodes,
|
|
/// looking for aliasing nodes and adding them to the Aliases vector.
|
|
void GatherAllAliases(SDNode *N, SDValue OriginalChain,
|
|
SmallVectorImpl<SDValue> &Aliases);
|
|
|
|
/// Return true if there is any possibility that the two addresses overlap.
|
|
bool isAlias(SDNode *Op0, SDNode *Op1) const;
|
|
|
|
/// Walk up chain skipping non-aliasing memory nodes, looking for a better
|
|
/// chain (aliasing node.)
|
|
SDValue FindBetterChain(SDNode *N, SDValue Chain);
|
|
|
|
/// Try to replace a store and any possibly adjacent stores on
|
|
/// consecutive chains with better chains. Return true only if St is
|
|
/// replaced.
|
|
///
|
|
/// Notice that other chains may still be replaced even if the function
|
|
/// returns false.
|
|
bool findBetterNeighborChains(StoreSDNode *St);
|
|
|
|
// Helper for findBetterNeighborChains. Walk up store chain add additional
|
|
// chained stores that do not overlap and can be parallelized.
|
|
bool parallelizeChainedStores(StoreSDNode *St);
|
|
|
|
/// Holds a pointer to an LSBaseSDNode as well as information on where it
|
|
/// is located in a sequence of memory operations connected by a chain.
|
|
struct MemOpLink {
|
|
// Ptr to the mem node.
|
|
LSBaseSDNode *MemNode;
|
|
|
|
// Offset from the base ptr.
|
|
int64_t OffsetFromBase;
|
|
|
|
MemOpLink(LSBaseSDNode *N, int64_t Offset)
|
|
: MemNode(N), OffsetFromBase(Offset) {}
|
|
};
|
|
|
|
// Classify the origin of a stored value.
|
|
enum class StoreSource { Unknown, Constant, Extract, Load };
|
|
StoreSource getStoreSource(SDValue StoreVal) {
|
|
switch (StoreVal.getOpcode()) {
|
|
case ISD::Constant:
|
|
case ISD::ConstantFP:
|
|
return StoreSource::Constant;
|
|
case ISD::EXTRACT_VECTOR_ELT:
|
|
case ISD::EXTRACT_SUBVECTOR:
|
|
return StoreSource::Extract;
|
|
case ISD::LOAD:
|
|
return StoreSource::Load;
|
|
default:
|
|
return StoreSource::Unknown;
|
|
}
|
|
}
|
|
|
|
/// This is a helper function for visitMUL to check the profitability
|
|
/// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
|
|
/// MulNode is the original multiply, AddNode is (add x, c1),
|
|
/// and ConstNode is c2.
|
|
bool isMulAddWithConstProfitable(SDNode *MulNode,
|
|
SDValue &AddNode,
|
|
SDValue &ConstNode);
|
|
|
|
/// This is a helper function for visitAND and visitZERO_EXTEND. Returns
|
|
/// true if the (and (load x) c) pattern matches an extload. ExtVT returns
|
|
/// the type of the loaded value to be extended.
|
|
bool isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN,
|
|
EVT LoadResultTy, EVT &ExtVT);
|
|
|
|
/// Helper function to calculate whether the given Load/Store can have its
|
|
/// width reduced to ExtVT.
|
|
bool isLegalNarrowLdSt(LSBaseSDNode *LDSTN, ISD::LoadExtType ExtType,
|
|
EVT &MemVT, unsigned ShAmt = 0);
|
|
|
|
/// Used by BackwardsPropagateMask to find suitable loads.
|
|
bool SearchForAndLoads(SDNode *N, SmallVectorImpl<LoadSDNode*> &Loads,
|
|
SmallPtrSetImpl<SDNode*> &NodesWithConsts,
|
|
ConstantSDNode *Mask, SDNode *&NodeToMask);
|
|
/// Attempt to propagate a given AND node back to load leaves so that they
|
|
/// can be combined into narrow loads.
|
|
bool BackwardsPropagateMask(SDNode *N);
|
|
|
|
/// Helper function for mergeConsecutiveStores which merges the component
|
|
/// store chains.
|
|
SDValue getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes,
|
|
unsigned NumStores);
|
|
|
|
/// This is a helper function for mergeConsecutiveStores. When the source
|
|
/// elements of the consecutive stores are all constants or all extracted
|
|
/// vector elements, try to merge them into one larger store introducing
|
|
/// bitcasts if necessary. \return True if a merged store was created.
|
|
bool mergeStoresOfConstantsOrVecElts(SmallVectorImpl<MemOpLink> &StoreNodes,
|
|
EVT MemVT, unsigned NumStores,
|
|
bool IsConstantSrc, bool UseVector,
|
|
bool UseTrunc);
|
|
|
|
/// This is a helper function for mergeConsecutiveStores. Stores that
|
|
/// potentially may be merged with St are placed in StoreNodes. RootNode is
|
|
/// a chain predecessor to all store candidates.
|
|
void getStoreMergeCandidates(StoreSDNode *St,
|
|
SmallVectorImpl<MemOpLink> &StoreNodes,
|
|
SDNode *&Root);
|
|
|
|
/// Helper function for mergeConsecutiveStores. Checks if candidate stores
|
|
/// have indirect dependency through their operands. RootNode is the
|
|
/// predecessor to all stores calculated by getStoreMergeCandidates and is
|
|
/// used to prune the dependency check. \return True if safe to merge.
|
|
bool checkMergeStoreCandidatesForDependencies(
|
|
SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores,
|
|
SDNode *RootNode);
|
|
|
|
/// This is a helper function for mergeConsecutiveStores. Given a list of
|
|
/// store candidates, find the first N that are consecutive in memory.
|
|
/// Returns 0 if there are not at least 2 consecutive stores to try merging.
|
|
unsigned getConsecutiveStores(SmallVectorImpl<MemOpLink> &StoreNodes,
|
|
int64_t ElementSizeBytes) const;
|
|
|
|
/// This is a helper function for mergeConsecutiveStores. It is used for
|
|
/// store chains that are composed entirely of constant values.
|
|
bool tryStoreMergeOfConstants(SmallVectorImpl<MemOpLink> &StoreNodes,
|
|
unsigned NumConsecutiveStores,
|
|
EVT MemVT, SDNode *Root, bool AllowVectors);
|
|
|
|
/// This is a helper function for mergeConsecutiveStores. It is used for
|
|
/// store chains that are composed entirely of extracted vector elements.
|
|
/// When extracting multiple vector elements, try to store them in one
|
|
/// vector store rather than a sequence of scalar stores.
|
|
bool tryStoreMergeOfExtracts(SmallVectorImpl<MemOpLink> &StoreNodes,
|
|
unsigned NumConsecutiveStores, EVT MemVT,
|
|
SDNode *Root);
|
|
|
|
/// This is a helper function for mergeConsecutiveStores. It is used for
|
|
/// store chains that are composed entirely of loaded values.
|
|
bool tryStoreMergeOfLoads(SmallVectorImpl<MemOpLink> &StoreNodes,
|
|
unsigned NumConsecutiveStores, EVT MemVT,
|
|
SDNode *Root, bool AllowVectors,
|
|
bool IsNonTemporalStore, bool IsNonTemporalLoad);
|
|
|
|
/// Merge consecutive store operations into a wide store.
|
|
/// This optimization uses wide integers or vectors when possible.
|
|
/// \return true if stores were merged.
|
|
bool mergeConsecutiveStores(StoreSDNode *St);
|
|
|
|
/// Try to transform a truncation where C is a constant:
|
|
/// (trunc (and X, C)) -> (and (trunc X), (trunc C))
|
|
///
|
|
/// \p N needs to be a truncation and its first operand an AND. Other
|
|
/// requirements are checked by the function (e.g. that trunc is
|
|
/// single-use) and if missed an empty SDValue is returned.
|
|
SDValue distributeTruncateThroughAnd(SDNode *N);
|
|
|
|
/// Helper function to determine whether the target supports operation
|
|
/// given by \p Opcode for type \p VT, that is, whether the operation
|
|
/// is legal or custom before legalizing operations, and whether is
|
|
/// legal (but not custom) after legalization.
|
|
bool hasOperation(unsigned Opcode, EVT VT) {
|
|
return TLI.isOperationLegalOrCustom(Opcode, VT, LegalOperations);
|
|
}
|
|
|
|
public:
|
|
/// Runs the dag combiner on all nodes in the work list
|
|
void Run(CombineLevel AtLevel);
|
|
|
|
SelectionDAG &getDAG() const { return DAG; }
|
|
|
|
/// Returns a type large enough to hold any valid shift amount - before type
|
|
/// legalization these can be huge.
|
|
EVT getShiftAmountTy(EVT LHSTy) {
|
|
assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
|
|
return TLI.getShiftAmountTy(LHSTy, DAG.getDataLayout(), LegalTypes);
|
|
}
|
|
|
|
/// This method returns true if we are running before type legalization or
|
|
/// if the specified VT is legal.
|
|
bool isTypeLegal(const EVT &VT) {
|
|
if (!LegalTypes) return true;
|
|
return TLI.isTypeLegal(VT);
|
|
}
|
|
|
|
/// Convenience wrapper around TargetLowering::getSetCCResultType
|
|
EVT getSetCCResultType(EVT VT) const {
|
|
return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
|
|
}
|
|
|
|
void ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
|
|
SDValue OrigLoad, SDValue ExtLoad,
|
|
ISD::NodeType ExtType);
|
|
};
|
|
|
|
/// This class is a DAGUpdateListener that removes any deleted
|
|
/// nodes from the worklist.
|
|
class WorklistRemover : public SelectionDAG::DAGUpdateListener {
|
|
DAGCombiner &DC;
|
|
|
|
public:
|
|
explicit WorklistRemover(DAGCombiner &dc)
|
|
: SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}
|
|
|
|
void NodeDeleted(SDNode *N, SDNode *E) override {
|
|
DC.removeFromWorklist(N);
|
|
}
|
|
};
|
|
|
|
class WorklistInserter : public SelectionDAG::DAGUpdateListener {
|
|
DAGCombiner &DC;
|
|
|
|
public:
|
|
explicit WorklistInserter(DAGCombiner &dc)
|
|
: SelectionDAG::DAGUpdateListener(dc.getDAG()), DC(dc) {}
|
|
|
|
// FIXME: Ideally we could add N to the worklist, but this causes exponential
|
|
// compile time costs in large DAGs, e.g. Halide.
|
|
void NodeInserted(SDNode *N) override { DC.ConsiderForPruning(N); }
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TargetLowering::DAGCombinerInfo implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void TargetLowering::DAGCombinerInfo::AddToWorklist(SDNode *N) {
|
|
((DAGCombiner*)DC)->AddToWorklist(N);
|
|
}
|
|
|
|
SDValue TargetLowering::DAGCombinerInfo::
|
|
CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo) {
|
|
return ((DAGCombiner*)DC)->CombineTo(N, &To[0], To.size(), AddTo);
|
|
}
|
|
|
|
SDValue TargetLowering::DAGCombinerInfo::
|
|
CombineTo(SDNode *N, SDValue Res, bool AddTo) {
|
|
return ((DAGCombiner*)DC)->CombineTo(N, Res, AddTo);
|
|
}
|
|
|
|
SDValue TargetLowering::DAGCombinerInfo::
|
|
CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo) {
|
|
return ((DAGCombiner*)DC)->CombineTo(N, Res0, Res1, AddTo);
|
|
}
|
|
|
|
bool TargetLowering::DAGCombinerInfo::
|
|
recursivelyDeleteUnusedNodes(SDNode *N) {
|
|
return ((DAGCombiner*)DC)->recursivelyDeleteUnusedNodes(N);
|
|
}
|
|
|
|
void TargetLowering::DAGCombinerInfo::
|
|
CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
|
|
return ((DAGCombiner*)DC)->CommitTargetLoweringOpt(TLO);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Helper Functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void DAGCombiner::deleteAndRecombine(SDNode *N) {
|
|
removeFromWorklist(N);
|
|
|
|
// If the operands of this node are only used by the node, they will now be
|
|
// dead. Make sure to re-visit them and recursively delete dead nodes.
|
|
for (const SDValue &Op : N->ops())
|
|
// For an operand generating multiple values, one of the values may
|
|
// become dead allowing further simplification (e.g. split index
|
|
// arithmetic from an indexed load).
|
|
if (Op->hasOneUse() || Op->getNumValues() > 1)
|
|
AddToWorklist(Op.getNode());
|
|
|
|
DAG.DeleteNode(N);
|
|
}
|
|
|
|
// APInts must be the same size for most operations, this helper
|
|
// function zero extends the shorter of the pair so that they match.
|
|
// We provide an Offset so that we can create bitwidths that won't overflow.
|
|
static void zeroExtendToMatch(APInt &LHS, APInt &RHS, unsigned Offset = 0) {
|
|
unsigned Bits = Offset + std::max(LHS.getBitWidth(), RHS.getBitWidth());
|
|
LHS = LHS.zextOrSelf(Bits);
|
|
RHS = RHS.zextOrSelf(Bits);
|
|
}
|
|
|
|
// Return true if this node is a setcc, or is a select_cc
|
|
// that selects between the target values used for true and false, making it
|
|
// equivalent to a setcc. Also, set the incoming LHS, RHS, and CC references to
|
|
// the appropriate nodes based on the type of node we are checking. This
|
|
// simplifies life a bit for the callers.
|
|
bool DAGCombiner::isSetCCEquivalent(SDValue N, SDValue &LHS, SDValue &RHS,
|
|
SDValue &CC, bool MatchStrict) const {
|
|
if (N.getOpcode() == ISD::SETCC) {
|
|
LHS = N.getOperand(0);
|
|
RHS = N.getOperand(1);
|
|
CC = N.getOperand(2);
|
|
return true;
|
|
}
|
|
|
|
if (MatchStrict &&
|
|
(N.getOpcode() == ISD::STRICT_FSETCC ||
|
|
N.getOpcode() == ISD::STRICT_FSETCCS)) {
|
|
LHS = N.getOperand(1);
|
|
RHS = N.getOperand(2);
|
|
CC = N.getOperand(3);
|
|
return true;
|
|
}
|
|
|
|
if (N.getOpcode() != ISD::SELECT_CC ||
|
|
!TLI.isConstTrueVal(N.getOperand(2).getNode()) ||
|
|
!TLI.isConstFalseVal(N.getOperand(3).getNode()))
|
|
return false;
|
|
|
|
if (TLI.getBooleanContents(N.getValueType()) ==
|
|
TargetLowering::UndefinedBooleanContent)
|
|
return false;
|
|
|
|
LHS = N.getOperand(0);
|
|
RHS = N.getOperand(1);
|
|
CC = N.getOperand(4);
|
|
return true;
|
|
}
|
|
|
|
/// Return true if this is a SetCC-equivalent operation with only one use.
|
|
/// If this is true, it allows the users to invert the operation for free when
|
|
/// it is profitable to do so.
|
|
bool DAGCombiner::isOneUseSetCC(SDValue N) const {
|
|
SDValue N0, N1, N2;
|
|
if (isSetCCEquivalent(N, N0, N1, N2) && N.getNode()->hasOneUse())
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static bool isConstantSplatVectorMaskForType(SDNode *N, EVT ScalarTy) {
|
|
if (!ScalarTy.isSimple())
|
|
return false;
|
|
|
|
uint64_t MaskForTy = 0ULL;
|
|
switch (ScalarTy.getSimpleVT().SimpleTy) {
|
|
case MVT::i8:
|
|
MaskForTy = 0xFFULL;
|
|
break;
|
|
case MVT::i16:
|
|
MaskForTy = 0xFFFFULL;
|
|
break;
|
|
case MVT::i32:
|
|
MaskForTy = 0xFFFFFFFFULL;
|
|
break;
|
|
default:
|
|
return false;
|
|
break;
|
|
}
|
|
|
|
APInt Val;
|
|
if (ISD::isConstantSplatVector(N, Val))
|
|
return Val.getLimitedValue() == MaskForTy;
|
|
|
|
return false;
|
|
}
|
|
|
|
// Determines if it is a constant integer or a splat/build vector of constant
|
|
// integers (and undefs).
|
|
// Do not permit build vector implicit truncation.
|
|
static bool isConstantOrConstantVector(SDValue N, bool NoOpaques = false) {
|
|
if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N))
|
|
return !(Const->isOpaque() && NoOpaques);
|
|
if (N.getOpcode() != ISD::BUILD_VECTOR && N.getOpcode() != ISD::SPLAT_VECTOR)
|
|
return false;
|
|
unsigned BitWidth = N.getScalarValueSizeInBits();
|
|
for (const SDValue &Op : N->op_values()) {
|
|
if (Op.isUndef())
|
|
continue;
|
|
ConstantSDNode *Const = dyn_cast<ConstantSDNode>(Op);
|
|
if (!Const || Const->getAPIntValue().getBitWidth() != BitWidth ||
|
|
(Const->isOpaque() && NoOpaques))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Determines if a BUILD_VECTOR is composed of all-constants possibly mixed with
|
|
// undef's.
|
|
static bool isAnyConstantBuildVector(SDValue V, bool NoOpaques = false) {
|
|
if (V.getOpcode() != ISD::BUILD_VECTOR)
|
|
return false;
|
|
return isConstantOrConstantVector(V, NoOpaques) ||
|
|
ISD::isBuildVectorOfConstantFPSDNodes(V.getNode());
|
|
}
|
|
|
|
// Determine if this an indexed load with an opaque target constant index.
|
|
static bool canSplitIdx(LoadSDNode *LD) {
|
|
return MaySplitLoadIndex &&
|
|
(LD->getOperand(2).getOpcode() != ISD::TargetConstant ||
|
|
!cast<ConstantSDNode>(LD->getOperand(2))->isOpaque());
|
|
}
|
|
|
|
bool DAGCombiner::reassociationCanBreakAddressingModePattern(unsigned Opc,
|
|
const SDLoc &DL,
|
|
SDValue N0,
|
|
SDValue N1) {
|
|
// Currently this only tries to ensure we don't undo the GEP splits done by
|
|
// CodeGenPrepare when shouldConsiderGEPOffsetSplit is true. To ensure this,
|
|
// we check if the following transformation would be problematic:
|
|
// (load/store (add, (add, x, offset1), offset2)) ->
|
|
// (load/store (add, x, offset1+offset2)).
|
|
|
|
if (Opc != ISD::ADD || N0.getOpcode() != ISD::ADD)
|
|
return false;
|
|
|
|
if (N0.hasOneUse())
|
|
return false;
|
|
|
|
auto *C1 = dyn_cast<ConstantSDNode>(N0.getOperand(1));
|
|
auto *C2 = dyn_cast<ConstantSDNode>(N1);
|
|
if (!C1 || !C2)
|
|
return false;
|
|
|
|
const APInt &C1APIntVal = C1->getAPIntValue();
|
|
const APInt &C2APIntVal = C2->getAPIntValue();
|
|
if (C1APIntVal.getBitWidth() > 64 || C2APIntVal.getBitWidth() > 64)
|
|
return false;
|
|
|
|
const APInt CombinedValueIntVal = C1APIntVal + C2APIntVal;
|
|
if (CombinedValueIntVal.getBitWidth() > 64)
|
|
return false;
|
|
const int64_t CombinedValue = CombinedValueIntVal.getSExtValue();
|
|
|
|
for (SDNode *Node : N0->uses()) {
|
|
auto LoadStore = dyn_cast<MemSDNode>(Node);
|
|
if (LoadStore) {
|
|
// Is x[offset2] already not a legal addressing mode? If so then
|
|
// reassociating the constants breaks nothing (we test offset2 because
|
|
// that's the one we hope to fold into the load or store).
|
|
TargetLoweringBase::AddrMode AM;
|
|
AM.HasBaseReg = true;
|
|
AM.BaseOffs = C2APIntVal.getSExtValue();
|
|
EVT VT = LoadStore->getMemoryVT();
|
|
unsigned AS = LoadStore->getAddressSpace();
|
|
Type *AccessTy = VT.getTypeForEVT(*DAG.getContext());
|
|
if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS))
|
|
continue;
|
|
|
|
// Would x[offset1+offset2] still be a legal addressing mode?
|
|
AM.BaseOffs = CombinedValue;
|
|
if (!TLI.isLegalAddressingMode(DAG.getDataLayout(), AM, AccessTy, AS))
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Helper for DAGCombiner::reassociateOps. Try to reassociate an expression
|
|
// such as (Opc N0, N1), if \p N0 is the same kind of operation as \p Opc.
|
|
SDValue DAGCombiner::reassociateOpsCommutative(unsigned Opc, const SDLoc &DL,
|
|
SDValue N0, SDValue N1) {
|
|
EVT VT = N0.getValueType();
|
|
|
|
if (N0.getOpcode() != Opc)
|
|
return SDValue();
|
|
|
|
if (DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1))) {
|
|
if (DAG.isConstantIntBuildVectorOrConstantInt(N1)) {
|
|
// Reassociate: (op (op x, c1), c2) -> (op x, (op c1, c2))
|
|
if (SDValue OpNode =
|
|
DAG.FoldConstantArithmetic(Opc, DL, VT, {N0.getOperand(1), N1}))
|
|
return DAG.getNode(Opc, DL, VT, N0.getOperand(0), OpNode);
|
|
return SDValue();
|
|
}
|
|
if (N0.hasOneUse()) {
|
|
// Reassociate: (op (op x, c1), y) -> (op (op x, y), c1)
|
|
// iff (op x, c1) has one use
|
|
SDValue OpNode = DAG.getNode(Opc, SDLoc(N0), VT, N0.getOperand(0), N1);
|
|
if (!OpNode.getNode())
|
|
return SDValue();
|
|
return DAG.getNode(Opc, DL, VT, OpNode, N0.getOperand(1));
|
|
}
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
// Try to reassociate commutative binops.
|
|
SDValue DAGCombiner::reassociateOps(unsigned Opc, const SDLoc &DL, SDValue N0,
|
|
SDValue N1, SDNodeFlags Flags) {
|
|
assert(TLI.isCommutativeBinOp(Opc) && "Operation not commutative.");
|
|
|
|
// Floating-point reassociation is not allowed without loose FP math.
|
|
if (N0.getValueType().isFloatingPoint() ||
|
|
N1.getValueType().isFloatingPoint())
|
|
if (!Flags.hasAllowReassociation() || !Flags.hasNoSignedZeros())
|
|
return SDValue();
|
|
|
|
if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N0, N1))
|
|
return Combined;
|
|
if (SDValue Combined = reassociateOpsCommutative(Opc, DL, N1, N0))
|
|
return Combined;
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
|
|
bool AddTo) {
|
|
assert(N->getNumValues() == NumTo && "Broken CombineTo call!");
|
|
++NodesCombined;
|
|
LLVM_DEBUG(dbgs() << "\nReplacing.1 "; N->dump(&DAG); dbgs() << "\nWith: ";
|
|
To[0].getNode()->dump(&DAG);
|
|
dbgs() << " and " << NumTo - 1 << " other values\n");
|
|
for (unsigned i = 0, e = NumTo; i != e; ++i)
|
|
assert((!To[i].getNode() ||
|
|
N->getValueType(i) == To[i].getValueType()) &&
|
|
"Cannot combine value to value of different type!");
|
|
|
|
WorklistRemover DeadNodes(*this);
|
|
DAG.ReplaceAllUsesWith(N, To);
|
|
if (AddTo) {
|
|
// Push the new nodes and any users onto the worklist
|
|
for (unsigned i = 0, e = NumTo; i != e; ++i) {
|
|
if (To[i].getNode()) {
|
|
AddToWorklist(To[i].getNode());
|
|
AddUsersToWorklist(To[i].getNode());
|
|
}
|
|
}
|
|
}
|
|
|
|
// Finally, if the node is now dead, remove it from the graph. The node
|
|
// may not be dead if the replacement process recursively simplified to
|
|
// something else needing this node.
|
|
if (N->use_empty())
|
|
deleteAndRecombine(N);
|
|
return SDValue(N, 0);
|
|
}
|
|
|
|
void DAGCombiner::
|
|
CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt &TLO) {
|
|
// Replace the old value with the new one.
|
|
++NodesCombined;
|
|
LLVM_DEBUG(dbgs() << "\nReplacing.2 "; TLO.Old.getNode()->dump(&DAG);
|
|
dbgs() << "\nWith: "; TLO.New.getNode()->dump(&DAG);
|
|
dbgs() << '\n');
|
|
|
|
// Replace all uses. If any nodes become isomorphic to other nodes and
|
|
// are deleted, make sure to remove them from our worklist.
|
|
WorklistRemover DeadNodes(*this);
|
|
DAG.ReplaceAllUsesOfValueWith(TLO.Old, TLO.New);
|
|
|
|
// Push the new node and any (possibly new) users onto the worklist.
|
|
AddToWorklistWithUsers(TLO.New.getNode());
|
|
|
|
// Finally, if the node is now dead, remove it from the graph. The node
|
|
// may not be dead if the replacement process recursively simplified to
|
|
// something else needing this node.
|
|
if (TLO.Old.getNode()->use_empty())
|
|
deleteAndRecombine(TLO.Old.getNode());
|
|
}
|
|
|
|
/// Check the specified integer node value to see if it can be simplified or if
|
|
/// things it uses can be simplified by bit propagation. If so, return true.
|
|
bool DAGCombiner::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
|
|
const APInt &DemandedElts,
|
|
bool AssumeSingleUse) {
|
|
TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
|
|
KnownBits Known;
|
|
if (!TLI.SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, 0,
|
|
AssumeSingleUse))
|
|
return false;
|
|
|
|
// Revisit the node.
|
|
AddToWorklist(Op.getNode());
|
|
|
|
CommitTargetLoweringOpt(TLO);
|
|
return true;
|
|
}
|
|
|
|
/// Check the specified vector node value to see if it can be simplified or
|
|
/// if things it uses can be simplified as it only uses some of the elements.
|
|
/// If so, return true.
|
|
bool DAGCombiner::SimplifyDemandedVectorElts(SDValue Op,
|
|
const APInt &DemandedElts,
|
|
bool AssumeSingleUse) {
|
|
TargetLowering::TargetLoweringOpt TLO(DAG, LegalTypes, LegalOperations);
|
|
APInt KnownUndef, KnownZero;
|
|
if (!TLI.SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero,
|
|
TLO, 0, AssumeSingleUse))
|
|
return false;
|
|
|
|
// Revisit the node.
|
|
AddToWorklist(Op.getNode());
|
|
|
|
CommitTargetLoweringOpt(TLO);
|
|
return true;
|
|
}
|
|
|
|
void DAGCombiner::ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad) {
|
|
SDLoc DL(Load);
|
|
EVT VT = Load->getValueType(0);
|
|
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, VT, SDValue(ExtLoad, 0));
|
|
|
|
LLVM_DEBUG(dbgs() << "\nReplacing.9 "; Load->dump(&DAG); dbgs() << "\nWith: ";
|
|
Trunc.getNode()->dump(&DAG); dbgs() << '\n');
|
|
WorklistRemover DeadNodes(*this);
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), Trunc);
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), SDValue(ExtLoad, 1));
|
|
deleteAndRecombine(Load);
|
|
AddToWorklist(Trunc.getNode());
|
|
}
|
|
|
|
SDValue DAGCombiner::PromoteOperand(SDValue Op, EVT PVT, bool &Replace) {
|
|
Replace = false;
|
|
SDLoc DL(Op);
|
|
if (ISD::isUNINDEXEDLoad(Op.getNode())) {
|
|
LoadSDNode *LD = cast<LoadSDNode>(Op);
|
|
EVT MemVT = LD->getMemoryVT();
|
|
ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD
|
|
: LD->getExtensionType();
|
|
Replace = true;
|
|
return DAG.getExtLoad(ExtType, DL, PVT,
|
|
LD->getChain(), LD->getBasePtr(),
|
|
MemVT, LD->getMemOperand());
|
|
}
|
|
|
|
unsigned Opc = Op.getOpcode();
|
|
switch (Opc) {
|
|
default: break;
|
|
case ISD::AssertSext:
|
|
if (SDValue Op0 = SExtPromoteOperand(Op.getOperand(0), PVT))
|
|
return DAG.getNode(ISD::AssertSext, DL, PVT, Op0, Op.getOperand(1));
|
|
break;
|
|
case ISD::AssertZext:
|
|
if (SDValue Op0 = ZExtPromoteOperand(Op.getOperand(0), PVT))
|
|
return DAG.getNode(ISD::AssertZext, DL, PVT, Op0, Op.getOperand(1));
|
|
break;
|
|
case ISD::Constant: {
|
|
unsigned ExtOpc =
|
|
Op.getValueType().isByteSized() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
|
|
return DAG.getNode(ExtOpc, DL, PVT, Op);
|
|
}
|
|
}
|
|
|
|
if (!TLI.isOperationLegal(ISD::ANY_EXTEND, PVT))
|
|
return SDValue();
|
|
return DAG.getNode(ISD::ANY_EXTEND, DL, PVT, Op);
|
|
}
|
|
|
|
SDValue DAGCombiner::SExtPromoteOperand(SDValue Op, EVT PVT) {
|
|
if (!TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG, PVT))
|
|
return SDValue();
|
|
EVT OldVT = Op.getValueType();
|
|
SDLoc DL(Op);
|
|
bool Replace = false;
|
|
SDValue NewOp = PromoteOperand(Op, PVT, Replace);
|
|
if (!NewOp.getNode())
|
|
return SDValue();
|
|
AddToWorklist(NewOp.getNode());
|
|
|
|
if (Replace)
|
|
ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
|
|
return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, NewOp.getValueType(), NewOp,
|
|
DAG.getValueType(OldVT));
|
|
}
|
|
|
|
SDValue DAGCombiner::ZExtPromoteOperand(SDValue Op, EVT PVT) {
|
|
EVT OldVT = Op.getValueType();
|
|
SDLoc DL(Op);
|
|
bool Replace = false;
|
|
SDValue NewOp = PromoteOperand(Op, PVT, Replace);
|
|
if (!NewOp.getNode())
|
|
return SDValue();
|
|
AddToWorklist(NewOp.getNode());
|
|
|
|
if (Replace)
|
|
ReplaceLoadWithPromotedLoad(Op.getNode(), NewOp.getNode());
|
|
return DAG.getZeroExtendInReg(NewOp, DL, OldVT);
|
|
}
|
|
|
|
/// Promote the specified integer binary operation if the target indicates it is
|
|
/// beneficial. e.g. On x86, it's usually better to promote i16 operations to
|
|
/// i32 since i16 instructions are longer.
|
|
SDValue DAGCombiner::PromoteIntBinOp(SDValue Op) {
|
|
if (!LegalOperations)
|
|
return SDValue();
|
|
|
|
EVT VT = Op.getValueType();
|
|
if (VT.isVector() || !VT.isInteger())
|
|
return SDValue();
|
|
|
|
// If operation type is 'undesirable', e.g. i16 on x86, consider
|
|
// promoting it.
|
|
unsigned Opc = Op.getOpcode();
|
|
if (TLI.isTypeDesirableForOp(Opc, VT))
|
|
return SDValue();
|
|
|
|
EVT PVT = VT;
|
|
// Consult target whether it is a good idea to promote this operation and
|
|
// what's the right type to promote it to.
|
|
if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
|
|
assert(PVT != VT && "Don't know what type to promote to!");
|
|
|
|
LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG));
|
|
|
|
bool Replace0 = false;
|
|
SDValue N0 = Op.getOperand(0);
|
|
SDValue NN0 = PromoteOperand(N0, PVT, Replace0);
|
|
|
|
bool Replace1 = false;
|
|
SDValue N1 = Op.getOperand(1);
|
|
SDValue NN1 = PromoteOperand(N1, PVT, Replace1);
|
|
SDLoc DL(Op);
|
|
|
|
SDValue RV =
|
|
DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, NN0, NN1));
|
|
|
|
// We are always replacing N0/N1's use in N and only need additional
|
|
// replacements if there are additional uses.
|
|
// Note: We are checking uses of the *nodes* (SDNode) rather than values
|
|
// (SDValue) here because the node may reference multiple values
|
|
// (for example, the chain value of a load node).
|
|
Replace0 &= !N0->hasOneUse();
|
|
Replace1 &= (N0 != N1) && !N1->hasOneUse();
|
|
|
|
// Combine Op here so it is preserved past replacements.
|
|
CombineTo(Op.getNode(), RV);
|
|
|
|
// If operands have a use ordering, make sure we deal with
|
|
// predecessor first.
|
|
if (Replace0 && Replace1 && N0.getNode()->isPredecessorOf(N1.getNode())) {
|
|
std::swap(N0, N1);
|
|
std::swap(NN0, NN1);
|
|
}
|
|
|
|
if (Replace0) {
|
|
AddToWorklist(NN0.getNode());
|
|
ReplaceLoadWithPromotedLoad(N0.getNode(), NN0.getNode());
|
|
}
|
|
if (Replace1) {
|
|
AddToWorklist(NN1.getNode());
|
|
ReplaceLoadWithPromotedLoad(N1.getNode(), NN1.getNode());
|
|
}
|
|
return Op;
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
/// Promote the specified integer shift operation if the target indicates it is
|
|
/// beneficial. e.g. On x86, it's usually better to promote i16 operations to
|
|
/// i32 since i16 instructions are longer.
|
|
SDValue DAGCombiner::PromoteIntShiftOp(SDValue Op) {
|
|
if (!LegalOperations)
|
|
return SDValue();
|
|
|
|
EVT VT = Op.getValueType();
|
|
if (VT.isVector() || !VT.isInteger())
|
|
return SDValue();
|
|
|
|
// If operation type is 'undesirable', e.g. i16 on x86, consider
|
|
// promoting it.
|
|
unsigned Opc = Op.getOpcode();
|
|
if (TLI.isTypeDesirableForOp(Opc, VT))
|
|
return SDValue();
|
|
|
|
EVT PVT = VT;
|
|
// Consult target whether it is a good idea to promote this operation and
|
|
// what's the right type to promote it to.
|
|
if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
|
|
assert(PVT != VT && "Don't know what type to promote to!");
|
|
|
|
LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG));
|
|
|
|
bool Replace = false;
|
|
SDValue N0 = Op.getOperand(0);
|
|
SDValue N1 = Op.getOperand(1);
|
|
if (Opc == ISD::SRA)
|
|
N0 = SExtPromoteOperand(N0, PVT);
|
|
else if (Opc == ISD::SRL)
|
|
N0 = ZExtPromoteOperand(N0, PVT);
|
|
else
|
|
N0 = PromoteOperand(N0, PVT, Replace);
|
|
|
|
if (!N0.getNode())
|
|
return SDValue();
|
|
|
|
SDLoc DL(Op);
|
|
SDValue RV =
|
|
DAG.getNode(ISD::TRUNCATE, DL, VT, DAG.getNode(Opc, DL, PVT, N0, N1));
|
|
|
|
if (Replace)
|
|
ReplaceLoadWithPromotedLoad(Op.getOperand(0).getNode(), N0.getNode());
|
|
|
|
// Deal with Op being deleted.
|
|
if (Op && Op.getOpcode() != ISD::DELETED_NODE)
|
|
return RV;
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::PromoteExtend(SDValue Op) {
|
|
if (!LegalOperations)
|
|
return SDValue();
|
|
|
|
EVT VT = Op.getValueType();
|
|
if (VT.isVector() || !VT.isInteger())
|
|
return SDValue();
|
|
|
|
// If operation type is 'undesirable', e.g. i16 on x86, consider
|
|
// promoting it.
|
|
unsigned Opc = Op.getOpcode();
|
|
if (TLI.isTypeDesirableForOp(Opc, VT))
|
|
return SDValue();
|
|
|
|
EVT PVT = VT;
|
|
// Consult target whether it is a good idea to promote this operation and
|
|
// what's the right type to promote it to.
|
|
if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
|
|
assert(PVT != VT && "Don't know what type to promote to!");
|
|
// fold (aext (aext x)) -> (aext x)
|
|
// fold (aext (zext x)) -> (zext x)
|
|
// fold (aext (sext x)) -> (sext x)
|
|
LLVM_DEBUG(dbgs() << "\nPromoting "; Op.getNode()->dump(&DAG));
|
|
return DAG.getNode(Op.getOpcode(), SDLoc(Op), VT, Op.getOperand(0));
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
bool DAGCombiner::PromoteLoad(SDValue Op) {
|
|
if (!LegalOperations)
|
|
return false;
|
|
|
|
if (!ISD::isUNINDEXEDLoad(Op.getNode()))
|
|
return false;
|
|
|
|
EVT VT = Op.getValueType();
|
|
if (VT.isVector() || !VT.isInteger())
|
|
return false;
|
|
|
|
// If operation type is 'undesirable', e.g. i16 on x86, consider
|
|
// promoting it.
|
|
unsigned Opc = Op.getOpcode();
|
|
if (TLI.isTypeDesirableForOp(Opc, VT))
|
|
return false;
|
|
|
|
EVT PVT = VT;
|
|
// Consult target whether it is a good idea to promote this operation and
|
|
// what's the right type to promote it to.
|
|
if (TLI.IsDesirableToPromoteOp(Op, PVT)) {
|
|
assert(PVT != VT && "Don't know what type to promote to!");
|
|
|
|
SDLoc DL(Op);
|
|
SDNode *N = Op.getNode();
|
|
LoadSDNode *LD = cast<LoadSDNode>(N);
|
|
EVT MemVT = LD->getMemoryVT();
|
|
ISD::LoadExtType ExtType = ISD::isNON_EXTLoad(LD) ? ISD::EXTLOAD
|
|
: LD->getExtensionType();
|
|
SDValue NewLD = DAG.getExtLoad(ExtType, DL, PVT,
|
|
LD->getChain(), LD->getBasePtr(),
|
|
MemVT, LD->getMemOperand());
|
|
SDValue Result = DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD);
|
|
|
|
LLVM_DEBUG(dbgs() << "\nPromoting "; N->dump(&DAG); dbgs() << "\nTo: ";
|
|
Result.getNode()->dump(&DAG); dbgs() << '\n');
|
|
WorklistRemover DeadNodes(*this);
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), NewLD.getValue(1));
|
|
deleteAndRecombine(N);
|
|
AddToWorklist(Result.getNode());
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Recursively delete a node which has no uses and any operands for
|
|
/// which it is the only use.
|
|
///
|
|
/// Note that this both deletes the nodes and removes them from the worklist.
|
|
/// It also adds any nodes who have had a user deleted to the worklist as they
|
|
/// may now have only one use and subject to other combines.
|
|
bool DAGCombiner::recursivelyDeleteUnusedNodes(SDNode *N) {
|
|
if (!N->use_empty())
|
|
return false;
|
|
|
|
SmallSetVector<SDNode *, 16> Nodes;
|
|
Nodes.insert(N);
|
|
do {
|
|
N = Nodes.pop_back_val();
|
|
if (!N)
|
|
continue;
|
|
|
|
if (N->use_empty()) {
|
|
for (const SDValue &ChildN : N->op_values())
|
|
Nodes.insert(ChildN.getNode());
|
|
|
|
removeFromWorklist(N);
|
|
DAG.DeleteNode(N);
|
|
} else {
|
|
AddToWorklist(N);
|
|
}
|
|
} while (!Nodes.empty());
|
|
return true;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Main DAG Combiner implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void DAGCombiner::Run(CombineLevel AtLevel) {
|
|
// set the instance variables, so that the various visit routines may use it.
|
|
Level = AtLevel;
|
|
LegalDAG = Level >= AfterLegalizeDAG;
|
|
LegalOperations = Level >= AfterLegalizeVectorOps;
|
|
LegalTypes = Level >= AfterLegalizeTypes;
|
|
|
|
WorklistInserter AddNodes(*this);
|
|
|
|
// Add all the dag nodes to the worklist.
|
|
for (SDNode &Node : DAG.allnodes())
|
|
AddToWorklist(&Node);
|
|
|
|
// Create a dummy node (which is not added to allnodes), that adds a reference
|
|
// to the root node, preventing it from being deleted, and tracking any
|
|
// changes of the root.
|
|
HandleSDNode Dummy(DAG.getRoot());
|
|
|
|
// While we have a valid worklist entry node, try to combine it.
|
|
while (SDNode *N = getNextWorklistEntry()) {
|
|
// If N has no uses, it is dead. Make sure to revisit all N's operands once
|
|
// N is deleted from the DAG, since they too may now be dead or may have a
|
|
// reduced number of uses, allowing other xforms.
|
|
if (recursivelyDeleteUnusedNodes(N))
|
|
continue;
|
|
|
|
WorklistRemover DeadNodes(*this);
|
|
|
|
// If this combine is running after legalizing the DAG, re-legalize any
|
|
// nodes pulled off the worklist.
|
|
if (LegalDAG) {
|
|
SmallSetVector<SDNode *, 16> UpdatedNodes;
|
|
bool NIsValid = DAG.LegalizeOp(N, UpdatedNodes);
|
|
|
|
for (SDNode *LN : UpdatedNodes)
|
|
AddToWorklistWithUsers(LN);
|
|
|
|
if (!NIsValid)
|
|
continue;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "\nCombining: "; N->dump(&DAG));
|
|
|
|
// Add any operands of the new node which have not yet been combined to the
|
|
// worklist as well. Because the worklist uniques things already, this
|
|
// won't repeatedly process the same operand.
|
|
CombinedNodes.insert(N);
|
|
for (const SDValue &ChildN : N->op_values())
|
|
if (!CombinedNodes.count(ChildN.getNode()))
|
|
AddToWorklist(ChildN.getNode());
|
|
|
|
SDValue RV = combine(N);
|
|
|
|
if (!RV.getNode())
|
|
continue;
|
|
|
|
++NodesCombined;
|
|
|
|
// If we get back the same node we passed in, rather than a new node or
|
|
// zero, we know that the node must have defined multiple values and
|
|
// CombineTo was used. Since CombineTo takes care of the worklist
|
|
// mechanics for us, we have no work to do in this case.
|
|
if (RV.getNode() == N)
|
|
continue;
|
|
|
|
assert(N->getOpcode() != ISD::DELETED_NODE &&
|
|
RV.getOpcode() != ISD::DELETED_NODE &&
|
|
"Node was deleted but visit returned new node!");
|
|
|
|
LLVM_DEBUG(dbgs() << " ... into: "; RV.getNode()->dump(&DAG));
|
|
|
|
if (N->getNumValues() == RV.getNode()->getNumValues())
|
|
DAG.ReplaceAllUsesWith(N, RV.getNode());
|
|
else {
|
|
assert(N->getValueType(0) == RV.getValueType() &&
|
|
N->getNumValues() == 1 && "Type mismatch");
|
|
DAG.ReplaceAllUsesWith(N, &RV);
|
|
}
|
|
|
|
// Push the new node and any users onto the worklist. Omit this if the
|
|
// new node is the EntryToken (e.g. if a store managed to get optimized
|
|
// out), because re-visiting the EntryToken and its users will not uncover
|
|
// any additional opportunities, but there may be a large number of such
|
|
// users, potentially causing compile time explosion.
|
|
if (RV.getOpcode() != ISD::EntryToken) {
|
|
AddToWorklist(RV.getNode());
|
|
AddUsersToWorklist(RV.getNode());
|
|
}
|
|
|
|
// Finally, if the node is now dead, remove it from the graph. The node
|
|
// may not be dead if the replacement process recursively simplified to
|
|
// something else needing this node. This will also take care of adding any
|
|
// operands which have lost a user to the worklist.
|
|
recursivelyDeleteUnusedNodes(N);
|
|
}
|
|
|
|
// If the root changed (e.g. it was a dead load, update the root).
|
|
DAG.setRoot(Dummy.getValue());
|
|
DAG.RemoveDeadNodes();
|
|
}
|
|
|
|
SDValue DAGCombiner::visit(SDNode *N) {
|
|
switch (N->getOpcode()) {
|
|
default: break;
|
|
case ISD::TokenFactor: return visitTokenFactor(N);
|
|
case ISD::MERGE_VALUES: return visitMERGE_VALUES(N);
|
|
case ISD::ADD: return visitADD(N);
|
|
case ISD::SUB: return visitSUB(N);
|
|
case ISD::SADDSAT:
|
|
case ISD::UADDSAT: return visitADDSAT(N);
|
|
case ISD::SSUBSAT:
|
|
case ISD::USUBSAT: return visitSUBSAT(N);
|
|
case ISD::ADDC: return visitADDC(N);
|
|
case ISD::SADDO:
|
|
case ISD::UADDO: return visitADDO(N);
|
|
case ISD::SUBC: return visitSUBC(N);
|
|
case ISD::SSUBO:
|
|
case ISD::USUBO: return visitSUBO(N);
|
|
case ISD::ADDE: return visitADDE(N);
|
|
case ISD::ADDCARRY: return visitADDCARRY(N);
|
|
case ISD::SADDO_CARRY: return visitSADDO_CARRY(N);
|
|
case ISD::SUBE: return visitSUBE(N);
|
|
case ISD::SUBCARRY: return visitSUBCARRY(N);
|
|
case ISD::SSUBO_CARRY: return visitSSUBO_CARRY(N);
|
|
case ISD::SMULFIX:
|
|
case ISD::SMULFIXSAT:
|
|
case ISD::UMULFIX:
|
|
case ISD::UMULFIXSAT: return visitMULFIX(N);
|
|
case ISD::MUL: return visitMUL(N);
|
|
case ISD::SDIV: return visitSDIV(N);
|
|
case ISD::UDIV: return visitUDIV(N);
|
|
case ISD::SREM:
|
|
case ISD::UREM: return visitREM(N);
|
|
case ISD::MULHU: return visitMULHU(N);
|
|
case ISD::MULHS: return visitMULHS(N);
|
|
case ISD::SMUL_LOHI: return visitSMUL_LOHI(N);
|
|
case ISD::UMUL_LOHI: return visitUMUL_LOHI(N);
|
|
case ISD::SMULO:
|
|
case ISD::UMULO: return visitMULO(N);
|
|
case ISD::SMIN:
|
|
case ISD::SMAX:
|
|
case ISD::UMIN:
|
|
case ISD::UMAX: return visitIMINMAX(N);
|
|
case ISD::AND: return visitAND(N);
|
|
case ISD::OR: return visitOR(N);
|
|
case ISD::XOR: return visitXOR(N);
|
|
case ISD::SHL: return visitSHL(N);
|
|
case ISD::SRA: return visitSRA(N);
|
|
case ISD::SRL: return visitSRL(N);
|
|
case ISD::ROTR:
|
|
case ISD::ROTL: return visitRotate(N);
|
|
case ISD::FSHL:
|
|
case ISD::FSHR: return visitFunnelShift(N);
|
|
case ISD::ABS: return visitABS(N);
|
|
case ISD::BSWAP: return visitBSWAP(N);
|
|
case ISD::BITREVERSE: return visitBITREVERSE(N);
|
|
case ISD::CTLZ: return visitCTLZ(N);
|
|
case ISD::CTLZ_ZERO_UNDEF: return visitCTLZ_ZERO_UNDEF(N);
|
|
case ISD::CTTZ: return visitCTTZ(N);
|
|
case ISD::CTTZ_ZERO_UNDEF: return visitCTTZ_ZERO_UNDEF(N);
|
|
case ISD::CTPOP: return visitCTPOP(N);
|
|
case ISD::SELECT: return visitSELECT(N);
|
|
case ISD::VSELECT: return visitVSELECT(N);
|
|
case ISD::SELECT_CC: return visitSELECT_CC(N);
|
|
case ISD::SETCC: return visitSETCC(N);
|
|
case ISD::SETCCCARRY: return visitSETCCCARRY(N);
|
|
case ISD::SIGN_EXTEND: return visitSIGN_EXTEND(N);
|
|
case ISD::ZERO_EXTEND: return visitZERO_EXTEND(N);
|
|
case ISD::ANY_EXTEND: return visitANY_EXTEND(N);
|
|
case ISD::AssertSext:
|
|
case ISD::AssertZext: return visitAssertExt(N);
|
|
case ISD::AssertAlign: return visitAssertAlign(N);
|
|
case ISD::SIGN_EXTEND_INREG: return visitSIGN_EXTEND_INREG(N);
|
|
case ISD::SIGN_EXTEND_VECTOR_INREG:
|
|
case ISD::ZERO_EXTEND_VECTOR_INREG: return visitEXTEND_VECTOR_INREG(N);
|
|
case ISD::TRUNCATE: return visitTRUNCATE(N);
|
|
case ISD::BITCAST: return visitBITCAST(N);
|
|
case ISD::BUILD_PAIR: return visitBUILD_PAIR(N);
|
|
case ISD::FADD: return visitFADD(N);
|
|
case ISD::STRICT_FADD: return visitSTRICT_FADD(N);
|
|
case ISD::FSUB: return visitFSUB(N);
|
|
case ISD::FMUL: return visitFMUL(N);
|
|
case ISD::FMA: return visitFMA(N);
|
|
case ISD::FDIV: return visitFDIV(N);
|
|
case ISD::FREM: return visitFREM(N);
|
|
case ISD::FSQRT: return visitFSQRT(N);
|
|
case ISD::FCOPYSIGN: return visitFCOPYSIGN(N);
|
|
case ISD::FPOW: return visitFPOW(N);
|
|
case ISD::SINT_TO_FP: return visitSINT_TO_FP(N);
|
|
case ISD::UINT_TO_FP: return visitUINT_TO_FP(N);
|
|
case ISD::FP_TO_SINT: return visitFP_TO_SINT(N);
|
|
case ISD::FP_TO_UINT: return visitFP_TO_UINT(N);
|
|
case ISD::FP_ROUND: return visitFP_ROUND(N);
|
|
case ISD::FP_EXTEND: return visitFP_EXTEND(N);
|
|
case ISD::FNEG: return visitFNEG(N);
|
|
case ISD::FABS: return visitFABS(N);
|
|
case ISD::FFLOOR: return visitFFLOOR(N);
|
|
case ISD::FMINNUM: return visitFMINNUM(N);
|
|
case ISD::FMAXNUM: return visitFMAXNUM(N);
|
|
case ISD::FMINIMUM: return visitFMINIMUM(N);
|
|
case ISD::FMAXIMUM: return visitFMAXIMUM(N);
|
|
case ISD::FCEIL: return visitFCEIL(N);
|
|
case ISD::FTRUNC: return visitFTRUNC(N);
|
|
case ISD::BRCOND: return visitBRCOND(N);
|
|
case ISD::BR_CC: return visitBR_CC(N);
|
|
case ISD::LOAD: return visitLOAD(N);
|
|
case ISD::STORE: return visitSTORE(N);
|
|
case ISD::INSERT_VECTOR_ELT: return visitINSERT_VECTOR_ELT(N);
|
|
case ISD::EXTRACT_VECTOR_ELT: return visitEXTRACT_VECTOR_ELT(N);
|
|
case ISD::BUILD_VECTOR: return visitBUILD_VECTOR(N);
|
|
case ISD::CONCAT_VECTORS: return visitCONCAT_VECTORS(N);
|
|
case ISD::EXTRACT_SUBVECTOR: return visitEXTRACT_SUBVECTOR(N);
|
|
case ISD::VECTOR_SHUFFLE: return visitVECTOR_SHUFFLE(N);
|
|
case ISD::SCALAR_TO_VECTOR: return visitSCALAR_TO_VECTOR(N);
|
|
case ISD::INSERT_SUBVECTOR: return visitINSERT_SUBVECTOR(N);
|
|
case ISD::MGATHER: return visitMGATHER(N);
|
|
case ISD::MLOAD: return visitMLOAD(N);
|
|
case ISD::MSCATTER: return visitMSCATTER(N);
|
|
case ISD::MSTORE: return visitMSTORE(N);
|
|
case ISD::LIFETIME_END: return visitLIFETIME_END(N);
|
|
case ISD::FP_TO_FP16: return visitFP_TO_FP16(N);
|
|
case ISD::FP16_TO_FP: return visitFP16_TO_FP(N);
|
|
case ISD::FREEZE: return visitFREEZE(N);
|
|
case ISD::VECREDUCE_FADD:
|
|
case ISD::VECREDUCE_FMUL:
|
|
case ISD::VECREDUCE_ADD:
|
|
case ISD::VECREDUCE_MUL:
|
|
case ISD::VECREDUCE_AND:
|
|
case ISD::VECREDUCE_OR:
|
|
case ISD::VECREDUCE_XOR:
|
|
case ISD::VECREDUCE_SMAX:
|
|
case ISD::VECREDUCE_SMIN:
|
|
case ISD::VECREDUCE_UMAX:
|
|
case ISD::VECREDUCE_UMIN:
|
|
case ISD::VECREDUCE_FMAX:
|
|
case ISD::VECREDUCE_FMIN: return visitVECREDUCE(N);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::combine(SDNode *N) {
|
|
SDValue RV;
|
|
if (!DisableGenericCombines)
|
|
RV = visit(N);
|
|
|
|
// If nothing happened, try a target-specific DAG combine.
|
|
if (!RV.getNode()) {
|
|
assert(N->getOpcode() != ISD::DELETED_NODE &&
|
|
"Node was deleted but visit returned NULL!");
|
|
|
|
if (N->getOpcode() >= ISD::BUILTIN_OP_END ||
|
|
TLI.hasTargetDAGCombine((ISD::NodeType)N->getOpcode())) {
|
|
|
|
// Expose the DAG combiner to the target combiner impls.
|
|
TargetLowering::DAGCombinerInfo
|
|
DagCombineInfo(DAG, Level, false, this);
|
|
|
|
RV = TLI.PerformDAGCombine(N, DagCombineInfo);
|
|
}
|
|
}
|
|
|
|
// If nothing happened still, try promoting the operation.
|
|
if (!RV.getNode()) {
|
|
switch (N->getOpcode()) {
|
|
default: break;
|
|
case ISD::ADD:
|
|
case ISD::SUB:
|
|
case ISD::MUL:
|
|
case ISD::AND:
|
|
case ISD::OR:
|
|
case ISD::XOR:
|
|
RV = PromoteIntBinOp(SDValue(N, 0));
|
|
break;
|
|
case ISD::SHL:
|
|
case ISD::SRA:
|
|
case ISD::SRL:
|
|
RV = PromoteIntShiftOp(SDValue(N, 0));
|
|
break;
|
|
case ISD::SIGN_EXTEND:
|
|
case ISD::ZERO_EXTEND:
|
|
case ISD::ANY_EXTEND:
|
|
RV = PromoteExtend(SDValue(N, 0));
|
|
break;
|
|
case ISD::LOAD:
|
|
if (PromoteLoad(SDValue(N, 0)))
|
|
RV = SDValue(N, 0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If N is a commutative binary node, try to eliminate it if the commuted
|
|
// version is already present in the DAG.
|
|
if (!RV.getNode() && TLI.isCommutativeBinOp(N->getOpcode()) &&
|
|
N->getNumValues() == 1) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
|
|
// Constant operands are canonicalized to RHS.
|
|
if (N0 != N1 && (isa<ConstantSDNode>(N0) || !isa<ConstantSDNode>(N1))) {
|
|
SDValue Ops[] = {N1, N0};
|
|
SDNode *CSENode = DAG.getNodeIfExists(N->getOpcode(), N->getVTList(), Ops,
|
|
N->getFlags());
|
|
if (CSENode)
|
|
return SDValue(CSENode, 0);
|
|
}
|
|
}
|
|
|
|
return RV;
|
|
}
|
|
|
|
/// Given a node, return its input chain if it has one, otherwise return a null
|
|
/// sd operand.
|
|
static SDValue getInputChainForNode(SDNode *N) {
|
|
if (unsigned NumOps = N->getNumOperands()) {
|
|
if (N->getOperand(0).getValueType() == MVT::Other)
|
|
return N->getOperand(0);
|
|
if (N->getOperand(NumOps-1).getValueType() == MVT::Other)
|
|
return N->getOperand(NumOps-1);
|
|
for (unsigned i = 1; i < NumOps-1; ++i)
|
|
if (N->getOperand(i).getValueType() == MVT::Other)
|
|
return N->getOperand(i);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitTokenFactor(SDNode *N) {
|
|
// If N has two operands, where one has an input chain equal to the other,
|
|
// the 'other' chain is redundant.
|
|
if (N->getNumOperands() == 2) {
|
|
if (getInputChainForNode(N->getOperand(0).getNode()) == N->getOperand(1))
|
|
return N->getOperand(0);
|
|
if (getInputChainForNode(N->getOperand(1).getNode()) == N->getOperand(0))
|
|
return N->getOperand(1);
|
|
}
|
|
|
|
// Don't simplify token factors if optnone.
|
|
if (OptLevel == CodeGenOpt::None)
|
|
return SDValue();
|
|
|
|
// Don't simplify the token factor if the node itself has too many operands.
|
|
if (N->getNumOperands() > TokenFactorInlineLimit)
|
|
return SDValue();
|
|
|
|
// If the sole user is a token factor, we should make sure we have a
|
|
// chance to merge them together. This prevents TF chains from inhibiting
|
|
// optimizations.
|
|
if (N->hasOneUse() && N->use_begin()->getOpcode() == ISD::TokenFactor)
|
|
AddToWorklist(*(N->use_begin()));
|
|
|
|
SmallVector<SDNode *, 8> TFs; // List of token factors to visit.
|
|
SmallVector<SDValue, 8> Ops; // Ops for replacing token factor.
|
|
SmallPtrSet<SDNode*, 16> SeenOps;
|
|
bool Changed = false; // If we should replace this token factor.
|
|
|
|
// Start out with this token factor.
|
|
TFs.push_back(N);
|
|
|
|
// Iterate through token factors. The TFs grows when new token factors are
|
|
// encountered.
|
|
for (unsigned i = 0; i < TFs.size(); ++i) {
|
|
// Limit number of nodes to inline, to avoid quadratic compile times.
|
|
// We have to add the outstanding Token Factors to Ops, otherwise we might
|
|
// drop Ops from the resulting Token Factors.
|
|
if (Ops.size() > TokenFactorInlineLimit) {
|
|
for (unsigned j = i; j < TFs.size(); j++)
|
|
Ops.emplace_back(TFs[j], 0);
|
|
// Drop unprocessed Token Factors from TFs, so we do not add them to the
|
|
// combiner worklist later.
|
|
TFs.resize(i);
|
|
break;
|
|
}
|
|
|
|
SDNode *TF = TFs[i];
|
|
// Check each of the operands.
|
|
for (const SDValue &Op : TF->op_values()) {
|
|
switch (Op.getOpcode()) {
|
|
case ISD::EntryToken:
|
|
// Entry tokens don't need to be added to the list. They are
|
|
// redundant.
|
|
Changed = true;
|
|
break;
|
|
|
|
case ISD::TokenFactor:
|
|
if (Op.hasOneUse() && !is_contained(TFs, Op.getNode())) {
|
|
// Queue up for processing.
|
|
TFs.push_back(Op.getNode());
|
|
Changed = true;
|
|
break;
|
|
}
|
|
LLVM_FALLTHROUGH;
|
|
|
|
default:
|
|
// Only add if it isn't already in the list.
|
|
if (SeenOps.insert(Op.getNode()).second)
|
|
Ops.push_back(Op);
|
|
else
|
|
Changed = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Re-visit inlined Token Factors, to clean them up in case they have been
|
|
// removed. Skip the first Token Factor, as this is the current node.
|
|
for (unsigned i = 1, e = TFs.size(); i < e; i++)
|
|
AddToWorklist(TFs[i]);
|
|
|
|
// Remove Nodes that are chained to another node in the list. Do so
|
|
// by walking up chains breath-first stopping when we've seen
|
|
// another operand. In general we must climb to the EntryNode, but we can exit
|
|
// early if we find all remaining work is associated with just one operand as
|
|
// no further pruning is possible.
|
|
|
|
// List of nodes to search through and original Ops from which they originate.
|
|
SmallVector<std::pair<SDNode *, unsigned>, 8> Worklist;
|
|
SmallVector<unsigned, 8> OpWorkCount; // Count of work for each Op.
|
|
SmallPtrSet<SDNode *, 16> SeenChains;
|
|
bool DidPruneOps = false;
|
|
|
|
unsigned NumLeftToConsider = 0;
|
|
for (const SDValue &Op : Ops) {
|
|
Worklist.push_back(std::make_pair(Op.getNode(), NumLeftToConsider++));
|
|
OpWorkCount.push_back(1);
|
|
}
|
|
|
|
auto AddToWorklist = [&](unsigned CurIdx, SDNode *Op, unsigned OpNumber) {
|
|
// If this is an Op, we can remove the op from the list. Remark any
|
|
// search associated with it as from the current OpNumber.
|
|
if (SeenOps.contains(Op)) {
|
|
Changed = true;
|
|
DidPruneOps = true;
|
|
unsigned OrigOpNumber = 0;
|
|
while (OrigOpNumber < Ops.size() && Ops[OrigOpNumber].getNode() != Op)
|
|
OrigOpNumber++;
|
|
assert((OrigOpNumber != Ops.size()) &&
|
|
"expected to find TokenFactor Operand");
|
|
// Re-mark worklist from OrigOpNumber to OpNumber
|
|
for (unsigned i = CurIdx + 1; i < Worklist.size(); ++i) {
|
|
if (Worklist[i].second == OrigOpNumber) {
|
|
Worklist[i].second = OpNumber;
|
|
}
|
|
}
|
|
OpWorkCount[OpNumber] += OpWorkCount[OrigOpNumber];
|
|
OpWorkCount[OrigOpNumber] = 0;
|
|
NumLeftToConsider--;
|
|
}
|
|
// Add if it's a new chain
|
|
if (SeenChains.insert(Op).second) {
|
|
OpWorkCount[OpNumber]++;
|
|
Worklist.push_back(std::make_pair(Op, OpNumber));
|
|
}
|
|
};
|
|
|
|
for (unsigned i = 0; i < Worklist.size() && i < 1024; ++i) {
|
|
// We need at least be consider at least 2 Ops to prune.
|
|
if (NumLeftToConsider <= 1)
|
|
break;
|
|
auto CurNode = Worklist[i].first;
|
|
auto CurOpNumber = Worklist[i].second;
|
|
assert((OpWorkCount[CurOpNumber] > 0) &&
|
|
"Node should not appear in worklist");
|
|
switch (CurNode->getOpcode()) {
|
|
case ISD::EntryToken:
|
|
// Hitting EntryToken is the only way for the search to terminate without
|
|
// hitting
|
|
// another operand's search. Prevent us from marking this operand
|
|
// considered.
|
|
NumLeftToConsider++;
|
|
break;
|
|
case ISD::TokenFactor:
|
|
for (const SDValue &Op : CurNode->op_values())
|
|
AddToWorklist(i, Op.getNode(), CurOpNumber);
|
|
break;
|
|
case ISD::LIFETIME_START:
|
|
case ISD::LIFETIME_END:
|
|
case ISD::CopyFromReg:
|
|
case ISD::CopyToReg:
|
|
AddToWorklist(i, CurNode->getOperand(0).getNode(), CurOpNumber);
|
|
break;
|
|
default:
|
|
if (auto *MemNode = dyn_cast<MemSDNode>(CurNode))
|
|
AddToWorklist(i, MemNode->getChain().getNode(), CurOpNumber);
|
|
break;
|
|
}
|
|
OpWorkCount[CurOpNumber]--;
|
|
if (OpWorkCount[CurOpNumber] == 0)
|
|
NumLeftToConsider--;
|
|
}
|
|
|
|
// If we've changed things around then replace token factor.
|
|
if (Changed) {
|
|
SDValue Result;
|
|
if (Ops.empty()) {
|
|
// The entry token is the only possible outcome.
|
|
Result = DAG.getEntryNode();
|
|
} else {
|
|
if (DidPruneOps) {
|
|
SmallVector<SDValue, 8> PrunedOps;
|
|
//
|
|
for (const SDValue &Op : Ops) {
|
|
if (SeenChains.count(Op.getNode()) == 0)
|
|
PrunedOps.push_back(Op);
|
|
}
|
|
Result = DAG.getTokenFactor(SDLoc(N), PrunedOps);
|
|
} else {
|
|
Result = DAG.getTokenFactor(SDLoc(N), Ops);
|
|
}
|
|
}
|
|
return Result;
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
/// MERGE_VALUES can always be eliminated.
|
|
SDValue DAGCombiner::visitMERGE_VALUES(SDNode *N) {
|
|
WorklistRemover DeadNodes(*this);
|
|
// Replacing results may cause a different MERGE_VALUES to suddenly
|
|
// be CSE'd with N, and carry its uses with it. Iterate until no
|
|
// uses remain, to ensure that the node can be safely deleted.
|
|
// First add the users of this node to the work list so that they
|
|
// can be tried again once they have new operands.
|
|
AddUsersToWorklist(N);
|
|
do {
|
|
// Do as a single replacement to avoid rewalking use lists.
|
|
SmallVector<SDValue, 8> Ops;
|
|
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
|
|
Ops.push_back(N->getOperand(i));
|
|
DAG.ReplaceAllUsesWith(N, Ops.data());
|
|
} while (!N->use_empty());
|
|
deleteAndRecombine(N);
|
|
return SDValue(N, 0); // Return N so it doesn't get rechecked!
|
|
}
|
|
|
|
/// If \p N is a ConstantSDNode with isOpaque() == false return it casted to a
|
|
/// ConstantSDNode pointer else nullptr.
|
|
static ConstantSDNode *getAsNonOpaqueConstant(SDValue N) {
|
|
ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N);
|
|
return Const != nullptr && !Const->isOpaque() ? Const : nullptr;
|
|
}
|
|
|
|
/// Return true if 'Use' is a load or a store that uses N as its base pointer
|
|
/// and that N may be folded in the load / store addressing mode.
|
|
static bool canFoldInAddressingMode(SDNode *N, SDNode *Use, SelectionDAG &DAG,
|
|
const TargetLowering &TLI) {
|
|
EVT VT;
|
|
unsigned AS;
|
|
|
|
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Use)) {
|
|
if (LD->isIndexed() || LD->getBasePtr().getNode() != N)
|
|
return false;
|
|
VT = LD->getMemoryVT();
|
|
AS = LD->getAddressSpace();
|
|
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(Use)) {
|
|
if (ST->isIndexed() || ST->getBasePtr().getNode() != N)
|
|
return false;
|
|
VT = ST->getMemoryVT();
|
|
AS = ST->getAddressSpace();
|
|
} else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(Use)) {
|
|
if (LD->isIndexed() || LD->getBasePtr().getNode() != N)
|
|
return false;
|
|
VT = LD->getMemoryVT();
|
|
AS = LD->getAddressSpace();
|
|
} else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(Use)) {
|
|
if (ST->isIndexed() || ST->getBasePtr().getNode() != N)
|
|
return false;
|
|
VT = ST->getMemoryVT();
|
|
AS = ST->getAddressSpace();
|
|
} else
|
|
return false;
|
|
|
|
TargetLowering::AddrMode AM;
|
|
if (N->getOpcode() == ISD::ADD) {
|
|
AM.HasBaseReg = true;
|
|
ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
|
|
if (Offset)
|
|
// [reg +/- imm]
|
|
AM.BaseOffs = Offset->getSExtValue();
|
|
else
|
|
// [reg +/- reg]
|
|
AM.Scale = 1;
|
|
} else if (N->getOpcode() == ISD::SUB) {
|
|
AM.HasBaseReg = true;
|
|
ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
|
|
if (Offset)
|
|
// [reg +/- imm]
|
|
AM.BaseOffs = -Offset->getSExtValue();
|
|
else
|
|
// [reg +/- reg]
|
|
AM.Scale = 1;
|
|
} else
|
|
return false;
|
|
|
|
return TLI.isLegalAddressingMode(DAG.getDataLayout(), AM,
|
|
VT.getTypeForEVT(*DAG.getContext()), AS);
|
|
}
|
|
|
|
SDValue DAGCombiner::foldBinOpIntoSelect(SDNode *BO) {
|
|
assert(TLI.isBinOp(BO->getOpcode()) && BO->getNumValues() == 1 &&
|
|
"Unexpected binary operator");
|
|
|
|
// Don't do this unless the old select is going away. We want to eliminate the
|
|
// binary operator, not replace a binop with a select.
|
|
// TODO: Handle ISD::SELECT_CC.
|
|
unsigned SelOpNo = 0;
|
|
SDValue Sel = BO->getOperand(0);
|
|
if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse()) {
|
|
SelOpNo = 1;
|
|
Sel = BO->getOperand(1);
|
|
}
|
|
|
|
if (Sel.getOpcode() != ISD::SELECT || !Sel.hasOneUse())
|
|
return SDValue();
|
|
|
|
SDValue CT = Sel.getOperand(1);
|
|
if (!isConstantOrConstantVector(CT, true) &&
|
|
!DAG.isConstantFPBuildVectorOrConstantFP(CT))
|
|
return SDValue();
|
|
|
|
SDValue CF = Sel.getOperand(2);
|
|
if (!isConstantOrConstantVector(CF, true) &&
|
|
!DAG.isConstantFPBuildVectorOrConstantFP(CF))
|
|
return SDValue();
|
|
|
|
// Bail out if any constants are opaque because we can't constant fold those.
|
|
// The exception is "and" and "or" with either 0 or -1 in which case we can
|
|
// propagate non constant operands into select. I.e.:
|
|
// and (select Cond, 0, -1), X --> select Cond, 0, X
|
|
// or X, (select Cond, -1, 0) --> select Cond, -1, X
|
|
auto BinOpcode = BO->getOpcode();
|
|
bool CanFoldNonConst =
|
|
(BinOpcode == ISD::AND || BinOpcode == ISD::OR) &&
|
|
(isNullOrNullSplat(CT) || isAllOnesOrAllOnesSplat(CT)) &&
|
|
(isNullOrNullSplat(CF) || isAllOnesOrAllOnesSplat(CF));
|
|
|
|
SDValue CBO = BO->getOperand(SelOpNo ^ 1);
|
|
if (!CanFoldNonConst &&
|
|
!isConstantOrConstantVector(CBO, true) &&
|
|
!DAG.isConstantFPBuildVectorOrConstantFP(CBO))
|
|
return SDValue();
|
|
|
|
EVT VT = BO->getValueType(0);
|
|
|
|
// We have a select-of-constants followed by a binary operator with a
|
|
// constant. Eliminate the binop by pulling the constant math into the select.
|
|
// Example: add (select Cond, CT, CF), CBO --> select Cond, CT + CBO, CF + CBO
|
|
SDLoc DL(Sel);
|
|
SDValue NewCT = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CT)
|
|
: DAG.getNode(BinOpcode, DL, VT, CT, CBO);
|
|
if (!CanFoldNonConst && !NewCT.isUndef() &&
|
|
!isConstantOrConstantVector(NewCT, true) &&
|
|
!DAG.isConstantFPBuildVectorOrConstantFP(NewCT))
|
|
return SDValue();
|
|
|
|
SDValue NewCF = SelOpNo ? DAG.getNode(BinOpcode, DL, VT, CBO, CF)
|
|
: DAG.getNode(BinOpcode, DL, VT, CF, CBO);
|
|
if (!CanFoldNonConst && !NewCF.isUndef() &&
|
|
!isConstantOrConstantVector(NewCF, true) &&
|
|
!DAG.isConstantFPBuildVectorOrConstantFP(NewCF))
|
|
return SDValue();
|
|
|
|
SDValue SelectOp = DAG.getSelect(DL, VT, Sel.getOperand(0), NewCT, NewCF);
|
|
SelectOp->setFlags(BO->getFlags());
|
|
return SelectOp;
|
|
}
|
|
|
|
static SDValue foldAddSubBoolOfMaskedVal(SDNode *N, SelectionDAG &DAG) {
|
|
assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
|
|
"Expecting add or sub");
|
|
|
|
// Match a constant operand and a zext operand for the math instruction:
|
|
// add Z, C
|
|
// sub C, Z
|
|
bool IsAdd = N->getOpcode() == ISD::ADD;
|
|
SDValue C = IsAdd ? N->getOperand(1) : N->getOperand(0);
|
|
SDValue Z = IsAdd ? N->getOperand(0) : N->getOperand(1);
|
|
auto *CN = dyn_cast<ConstantSDNode>(C);
|
|
if (!CN || Z.getOpcode() != ISD::ZERO_EXTEND)
|
|
return SDValue();
|
|
|
|
// Match the zext operand as a setcc of a boolean.
|
|
if (Z.getOperand(0).getOpcode() != ISD::SETCC ||
|
|
Z.getOperand(0).getValueType() != MVT::i1)
|
|
return SDValue();
|
|
|
|
// Match the compare as: setcc (X & 1), 0, eq.
|
|
SDValue SetCC = Z.getOperand(0);
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(SetCC->getOperand(2))->get();
|
|
if (CC != ISD::SETEQ || !isNullConstant(SetCC.getOperand(1)) ||
|
|
SetCC.getOperand(0).getOpcode() != ISD::AND ||
|
|
!isOneConstant(SetCC.getOperand(0).getOperand(1)))
|
|
return SDValue();
|
|
|
|
// We are adding/subtracting a constant and an inverted low bit. Turn that
|
|
// into a subtract/add of the low bit with incremented/decremented constant:
|
|
// add (zext i1 (seteq (X & 1), 0)), C --> sub C+1, (zext (X & 1))
|
|
// sub C, (zext i1 (seteq (X & 1), 0)) --> add C-1, (zext (X & 1))
|
|
EVT VT = C.getValueType();
|
|
SDLoc DL(N);
|
|
SDValue LowBit = DAG.getZExtOrTrunc(SetCC.getOperand(0), DL, VT);
|
|
SDValue C1 = IsAdd ? DAG.getConstant(CN->getAPIntValue() + 1, DL, VT) :
|
|
DAG.getConstant(CN->getAPIntValue() - 1, DL, VT);
|
|
return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, C1, LowBit);
|
|
}
|
|
|
|
/// Try to fold a 'not' shifted sign-bit with add/sub with constant operand into
|
|
/// a shift and add with a different constant.
|
|
static SDValue foldAddSubOfSignBit(SDNode *N, SelectionDAG &DAG) {
|
|
assert((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) &&
|
|
"Expecting add or sub");
|
|
|
|
// We need a constant operand for the add/sub, and the other operand is a
|
|
// logical shift right: add (srl), C or sub C, (srl).
|
|
bool IsAdd = N->getOpcode() == ISD::ADD;
|
|
SDValue ConstantOp = IsAdd ? N->getOperand(1) : N->getOperand(0);
|
|
SDValue ShiftOp = IsAdd ? N->getOperand(0) : N->getOperand(1);
|
|
if (!DAG.isConstantIntBuildVectorOrConstantInt(ConstantOp) ||
|
|
ShiftOp.getOpcode() != ISD::SRL)
|
|
return SDValue();
|
|
|
|
// The shift must be of a 'not' value.
|
|
SDValue Not = ShiftOp.getOperand(0);
|
|
if (!Not.hasOneUse() || !isBitwiseNot(Not))
|
|
return SDValue();
|
|
|
|
// The shift must be moving the sign bit to the least-significant-bit.
|
|
EVT VT = ShiftOp.getValueType();
|
|
SDValue ShAmt = ShiftOp.getOperand(1);
|
|
ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt);
|
|
if (!ShAmtC || ShAmtC->getAPIntValue() != (VT.getScalarSizeInBits() - 1))
|
|
return SDValue();
|
|
|
|
// Eliminate the 'not' by adjusting the shift and add/sub constant:
|
|
// add (srl (not X), 31), C --> add (sra X, 31), (C + 1)
|
|
// sub C, (srl (not X), 31) --> add (srl X, 31), (C - 1)
|
|
SDLoc DL(N);
|
|
auto ShOpcode = IsAdd ? ISD::SRA : ISD::SRL;
|
|
SDValue NewShift = DAG.getNode(ShOpcode, DL, VT, Not.getOperand(0), ShAmt);
|
|
if (SDValue NewC =
|
|
DAG.FoldConstantArithmetic(IsAdd ? ISD::ADD : ISD::SUB, DL, VT,
|
|
{ConstantOp, DAG.getConstant(1, DL, VT)}))
|
|
return DAG.getNode(ISD::ADD, DL, VT, NewShift, NewC);
|
|
return SDValue();
|
|
}
|
|
|
|
/// Try to fold a node that behaves like an ADD (note that N isn't necessarily
|
|
/// an ISD::ADD here, it could for example be an ISD::OR if we know that there
|
|
/// are no common bits set in the operands).
|
|
SDValue DAGCombiner::visitADDLike(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
EVT VT = N0.getValueType();
|
|
SDLoc DL(N);
|
|
|
|
// fold vector ops
|
|
if (VT.isVector()) {
|
|
if (SDValue FoldedVOp = SimplifyVBinOp(N))
|
|
return FoldedVOp;
|
|
|
|
// fold (add x, 0) -> x, vector edition
|
|
if (ISD::isConstantSplatVectorAllZeros(N1.getNode()))
|
|
return N0;
|
|
if (ISD::isConstantSplatVectorAllZeros(N0.getNode()))
|
|
return N1;
|
|
}
|
|
|
|
// fold (add x, undef) -> undef
|
|
if (N0.isUndef())
|
|
return N0;
|
|
|
|
if (N1.isUndef())
|
|
return N1;
|
|
|
|
if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) {
|
|
// canonicalize constant to RHS
|
|
if (!DAG.isConstantIntBuildVectorOrConstantInt(N1))
|
|
return DAG.getNode(ISD::ADD, DL, VT, N1, N0);
|
|
// fold (add c1, c2) -> c1+c2
|
|
return DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N0, N1});
|
|
}
|
|
|
|
// fold (add x, 0) -> x
|
|
if (isNullConstant(N1))
|
|
return N0;
|
|
|
|
if (isConstantOrConstantVector(N1, /* NoOpaque */ true)) {
|
|
// fold ((A-c1)+c2) -> (A+(c2-c1))
|
|
if (N0.getOpcode() == ISD::SUB &&
|
|
isConstantOrConstantVector(N0.getOperand(1), /* NoOpaque */ true)) {
|
|
SDValue Sub =
|
|
DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N1, N0.getOperand(1)});
|
|
assert(Sub && "Constant folding failed");
|
|
return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Sub);
|
|
}
|
|
|
|
// fold ((c1-A)+c2) -> (c1+c2)-A
|
|
if (N0.getOpcode() == ISD::SUB &&
|
|
isConstantOrConstantVector(N0.getOperand(0), /* NoOpaque */ true)) {
|
|
SDValue Add =
|
|
DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N1, N0.getOperand(0)});
|
|
assert(Add && "Constant folding failed");
|
|
return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1));
|
|
}
|
|
|
|
// add (sext i1 X), 1 -> zext (not i1 X)
|
|
// We don't transform this pattern:
|
|
// add (zext i1 X), -1 -> sext (not i1 X)
|
|
// because most (?) targets generate better code for the zext form.
|
|
if (N0.getOpcode() == ISD::SIGN_EXTEND && N0.hasOneUse() &&
|
|
isOneOrOneSplat(N1)) {
|
|
SDValue X = N0.getOperand(0);
|
|
if ((!LegalOperations ||
|
|
(TLI.isOperationLegal(ISD::XOR, X.getValueType()) &&
|
|
TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) &&
|
|
X.getScalarValueSizeInBits() == 1) {
|
|
SDValue Not = DAG.getNOT(DL, X, X.getValueType());
|
|
return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Not);
|
|
}
|
|
}
|
|
|
|
// Fold (add (or x, c0), c1) -> (add x, (c0 + c1)) if (or x, c0) is
|
|
// equivalent to (add x, c0).
|
|
if (N0.getOpcode() == ISD::OR &&
|
|
isConstantOrConstantVector(N0.getOperand(1), /* NoOpaque */ true) &&
|
|
DAG.haveNoCommonBitsSet(N0.getOperand(0), N0.getOperand(1))) {
|
|
if (SDValue Add0 = DAG.FoldConstantArithmetic(ISD::ADD, DL, VT,
|
|
{N1, N0.getOperand(1)}))
|
|
return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), Add0);
|
|
}
|
|
}
|
|
|
|
if (SDValue NewSel = foldBinOpIntoSelect(N))
|
|
return NewSel;
|
|
|
|
// reassociate add
|
|
if (!reassociationCanBreakAddressingModePattern(ISD::ADD, DL, N0, N1)) {
|
|
if (SDValue RADD = reassociateOps(ISD::ADD, DL, N0, N1, N->getFlags()))
|
|
return RADD;
|
|
|
|
// Reassociate (add (or x, c), y) -> (add add(x, y), c)) if (or x, c) is
|
|
// equivalent to (add x, c).
|
|
auto ReassociateAddOr = [&](SDValue N0, SDValue N1) {
|
|
if (N0.getOpcode() == ISD::OR && N0.hasOneUse() &&
|
|
isConstantOrConstantVector(N0.getOperand(1), /* NoOpaque */ true) &&
|
|
DAG.haveNoCommonBitsSet(N0.getOperand(0), N0.getOperand(1))) {
|
|
return DAG.getNode(ISD::ADD, DL, VT,
|
|
DAG.getNode(ISD::ADD, DL, VT, N1, N0.getOperand(0)),
|
|
N0.getOperand(1));
|
|
}
|
|
return SDValue();
|
|
};
|
|
if (SDValue Add = ReassociateAddOr(N0, N1))
|
|
return Add;
|
|
if (SDValue Add = ReassociateAddOr(N1, N0))
|
|
return Add;
|
|
}
|
|
// fold ((0-A) + B) -> B-A
|
|
if (N0.getOpcode() == ISD::SUB && isNullOrNullSplat(N0.getOperand(0)))
|
|
return DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1));
|
|
|
|
// fold (A + (0-B)) -> A-B
|
|
if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0)))
|
|
return DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(1));
|
|
|
|
// fold (A+(B-A)) -> B
|
|
if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(1))
|
|
return N1.getOperand(0);
|
|
|
|
// fold ((B-A)+A) -> B
|
|
if (N0.getOpcode() == ISD::SUB && N1 == N0.getOperand(1))
|
|
return N0.getOperand(0);
|
|
|
|
// fold ((A-B)+(C-A)) -> (C-B)
|
|
if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB &&
|
|
N0.getOperand(0) == N1.getOperand(1))
|
|
return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0),
|
|
N0.getOperand(1));
|
|
|
|
// fold ((A-B)+(B-C)) -> (A-C)
|
|
if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB &&
|
|
N0.getOperand(1) == N1.getOperand(0))
|
|
return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0),
|
|
N1.getOperand(1));
|
|
|
|
// fold (A+(B-(A+C))) to (B-C)
|
|
if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
|
|
N0 == N1.getOperand(1).getOperand(0))
|
|
return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0),
|
|
N1.getOperand(1).getOperand(1));
|
|
|
|
// fold (A+(B-(C+A))) to (B-C)
|
|
if (N1.getOpcode() == ISD::SUB && N1.getOperand(1).getOpcode() == ISD::ADD &&
|
|
N0 == N1.getOperand(1).getOperand(1))
|
|
return DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(0),
|
|
N1.getOperand(1).getOperand(0));
|
|
|
|
// fold (A+((B-A)+or-C)) to (B+or-C)
|
|
if ((N1.getOpcode() == ISD::SUB || N1.getOpcode() == ISD::ADD) &&
|
|
N1.getOperand(0).getOpcode() == ISD::SUB &&
|
|
N0 == N1.getOperand(0).getOperand(1))
|
|
return DAG.getNode(N1.getOpcode(), DL, VT, N1.getOperand(0).getOperand(0),
|
|
N1.getOperand(1));
|
|
|
|
// fold (A-B)+(C-D) to (A+C)-(B+D) when A or C is constant
|
|
if (N0.getOpcode() == ISD::SUB && N1.getOpcode() == ISD::SUB) {
|
|
SDValue N00 = N0.getOperand(0);
|
|
SDValue N01 = N0.getOperand(1);
|
|
SDValue N10 = N1.getOperand(0);
|
|
SDValue N11 = N1.getOperand(1);
|
|
|
|
if (isConstantOrConstantVector(N00) || isConstantOrConstantVector(N10))
|
|
return DAG.getNode(ISD::SUB, DL, VT,
|
|
DAG.getNode(ISD::ADD, SDLoc(N0), VT, N00, N10),
|
|
DAG.getNode(ISD::ADD, SDLoc(N1), VT, N01, N11));
|
|
}
|
|
|
|
// fold (add (umax X, C), -C) --> (usubsat X, C)
|
|
if (N0.getOpcode() == ISD::UMAX && hasOperation(ISD::USUBSAT, VT)) {
|
|
auto MatchUSUBSAT = [](ConstantSDNode *Max, ConstantSDNode *Op) {
|
|
return (!Max && !Op) ||
|
|
(Max && Op && Max->getAPIntValue() == (-Op->getAPIntValue()));
|
|
};
|
|
if (ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchUSUBSAT,
|
|
/*AllowUndefs*/ true))
|
|
return DAG.getNode(ISD::USUBSAT, DL, VT, N0.getOperand(0),
|
|
N0.getOperand(1));
|
|
}
|
|
|
|
if (SimplifyDemandedBits(SDValue(N, 0)))
|
|
return SDValue(N, 0);
|
|
|
|
if (isOneOrOneSplat(N1)) {
|
|
// fold (add (xor a, -1), 1) -> (sub 0, a)
|
|
if (isBitwiseNot(N0))
|
|
return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
|
|
N0.getOperand(0));
|
|
|
|
// fold (add (add (xor a, -1), b), 1) -> (sub b, a)
|
|
if (N0.getOpcode() == ISD::ADD) {
|
|
SDValue A, Xor;
|
|
|
|
if (isBitwiseNot(N0.getOperand(0))) {
|
|
A = N0.getOperand(1);
|
|
Xor = N0.getOperand(0);
|
|
} else if (isBitwiseNot(N0.getOperand(1))) {
|
|
A = N0.getOperand(0);
|
|
Xor = N0.getOperand(1);
|
|
}
|
|
|
|
if (Xor)
|
|
return DAG.getNode(ISD::SUB, DL, VT, A, Xor.getOperand(0));
|
|
}
|
|
|
|
// Look for:
|
|
// add (add x, y), 1
|
|
// And if the target does not like this form then turn into:
|
|
// sub y, (xor x, -1)
|
|
if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.hasOneUse() &&
|
|
N0.getOpcode() == ISD::ADD) {
|
|
SDValue Not = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0),
|
|
DAG.getAllOnesConstant(DL, VT));
|
|
return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(1), Not);
|
|
}
|
|
}
|
|
|
|
// (x - y) + -1 -> add (xor y, -1), x
|
|
if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB &&
|
|
isAllOnesOrAllOnesSplat(N1)) {
|
|
SDValue Xor = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1), N1);
|
|
return DAG.getNode(ISD::ADD, DL, VT, Xor, N0.getOperand(0));
|
|
}
|
|
|
|
if (SDValue Combined = visitADDLikeCommutative(N0, N1, N))
|
|
return Combined;
|
|
|
|
if (SDValue Combined = visitADDLikeCommutative(N1, N0, N))
|
|
return Combined;
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitADD(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
EVT VT = N0.getValueType();
|
|
SDLoc DL(N);
|
|
|
|
if (SDValue Combined = visitADDLike(N))
|
|
return Combined;
|
|
|
|
if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG))
|
|
return V;
|
|
|
|
if (SDValue V = foldAddSubOfSignBit(N, DAG))
|
|
return V;
|
|
|
|
// fold (a+b) -> (a|b) iff a and b share no bits.
|
|
if ((!LegalOperations || TLI.isOperationLegal(ISD::OR, VT)) &&
|
|
DAG.haveNoCommonBitsSet(N0, N1))
|
|
return DAG.getNode(ISD::OR, DL, VT, N0, N1);
|
|
|
|
// Fold (add (vscale * C0), (vscale * C1)) to (vscale * (C0 + C1)).
|
|
if (N0.getOpcode() == ISD::VSCALE && N1.getOpcode() == ISD::VSCALE) {
|
|
const APInt &C0 = N0->getConstantOperandAPInt(0);
|
|
const APInt &C1 = N1->getConstantOperandAPInt(0);
|
|
return DAG.getVScale(DL, VT, C0 + C1);
|
|
}
|
|
|
|
// fold a+vscale(c1)+vscale(c2) -> a+vscale(c1+c2)
|
|
if ((N0.getOpcode() == ISD::ADD) &&
|
|
(N0.getOperand(1).getOpcode() == ISD::VSCALE) &&
|
|
(N1.getOpcode() == ISD::VSCALE)) {
|
|
const APInt &VS0 = N0.getOperand(1)->getConstantOperandAPInt(0);
|
|
const APInt &VS1 = N1->getConstantOperandAPInt(0);
|
|
SDValue VS = DAG.getVScale(DL, VT, VS0 + VS1);
|
|
return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), VS);
|
|
}
|
|
|
|
// Fold (add step_vector(c1), step_vector(c2) to step_vector(c1+c2))
|
|
if (N0.getOpcode() == ISD::STEP_VECTOR &&
|
|
N1.getOpcode() == ISD::STEP_VECTOR) {
|
|
const APInt &C0 = N0->getConstantOperandAPInt(0);
|
|
const APInt &C1 = N1->getConstantOperandAPInt(0);
|
|
APInt NewStep = C0 + C1;
|
|
return DAG.getStepVector(DL, VT, NewStep);
|
|
}
|
|
|
|
// Fold a + step_vector(c1) + step_vector(c2) to a + step_vector(c1+c2)
|
|
if ((N0.getOpcode() == ISD::ADD) &&
|
|
(N0.getOperand(1).getOpcode() == ISD::STEP_VECTOR) &&
|
|
(N1.getOpcode() == ISD::STEP_VECTOR)) {
|
|
const APInt &SV0 = N0.getOperand(1)->getConstantOperandAPInt(0);
|
|
const APInt &SV1 = N1->getConstantOperandAPInt(0);
|
|
APInt NewStep = SV0 + SV1;
|
|
SDValue SV = DAG.getStepVector(DL, VT, NewStep);
|
|
return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), SV);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitADDSAT(SDNode *N) {
|
|
unsigned Opcode = N->getOpcode();
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
EVT VT = N0.getValueType();
|
|
SDLoc DL(N);
|
|
|
|
// fold vector ops
|
|
if (VT.isVector()) {
|
|
// TODO SimplifyVBinOp
|
|
|
|
// fold (add_sat x, 0) -> x, vector edition
|
|
if (ISD::isConstantSplatVectorAllZeros(N1.getNode()))
|
|
return N0;
|
|
if (ISD::isConstantSplatVectorAllZeros(N0.getNode()))
|
|
return N1;
|
|
}
|
|
|
|
// fold (add_sat x, undef) -> -1
|
|
if (N0.isUndef() || N1.isUndef())
|
|
return DAG.getAllOnesConstant(DL, VT);
|
|
|
|
if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) {
|
|
// canonicalize constant to RHS
|
|
if (!DAG.isConstantIntBuildVectorOrConstantInt(N1))
|
|
return DAG.getNode(Opcode, DL, VT, N1, N0);
|
|
// fold (add_sat c1, c2) -> c3
|
|
return DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1});
|
|
}
|
|
|
|
// fold (add_sat x, 0) -> x
|
|
if (isNullConstant(N1))
|
|
return N0;
|
|
|
|
// If it cannot overflow, transform into an add.
|
|
if (Opcode == ISD::UADDSAT)
|
|
if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never)
|
|
return DAG.getNode(ISD::ADD, DL, VT, N0, N1);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue getAsCarry(const TargetLowering &TLI, SDValue V) {
|
|
bool Masked = false;
|
|
|
|
// First, peel away TRUNCATE/ZERO_EXTEND/AND nodes due to legalization.
|
|
while (true) {
|
|
if (V.getOpcode() == ISD::TRUNCATE || V.getOpcode() == ISD::ZERO_EXTEND) {
|
|
V = V.getOperand(0);
|
|
continue;
|
|
}
|
|
|
|
if (V.getOpcode() == ISD::AND && isOneConstant(V.getOperand(1))) {
|
|
Masked = true;
|
|
V = V.getOperand(0);
|
|
continue;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
// If this is not a carry, return.
|
|
if (V.getResNo() != 1)
|
|
return SDValue();
|
|
|
|
if (V.getOpcode() != ISD::ADDCARRY && V.getOpcode() != ISD::SUBCARRY &&
|
|
V.getOpcode() != ISD::UADDO && V.getOpcode() != ISD::USUBO)
|
|
return SDValue();
|
|
|
|
EVT VT = V.getNode()->getValueType(0);
|
|
if (!TLI.isOperationLegalOrCustom(V.getOpcode(), VT))
|
|
return SDValue();
|
|
|
|
// If the result is masked, then no matter what kind of bool it is we can
|
|
// return. If it isn't, then we need to make sure the bool type is either 0 or
|
|
// 1 and not other values.
|
|
if (Masked ||
|
|
TLI.getBooleanContents(V.getValueType()) ==
|
|
TargetLoweringBase::ZeroOrOneBooleanContent)
|
|
return V;
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// Given the operands of an add/sub operation, see if the 2nd operand is a
|
|
/// masked 0/1 whose source operand is actually known to be 0/-1. If so, invert
|
|
/// the opcode and bypass the mask operation.
|
|
static SDValue foldAddSubMasked1(bool IsAdd, SDValue N0, SDValue N1,
|
|
SelectionDAG &DAG, const SDLoc &DL) {
|
|
if (N1.getOpcode() != ISD::AND || !isOneOrOneSplat(N1->getOperand(1)))
|
|
return SDValue();
|
|
|
|
EVT VT = N0.getValueType();
|
|
if (DAG.ComputeNumSignBits(N1.getOperand(0)) != VT.getScalarSizeInBits())
|
|
return SDValue();
|
|
|
|
// add N0, (and (AssertSext X, i1), 1) --> sub N0, X
|
|
// sub N0, (and (AssertSext X, i1), 1) --> add N0, X
|
|
return DAG.getNode(IsAdd ? ISD::SUB : ISD::ADD, DL, VT, N0, N1.getOperand(0));
|
|
}
|
|
|
|
/// Helper for doing combines based on N0 and N1 being added to each other.
|
|
SDValue DAGCombiner::visitADDLikeCommutative(SDValue N0, SDValue N1,
|
|
SDNode *LocReference) {
|
|
EVT VT = N0.getValueType();
|
|
SDLoc DL(LocReference);
|
|
|
|
// fold (add x, shl(0 - y, n)) -> sub(x, shl(y, n))
|
|
if (N1.getOpcode() == ISD::SHL && N1.getOperand(0).getOpcode() == ISD::SUB &&
|
|
isNullOrNullSplat(N1.getOperand(0).getOperand(0)))
|
|
return DAG.getNode(ISD::SUB, DL, VT, N0,
|
|
DAG.getNode(ISD::SHL, DL, VT,
|
|
N1.getOperand(0).getOperand(1),
|
|
N1.getOperand(1)));
|
|
|
|
if (SDValue V = foldAddSubMasked1(true, N0, N1, DAG, DL))
|
|
return V;
|
|
|
|
// Look for:
|
|
// add (add x, 1), y
|
|
// And if the target does not like this form then turn into:
|
|
// sub y, (xor x, -1)
|
|
if (!TLI.preferIncOfAddToSubOfNot(VT) && N0.hasOneUse() &&
|
|
N0.getOpcode() == ISD::ADD && isOneOrOneSplat(N0.getOperand(1))) {
|
|
SDValue Not = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(0),
|
|
DAG.getAllOnesConstant(DL, VT));
|
|
return DAG.getNode(ISD::SUB, DL, VT, N1, Not);
|
|
}
|
|
|
|
// Hoist one-use subtraction by non-opaque constant:
|
|
// (x - C) + y -> (x + y) - C
|
|
// This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors.
|
|
if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB &&
|
|
isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) {
|
|
SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), N1);
|
|
return DAG.getNode(ISD::SUB, DL, VT, Add, N0.getOperand(1));
|
|
}
|
|
// Hoist one-use subtraction from non-opaque constant:
|
|
// (C - x) + y -> (y - x) + C
|
|
if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB &&
|
|
isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) {
|
|
SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N1, N0.getOperand(1));
|
|
return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(0));
|
|
}
|
|
|
|
// If the target's bool is represented as 0/1, prefer to make this 'sub 0/1'
|
|
// rather than 'add 0/-1' (the zext should get folded).
|
|
// add (sext i1 Y), X --> sub X, (zext i1 Y)
|
|
if (N0.getOpcode() == ISD::SIGN_EXTEND &&
|
|
N0.getOperand(0).getScalarValueSizeInBits() == 1 &&
|
|
TLI.getBooleanContents(VT) == TargetLowering::ZeroOrOneBooleanContent) {
|
|
SDValue ZExt = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
|
|
return DAG.getNode(ISD::SUB, DL, VT, N1, ZExt);
|
|
}
|
|
|
|
// add X, (sextinreg Y i1) -> sub X, (and Y 1)
|
|
if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
|
|
VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1));
|
|
if (TN->getVT() == MVT::i1) {
|
|
SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0),
|
|
DAG.getConstant(1, DL, VT));
|
|
return DAG.getNode(ISD::SUB, DL, VT, N0, ZExt);
|
|
}
|
|
}
|
|
|
|
// (add X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry)
|
|
if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1)) &&
|
|
N1.getResNo() == 0)
|
|
return DAG.getNode(ISD::ADDCARRY, DL, N1->getVTList(),
|
|
N0, N1.getOperand(0), N1.getOperand(2));
|
|
|
|
// (add X, Carry) -> (addcarry X, 0, Carry)
|
|
if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT))
|
|
if (SDValue Carry = getAsCarry(TLI, N1))
|
|
return DAG.getNode(ISD::ADDCARRY, DL,
|
|
DAG.getVTList(VT, Carry.getValueType()), N0,
|
|
DAG.getConstant(0, DL, VT), Carry);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitADDC(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
EVT VT = N0.getValueType();
|
|
SDLoc DL(N);
|
|
|
|
// If the flag result is dead, turn this into an ADD.
|
|
if (!N->hasAnyUseOfValue(1))
|
|
return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
|
|
DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
|
|
|
|
// canonicalize constant to RHS.
|
|
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
|
|
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
|
|
if (N0C && !N1C)
|
|
return DAG.getNode(ISD::ADDC, DL, N->getVTList(), N1, N0);
|
|
|
|
// fold (addc x, 0) -> x + no carry out
|
|
if (isNullConstant(N1))
|
|
return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE,
|
|
DL, MVT::Glue));
|
|
|
|
// If it cannot overflow, transform into an add.
|
|
if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never)
|
|
return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
|
|
DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/**
|
|
* Flips a boolean if it is cheaper to compute. If the Force parameters is set,
|
|
* then the flip also occurs if computing the inverse is the same cost.
|
|
* This function returns an empty SDValue in case it cannot flip the boolean
|
|
* without increasing the cost of the computation. If you want to flip a boolean
|
|
* no matter what, use DAG.getLogicalNOT.
|
|
*/
|
|
static SDValue extractBooleanFlip(SDValue V, SelectionDAG &DAG,
|
|
const TargetLowering &TLI,
|
|
bool Force) {
|
|
if (Force && isa<ConstantSDNode>(V))
|
|
return DAG.getLogicalNOT(SDLoc(V), V, V.getValueType());
|
|
|
|
if (V.getOpcode() != ISD::XOR)
|
|
return SDValue();
|
|
|
|
ConstantSDNode *Const = isConstOrConstSplat(V.getOperand(1), false);
|
|
if (!Const)
|
|
return SDValue();
|
|
|
|
EVT VT = V.getValueType();
|
|
|
|
bool IsFlip = false;
|
|
switch(TLI.getBooleanContents(VT)) {
|
|
case TargetLowering::ZeroOrOneBooleanContent:
|
|
IsFlip = Const->isOne();
|
|
break;
|
|
case TargetLowering::ZeroOrNegativeOneBooleanContent:
|
|
IsFlip = Const->isAllOnesValue();
|
|
break;
|
|
case TargetLowering::UndefinedBooleanContent:
|
|
IsFlip = (Const->getAPIntValue() & 0x01) == 1;
|
|
break;
|
|
}
|
|
|
|
if (IsFlip)
|
|
return V.getOperand(0);
|
|
if (Force)
|
|
return DAG.getLogicalNOT(SDLoc(V), V, V.getValueType());
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitADDO(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
EVT VT = N0.getValueType();
|
|
bool IsSigned = (ISD::SADDO == N->getOpcode());
|
|
|
|
EVT CarryVT = N->getValueType(1);
|
|
SDLoc DL(N);
|
|
|
|
// If the flag result is dead, turn this into an ADD.
|
|
if (!N->hasAnyUseOfValue(1))
|
|
return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
|
|
DAG.getUNDEF(CarryVT));
|
|
|
|
// canonicalize constant to RHS.
|
|
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
|
|
!DAG.isConstantIntBuildVectorOrConstantInt(N1))
|
|
return DAG.getNode(N->getOpcode(), DL, N->getVTList(), N1, N0);
|
|
|
|
// fold (addo x, 0) -> x + no carry out
|
|
if (isNullOrNullSplat(N1))
|
|
return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT));
|
|
|
|
if (!IsSigned) {
|
|
// If it cannot overflow, transform into an add.
|
|
if (DAG.computeOverflowKind(N0, N1) == SelectionDAG::OFK_Never)
|
|
return CombineTo(N, DAG.getNode(ISD::ADD, DL, VT, N0, N1),
|
|
DAG.getConstant(0, DL, CarryVT));
|
|
|
|
// fold (uaddo (xor a, -1), 1) -> (usub 0, a) and flip carry.
|
|
if (isBitwiseNot(N0) && isOneOrOneSplat(N1)) {
|
|
SDValue Sub = DAG.getNode(ISD::USUBO, DL, N->getVTList(),
|
|
DAG.getConstant(0, DL, VT), N0.getOperand(0));
|
|
return CombineTo(
|
|
N, Sub, DAG.getLogicalNOT(DL, Sub.getValue(1), Sub->getValueType(1)));
|
|
}
|
|
|
|
if (SDValue Combined = visitUADDOLike(N0, N1, N))
|
|
return Combined;
|
|
|
|
if (SDValue Combined = visitUADDOLike(N1, N0, N))
|
|
return Combined;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitUADDOLike(SDValue N0, SDValue N1, SDNode *N) {
|
|
EVT VT = N0.getValueType();
|
|
if (VT.isVector())
|
|
return SDValue();
|
|
|
|
// (uaddo X, (addcarry Y, 0, Carry)) -> (addcarry X, Y, Carry)
|
|
// If Y + 1 cannot overflow.
|
|
if (N1.getOpcode() == ISD::ADDCARRY && isNullConstant(N1.getOperand(1))) {
|
|
SDValue Y = N1.getOperand(0);
|
|
SDValue One = DAG.getConstant(1, SDLoc(N), Y.getValueType());
|
|
if (DAG.computeOverflowKind(Y, One) == SelectionDAG::OFK_Never)
|
|
return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0, Y,
|
|
N1.getOperand(2));
|
|
}
|
|
|
|
// (uaddo X, Carry) -> (addcarry X, 0, Carry)
|
|
if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT))
|
|
if (SDValue Carry = getAsCarry(TLI, N1))
|
|
return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(), N0,
|
|
DAG.getConstant(0, SDLoc(N), VT), Carry);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitADDE(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
SDValue CarryIn = N->getOperand(2);
|
|
|
|
// canonicalize constant to RHS
|
|
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
|
|
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
|
|
if (N0C && !N1C)
|
|
return DAG.getNode(ISD::ADDE, SDLoc(N), N->getVTList(),
|
|
N1, N0, CarryIn);
|
|
|
|
// fold (adde x, y, false) -> (addc x, y)
|
|
if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
|
|
return DAG.getNode(ISD::ADDC, SDLoc(N), N->getVTList(), N0, N1);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitADDCARRY(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
SDValue CarryIn = N->getOperand(2);
|
|
SDLoc DL(N);
|
|
|
|
// canonicalize constant to RHS
|
|
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
|
|
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
|
|
if (N0C && !N1C)
|
|
return DAG.getNode(ISD::ADDCARRY, DL, N->getVTList(), N1, N0, CarryIn);
|
|
|
|
// fold (addcarry x, y, false) -> (uaddo x, y)
|
|
if (isNullConstant(CarryIn)) {
|
|
if (!LegalOperations ||
|
|
TLI.isOperationLegalOrCustom(ISD::UADDO, N->getValueType(0)))
|
|
return DAG.getNode(ISD::UADDO, DL, N->getVTList(), N0, N1);
|
|
}
|
|
|
|
// fold (addcarry 0, 0, X) -> (and (ext/trunc X), 1) and no carry.
|
|
if (isNullConstant(N0) && isNullConstant(N1)) {
|
|
EVT VT = N0.getValueType();
|
|
EVT CarryVT = CarryIn.getValueType();
|
|
SDValue CarryExt = DAG.getBoolExtOrTrunc(CarryIn, DL, VT, CarryVT);
|
|
AddToWorklist(CarryExt.getNode());
|
|
return CombineTo(N, DAG.getNode(ISD::AND, DL, VT, CarryExt,
|
|
DAG.getConstant(1, DL, VT)),
|
|
DAG.getConstant(0, DL, CarryVT));
|
|
}
|
|
|
|
if (SDValue Combined = visitADDCARRYLike(N0, N1, CarryIn, N))
|
|
return Combined;
|
|
|
|
if (SDValue Combined = visitADDCARRYLike(N1, N0, CarryIn, N))
|
|
return Combined;
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitSADDO_CARRY(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
SDValue CarryIn = N->getOperand(2);
|
|
SDLoc DL(N);
|
|
|
|
// canonicalize constant to RHS
|
|
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
|
|
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
|
|
if (N0C && !N1C)
|
|
return DAG.getNode(ISD::SADDO_CARRY, DL, N->getVTList(), N1, N0, CarryIn);
|
|
|
|
// fold (saddo_carry x, y, false) -> (saddo x, y)
|
|
if (isNullConstant(CarryIn)) {
|
|
if (!LegalOperations ||
|
|
TLI.isOperationLegalOrCustom(ISD::SADDO, N->getValueType(0)))
|
|
return DAG.getNode(ISD::SADDO, DL, N->getVTList(), N0, N1);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/**
|
|
* If we are facing some sort of diamond carry propapagtion pattern try to
|
|
* break it up to generate something like:
|
|
* (addcarry X, 0, (addcarry A, B, Z):Carry)
|
|
*
|
|
* The end result is usually an increase in operation required, but because the
|
|
* carry is now linearized, other tranforms can kick in and optimize the DAG.
|
|
*
|
|
* Patterns typically look something like
|
|
* (uaddo A, B)
|
|
* / \
|
|
* Carry Sum
|
|
* | \
|
|
* | (addcarry *, 0, Z)
|
|
* | /
|
|
* \ Carry
|
|
* | /
|
|
* (addcarry X, *, *)
|
|
*
|
|
* But numerous variation exist. Our goal is to identify A, B, X and Z and
|
|
* produce a combine with a single path for carry propagation.
|
|
*/
|
|
static SDValue combineADDCARRYDiamond(DAGCombiner &Combiner, SelectionDAG &DAG,
|
|
SDValue X, SDValue Carry0, SDValue Carry1,
|
|
SDNode *N) {
|
|
if (Carry1.getResNo() != 1 || Carry0.getResNo() != 1)
|
|
return SDValue();
|
|
if (Carry1.getOpcode() != ISD::UADDO)
|
|
return SDValue();
|
|
|
|
SDValue Z;
|
|
|
|
/**
|
|
* First look for a suitable Z. It will present itself in the form of
|
|
* (addcarry Y, 0, Z) or its equivalent (uaddo Y, 1) for Z=true
|
|
*/
|
|
if (Carry0.getOpcode() == ISD::ADDCARRY &&
|
|
isNullConstant(Carry0.getOperand(1))) {
|
|
Z = Carry0.getOperand(2);
|
|
} else if (Carry0.getOpcode() == ISD::UADDO &&
|
|
isOneConstant(Carry0.getOperand(1))) {
|
|
EVT VT = Combiner.getSetCCResultType(Carry0.getValueType());
|
|
Z = DAG.getConstant(1, SDLoc(Carry0.getOperand(1)), VT);
|
|
} else {
|
|
// We couldn't find a suitable Z.
|
|
return SDValue();
|
|
}
|
|
|
|
|
|
auto cancelDiamond = [&](SDValue A,SDValue B) {
|
|
SDLoc DL(N);
|
|
SDValue NewY = DAG.getNode(ISD::ADDCARRY, DL, Carry0->getVTList(), A, B, Z);
|
|
Combiner.AddToWorklist(NewY.getNode());
|
|
return DAG.getNode(ISD::ADDCARRY, DL, N->getVTList(), X,
|
|
DAG.getConstant(0, DL, X.getValueType()),
|
|
NewY.getValue(1));
|
|
};
|
|
|
|
/**
|
|
* (uaddo A, B)
|
|
* |
|
|
* Sum
|
|
* |
|
|
* (addcarry *, 0, Z)
|
|
*/
|
|
if (Carry0.getOperand(0) == Carry1.getValue(0)) {
|
|
return cancelDiamond(Carry1.getOperand(0), Carry1.getOperand(1));
|
|
}
|
|
|
|
/**
|
|
* (addcarry A, 0, Z)
|
|
* |
|
|
* Sum
|
|
* |
|
|
* (uaddo *, B)
|
|
*/
|
|
if (Carry1.getOperand(0) == Carry0.getValue(0)) {
|
|
return cancelDiamond(Carry0.getOperand(0), Carry1.getOperand(1));
|
|
}
|
|
|
|
if (Carry1.getOperand(1) == Carry0.getValue(0)) {
|
|
return cancelDiamond(Carry1.getOperand(0), Carry0.getOperand(0));
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// If we are facing some sort of diamond carry/borrow in/out pattern try to
|
|
// match patterns like:
|
|
//
|
|
// (uaddo A, B) CarryIn
|
|
// | \ |
|
|
// | \ |
|
|
// PartialSum PartialCarryOutX /
|
|
// | | /
|
|
// | ____|____________/
|
|
// | / |
|
|
// (uaddo *, *) \________
|
|
// | \ \
|
|
// | \ |
|
|
// | PartialCarryOutY |
|
|
// | \ |
|
|
// | \ /
|
|
// AddCarrySum | ______/
|
|
// | /
|
|
// CarryOut = (or *, *)
|
|
//
|
|
// And generate ADDCARRY (or SUBCARRY) with two result values:
|
|
//
|
|
// {AddCarrySum, CarryOut} = (addcarry A, B, CarryIn)
|
|
//
|
|
// Our goal is to identify A, B, and CarryIn and produce ADDCARRY/SUBCARRY with
|
|
// a single path for carry/borrow out propagation:
|
|
static SDValue combineCarryDiamond(DAGCombiner &Combiner, SelectionDAG &DAG,
|
|
const TargetLowering &TLI, SDValue Carry0,
|
|
SDValue Carry1, SDNode *N) {
|
|
if (Carry0.getResNo() != 1 || Carry1.getResNo() != 1)
|
|
return SDValue();
|
|
unsigned Opcode = Carry0.getOpcode();
|
|
if (Opcode != Carry1.getOpcode())
|
|
return SDValue();
|
|
if (Opcode != ISD::UADDO && Opcode != ISD::USUBO)
|
|
return SDValue();
|
|
|
|
// Canonicalize the add/sub of A and B as Carry0 and the add/sub of the
|
|
// carry/borrow in as Carry1. (The top and middle uaddo nodes respectively in
|
|
// the above ASCII art.)
|
|
if (Carry1.getOperand(0) != Carry0.getValue(0) &&
|
|
Carry1.getOperand(1) != Carry0.getValue(0))
|
|
std::swap(Carry0, Carry1);
|
|
if (Carry1.getOperand(0) != Carry0.getValue(0) &&
|
|
Carry1.getOperand(1) != Carry0.getValue(0))
|
|
return SDValue();
|
|
|
|
// The carry in value must be on the righthand side for subtraction.
|
|
unsigned CarryInOperandNum =
|
|
Carry1.getOperand(0) == Carry0.getValue(0) ? 1 : 0;
|
|
if (Opcode == ISD::USUBO && CarryInOperandNum != 1)
|
|
return SDValue();
|
|
SDValue CarryIn = Carry1.getOperand(CarryInOperandNum);
|
|
|
|
unsigned NewOp = Opcode == ISD::UADDO ? ISD::ADDCARRY : ISD::SUBCARRY;
|
|
if (!TLI.isOperationLegalOrCustom(NewOp, Carry0.getValue(0).getValueType()))
|
|
return SDValue();
|
|
|
|
// Verify that the carry/borrow in is plausibly a carry/borrow bit.
|
|
// TODO: make getAsCarry() aware of how partial carries are merged.
|
|
if (CarryIn.getOpcode() != ISD::ZERO_EXTEND)
|
|
return SDValue();
|
|
CarryIn = CarryIn.getOperand(0);
|
|
if (CarryIn.getValueType() != MVT::i1)
|
|
return SDValue();
|
|
|
|
SDLoc DL(N);
|
|
SDValue Merged =
|
|
DAG.getNode(NewOp, DL, Carry1->getVTList(), Carry0.getOperand(0),
|
|
Carry0.getOperand(1), CarryIn);
|
|
|
|
// Please note that because we have proven that the result of the UADDO/USUBO
|
|
// of A and B feeds into the UADDO/USUBO that does the carry/borrow in, we can
|
|
// therefore prove that if the first UADDO/USUBO overflows, the second
|
|
// UADDO/USUBO cannot. For example consider 8-bit numbers where 0xFF is the
|
|
// maximum value.
|
|
//
|
|
// 0xFF + 0xFF == 0xFE with carry but 0xFE + 1 does not carry
|
|
// 0x00 - 0xFF == 1 with a carry/borrow but 1 - 1 == 0 (no carry/borrow)
|
|
//
|
|
// This is important because it means that OR and XOR can be used to merge
|
|
// carry flags; and that AND can return a constant zero.
|
|
//
|
|
// TODO: match other operations that can merge flags (ADD, etc)
|
|
DAG.ReplaceAllUsesOfValueWith(Carry1.getValue(0), Merged.getValue(0));
|
|
if (N->getOpcode() == ISD::AND)
|
|
return DAG.getConstant(0, DL, MVT::i1);
|
|
return Merged.getValue(1);
|
|
}
|
|
|
|
SDValue DAGCombiner::visitADDCARRYLike(SDValue N0, SDValue N1, SDValue CarryIn,
|
|
SDNode *N) {
|
|
// fold (addcarry (xor a, -1), b, c) -> (subcarry b, a, !c) and flip carry.
|
|
if (isBitwiseNot(N0))
|
|
if (SDValue NotC = extractBooleanFlip(CarryIn, DAG, TLI, true)) {
|
|
SDLoc DL(N);
|
|
SDValue Sub = DAG.getNode(ISD::SUBCARRY, DL, N->getVTList(), N1,
|
|
N0.getOperand(0), NotC);
|
|
return CombineTo(
|
|
N, Sub, DAG.getLogicalNOT(DL, Sub.getValue(1), Sub->getValueType(1)));
|
|
}
|
|
|
|
// Iff the flag result is dead:
|
|
// (addcarry (add|uaddo X, Y), 0, Carry) -> (addcarry X, Y, Carry)
|
|
// Don't do this if the Carry comes from the uaddo. It won't remove the uaddo
|
|
// or the dependency between the instructions.
|
|
if ((N0.getOpcode() == ISD::ADD ||
|
|
(N0.getOpcode() == ISD::UADDO && N0.getResNo() == 0 &&
|
|
N0.getValue(1) != CarryIn)) &&
|
|
isNullConstant(N1) && !N->hasAnyUseOfValue(1))
|
|
return DAG.getNode(ISD::ADDCARRY, SDLoc(N), N->getVTList(),
|
|
N0.getOperand(0), N0.getOperand(1), CarryIn);
|
|
|
|
/**
|
|
* When one of the addcarry argument is itself a carry, we may be facing
|
|
* a diamond carry propagation. In which case we try to transform the DAG
|
|
* to ensure linear carry propagation if that is possible.
|
|
*/
|
|
if (auto Y = getAsCarry(TLI, N1)) {
|
|
// Because both are carries, Y and Z can be swapped.
|
|
if (auto R = combineADDCARRYDiamond(*this, DAG, N0, Y, CarryIn, N))
|
|
return R;
|
|
if (auto R = combineADDCARRYDiamond(*this, DAG, N0, CarryIn, Y, N))
|
|
return R;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// Attempt to create a USUBSAT(LHS, RHS) node with DstVT, performing a
|
|
// clamp/truncation if necessary.
|
|
static SDValue getTruncatedUSUBSAT(EVT DstVT, EVT SrcVT, SDValue LHS,
|
|
SDValue RHS, SelectionDAG &DAG,
|
|
const SDLoc &DL) {
|
|
assert(DstVT.getScalarSizeInBits() <= SrcVT.getScalarSizeInBits() &&
|
|
"Illegal truncation");
|
|
|
|
if (DstVT == SrcVT)
|
|
return DAG.getNode(ISD::USUBSAT, DL, DstVT, LHS, RHS);
|
|
|
|
// If the LHS is zero-extended then we can perform the USUBSAT as DstVT by
|
|
// clamping RHS.
|
|
APInt UpperBits = APInt::getBitsSetFrom(SrcVT.getScalarSizeInBits(),
|
|
DstVT.getScalarSizeInBits());
|
|
if (!DAG.MaskedValueIsZero(LHS, UpperBits))
|
|
return SDValue();
|
|
|
|
SDValue SatLimit =
|
|
DAG.getConstant(APInt::getLowBitsSet(SrcVT.getScalarSizeInBits(),
|
|
DstVT.getScalarSizeInBits()),
|
|
DL, SrcVT);
|
|
RHS = DAG.getNode(ISD::UMIN, DL, SrcVT, RHS, SatLimit);
|
|
RHS = DAG.getNode(ISD::TRUNCATE, DL, DstVT, RHS);
|
|
LHS = DAG.getNode(ISD::TRUNCATE, DL, DstVT, LHS);
|
|
return DAG.getNode(ISD::USUBSAT, DL, DstVT, LHS, RHS);
|
|
}
|
|
|
|
// Try to find umax(a,b) - b or a - umin(a,b) patterns that may be converted to
|
|
// usubsat(a,b), optionally as a truncated type.
|
|
SDValue DAGCombiner::foldSubToUSubSat(EVT DstVT, SDNode *N) {
|
|
if (N->getOpcode() != ISD::SUB ||
|
|
!(!LegalOperations || hasOperation(ISD::USUBSAT, DstVT)))
|
|
return SDValue();
|
|
|
|
EVT SubVT = N->getValueType(0);
|
|
SDValue Op0 = N->getOperand(0);
|
|
SDValue Op1 = N->getOperand(1);
|
|
|
|
// Try to find umax(a,b) - b or a - umin(a,b) patterns
|
|
// they may be converted to usubsat(a,b).
|
|
if (Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) {
|
|
SDValue MaxLHS = Op0.getOperand(0);
|
|
SDValue MaxRHS = Op0.getOperand(1);
|
|
if (MaxLHS == Op1)
|
|
return getTruncatedUSUBSAT(DstVT, SubVT, MaxRHS, Op1, DAG, SDLoc(N));
|
|
if (MaxRHS == Op1)
|
|
return getTruncatedUSUBSAT(DstVT, SubVT, MaxLHS, Op1, DAG, SDLoc(N));
|
|
}
|
|
|
|
if (Op1.getOpcode() == ISD::UMIN && Op1.hasOneUse()) {
|
|
SDValue MinLHS = Op1.getOperand(0);
|
|
SDValue MinRHS = Op1.getOperand(1);
|
|
if (MinLHS == Op0)
|
|
return getTruncatedUSUBSAT(DstVT, SubVT, Op0, MinRHS, DAG, SDLoc(N));
|
|
if (MinRHS == Op0)
|
|
return getTruncatedUSUBSAT(DstVT, SubVT, Op0, MinLHS, DAG, SDLoc(N));
|
|
}
|
|
|
|
// sub(a,trunc(umin(zext(a),b))) -> usubsat(a,trunc(umin(b,SatLimit)))
|
|
if (Op1.getOpcode() == ISD::TRUNCATE &&
|
|
Op1.getOperand(0).getOpcode() == ISD::UMIN &&
|
|
Op1.getOperand(0).hasOneUse()) {
|
|
SDValue MinLHS = Op1.getOperand(0).getOperand(0);
|
|
SDValue MinRHS = Op1.getOperand(0).getOperand(1);
|
|
if (MinLHS.getOpcode() == ISD::ZERO_EXTEND && MinLHS.getOperand(0) == Op0)
|
|
return getTruncatedUSUBSAT(DstVT, MinLHS.getValueType(), MinLHS, MinRHS,
|
|
DAG, SDLoc(N));
|
|
if (MinRHS.getOpcode() == ISD::ZERO_EXTEND && MinRHS.getOperand(0) == Op0)
|
|
return getTruncatedUSUBSAT(DstVT, MinLHS.getValueType(), MinRHS, MinLHS,
|
|
DAG, SDLoc(N));
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// Since it may not be valid to emit a fold to zero for vector initializers
|
|
// check if we can before folding.
|
|
static SDValue tryFoldToZero(const SDLoc &DL, const TargetLowering &TLI, EVT VT,
|
|
SelectionDAG &DAG, bool LegalOperations) {
|
|
if (!VT.isVector())
|
|
return DAG.getConstant(0, DL, VT);
|
|
if (!LegalOperations || TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
|
|
return DAG.getConstant(0, DL, VT);
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitSUB(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
EVT VT = N0.getValueType();
|
|
SDLoc DL(N);
|
|
|
|
// fold vector ops
|
|
if (VT.isVector()) {
|
|
if (SDValue FoldedVOp = SimplifyVBinOp(N))
|
|
return FoldedVOp;
|
|
|
|
// fold (sub x, 0) -> x, vector edition
|
|
if (ISD::isConstantSplatVectorAllZeros(N1.getNode()))
|
|
return N0;
|
|
}
|
|
|
|
// fold (sub x, x) -> 0
|
|
// FIXME: Refactor this and xor and other similar operations together.
|
|
if (N0 == N1)
|
|
return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);
|
|
|
|
// fold (sub c1, c2) -> c3
|
|
if (SDValue C = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0, N1}))
|
|
return C;
|
|
|
|
if (SDValue NewSel = foldBinOpIntoSelect(N))
|
|
return NewSel;
|
|
|
|
ConstantSDNode *N1C = getAsNonOpaqueConstant(N1);
|
|
|
|
// fold (sub x, c) -> (add x, -c)
|
|
if (N1C) {
|
|
return DAG.getNode(ISD::ADD, DL, VT, N0,
|
|
DAG.getConstant(-N1C->getAPIntValue(), DL, VT));
|
|
}
|
|
|
|
if (isNullOrNullSplat(N0)) {
|
|
unsigned BitWidth = VT.getScalarSizeInBits();
|
|
// Right-shifting everything out but the sign bit followed by negation is
|
|
// the same as flipping arithmetic/logical shift type without the negation:
|
|
// -(X >>u 31) -> (X >>s 31)
|
|
// -(X >>s 31) -> (X >>u 31)
|
|
if (N1->getOpcode() == ISD::SRA || N1->getOpcode() == ISD::SRL) {
|
|
ConstantSDNode *ShiftAmt = isConstOrConstSplat(N1.getOperand(1));
|
|
if (ShiftAmt && ShiftAmt->getAPIntValue() == (BitWidth - 1)) {
|
|
auto NewSh = N1->getOpcode() == ISD::SRA ? ISD::SRL : ISD::SRA;
|
|
if (!LegalOperations || TLI.isOperationLegal(NewSh, VT))
|
|
return DAG.getNode(NewSh, DL, VT, N1.getOperand(0), N1.getOperand(1));
|
|
}
|
|
}
|
|
|
|
// 0 - X --> 0 if the sub is NUW.
|
|
if (N->getFlags().hasNoUnsignedWrap())
|
|
return N0;
|
|
|
|
if (DAG.MaskedValueIsZero(N1, ~APInt::getSignMask(BitWidth))) {
|
|
// N1 is either 0 or the minimum signed value. If the sub is NSW, then
|
|
// N1 must be 0 because negating the minimum signed value is undefined.
|
|
if (N->getFlags().hasNoSignedWrap())
|
|
return N0;
|
|
|
|
// 0 - X --> X if X is 0 or the minimum signed value.
|
|
return N1;
|
|
}
|
|
|
|
// Convert 0 - abs(x).
|
|
SDValue Result;
|
|
if (N1->getOpcode() == ISD::ABS &&
|
|
!TLI.isOperationLegalOrCustom(ISD::ABS, VT) &&
|
|
TLI.expandABS(N1.getNode(), Result, DAG, true))
|
|
return Result;
|
|
|
|
// Fold neg(splat(neg(x)) -> splat(x)
|
|
if (VT.isVector()) {
|
|
SDValue N1S = DAG.getSplatValue(N1, true);
|
|
if (N1S && N1S.getOpcode() == ISD::SUB &&
|
|
isNullConstant(N1S.getOperand(0))) {
|
|
if (VT.isScalableVector())
|
|
return DAG.getSplatVector(VT, DL, N1S.getOperand(1));
|
|
return DAG.getSplatBuildVector(VT, DL, N1S.getOperand(1));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1)
|
|
if (isAllOnesOrAllOnesSplat(N0))
|
|
return DAG.getNode(ISD::XOR, DL, VT, N1, N0);
|
|
|
|
// fold (A - (0-B)) -> A+B
|
|
if (N1.getOpcode() == ISD::SUB && isNullOrNullSplat(N1.getOperand(0)))
|
|
return DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(1));
|
|
|
|
// fold A-(A-B) -> B
|
|
if (N1.getOpcode() == ISD::SUB && N0 == N1.getOperand(0))
|
|
return N1.getOperand(1);
|
|
|
|
// fold (A+B)-A -> B
|
|
if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N1)
|
|
return N0.getOperand(1);
|
|
|
|
// fold (A+B)-B -> A
|
|
if (N0.getOpcode() == ISD::ADD && N0.getOperand(1) == N1)
|
|
return N0.getOperand(0);
|
|
|
|
// fold (A+C1)-C2 -> A+(C1-C2)
|
|
if (N0.getOpcode() == ISD::ADD &&
|
|
isConstantOrConstantVector(N1, /* NoOpaques */ true) &&
|
|
isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) {
|
|
SDValue NewC =
|
|
DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0.getOperand(1), N1});
|
|
assert(NewC && "Constant folding failed");
|
|
return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0), NewC);
|
|
}
|
|
|
|
// fold C2-(A+C1) -> (C2-C1)-A
|
|
if (N1.getOpcode() == ISD::ADD) {
|
|
SDValue N11 = N1.getOperand(1);
|
|
if (isConstantOrConstantVector(N0, /* NoOpaques */ true) &&
|
|
isConstantOrConstantVector(N11, /* NoOpaques */ true)) {
|
|
SDValue NewC = DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0, N11});
|
|
assert(NewC && "Constant folding failed");
|
|
return DAG.getNode(ISD::SUB, DL, VT, NewC, N1.getOperand(0));
|
|
}
|
|
}
|
|
|
|
// fold (A-C1)-C2 -> A-(C1+C2)
|
|
if (N0.getOpcode() == ISD::SUB &&
|
|
isConstantOrConstantVector(N1, /* NoOpaques */ true) &&
|
|
isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) {
|
|
SDValue NewC =
|
|
DAG.FoldConstantArithmetic(ISD::ADD, DL, VT, {N0.getOperand(1), N1});
|
|
assert(NewC && "Constant folding failed");
|
|
return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), NewC);
|
|
}
|
|
|
|
// fold (c1-A)-c2 -> (c1-c2)-A
|
|
if (N0.getOpcode() == ISD::SUB &&
|
|
isConstantOrConstantVector(N1, /* NoOpaques */ true) &&
|
|
isConstantOrConstantVector(N0.getOperand(0), /* NoOpaques */ true)) {
|
|
SDValue NewC =
|
|
DAG.FoldConstantArithmetic(ISD::SUB, DL, VT, {N0.getOperand(0), N1});
|
|
assert(NewC && "Constant folding failed");
|
|
return DAG.getNode(ISD::SUB, DL, VT, NewC, N0.getOperand(1));
|
|
}
|
|
|
|
// fold ((A+(B+or-C))-B) -> A+or-C
|
|
if (N0.getOpcode() == ISD::ADD &&
|
|
(N0.getOperand(1).getOpcode() == ISD::SUB ||
|
|
N0.getOperand(1).getOpcode() == ISD::ADD) &&
|
|
N0.getOperand(1).getOperand(0) == N1)
|
|
return DAG.getNode(N0.getOperand(1).getOpcode(), DL, VT, N0.getOperand(0),
|
|
N0.getOperand(1).getOperand(1));
|
|
|
|
// fold ((A+(C+B))-B) -> A+C
|
|
if (N0.getOpcode() == ISD::ADD && N0.getOperand(1).getOpcode() == ISD::ADD &&
|
|
N0.getOperand(1).getOperand(1) == N1)
|
|
return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(0),
|
|
N0.getOperand(1).getOperand(0));
|
|
|
|
// fold ((A-(B-C))-C) -> A-B
|
|
if (N0.getOpcode() == ISD::SUB && N0.getOperand(1).getOpcode() == ISD::SUB &&
|
|
N0.getOperand(1).getOperand(1) == N1)
|
|
return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0),
|
|
N0.getOperand(1).getOperand(0));
|
|
|
|
// fold (A-(B-C)) -> A+(C-B)
|
|
if (N1.getOpcode() == ISD::SUB && N1.hasOneUse())
|
|
return DAG.getNode(ISD::ADD, DL, VT, N0,
|
|
DAG.getNode(ISD::SUB, DL, VT, N1.getOperand(1),
|
|
N1.getOperand(0)));
|
|
|
|
// A - (A & B) -> A & (~B)
|
|
if (N1.getOpcode() == ISD::AND) {
|
|
SDValue A = N1.getOperand(0);
|
|
SDValue B = N1.getOperand(1);
|
|
if (A != N0)
|
|
std::swap(A, B);
|
|
if (A == N0 &&
|
|
(N1.hasOneUse() || isConstantOrConstantVector(B, /*NoOpaques=*/true))) {
|
|
SDValue InvB =
|
|
DAG.getNode(ISD::XOR, DL, VT, B, DAG.getAllOnesConstant(DL, VT));
|
|
return DAG.getNode(ISD::AND, DL, VT, A, InvB);
|
|
}
|
|
}
|
|
|
|
// fold (X - (-Y * Z)) -> (X + (Y * Z))
|
|
if (N1.getOpcode() == ISD::MUL && N1.hasOneUse()) {
|
|
if (N1.getOperand(0).getOpcode() == ISD::SUB &&
|
|
isNullOrNullSplat(N1.getOperand(0).getOperand(0))) {
|
|
SDValue Mul = DAG.getNode(ISD::MUL, DL, VT,
|
|
N1.getOperand(0).getOperand(1),
|
|
N1.getOperand(1));
|
|
return DAG.getNode(ISD::ADD, DL, VT, N0, Mul);
|
|
}
|
|
if (N1.getOperand(1).getOpcode() == ISD::SUB &&
|
|
isNullOrNullSplat(N1.getOperand(1).getOperand(0))) {
|
|
SDValue Mul = DAG.getNode(ISD::MUL, DL, VT,
|
|
N1.getOperand(0),
|
|
N1.getOperand(1).getOperand(1));
|
|
return DAG.getNode(ISD::ADD, DL, VT, N0, Mul);
|
|
}
|
|
}
|
|
|
|
// If either operand of a sub is undef, the result is undef
|
|
if (N0.isUndef())
|
|
return N0;
|
|
if (N1.isUndef())
|
|
return N1;
|
|
|
|
if (SDValue V = foldAddSubBoolOfMaskedVal(N, DAG))
|
|
return V;
|
|
|
|
if (SDValue V = foldAddSubOfSignBit(N, DAG))
|
|
return V;
|
|
|
|
if (SDValue V = foldAddSubMasked1(false, N0, N1, DAG, SDLoc(N)))
|
|
return V;
|
|
|
|
if (SDValue V = foldSubToUSubSat(VT, N))
|
|
return V;
|
|
|
|
// (x - y) - 1 -> add (xor y, -1), x
|
|
if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB && isOneOrOneSplat(N1)) {
|
|
SDValue Xor = DAG.getNode(ISD::XOR, DL, VT, N0.getOperand(1),
|
|
DAG.getAllOnesConstant(DL, VT));
|
|
return DAG.getNode(ISD::ADD, DL, VT, Xor, N0.getOperand(0));
|
|
}
|
|
|
|
// Look for:
|
|
// sub y, (xor x, -1)
|
|
// And if the target does not like this form then turn into:
|
|
// add (add x, y), 1
|
|
if (TLI.preferIncOfAddToSubOfNot(VT) && N1.hasOneUse() && isBitwiseNot(N1)) {
|
|
SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, N1.getOperand(0));
|
|
return DAG.getNode(ISD::ADD, DL, VT, Add, DAG.getConstant(1, DL, VT));
|
|
}
|
|
|
|
// Hoist one-use addition by non-opaque constant:
|
|
// (x + C) - y -> (x - y) + C
|
|
if (N0.hasOneUse() && N0.getOpcode() == ISD::ADD &&
|
|
isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) {
|
|
SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1);
|
|
return DAG.getNode(ISD::ADD, DL, VT, Sub, N0.getOperand(1));
|
|
}
|
|
// y - (x + C) -> (y - x) - C
|
|
if (N1.hasOneUse() && N1.getOpcode() == ISD::ADD &&
|
|
isConstantOrConstantVector(N1.getOperand(1), /*NoOpaques=*/true)) {
|
|
SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, N1.getOperand(0));
|
|
return DAG.getNode(ISD::SUB, DL, VT, Sub, N1.getOperand(1));
|
|
}
|
|
// (x - C) - y -> (x - y) - C
|
|
// This is necessary because SUB(X,C) -> ADD(X,-C) doesn't work for vectors.
|
|
if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB &&
|
|
isConstantOrConstantVector(N0.getOperand(1), /*NoOpaques=*/true)) {
|
|
SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), N1);
|
|
return DAG.getNode(ISD::SUB, DL, VT, Sub, N0.getOperand(1));
|
|
}
|
|
// (C - x) - y -> C - (x + y)
|
|
if (N0.hasOneUse() && N0.getOpcode() == ISD::SUB &&
|
|
isConstantOrConstantVector(N0.getOperand(0), /*NoOpaques=*/true)) {
|
|
SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1), N1);
|
|
return DAG.getNode(ISD::SUB, DL, VT, N0.getOperand(0), Add);
|
|
}
|
|
|
|
// If the target's bool is represented as 0/-1, prefer to make this 'add 0/-1'
|
|
// rather than 'sub 0/1' (the sext should get folded).
|
|
// sub X, (zext i1 Y) --> add X, (sext i1 Y)
|
|
if (N1.getOpcode() == ISD::ZERO_EXTEND &&
|
|
N1.getOperand(0).getScalarValueSizeInBits() == 1 &&
|
|
TLI.getBooleanContents(VT) ==
|
|
TargetLowering::ZeroOrNegativeOneBooleanContent) {
|
|
SDValue SExt = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N1.getOperand(0));
|
|
return DAG.getNode(ISD::ADD, DL, VT, N0, SExt);
|
|
}
|
|
|
|
// fold Y = sra (X, size(X)-1); sub (xor (X, Y), Y) -> (abs X)
|
|
if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) {
|
|
if (N0.getOpcode() == ISD::XOR && N1.getOpcode() == ISD::SRA) {
|
|
SDValue X0 = N0.getOperand(0), X1 = N0.getOperand(1);
|
|
SDValue S0 = N1.getOperand(0);
|
|
if ((X0 == S0 && X1 == N1) || (X0 == N1 && X1 == S0))
|
|
if (ConstantSDNode *C = isConstOrConstSplat(N1.getOperand(1)))
|
|
if (C->getAPIntValue() == (VT.getScalarSizeInBits() - 1))
|
|
return DAG.getNode(ISD::ABS, SDLoc(N), VT, S0);
|
|
}
|
|
}
|
|
|
|
// If the relocation model supports it, consider symbol offsets.
|
|
if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(N0))
|
|
if (!LegalOperations && TLI.isOffsetFoldingLegal(GA)) {
|
|
// fold (sub Sym, c) -> Sym-c
|
|
if (N1C && GA->getOpcode() == ISD::GlobalAddress)
|
|
return DAG.getGlobalAddress(GA->getGlobal(), SDLoc(N1C), VT,
|
|
GA->getOffset() -
|
|
(uint64_t)N1C->getSExtValue());
|
|
// fold (sub Sym+c1, Sym+c2) -> c1-c2
|
|
if (GlobalAddressSDNode *GB = dyn_cast<GlobalAddressSDNode>(N1))
|
|
if (GA->getGlobal() == GB->getGlobal())
|
|
return DAG.getConstant((uint64_t)GA->getOffset() - GB->getOffset(),
|
|
DL, VT);
|
|
}
|
|
|
|
// sub X, (sextinreg Y i1) -> add X, (and Y 1)
|
|
if (N1.getOpcode() == ISD::SIGN_EXTEND_INREG) {
|
|
VTSDNode *TN = cast<VTSDNode>(N1.getOperand(1));
|
|
if (TN->getVT() == MVT::i1) {
|
|
SDValue ZExt = DAG.getNode(ISD::AND, DL, VT, N1.getOperand(0),
|
|
DAG.getConstant(1, DL, VT));
|
|
return DAG.getNode(ISD::ADD, DL, VT, N0, ZExt);
|
|
}
|
|
}
|
|
|
|
// canonicalize (sub X, (vscale * C)) to (add X, (vscale * -C))
|
|
if (N1.getOpcode() == ISD::VSCALE) {
|
|
const APInt &IntVal = N1.getConstantOperandAPInt(0);
|
|
return DAG.getNode(ISD::ADD, DL, VT, N0, DAG.getVScale(DL, VT, -IntVal));
|
|
}
|
|
|
|
// canonicalize (sub X, step_vector(C)) to (add X, step_vector(-C))
|
|
if (N1.getOpcode() == ISD::STEP_VECTOR && N1.hasOneUse()) {
|
|
APInt NewStep = -N1.getConstantOperandAPInt(0);
|
|
return DAG.getNode(ISD::ADD, DL, VT, N0,
|
|
DAG.getStepVector(DL, VT, NewStep));
|
|
}
|
|
|
|
// Prefer an add for more folding potential and possibly better codegen:
|
|
// sub N0, (lshr N10, width-1) --> add N0, (ashr N10, width-1)
|
|
if (!LegalOperations && N1.getOpcode() == ISD::SRL && N1.hasOneUse()) {
|
|
SDValue ShAmt = N1.getOperand(1);
|
|
ConstantSDNode *ShAmtC = isConstOrConstSplat(ShAmt);
|
|
if (ShAmtC &&
|
|
ShAmtC->getAPIntValue() == (N1.getScalarValueSizeInBits() - 1)) {
|
|
SDValue SRA = DAG.getNode(ISD::SRA, DL, VT, N1.getOperand(0), ShAmt);
|
|
return DAG.getNode(ISD::ADD, DL, VT, N0, SRA);
|
|
}
|
|
}
|
|
|
|
if (TLI.isOperationLegalOrCustom(ISD::ADDCARRY, VT)) {
|
|
// (sub Carry, X) -> (addcarry (sub 0, X), 0, Carry)
|
|
if (SDValue Carry = getAsCarry(TLI, N0)) {
|
|
SDValue X = N1;
|
|
SDValue Zero = DAG.getConstant(0, DL, VT);
|
|
SDValue NegX = DAG.getNode(ISD::SUB, DL, VT, Zero, X);
|
|
return DAG.getNode(ISD::ADDCARRY, DL,
|
|
DAG.getVTList(VT, Carry.getValueType()), NegX, Zero,
|
|
Carry);
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitSUBSAT(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
EVT VT = N0.getValueType();
|
|
SDLoc DL(N);
|
|
|
|
// fold vector ops
|
|
if (VT.isVector()) {
|
|
// TODO SimplifyVBinOp
|
|
|
|
// fold (sub_sat x, 0) -> x, vector edition
|
|
if (ISD::isConstantSplatVectorAllZeros(N1.getNode()))
|
|
return N0;
|
|
}
|
|
|
|
// fold (sub_sat x, undef) -> 0
|
|
if (N0.isUndef() || N1.isUndef())
|
|
return DAG.getConstant(0, DL, VT);
|
|
|
|
// fold (sub_sat x, x) -> 0
|
|
if (N0 == N1)
|
|
return DAG.getConstant(0, DL, VT);
|
|
|
|
// fold (sub_sat c1, c2) -> c3
|
|
if (SDValue C = DAG.FoldConstantArithmetic(N->getOpcode(), DL, VT, {N0, N1}))
|
|
return C;
|
|
|
|
// fold (sub_sat x, 0) -> x
|
|
if (isNullConstant(N1))
|
|
return N0;
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitSUBC(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
EVT VT = N0.getValueType();
|
|
SDLoc DL(N);
|
|
|
|
// If the flag result is dead, turn this into an SUB.
|
|
if (!N->hasAnyUseOfValue(1))
|
|
return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1),
|
|
DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
|
|
|
|
// fold (subc x, x) -> 0 + no borrow
|
|
if (N0 == N1)
|
|
return CombineTo(N, DAG.getConstant(0, DL, VT),
|
|
DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
|
|
|
|
// fold (subc x, 0) -> x + no borrow
|
|
if (isNullConstant(N1))
|
|
return CombineTo(N, N0, DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
|
|
|
|
// Canonicalize (sub -1, x) -> ~x, i.e. (xor x, -1) + no borrow
|
|
if (isAllOnesConstant(N0))
|
|
return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0),
|
|
DAG.getNode(ISD::CARRY_FALSE, DL, MVT::Glue));
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitSUBO(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
EVT VT = N0.getValueType();
|
|
bool IsSigned = (ISD::SSUBO == N->getOpcode());
|
|
|
|
EVT CarryVT = N->getValueType(1);
|
|
SDLoc DL(N);
|
|
|
|
// If the flag result is dead, turn this into an SUB.
|
|
if (!N->hasAnyUseOfValue(1))
|
|
return CombineTo(N, DAG.getNode(ISD::SUB, DL, VT, N0, N1),
|
|
DAG.getUNDEF(CarryVT));
|
|
|
|
// fold (subo x, x) -> 0 + no borrow
|
|
if (N0 == N1)
|
|
return CombineTo(N, DAG.getConstant(0, DL, VT),
|
|
DAG.getConstant(0, DL, CarryVT));
|
|
|
|
ConstantSDNode *N1C = getAsNonOpaqueConstant(N1);
|
|
|
|
// fold (subox, c) -> (addo x, -c)
|
|
if (IsSigned && N1C && !N1C->getAPIntValue().isMinSignedValue()) {
|
|
return DAG.getNode(ISD::SADDO, DL, N->getVTList(), N0,
|
|
DAG.getConstant(-N1C->getAPIntValue(), DL, VT));
|
|
}
|
|
|
|
// fold (subo x, 0) -> x + no borrow
|
|
if (isNullOrNullSplat(N1))
|
|
return CombineTo(N, N0, DAG.getConstant(0, DL, CarryVT));
|
|
|
|
// Canonicalize (usubo -1, x) -> ~x, i.e. (xor x, -1) + no borrow
|
|
if (!IsSigned && isAllOnesOrAllOnesSplat(N0))
|
|
return CombineTo(N, DAG.getNode(ISD::XOR, DL, VT, N1, N0),
|
|
DAG.getConstant(0, DL, CarryVT));
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitSUBE(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
SDValue CarryIn = N->getOperand(2);
|
|
|
|
// fold (sube x, y, false) -> (subc x, y)
|
|
if (CarryIn.getOpcode() == ISD::CARRY_FALSE)
|
|
return DAG.getNode(ISD::SUBC, SDLoc(N), N->getVTList(), N0, N1);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitSUBCARRY(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
SDValue CarryIn = N->getOperand(2);
|
|
|
|
// fold (subcarry x, y, false) -> (usubo x, y)
|
|
if (isNullConstant(CarryIn)) {
|
|
if (!LegalOperations ||
|
|
TLI.isOperationLegalOrCustom(ISD::USUBO, N->getValueType(0)))
|
|
return DAG.getNode(ISD::USUBO, SDLoc(N), N->getVTList(), N0, N1);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitSSUBO_CARRY(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
SDValue CarryIn = N->getOperand(2);
|
|
|
|
// fold (ssubo_carry x, y, false) -> (ssubo x, y)
|
|
if (isNullConstant(CarryIn)) {
|
|
if (!LegalOperations ||
|
|
TLI.isOperationLegalOrCustom(ISD::SSUBO, N->getValueType(0)))
|
|
return DAG.getNode(ISD::SSUBO, SDLoc(N), N->getVTList(), N0, N1);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// Notice that "mulfix" can be any of SMULFIX, SMULFIXSAT, UMULFIX and
|
|
// UMULFIXSAT here.
|
|
SDValue DAGCombiner::visitMULFIX(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
SDValue Scale = N->getOperand(2);
|
|
EVT VT = N0.getValueType();
|
|
|
|
// fold (mulfix x, undef, scale) -> 0
|
|
if (N0.isUndef() || N1.isUndef())
|
|
return DAG.getConstant(0, SDLoc(N), VT);
|
|
|
|
// Canonicalize constant to RHS (vector doesn't have to splat)
|
|
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
|
|
!DAG.isConstantIntBuildVectorOrConstantInt(N1))
|
|
return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0, Scale);
|
|
|
|
// fold (mulfix x, 0, scale) -> 0
|
|
if (isNullConstant(N1))
|
|
return DAG.getConstant(0, SDLoc(N), VT);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitMUL(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
EVT VT = N0.getValueType();
|
|
|
|
// fold (mul x, undef) -> 0
|
|
if (N0.isUndef() || N1.isUndef())
|
|
return DAG.getConstant(0, SDLoc(N), VT);
|
|
|
|
bool N1IsConst = false;
|
|
bool N1IsOpaqueConst = false;
|
|
APInt ConstValue1;
|
|
|
|
// fold vector ops
|
|
if (VT.isVector()) {
|
|
if (SDValue FoldedVOp = SimplifyVBinOp(N))
|
|
return FoldedVOp;
|
|
|
|
N1IsConst = ISD::isConstantSplatVector(N1.getNode(), ConstValue1);
|
|
assert((!N1IsConst ||
|
|
ConstValue1.getBitWidth() == VT.getScalarSizeInBits()) &&
|
|
"Splat APInt should be element width");
|
|
} else {
|
|
N1IsConst = isa<ConstantSDNode>(N1);
|
|
if (N1IsConst) {
|
|
ConstValue1 = cast<ConstantSDNode>(N1)->getAPIntValue();
|
|
N1IsOpaqueConst = cast<ConstantSDNode>(N1)->isOpaque();
|
|
}
|
|
}
|
|
|
|
// fold (mul c1, c2) -> c1*c2
|
|
if (SDValue C = DAG.FoldConstantArithmetic(ISD::MUL, SDLoc(N), VT, {N0, N1}))
|
|
return C;
|
|
|
|
// canonicalize constant to RHS (vector doesn't have to splat)
|
|
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
|
|
!DAG.isConstantIntBuildVectorOrConstantInt(N1))
|
|
return DAG.getNode(ISD::MUL, SDLoc(N), VT, N1, N0);
|
|
|
|
// fold (mul x, 0) -> 0
|
|
if (N1IsConst && ConstValue1.isNullValue())
|
|
return N1;
|
|
|
|
// fold (mul x, 1) -> x
|
|
if (N1IsConst && ConstValue1.isOneValue())
|
|
return N0;
|
|
|
|
if (SDValue NewSel = foldBinOpIntoSelect(N))
|
|
return NewSel;
|
|
|
|
// fold (mul x, -1) -> 0-x
|
|
if (N1IsConst && ConstValue1.isAllOnesValue()) {
|
|
SDLoc DL(N);
|
|
return DAG.getNode(ISD::SUB, DL, VT,
|
|
DAG.getConstant(0, DL, VT), N0);
|
|
}
|
|
|
|
// fold (mul x, (1 << c)) -> x << c
|
|
if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) &&
|
|
DAG.isKnownToBeAPowerOfTwo(N1) &&
|
|
(!VT.isVector() || Level <= AfterLegalizeVectorOps)) {
|
|
SDLoc DL(N);
|
|
SDValue LogBase2 = BuildLogBase2(N1, DL);
|
|
EVT ShiftVT = getShiftAmountTy(N0.getValueType());
|
|
SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT);
|
|
return DAG.getNode(ISD::SHL, DL, VT, N0, Trunc);
|
|
}
|
|
|
|
// fold (mul x, -(1 << c)) -> -(x << c) or (-x) << c
|
|
if (N1IsConst && !N1IsOpaqueConst && (-ConstValue1).isPowerOf2()) {
|
|
unsigned Log2Val = (-ConstValue1).logBase2();
|
|
SDLoc DL(N);
|
|
// FIXME: If the input is something that is easily negated (e.g. a
|
|
// single-use add), we should put the negate there.
|
|
return DAG.getNode(ISD::SUB, DL, VT,
|
|
DAG.getConstant(0, DL, VT),
|
|
DAG.getNode(ISD::SHL, DL, VT, N0,
|
|
DAG.getConstant(Log2Val, DL,
|
|
getShiftAmountTy(N0.getValueType()))));
|
|
}
|
|
|
|
// Try to transform:
|
|
// (1) multiply-by-(power-of-2 +/- 1) into shift and add/sub.
|
|
// mul x, (2^N + 1) --> add (shl x, N), x
|
|
// mul x, (2^N - 1) --> sub (shl x, N), x
|
|
// Examples: x * 33 --> (x << 5) + x
|
|
// x * 15 --> (x << 4) - x
|
|
// x * -33 --> -((x << 5) + x)
|
|
// x * -15 --> -((x << 4) - x) ; this reduces --> x - (x << 4)
|
|
// (2) multiply-by-(power-of-2 +/- power-of-2) into shifts and add/sub.
|
|
// mul x, (2^N + 2^M) --> (add (shl x, N), (shl x, M))
|
|
// mul x, (2^N - 2^M) --> (sub (shl x, N), (shl x, M))
|
|
// Examples: x * 0x8800 --> (x << 15) + (x << 11)
|
|
// x * 0xf800 --> (x << 16) - (x << 11)
|
|
// x * -0x8800 --> -((x << 15) + (x << 11))
|
|
// x * -0xf800 --> -((x << 16) - (x << 11)) ; (x << 11) - (x << 16)
|
|
if (N1IsConst && TLI.decomposeMulByConstant(*DAG.getContext(), VT, N1)) {
|
|
// TODO: We could handle more general decomposition of any constant by
|
|
// having the target set a limit on number of ops and making a
|
|
// callback to determine that sequence (similar to sqrt expansion).
|
|
unsigned MathOp = ISD::DELETED_NODE;
|
|
APInt MulC = ConstValue1.abs();
|
|
// The constant `2` should be treated as (2^0 + 1).
|
|
unsigned TZeros = MulC == 2 ? 0 : MulC.countTrailingZeros();
|
|
MulC.lshrInPlace(TZeros);
|
|
if ((MulC - 1).isPowerOf2())
|
|
MathOp = ISD::ADD;
|
|
else if ((MulC + 1).isPowerOf2())
|
|
MathOp = ISD::SUB;
|
|
|
|
if (MathOp != ISD::DELETED_NODE) {
|
|
unsigned ShAmt =
|
|
MathOp == ISD::ADD ? (MulC - 1).logBase2() : (MulC + 1).logBase2();
|
|
ShAmt += TZeros;
|
|
assert(ShAmt < VT.getScalarSizeInBits() &&
|
|
"multiply-by-constant generated out of bounds shift");
|
|
SDLoc DL(N);
|
|
SDValue Shl =
|
|
DAG.getNode(ISD::SHL, DL, VT, N0, DAG.getConstant(ShAmt, DL, VT));
|
|
SDValue R =
|
|
TZeros ? DAG.getNode(MathOp, DL, VT, Shl,
|
|
DAG.getNode(ISD::SHL, DL, VT, N0,
|
|
DAG.getConstant(TZeros, DL, VT)))
|
|
: DAG.getNode(MathOp, DL, VT, Shl, N0);
|
|
if (ConstValue1.isNegative())
|
|
R = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), R);
|
|
return R;
|
|
}
|
|
}
|
|
|
|
// (mul (shl X, c1), c2) -> (mul X, c2 << c1)
|
|
if (N0.getOpcode() == ISD::SHL &&
|
|
isConstantOrConstantVector(N1, /* NoOpaques */ true) &&
|
|
isConstantOrConstantVector(N0.getOperand(1), /* NoOpaques */ true)) {
|
|
SDValue C3 = DAG.getNode(ISD::SHL, SDLoc(N), VT, N1, N0.getOperand(1));
|
|
if (isConstantOrConstantVector(C3))
|
|
return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), C3);
|
|
}
|
|
|
|
// Change (mul (shl X, C), Y) -> (shl (mul X, Y), C) when the shift has one
|
|
// use.
|
|
{
|
|
SDValue Sh(nullptr, 0), Y(nullptr, 0);
|
|
|
|
// Check for both (mul (shl X, C), Y) and (mul Y, (shl X, C)).
|
|
if (N0.getOpcode() == ISD::SHL &&
|
|
isConstantOrConstantVector(N0.getOperand(1)) &&
|
|
N0.getNode()->hasOneUse()) {
|
|
Sh = N0; Y = N1;
|
|
} else if (N1.getOpcode() == ISD::SHL &&
|
|
isConstantOrConstantVector(N1.getOperand(1)) &&
|
|
N1.getNode()->hasOneUse()) {
|
|
Sh = N1; Y = N0;
|
|
}
|
|
|
|
if (Sh.getNode()) {
|
|
SDValue Mul = DAG.getNode(ISD::MUL, SDLoc(N), VT, Sh.getOperand(0), Y);
|
|
return DAG.getNode(ISD::SHL, SDLoc(N), VT, Mul, Sh.getOperand(1));
|
|
}
|
|
}
|
|
|
|
// fold (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2)
|
|
if (DAG.isConstantIntBuildVectorOrConstantInt(N1) &&
|
|
N0.getOpcode() == ISD::ADD &&
|
|
DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1)) &&
|
|
isMulAddWithConstProfitable(N, N0, N1))
|
|
return DAG.getNode(ISD::ADD, SDLoc(N), VT,
|
|
DAG.getNode(ISD::MUL, SDLoc(N0), VT,
|
|
N0.getOperand(0), N1),
|
|
DAG.getNode(ISD::MUL, SDLoc(N1), VT,
|
|
N0.getOperand(1), N1));
|
|
|
|
// Fold (mul (vscale * C0), C1) to (vscale * (C0 * C1)).
|
|
if (N0.getOpcode() == ISD::VSCALE)
|
|
if (ConstantSDNode *NC1 = isConstOrConstSplat(N1)) {
|
|
const APInt &C0 = N0.getConstantOperandAPInt(0);
|
|
const APInt &C1 = NC1->getAPIntValue();
|
|
return DAG.getVScale(SDLoc(N), VT, C0 * C1);
|
|
}
|
|
|
|
// Fold (mul step_vector(C0), C1) to (step_vector(C0 * C1)).
|
|
APInt MulVal;
|
|
if (N0.getOpcode() == ISD::STEP_VECTOR)
|
|
if (ISD::isConstantSplatVector(N1.getNode(), MulVal)) {
|
|
const APInt &C0 = N0.getConstantOperandAPInt(0);
|
|
APInt NewStep = C0 * MulVal;
|
|
return DAG.getStepVector(SDLoc(N), VT, NewStep);
|
|
}
|
|
|
|
// Fold ((mul x, 0/undef) -> 0,
|
|
// (mul x, 1) -> x) -> x)
|
|
// -> and(x, mask)
|
|
// We can replace vectors with '0' and '1' factors with a clearing mask.
|
|
if (VT.isFixedLengthVector()) {
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
SmallBitVector ClearMask;
|
|
ClearMask.reserve(NumElts);
|
|
auto IsClearMask = [&ClearMask](ConstantSDNode *V) {
|
|
if (!V || V->isNullValue()) {
|
|
ClearMask.push_back(true);
|
|
return true;
|
|
}
|
|
ClearMask.push_back(false);
|
|
return V->isOne();
|
|
};
|
|
if ((!LegalOperations || TLI.isOperationLegalOrCustom(ISD::AND, VT)) &&
|
|
ISD::matchUnaryPredicate(N1, IsClearMask, /*AllowUndefs*/ true)) {
|
|
assert(N1.getOpcode() == ISD::BUILD_VECTOR && "Unknown constant vector");
|
|
SDLoc DL(N);
|
|
EVT LegalSVT = N1.getOperand(0).getValueType();
|
|
SDValue Zero = DAG.getConstant(0, DL, LegalSVT);
|
|
SDValue AllOnes = DAG.getAllOnesConstant(DL, LegalSVT);
|
|
SmallVector<SDValue, 16> Mask(NumElts, AllOnes);
|
|
for (unsigned I = 0; I != NumElts; ++I)
|
|
if (ClearMask[I])
|
|
Mask[I] = Zero;
|
|
return DAG.getNode(ISD::AND, DL, VT, N0, DAG.getBuildVector(VT, DL, Mask));
|
|
}
|
|
}
|
|
|
|
// reassociate mul
|
|
if (SDValue RMUL = reassociateOps(ISD::MUL, SDLoc(N), N0, N1, N->getFlags()))
|
|
return RMUL;
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// Return true if divmod libcall is available.
|
|
static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned,
|
|
const TargetLowering &TLI) {
|
|
RTLIB::Libcall LC;
|
|
EVT NodeType = Node->getValueType(0);
|
|
if (!NodeType.isSimple())
|
|
return false;
|
|
switch (NodeType.getSimpleVT().SimpleTy) {
|
|
default: return false; // No libcall for vector types.
|
|
case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break;
|
|
case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
|
|
case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
|
|
case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
|
|
case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
|
|
}
|
|
|
|
return TLI.getLibcallName(LC) != nullptr;
|
|
}
|
|
|
|
/// Issue divrem if both quotient and remainder are needed.
|
|
SDValue DAGCombiner::useDivRem(SDNode *Node) {
|
|
if (Node->use_empty())
|
|
return SDValue(); // This is a dead node, leave it alone.
|
|
|
|
unsigned Opcode = Node->getOpcode();
|
|
bool isSigned = (Opcode == ISD::SDIV) || (Opcode == ISD::SREM);
|
|
unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
|
|
|
|
// DivMod lib calls can still work on non-legal types if using lib-calls.
|
|
EVT VT = Node->getValueType(0);
|
|
if (VT.isVector() || !VT.isInteger())
|
|
return SDValue();
|
|
|
|
if (!TLI.isTypeLegal(VT) && !TLI.isOperationCustom(DivRemOpc, VT))
|
|
return SDValue();
|
|
|
|
// If DIVREM is going to get expanded into a libcall,
|
|
// but there is no libcall available, then don't combine.
|
|
if (!TLI.isOperationLegalOrCustom(DivRemOpc, VT) &&
|
|
!isDivRemLibcallAvailable(Node, isSigned, TLI))
|
|
return SDValue();
|
|
|
|
// If div is legal, it's better to do the normal expansion
|
|
unsigned OtherOpcode = 0;
|
|
if ((Opcode == ISD::SDIV) || (Opcode == ISD::UDIV)) {
|
|
OtherOpcode = isSigned ? ISD::SREM : ISD::UREM;
|
|
if (TLI.isOperationLegalOrCustom(Opcode, VT))
|
|
return SDValue();
|
|
} else {
|
|
OtherOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
|
|
if (TLI.isOperationLegalOrCustom(OtherOpcode, VT))
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue Op0 = Node->getOperand(0);
|
|
SDValue Op1 = Node->getOperand(1);
|
|
SDValue combined;
|
|
for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
|
|
UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
|
|
SDNode *User = *UI;
|
|
if (User == Node || User->getOpcode() == ISD::DELETED_NODE ||
|
|
User->use_empty())
|
|
continue;
|
|
// Convert the other matching node(s), too;
|
|
// otherwise, the DIVREM may get target-legalized into something
|
|
// target-specific that we won't be able to recognize.
|
|
unsigned UserOpc = User->getOpcode();
|
|
if ((UserOpc == Opcode || UserOpc == OtherOpcode || UserOpc == DivRemOpc) &&
|
|
User->getOperand(0) == Op0 &&
|
|
User->getOperand(1) == Op1) {
|
|
if (!combined) {
|
|
if (UserOpc == OtherOpcode) {
|
|
SDVTList VTs = DAG.getVTList(VT, VT);
|
|
combined = DAG.getNode(DivRemOpc, SDLoc(Node), VTs, Op0, Op1);
|
|
} else if (UserOpc == DivRemOpc) {
|
|
combined = SDValue(User, 0);
|
|
} else {
|
|
assert(UserOpc == Opcode);
|
|
continue;
|
|
}
|
|
}
|
|
if (UserOpc == ISD::SDIV || UserOpc == ISD::UDIV)
|
|
CombineTo(User, combined);
|
|
else if (UserOpc == ISD::SREM || UserOpc == ISD::UREM)
|
|
CombineTo(User, combined.getValue(1));
|
|
}
|
|
}
|
|
return combined;
|
|
}
|
|
|
|
static SDValue simplifyDivRem(SDNode *N, SelectionDAG &DAG) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
EVT VT = N->getValueType(0);
|
|
SDLoc DL(N);
|
|
|
|
unsigned Opc = N->getOpcode();
|
|
bool IsDiv = (ISD::SDIV == Opc) || (ISD::UDIV == Opc);
|
|
ConstantSDNode *N1C = isConstOrConstSplat(N1);
|
|
|
|
// X / undef -> undef
|
|
// X % undef -> undef
|
|
// X / 0 -> undef
|
|
// X % 0 -> undef
|
|
// NOTE: This includes vectors where any divisor element is zero/undef.
|
|
if (DAG.isUndef(Opc, {N0, N1}))
|
|
return DAG.getUNDEF(VT);
|
|
|
|
// undef / X -> 0
|
|
// undef % X -> 0
|
|
if (N0.isUndef())
|
|
return DAG.getConstant(0, DL, VT);
|
|
|
|
// 0 / X -> 0
|
|
// 0 % X -> 0
|
|
ConstantSDNode *N0C = isConstOrConstSplat(N0);
|
|
if (N0C && N0C->isNullValue())
|
|
return N0;
|
|
|
|
// X / X -> 1
|
|
// X % X -> 0
|
|
if (N0 == N1)
|
|
return DAG.getConstant(IsDiv ? 1 : 0, DL, VT);
|
|
|
|
// X / 1 -> X
|
|
// X % 1 -> 0
|
|
// If this is a boolean op (single-bit element type), we can't have
|
|
// division-by-zero or remainder-by-zero, so assume the divisor is 1.
|
|
// TODO: Similarly, if we're zero-extending a boolean divisor, then assume
|
|
// it's a 1.
|
|
if ((N1C && N1C->isOne()) || (VT.getScalarType() == MVT::i1))
|
|
return IsDiv ? N0 : DAG.getConstant(0, DL, VT);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitSDIV(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
EVT VT = N->getValueType(0);
|
|
EVT CCVT = getSetCCResultType(VT);
|
|
|
|
// fold vector ops
|
|
if (VT.isVector())
|
|
if (SDValue FoldedVOp = SimplifyVBinOp(N))
|
|
return FoldedVOp;
|
|
|
|
SDLoc DL(N);
|
|
|
|
// fold (sdiv c1, c2) -> c1/c2
|
|
ConstantSDNode *N1C = isConstOrConstSplat(N1);
|
|
if (SDValue C = DAG.FoldConstantArithmetic(ISD::SDIV, DL, VT, {N0, N1}))
|
|
return C;
|
|
|
|
// fold (sdiv X, -1) -> 0-X
|
|
if (N1C && N1C->isAllOnesValue())
|
|
return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), N0);
|
|
|
|
// fold (sdiv X, MIN_SIGNED) -> select(X == MIN_SIGNED, 1, 0)
|
|
if (N1C && N1C->getAPIntValue().isMinSignedValue())
|
|
return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ),
|
|
DAG.getConstant(1, DL, VT),
|
|
DAG.getConstant(0, DL, VT));
|
|
|
|
if (SDValue V = simplifyDivRem(N, DAG))
|
|
return V;
|
|
|
|
if (SDValue NewSel = foldBinOpIntoSelect(N))
|
|
return NewSel;
|
|
|
|
// If we know the sign bits of both operands are zero, strength reduce to a
|
|
// udiv instead. Handles (X&15) /s 4 -> X&15 >> 2
|
|
if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
|
|
return DAG.getNode(ISD::UDIV, DL, N1.getValueType(), N0, N1);
|
|
|
|
if (SDValue V = visitSDIVLike(N0, N1, N)) {
|
|
// If the corresponding remainder node exists, update its users with
|
|
// (Dividend - (Quotient * Divisor).
|
|
if (SDNode *RemNode = DAG.getNodeIfExists(ISD::SREM, N->getVTList(),
|
|
{ N0, N1 })) {
|
|
SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1);
|
|
SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul);
|
|
AddToWorklist(Mul.getNode());
|
|
AddToWorklist(Sub.getNode());
|
|
CombineTo(RemNode, Sub);
|
|
}
|
|
return V;
|
|
}
|
|
|
|
// sdiv, srem -> sdivrem
|
|
// If the divisor is constant, then return DIVREM only if isIntDivCheap() is
|
|
// true. Otherwise, we break the simplification logic in visitREM().
|
|
AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
|
|
if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr))
|
|
if (SDValue DivRem = useDivRem(N))
|
|
return DivRem;
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitSDIVLike(SDValue N0, SDValue N1, SDNode *N) {
|
|
SDLoc DL(N);
|
|
EVT VT = N->getValueType(0);
|
|
EVT CCVT = getSetCCResultType(VT);
|
|
unsigned BitWidth = VT.getScalarSizeInBits();
|
|
|
|
// Helper for determining whether a value is a power-2 constant scalar or a
|
|
// vector of such elements.
|
|
auto IsPowerOfTwo = [](ConstantSDNode *C) {
|
|
if (C->isNullValue() || C->isOpaque())
|
|
return false;
|
|
if (C->getAPIntValue().isPowerOf2())
|
|
return true;
|
|
if ((-C->getAPIntValue()).isPowerOf2())
|
|
return true;
|
|
return false;
|
|
};
|
|
|
|
// fold (sdiv X, pow2) -> simple ops after legalize
|
|
// FIXME: We check for the exact bit here because the generic lowering gives
|
|
// better results in that case. The target-specific lowering should learn how
|
|
// to handle exact sdivs efficiently.
|
|
if (!N->getFlags().hasExact() && ISD::matchUnaryPredicate(N1, IsPowerOfTwo)) {
|
|
// Target-specific implementation of sdiv x, pow2.
|
|
if (SDValue Res = BuildSDIVPow2(N))
|
|
return Res;
|
|
|
|
// Create constants that are functions of the shift amount value.
|
|
EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType());
|
|
SDValue Bits = DAG.getConstant(BitWidth, DL, ShiftAmtTy);
|
|
SDValue C1 = DAG.getNode(ISD::CTTZ, DL, VT, N1);
|
|
C1 = DAG.getZExtOrTrunc(C1, DL, ShiftAmtTy);
|
|
SDValue Inexact = DAG.getNode(ISD::SUB, DL, ShiftAmtTy, Bits, C1);
|
|
if (!isConstantOrConstantVector(Inexact))
|
|
return SDValue();
|
|
|
|
// Splat the sign bit into the register
|
|
SDValue Sign = DAG.getNode(ISD::SRA, DL, VT, N0,
|
|
DAG.getConstant(BitWidth - 1, DL, ShiftAmtTy));
|
|
AddToWorklist(Sign.getNode());
|
|
|
|
// Add (N0 < 0) ? abs2 - 1 : 0;
|
|
SDValue Srl = DAG.getNode(ISD::SRL, DL, VT, Sign, Inexact);
|
|
AddToWorklist(Srl.getNode());
|
|
SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N0, Srl);
|
|
AddToWorklist(Add.getNode());
|
|
SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, Add, C1);
|
|
AddToWorklist(Sra.getNode());
|
|
|
|
// Special case: (sdiv X, 1) -> X
|
|
// Special Case: (sdiv X, -1) -> 0-X
|
|
SDValue One = DAG.getConstant(1, DL, VT);
|
|
SDValue AllOnes = DAG.getAllOnesConstant(DL, VT);
|
|
SDValue IsOne = DAG.getSetCC(DL, CCVT, N1, One, ISD::SETEQ);
|
|
SDValue IsAllOnes = DAG.getSetCC(DL, CCVT, N1, AllOnes, ISD::SETEQ);
|
|
SDValue IsOneOrAllOnes = DAG.getNode(ISD::OR, DL, CCVT, IsOne, IsAllOnes);
|
|
Sra = DAG.getSelect(DL, VT, IsOneOrAllOnes, N0, Sra);
|
|
|
|
// If dividing by a positive value, we're done. Otherwise, the result must
|
|
// be negated.
|
|
SDValue Zero = DAG.getConstant(0, DL, VT);
|
|
SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, Zero, Sra);
|
|
|
|
// FIXME: Use SELECT_CC once we improve SELECT_CC constant-folding.
|
|
SDValue IsNeg = DAG.getSetCC(DL, CCVT, N1, Zero, ISD::SETLT);
|
|
SDValue Res = DAG.getSelect(DL, VT, IsNeg, Sub, Sra);
|
|
return Res;
|
|
}
|
|
|
|
// If integer divide is expensive and we satisfy the requirements, emit an
|
|
// alternate sequence. Targets may check function attributes for size/speed
|
|
// trade-offs.
|
|
AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
|
|
if (isConstantOrConstantVector(N1) &&
|
|
!TLI.isIntDivCheap(N->getValueType(0), Attr))
|
|
if (SDValue Op = BuildSDIV(N))
|
|
return Op;
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitUDIV(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
EVT VT = N->getValueType(0);
|
|
EVT CCVT = getSetCCResultType(VT);
|
|
|
|
// fold vector ops
|
|
if (VT.isVector())
|
|
if (SDValue FoldedVOp = SimplifyVBinOp(N))
|
|
return FoldedVOp;
|
|
|
|
SDLoc DL(N);
|
|
|
|
// fold (udiv c1, c2) -> c1/c2
|
|
ConstantSDNode *N1C = isConstOrConstSplat(N1);
|
|
if (SDValue C = DAG.FoldConstantArithmetic(ISD::UDIV, DL, VT, {N0, N1}))
|
|
return C;
|
|
|
|
// fold (udiv X, -1) -> select(X == -1, 1, 0)
|
|
if (N1C && N1C->getAPIntValue().isAllOnesValue())
|
|
return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ),
|
|
DAG.getConstant(1, DL, VT),
|
|
DAG.getConstant(0, DL, VT));
|
|
|
|
if (SDValue V = simplifyDivRem(N, DAG))
|
|
return V;
|
|
|
|
if (SDValue NewSel = foldBinOpIntoSelect(N))
|
|
return NewSel;
|
|
|
|
if (SDValue V = visitUDIVLike(N0, N1, N)) {
|
|
// If the corresponding remainder node exists, update its users with
|
|
// (Dividend - (Quotient * Divisor).
|
|
if (SDNode *RemNode = DAG.getNodeIfExists(ISD::UREM, N->getVTList(),
|
|
{ N0, N1 })) {
|
|
SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, V, N1);
|
|
SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul);
|
|
AddToWorklist(Mul.getNode());
|
|
AddToWorklist(Sub.getNode());
|
|
CombineTo(RemNode, Sub);
|
|
}
|
|
return V;
|
|
}
|
|
|
|
// sdiv, srem -> sdivrem
|
|
// If the divisor is constant, then return DIVREM only if isIntDivCheap() is
|
|
// true. Otherwise, we break the simplification logic in visitREM().
|
|
AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
|
|
if (!N1C || TLI.isIntDivCheap(N->getValueType(0), Attr))
|
|
if (SDValue DivRem = useDivRem(N))
|
|
return DivRem;
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitUDIVLike(SDValue N0, SDValue N1, SDNode *N) {
|
|
SDLoc DL(N);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// fold (udiv x, (1 << c)) -> x >>u c
|
|
if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) &&
|
|
DAG.isKnownToBeAPowerOfTwo(N1)) {
|
|
SDValue LogBase2 = BuildLogBase2(N1, DL);
|
|
AddToWorklist(LogBase2.getNode());
|
|
|
|
EVT ShiftVT = getShiftAmountTy(N0.getValueType());
|
|
SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ShiftVT);
|
|
AddToWorklist(Trunc.getNode());
|
|
return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc);
|
|
}
|
|
|
|
// fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
|
|
if (N1.getOpcode() == ISD::SHL) {
|
|
SDValue N10 = N1.getOperand(0);
|
|
if (isConstantOrConstantVector(N10, /*NoOpaques*/ true) &&
|
|
DAG.isKnownToBeAPowerOfTwo(N10)) {
|
|
SDValue LogBase2 = BuildLogBase2(N10, DL);
|
|
AddToWorklist(LogBase2.getNode());
|
|
|
|
EVT ADDVT = N1.getOperand(1).getValueType();
|
|
SDValue Trunc = DAG.getZExtOrTrunc(LogBase2, DL, ADDVT);
|
|
AddToWorklist(Trunc.getNode());
|
|
SDValue Add = DAG.getNode(ISD::ADD, DL, ADDVT, N1.getOperand(1), Trunc);
|
|
AddToWorklist(Add.getNode());
|
|
return DAG.getNode(ISD::SRL, DL, VT, N0, Add);
|
|
}
|
|
}
|
|
|
|
// fold (udiv x, c) -> alternate
|
|
AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
|
|
if (isConstantOrConstantVector(N1) &&
|
|
!TLI.isIntDivCheap(N->getValueType(0), Attr))
|
|
if (SDValue Op = BuildUDIV(N))
|
|
return Op;
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// handles ISD::SREM and ISD::UREM
|
|
SDValue DAGCombiner::visitREM(SDNode *N) {
|
|
unsigned Opcode = N->getOpcode();
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
EVT VT = N->getValueType(0);
|
|
EVT CCVT = getSetCCResultType(VT);
|
|
|
|
bool isSigned = (Opcode == ISD::SREM);
|
|
SDLoc DL(N);
|
|
|
|
// fold (rem c1, c2) -> c1%c2
|
|
ConstantSDNode *N1C = isConstOrConstSplat(N1);
|
|
if (SDValue C = DAG.FoldConstantArithmetic(Opcode, DL, VT, {N0, N1}))
|
|
return C;
|
|
|
|
// fold (urem X, -1) -> select(X == -1, 0, x)
|
|
if (!isSigned && N1C && N1C->getAPIntValue().isAllOnesValue())
|
|
return DAG.getSelect(DL, VT, DAG.getSetCC(DL, CCVT, N0, N1, ISD::SETEQ),
|
|
DAG.getConstant(0, DL, VT), N0);
|
|
|
|
if (SDValue V = simplifyDivRem(N, DAG))
|
|
return V;
|
|
|
|
if (SDValue NewSel = foldBinOpIntoSelect(N))
|
|
return NewSel;
|
|
|
|
if (isSigned) {
|
|
// If we know the sign bits of both operands are zero, strength reduce to a
|
|
// urem instead. Handles (X & 0x0FFFFFFF) %s 16 -> X&15
|
|
if (DAG.SignBitIsZero(N1) && DAG.SignBitIsZero(N0))
|
|
return DAG.getNode(ISD::UREM, DL, VT, N0, N1);
|
|
} else {
|
|
if (DAG.isKnownToBeAPowerOfTwo(N1)) {
|
|
// fold (urem x, pow2) -> (and x, pow2-1)
|
|
SDValue NegOne = DAG.getAllOnesConstant(DL, VT);
|
|
SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne);
|
|
AddToWorklist(Add.getNode());
|
|
return DAG.getNode(ISD::AND, DL, VT, N0, Add);
|
|
}
|
|
if (N1.getOpcode() == ISD::SHL &&
|
|
DAG.isKnownToBeAPowerOfTwo(N1.getOperand(0))) {
|
|
// fold (urem x, (shl pow2, y)) -> (and x, (add (shl pow2, y), -1))
|
|
SDValue NegOne = DAG.getAllOnesConstant(DL, VT);
|
|
SDValue Add = DAG.getNode(ISD::ADD, DL, VT, N1, NegOne);
|
|
AddToWorklist(Add.getNode());
|
|
return DAG.getNode(ISD::AND, DL, VT, N0, Add);
|
|
}
|
|
}
|
|
|
|
AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
|
|
|
|
// If X/C can be simplified by the division-by-constant logic, lower
|
|
// X%C to the equivalent of X-X/C*C.
|
|
// Reuse the SDIVLike/UDIVLike combines - to avoid mangling nodes, the
|
|
// speculative DIV must not cause a DIVREM conversion. We guard against this
|
|
// by skipping the simplification if isIntDivCheap(). When div is not cheap,
|
|
// combine will not return a DIVREM. Regardless, checking cheapness here
|
|
// makes sense since the simplification results in fatter code.
|
|
if (DAG.isKnownNeverZero(N1) && !TLI.isIntDivCheap(VT, Attr)) {
|
|
SDValue OptimizedDiv =
|
|
isSigned ? visitSDIVLike(N0, N1, N) : visitUDIVLike(N0, N1, N);
|
|
if (OptimizedDiv.getNode()) {
|
|
// If the equivalent Div node also exists, update its users.
|
|
unsigned DivOpcode = isSigned ? ISD::SDIV : ISD::UDIV;
|
|
if (SDNode *DivNode = DAG.getNodeIfExists(DivOpcode, N->getVTList(),
|
|
{ N0, N1 }))
|
|
CombineTo(DivNode, OptimizedDiv);
|
|
SDValue Mul = DAG.getNode(ISD::MUL, DL, VT, OptimizedDiv, N1);
|
|
SDValue Sub = DAG.getNode(ISD::SUB, DL, VT, N0, Mul);
|
|
AddToWorklist(OptimizedDiv.getNode());
|
|
AddToWorklist(Mul.getNode());
|
|
return Sub;
|
|
}
|
|
}
|
|
|
|
// sdiv, srem -> sdivrem
|
|
if (SDValue DivRem = useDivRem(N))
|
|
return DivRem.getValue(1);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitMULHS(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
EVT VT = N->getValueType(0);
|
|
SDLoc DL(N);
|
|
|
|
if (VT.isVector()) {
|
|
// fold (mulhs x, 0) -> 0
|
|
// do not return N0/N1, because undef node may exist.
|
|
if (ISD::isConstantSplatVectorAllZeros(N0.getNode()) ||
|
|
ISD::isConstantSplatVectorAllZeros(N1.getNode()))
|
|
return DAG.getConstant(0, DL, VT);
|
|
}
|
|
|
|
// fold (mulhs c1, c2)
|
|
if (SDValue C = DAG.FoldConstantArithmetic(ISD::MULHS, DL, VT, {N0, N1}))
|
|
return C;
|
|
|
|
// fold (mulhs x, 0) -> 0
|
|
if (isNullConstant(N1))
|
|
return N1;
|
|
// fold (mulhs x, 1) -> (sra x, size(x)-1)
|
|
if (isOneConstant(N1))
|
|
return DAG.getNode(ISD::SRA, DL, N0.getValueType(), N0,
|
|
DAG.getConstant(N0.getScalarValueSizeInBits() - 1, DL,
|
|
getShiftAmountTy(N0.getValueType())));
|
|
|
|
// fold (mulhs x, undef) -> 0
|
|
if (N0.isUndef() || N1.isUndef())
|
|
return DAG.getConstant(0, DL, VT);
|
|
|
|
// If the type twice as wide is legal, transform the mulhs to a wider multiply
|
|
// plus a shift.
|
|
if (!TLI.isOperationLegalOrCustom(ISD::MULHS, VT) && VT.isSimple() &&
|
|
!VT.isVector()) {
|
|
MVT Simple = VT.getSimpleVT();
|
|
unsigned SimpleSize = Simple.getSizeInBits();
|
|
EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
|
|
if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
|
|
N0 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N0);
|
|
N1 = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N1);
|
|
N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
|
|
N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
|
|
DAG.getConstant(SimpleSize, DL,
|
|
getShiftAmountTy(N1.getValueType())));
|
|
return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitMULHU(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
EVT VT = N->getValueType(0);
|
|
SDLoc DL(N);
|
|
|
|
if (VT.isVector()) {
|
|
// fold (mulhu x, 0) -> 0
|
|
// do not return N0/N1, because undef node may exist.
|
|
if (ISD::isConstantSplatVectorAllZeros(N0.getNode()) ||
|
|
ISD::isConstantSplatVectorAllZeros(N1.getNode()))
|
|
return DAG.getConstant(0, DL, VT);
|
|
}
|
|
|
|
// fold (mulhu c1, c2)
|
|
if (SDValue C = DAG.FoldConstantArithmetic(ISD::MULHU, DL, VT, {N0, N1}))
|
|
return C;
|
|
|
|
// fold (mulhu x, 0) -> 0
|
|
if (isNullConstant(N1))
|
|
return N1;
|
|
// fold (mulhu x, 1) -> 0
|
|
if (isOneConstant(N1))
|
|
return DAG.getConstant(0, DL, N0.getValueType());
|
|
// fold (mulhu x, undef) -> 0
|
|
if (N0.isUndef() || N1.isUndef())
|
|
return DAG.getConstant(0, DL, VT);
|
|
|
|
// fold (mulhu x, (1 << c)) -> x >> (bitwidth - c)
|
|
if (isConstantOrConstantVector(N1, /*NoOpaques*/ true) &&
|
|
DAG.isKnownToBeAPowerOfTwo(N1) && hasOperation(ISD::SRL, VT)) {
|
|
unsigned NumEltBits = VT.getScalarSizeInBits();
|
|
SDValue LogBase2 = BuildLogBase2(N1, DL);
|
|
SDValue SRLAmt = DAG.getNode(
|
|
ISD::SUB, DL, VT, DAG.getConstant(NumEltBits, DL, VT), LogBase2);
|
|
EVT ShiftVT = getShiftAmountTy(N0.getValueType());
|
|
SDValue Trunc = DAG.getZExtOrTrunc(SRLAmt, DL, ShiftVT);
|
|
return DAG.getNode(ISD::SRL, DL, VT, N0, Trunc);
|
|
}
|
|
|
|
// If the type twice as wide is legal, transform the mulhu to a wider multiply
|
|
// plus a shift.
|
|
if (!TLI.isOperationLegalOrCustom(ISD::MULHU, VT) && VT.isSimple() &&
|
|
!VT.isVector()) {
|
|
MVT Simple = VT.getSimpleVT();
|
|
unsigned SimpleSize = Simple.getSizeInBits();
|
|
EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
|
|
if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
|
|
N0 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N0);
|
|
N1 = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N1);
|
|
N1 = DAG.getNode(ISD::MUL, DL, NewVT, N0, N1);
|
|
N1 = DAG.getNode(ISD::SRL, DL, NewVT, N1,
|
|
DAG.getConstant(SimpleSize, DL,
|
|
getShiftAmountTy(N1.getValueType())));
|
|
return DAG.getNode(ISD::TRUNCATE, DL, VT, N1);
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// Perform optimizations common to nodes that compute two values. LoOp and HiOp
|
|
/// give the opcodes for the two computations that are being performed. Return
|
|
/// true if a simplification was made.
|
|
SDValue DAGCombiner::SimplifyNodeWithTwoResults(SDNode *N, unsigned LoOp,
|
|
unsigned HiOp) {
|
|
// If the high half is not needed, just compute the low half.
|
|
bool HiExists = N->hasAnyUseOfValue(1);
|
|
if (!HiExists && (!LegalOperations ||
|
|
TLI.isOperationLegalOrCustom(LoOp, N->getValueType(0)))) {
|
|
SDValue Res = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops());
|
|
return CombineTo(N, Res, Res);
|
|
}
|
|
|
|
// If the low half is not needed, just compute the high half.
|
|
bool LoExists = N->hasAnyUseOfValue(0);
|
|
if (!LoExists && (!LegalOperations ||
|
|
TLI.isOperationLegalOrCustom(HiOp, N->getValueType(1)))) {
|
|
SDValue Res = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops());
|
|
return CombineTo(N, Res, Res);
|
|
}
|
|
|
|
// If both halves are used, return as it is.
|
|
if (LoExists && HiExists)
|
|
return SDValue();
|
|
|
|
// If the two computed results can be simplified separately, separate them.
|
|
if (LoExists) {
|
|
SDValue Lo = DAG.getNode(LoOp, SDLoc(N), N->getValueType(0), N->ops());
|
|
AddToWorklist(Lo.getNode());
|
|
SDValue LoOpt = combine(Lo.getNode());
|
|
if (LoOpt.getNode() && LoOpt.getNode() != Lo.getNode() &&
|
|
(!LegalOperations ||
|
|
TLI.isOperationLegalOrCustom(LoOpt.getOpcode(), LoOpt.getValueType())))
|
|
return CombineTo(N, LoOpt, LoOpt);
|
|
}
|
|
|
|
if (HiExists) {
|
|
SDValue Hi = DAG.getNode(HiOp, SDLoc(N), N->getValueType(1), N->ops());
|
|
AddToWorklist(Hi.getNode());
|
|
SDValue HiOpt = combine(Hi.getNode());
|
|
if (HiOpt.getNode() && HiOpt != Hi &&
|
|
(!LegalOperations ||
|
|
TLI.isOperationLegalOrCustom(HiOpt.getOpcode(), HiOpt.getValueType())))
|
|
return CombineTo(N, HiOpt, HiOpt);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitSMUL_LOHI(SDNode *N) {
|
|
if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHS))
|
|
return Res;
|
|
|
|
EVT VT = N->getValueType(0);
|
|
SDLoc DL(N);
|
|
|
|
// If the type is twice as wide is legal, transform the mulhu to a wider
|
|
// multiply plus a shift.
|
|
if (VT.isSimple() && !VT.isVector()) {
|
|
MVT Simple = VT.getSimpleVT();
|
|
unsigned SimpleSize = Simple.getSizeInBits();
|
|
EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
|
|
if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
|
|
SDValue Lo = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(0));
|
|
SDValue Hi = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, N->getOperand(1));
|
|
Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
|
|
// Compute the high part as N1.
|
|
Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
|
|
DAG.getConstant(SimpleSize, DL,
|
|
getShiftAmountTy(Lo.getValueType())));
|
|
Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
|
|
// Compute the low part as N0.
|
|
Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
|
|
return CombineTo(N, Lo, Hi);
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitUMUL_LOHI(SDNode *N) {
|
|
if (SDValue Res = SimplifyNodeWithTwoResults(N, ISD::MUL, ISD::MULHU))
|
|
return Res;
|
|
|
|
EVT VT = N->getValueType(0);
|
|
SDLoc DL(N);
|
|
|
|
// (umul_lohi N0, 0) -> (0, 0)
|
|
if (isNullConstant(N->getOperand(1))) {
|
|
SDValue Zero = DAG.getConstant(0, DL, VT);
|
|
return CombineTo(N, Zero, Zero);
|
|
}
|
|
|
|
// (umul_lohi N0, 1) -> (N0, 0)
|
|
if (isOneConstant(N->getOperand(1))) {
|
|
SDValue Zero = DAG.getConstant(0, DL, VT);
|
|
return CombineTo(N, N->getOperand(0), Zero);
|
|
}
|
|
|
|
// If the type is twice as wide is legal, transform the mulhu to a wider
|
|
// multiply plus a shift.
|
|
if (VT.isSimple() && !VT.isVector()) {
|
|
MVT Simple = VT.getSimpleVT();
|
|
unsigned SimpleSize = Simple.getSizeInBits();
|
|
EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), SimpleSize*2);
|
|
if (TLI.isOperationLegal(ISD::MUL, NewVT)) {
|
|
SDValue Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(0));
|
|
SDValue Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, NewVT, N->getOperand(1));
|
|
Lo = DAG.getNode(ISD::MUL, DL, NewVT, Lo, Hi);
|
|
// Compute the high part as N1.
|
|
Hi = DAG.getNode(ISD::SRL, DL, NewVT, Lo,
|
|
DAG.getConstant(SimpleSize, DL,
|
|
getShiftAmountTy(Lo.getValueType())));
|
|
Hi = DAG.getNode(ISD::TRUNCATE, DL, VT, Hi);
|
|
// Compute the low part as N0.
|
|
Lo = DAG.getNode(ISD::TRUNCATE, DL, VT, Lo);
|
|
return CombineTo(N, Lo, Hi);
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitMULO(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
EVT VT = N0.getValueType();
|
|
bool IsSigned = (ISD::SMULO == N->getOpcode());
|
|
|
|
EVT CarryVT = N->getValueType(1);
|
|
SDLoc DL(N);
|
|
|
|
ConstantSDNode *N0C = isConstOrConstSplat(N0);
|
|
ConstantSDNode *N1C = isConstOrConstSplat(N1);
|
|
|
|
// fold operation with constant operands.
|
|
// TODO: Move this to FoldConstantArithmetic when it supports nodes with
|
|
// multiple results.
|
|
if (N0C && N1C) {
|
|
bool Overflow;
|
|
APInt Result =
|
|
IsSigned ? N0C->getAPIntValue().smul_ov(N1C->getAPIntValue(), Overflow)
|
|
: N0C->getAPIntValue().umul_ov(N1C->getAPIntValue(), Overflow);
|
|
return CombineTo(N, DAG.getConstant(Result, DL, VT),
|
|
DAG.getBoolConstant(Overflow, DL, CarryVT, CarryVT));
|
|
}
|
|
|
|
// canonicalize constant to RHS.
|
|
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
|
|
!DAG.isConstantIntBuildVectorOrConstantInt(N1))
|
|
return DAG.getNode(N->getOpcode(), DL, N->getVTList(), N1, N0);
|
|
|
|
// fold (mulo x, 0) -> 0 + no carry out
|
|
if (isNullOrNullSplat(N1))
|
|
return CombineTo(N, DAG.getConstant(0, DL, VT),
|
|
DAG.getConstant(0, DL, CarryVT));
|
|
|
|
// (mulo x, 2) -> (addo x, x)
|
|
if (N1C && N1C->getAPIntValue() == 2)
|
|
return DAG.getNode(IsSigned ? ISD::SADDO : ISD::UADDO, DL,
|
|
N->getVTList(), N0, N0);
|
|
|
|
if (IsSigned) {
|
|
// A 1 bit SMULO overflows if both inputs are 1.
|
|
if (VT.getScalarSizeInBits() == 1) {
|
|
SDValue And = DAG.getNode(ISD::AND, DL, VT, N0, N1);
|
|
return CombineTo(N, And,
|
|
DAG.getSetCC(DL, CarryVT, And,
|
|
DAG.getConstant(0, DL, VT), ISD::SETNE));
|
|
}
|
|
|
|
// Multiplying n * m significant bits yields a result of n + m significant
|
|
// bits. If the total number of significant bits does not exceed the
|
|
// result bit width (minus 1), there is no overflow.
|
|
unsigned SignBits = DAG.ComputeNumSignBits(N0);
|
|
if (SignBits > 1)
|
|
SignBits += DAG.ComputeNumSignBits(N1);
|
|
if (SignBits > VT.getScalarSizeInBits() + 1)
|
|
return CombineTo(N, DAG.getNode(ISD::MUL, DL, VT, N0, N1),
|
|
DAG.getConstant(0, DL, CarryVT));
|
|
} else {
|
|
KnownBits N1Known = DAG.computeKnownBits(N1);
|
|
KnownBits N0Known = DAG.computeKnownBits(N0);
|
|
bool Overflow;
|
|
(void)N0Known.getMaxValue().umul_ov(N1Known.getMaxValue(), Overflow);
|
|
if (!Overflow)
|
|
return CombineTo(N, DAG.getNode(ISD::MUL, DL, VT, N0, N1),
|
|
DAG.getConstant(0, DL, CarryVT));
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitIMINMAX(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
EVT VT = N0.getValueType();
|
|
unsigned Opcode = N->getOpcode();
|
|
|
|
// fold vector ops
|
|
if (VT.isVector())
|
|
if (SDValue FoldedVOp = SimplifyVBinOp(N))
|
|
return FoldedVOp;
|
|
|
|
// fold operation with constant operands.
|
|
if (SDValue C = DAG.FoldConstantArithmetic(Opcode, SDLoc(N), VT, {N0, N1}))
|
|
return C;
|
|
|
|
// canonicalize constant to RHS
|
|
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
|
|
!DAG.isConstantIntBuildVectorOrConstantInt(N1))
|
|
return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0);
|
|
|
|
// Is sign bits are zero, flip between UMIN/UMAX and SMIN/SMAX.
|
|
// Only do this if the current op isn't legal and the flipped is.
|
|
if (!TLI.isOperationLegal(Opcode, VT) &&
|
|
(N0.isUndef() || DAG.SignBitIsZero(N0)) &&
|
|
(N1.isUndef() || DAG.SignBitIsZero(N1))) {
|
|
unsigned AltOpcode;
|
|
switch (Opcode) {
|
|
case ISD::SMIN: AltOpcode = ISD::UMIN; break;
|
|
case ISD::SMAX: AltOpcode = ISD::UMAX; break;
|
|
case ISD::UMIN: AltOpcode = ISD::SMIN; break;
|
|
case ISD::UMAX: AltOpcode = ISD::SMAX; break;
|
|
default: llvm_unreachable("Unknown MINMAX opcode");
|
|
}
|
|
if (TLI.isOperationLegal(AltOpcode, VT))
|
|
return DAG.getNode(AltOpcode, SDLoc(N), VT, N0, N1);
|
|
}
|
|
|
|
// Simplify the operands using demanded-bits information.
|
|
if (SimplifyDemandedBits(SDValue(N, 0)))
|
|
return SDValue(N, 0);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// If this is a bitwise logic instruction and both operands have the same
|
|
/// opcode, try to sink the other opcode after the logic instruction.
|
|
SDValue DAGCombiner::hoistLogicOpWithSameOpcodeHands(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
|
|
EVT VT = N0.getValueType();
|
|
unsigned LogicOpcode = N->getOpcode();
|
|
unsigned HandOpcode = N0.getOpcode();
|
|
assert((LogicOpcode == ISD::AND || LogicOpcode == ISD::OR ||
|
|
LogicOpcode == ISD::XOR) && "Expected logic opcode");
|
|
assert(HandOpcode == N1.getOpcode() && "Bad input!");
|
|
|
|
// Bail early if none of these transforms apply.
|
|
if (N0.getNumOperands() == 0)
|
|
return SDValue();
|
|
|
|
// FIXME: We should check number of uses of the operands to not increase
|
|
// the instruction count for all transforms.
|
|
|
|
// Handle size-changing casts.
|
|
SDValue X = N0.getOperand(0);
|
|
SDValue Y = N1.getOperand(0);
|
|
EVT XVT = X.getValueType();
|
|
SDLoc DL(N);
|
|
if (HandOpcode == ISD::ANY_EXTEND || HandOpcode == ISD::ZERO_EXTEND ||
|
|
HandOpcode == ISD::SIGN_EXTEND) {
|
|
// If both operands have other uses, this transform would create extra
|
|
// instructions without eliminating anything.
|
|
if (!N0.hasOneUse() && !N1.hasOneUse())
|
|
return SDValue();
|
|
// We need matching integer source types.
|
|
if (XVT != Y.getValueType())
|
|
return SDValue();
|
|
// Don't create an illegal op during or after legalization. Don't ever
|
|
// create an unsupported vector op.
|
|
if ((VT.isVector() || LegalOperations) &&
|
|
!TLI.isOperationLegalOrCustom(LogicOpcode, XVT))
|
|
return SDValue();
|
|
// Avoid infinite looping with PromoteIntBinOp.
|
|
// TODO: Should we apply desirable/legal constraints to all opcodes?
|
|
if (HandOpcode == ISD::ANY_EXTEND && LegalTypes &&
|
|
!TLI.isTypeDesirableForOp(LogicOpcode, XVT))
|
|
return SDValue();
|
|
// logic_op (hand_op X), (hand_op Y) --> hand_op (logic_op X, Y)
|
|
SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
|
|
return DAG.getNode(HandOpcode, DL, VT, Logic);
|
|
}
|
|
|
|
// logic_op (truncate x), (truncate y) --> truncate (logic_op x, y)
|
|
if (HandOpcode == ISD::TRUNCATE) {
|
|
// If both operands have other uses, this transform would create extra
|
|
// instructions without eliminating anything.
|
|
if (!N0.hasOneUse() && !N1.hasOneUse())
|
|
return SDValue();
|
|
// We need matching source types.
|
|
if (XVT != Y.getValueType())
|
|
return SDValue();
|
|
// Don't create an illegal op during or after legalization.
|
|
if (LegalOperations && !TLI.isOperationLegal(LogicOpcode, XVT))
|
|
return SDValue();
|
|
// Be extra careful sinking truncate. If it's free, there's no benefit in
|
|
// widening a binop. Also, don't create a logic op on an illegal type.
|
|
if (TLI.isZExtFree(VT, XVT) && TLI.isTruncateFree(XVT, VT))
|
|
return SDValue();
|
|
if (!TLI.isTypeLegal(XVT))
|
|
return SDValue();
|
|
SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
|
|
return DAG.getNode(HandOpcode, DL, VT, Logic);
|
|
}
|
|
|
|
// For binops SHL/SRL/SRA/AND:
|
|
// logic_op (OP x, z), (OP y, z) --> OP (logic_op x, y), z
|
|
if ((HandOpcode == ISD::SHL || HandOpcode == ISD::SRL ||
|
|
HandOpcode == ISD::SRA || HandOpcode == ISD::AND) &&
|
|
N0.getOperand(1) == N1.getOperand(1)) {
|
|
// If either operand has other uses, this transform is not an improvement.
|
|
if (!N0.hasOneUse() || !N1.hasOneUse())
|
|
return SDValue();
|
|
SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
|
|
return DAG.getNode(HandOpcode, DL, VT, Logic, N0.getOperand(1));
|
|
}
|
|
|
|
// Unary ops: logic_op (bswap x), (bswap y) --> bswap (logic_op x, y)
|
|
if (HandOpcode == ISD::BSWAP) {
|
|
// If either operand has other uses, this transform is not an improvement.
|
|
if (!N0.hasOneUse() || !N1.hasOneUse())
|
|
return SDValue();
|
|
SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
|
|
return DAG.getNode(HandOpcode, DL, VT, Logic);
|
|
}
|
|
|
|
// Simplify xor/and/or (bitcast(A), bitcast(B)) -> bitcast(op (A,B))
|
|
// Only perform this optimization up until type legalization, before
|
|
// LegalizeVectorOprs. LegalizeVectorOprs promotes vector operations by
|
|
// adding bitcasts. For example (xor v4i32) is promoted to (v2i64), and
|
|
// we don't want to undo this promotion.
|
|
// We also handle SCALAR_TO_VECTOR because xor/or/and operations are cheaper
|
|
// on scalars.
|
|
if ((HandOpcode == ISD::BITCAST || HandOpcode == ISD::SCALAR_TO_VECTOR) &&
|
|
Level <= AfterLegalizeTypes) {
|
|
// Input types must be integer and the same.
|
|
if (XVT.isInteger() && XVT == Y.getValueType() &&
|
|
!(VT.isVector() && TLI.isTypeLegal(VT) &&
|
|
!XVT.isVector() && !TLI.isTypeLegal(XVT))) {
|
|
SDValue Logic = DAG.getNode(LogicOpcode, DL, XVT, X, Y);
|
|
return DAG.getNode(HandOpcode, DL, VT, Logic);
|
|
}
|
|
}
|
|
|
|
// Xor/and/or are indifferent to the swizzle operation (shuffle of one value).
|
|
// Simplify xor/and/or (shuff(A), shuff(B)) -> shuff(op (A,B))
|
|
// If both shuffles use the same mask, and both shuffle within a single
|
|
// vector, then it is worthwhile to move the swizzle after the operation.
|
|
// The type-legalizer generates this pattern when loading illegal
|
|
// vector types from memory. In many cases this allows additional shuffle
|
|
// optimizations.
|
|
// There are other cases where moving the shuffle after the xor/and/or
|
|
// is profitable even if shuffles don't perform a swizzle.
|
|
// If both shuffles use the same mask, and both shuffles have the same first
|
|
// or second operand, then it might still be profitable to move the shuffle
|
|
// after the xor/and/or operation.
|
|
if (HandOpcode == ISD::VECTOR_SHUFFLE && Level < AfterLegalizeDAG) {
|
|
auto *SVN0 = cast<ShuffleVectorSDNode>(N0);
|
|
auto *SVN1 = cast<ShuffleVectorSDNode>(N1);
|
|
assert(X.getValueType() == Y.getValueType() &&
|
|
"Inputs to shuffles are not the same type");
|
|
|
|
// Check that both shuffles use the same mask. The masks are known to be of
|
|
// the same length because the result vector type is the same.
|
|
// Check also that shuffles have only one use to avoid introducing extra
|
|
// instructions.
|
|
if (!SVN0->hasOneUse() || !SVN1->hasOneUse() ||
|
|
!SVN0->getMask().equals(SVN1->getMask()))
|
|
return SDValue();
|
|
|
|
// Don't try to fold this node if it requires introducing a
|
|
// build vector of all zeros that might be illegal at this stage.
|
|
SDValue ShOp = N0.getOperand(1);
|
|
if (LogicOpcode == ISD::XOR && !ShOp.isUndef())
|
|
ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);
|
|
|
|
// (logic_op (shuf (A, C), shuf (B, C))) --> shuf (logic_op (A, B), C)
|
|
if (N0.getOperand(1) == N1.getOperand(1) && ShOp.getNode()) {
|
|
SDValue Logic = DAG.getNode(LogicOpcode, DL, VT,
|
|
N0.getOperand(0), N1.getOperand(0));
|
|
return DAG.getVectorShuffle(VT, DL, Logic, ShOp, SVN0->getMask());
|
|
}
|
|
|
|
// Don't try to fold this node if it requires introducing a
|
|
// build vector of all zeros that might be illegal at this stage.
|
|
ShOp = N0.getOperand(0);
|
|
if (LogicOpcode == ISD::XOR && !ShOp.isUndef())
|
|
ShOp = tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);
|
|
|
|
// (logic_op (shuf (C, A), shuf (C, B))) --> shuf (C, logic_op (A, B))
|
|
if (N0.getOperand(0) == N1.getOperand(0) && ShOp.getNode()) {
|
|
SDValue Logic = DAG.getNode(LogicOpcode, DL, VT, N0.getOperand(1),
|
|
N1.getOperand(1));
|
|
return DAG.getVectorShuffle(VT, DL, ShOp, Logic, SVN0->getMask());
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// Try to make (and/or setcc (LL, LR), setcc (RL, RR)) more efficient.
|
|
SDValue DAGCombiner::foldLogicOfSetCCs(bool IsAnd, SDValue N0, SDValue N1,
|
|
const SDLoc &DL) {
|
|
SDValue LL, LR, RL, RR, N0CC, N1CC;
|
|
if (!isSetCCEquivalent(N0, LL, LR, N0CC) ||
|
|
!isSetCCEquivalent(N1, RL, RR, N1CC))
|
|
return SDValue();
|
|
|
|
assert(N0.getValueType() == N1.getValueType() &&
|
|
"Unexpected operand types for bitwise logic op");
|
|
assert(LL.getValueType() == LR.getValueType() &&
|
|
RL.getValueType() == RR.getValueType() &&
|
|
"Unexpected operand types for setcc");
|
|
|
|
// If we're here post-legalization or the logic op type is not i1, the logic
|
|
// op type must match a setcc result type. Also, all folds require new
|
|
// operations on the left and right operands, so those types must match.
|
|
EVT VT = N0.getValueType();
|
|
EVT OpVT = LL.getValueType();
|
|
if (LegalOperations || VT.getScalarType() != MVT::i1)
|
|
if (VT != getSetCCResultType(OpVT))
|
|
return SDValue();
|
|
if (OpVT != RL.getValueType())
|
|
return SDValue();
|
|
|
|
ISD::CondCode CC0 = cast<CondCodeSDNode>(N0CC)->get();
|
|
ISD::CondCode CC1 = cast<CondCodeSDNode>(N1CC)->get();
|
|
bool IsInteger = OpVT.isInteger();
|
|
if (LR == RR && CC0 == CC1 && IsInteger) {
|
|
bool IsZero = isNullOrNullSplat(LR);
|
|
bool IsNeg1 = isAllOnesOrAllOnesSplat(LR);
|
|
|
|
// All bits clear?
|
|
bool AndEqZero = IsAnd && CC1 == ISD::SETEQ && IsZero;
|
|
// All sign bits clear?
|
|
bool AndGtNeg1 = IsAnd && CC1 == ISD::SETGT && IsNeg1;
|
|
// Any bits set?
|
|
bool OrNeZero = !IsAnd && CC1 == ISD::SETNE && IsZero;
|
|
// Any sign bits set?
|
|
bool OrLtZero = !IsAnd && CC1 == ISD::SETLT && IsZero;
|
|
|
|
// (and (seteq X, 0), (seteq Y, 0)) --> (seteq (or X, Y), 0)
|
|
// (and (setgt X, -1), (setgt Y, -1)) --> (setgt (or X, Y), -1)
|
|
// (or (setne X, 0), (setne Y, 0)) --> (setne (or X, Y), 0)
|
|
// (or (setlt X, 0), (setlt Y, 0)) --> (setlt (or X, Y), 0)
|
|
if (AndEqZero || AndGtNeg1 || OrNeZero || OrLtZero) {
|
|
SDValue Or = DAG.getNode(ISD::OR, SDLoc(N0), OpVT, LL, RL);
|
|
AddToWorklist(Or.getNode());
|
|
return DAG.getSetCC(DL, VT, Or, LR, CC1);
|
|
}
|
|
|
|
// All bits set?
|
|
bool AndEqNeg1 = IsAnd && CC1 == ISD::SETEQ && IsNeg1;
|
|
// All sign bits set?
|
|
bool AndLtZero = IsAnd && CC1 == ISD::SETLT && IsZero;
|
|
// Any bits clear?
|
|
bool OrNeNeg1 = !IsAnd && CC1 == ISD::SETNE && IsNeg1;
|
|
// Any sign bits clear?
|
|
bool OrGtNeg1 = !IsAnd && CC1 == ISD::SETGT && IsNeg1;
|
|
|
|
// (and (seteq X, -1), (seteq Y, -1)) --> (seteq (and X, Y), -1)
|
|
// (and (setlt X, 0), (setlt Y, 0)) --> (setlt (and X, Y), 0)
|
|
// (or (setne X, -1), (setne Y, -1)) --> (setne (and X, Y), -1)
|
|
// (or (setgt X, -1), (setgt Y -1)) --> (setgt (and X, Y), -1)
|
|
if (AndEqNeg1 || AndLtZero || OrNeNeg1 || OrGtNeg1) {
|
|
SDValue And = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, LL, RL);
|
|
AddToWorklist(And.getNode());
|
|
return DAG.getSetCC(DL, VT, And, LR, CC1);
|
|
}
|
|
}
|
|
|
|
// TODO: What is the 'or' equivalent of this fold?
|
|
// (and (setne X, 0), (setne X, -1)) --> (setuge (add X, 1), 2)
|
|
if (IsAnd && LL == RL && CC0 == CC1 && OpVT.getScalarSizeInBits() > 1 &&
|
|
IsInteger && CC0 == ISD::SETNE &&
|
|
((isNullConstant(LR) && isAllOnesConstant(RR)) ||
|
|
(isAllOnesConstant(LR) && isNullConstant(RR)))) {
|
|
SDValue One = DAG.getConstant(1, DL, OpVT);
|
|
SDValue Two = DAG.getConstant(2, DL, OpVT);
|
|
SDValue Add = DAG.getNode(ISD::ADD, SDLoc(N0), OpVT, LL, One);
|
|
AddToWorklist(Add.getNode());
|
|
return DAG.getSetCC(DL, VT, Add, Two, ISD::SETUGE);
|
|
}
|
|
|
|
// Try more general transforms if the predicates match and the only user of
|
|
// the compares is the 'and' or 'or'.
|
|
if (IsInteger && TLI.convertSetCCLogicToBitwiseLogic(OpVT) && CC0 == CC1 &&
|
|
N0.hasOneUse() && N1.hasOneUse()) {
|
|
// and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0
|
|
// or (setne A, B), (setne C, D) --> setne (or (xor A, B), (xor C, D)), 0
|
|
if ((IsAnd && CC1 == ISD::SETEQ) || (!IsAnd && CC1 == ISD::SETNE)) {
|
|
SDValue XorL = DAG.getNode(ISD::XOR, SDLoc(N0), OpVT, LL, LR);
|
|
SDValue XorR = DAG.getNode(ISD::XOR, SDLoc(N1), OpVT, RL, RR);
|
|
SDValue Or = DAG.getNode(ISD::OR, DL, OpVT, XorL, XorR);
|
|
SDValue Zero = DAG.getConstant(0, DL, OpVT);
|
|
return DAG.getSetCC(DL, VT, Or, Zero, CC1);
|
|
}
|
|
|
|
// Turn compare of constants whose difference is 1 bit into add+and+setcc.
|
|
// TODO - support non-uniform vector amounts.
|
|
if ((IsAnd && CC1 == ISD::SETNE) || (!IsAnd && CC1 == ISD::SETEQ)) {
|
|
// Match a shared variable operand and 2 non-opaque constant operands.
|
|
ConstantSDNode *C0 = isConstOrConstSplat(LR);
|
|
ConstantSDNode *C1 = isConstOrConstSplat(RR);
|
|
if (LL == RL && C0 && C1 && !C0->isOpaque() && !C1->isOpaque()) {
|
|
const APInt &CMax =
|
|
APIntOps::umax(C0->getAPIntValue(), C1->getAPIntValue());
|
|
const APInt &CMin =
|
|
APIntOps::umin(C0->getAPIntValue(), C1->getAPIntValue());
|
|
// The difference of the constants must be a single bit.
|
|
if ((CMax - CMin).isPowerOf2()) {
|
|
// and/or (setcc X, CMax, ne), (setcc X, CMin, ne/eq) -->
|
|
// setcc ((sub X, CMin), ~(CMax - CMin)), 0, ne/eq
|
|
SDValue Max = DAG.getNode(ISD::UMAX, DL, OpVT, LR, RR);
|
|
SDValue Min = DAG.getNode(ISD::UMIN, DL, OpVT, LR, RR);
|
|
SDValue Offset = DAG.getNode(ISD::SUB, DL, OpVT, LL, Min);
|
|
SDValue Diff = DAG.getNode(ISD::SUB, DL, OpVT, Max, Min);
|
|
SDValue Mask = DAG.getNOT(DL, Diff, OpVT);
|
|
SDValue And = DAG.getNode(ISD::AND, DL, OpVT, Offset, Mask);
|
|
SDValue Zero = DAG.getConstant(0, DL, OpVT);
|
|
return DAG.getSetCC(DL, VT, And, Zero, CC0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Canonicalize equivalent operands to LL == RL.
|
|
if (LL == RR && LR == RL) {
|
|
CC1 = ISD::getSetCCSwappedOperands(CC1);
|
|
std::swap(RL, RR);
|
|
}
|
|
|
|
// (and (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC)
|
|
// (or (setcc X, Y, CC0), (setcc X, Y, CC1)) --> (setcc X, Y, NewCC)
|
|
if (LL == RL && LR == RR) {
|
|
ISD::CondCode NewCC = IsAnd ? ISD::getSetCCAndOperation(CC0, CC1, OpVT)
|
|
: ISD::getSetCCOrOperation(CC0, CC1, OpVT);
|
|
if (NewCC != ISD::SETCC_INVALID &&
|
|
(!LegalOperations ||
|
|
(TLI.isCondCodeLegal(NewCC, LL.getSimpleValueType()) &&
|
|
TLI.isOperationLegal(ISD::SETCC, OpVT))))
|
|
return DAG.getSetCC(DL, VT, LL, LR, NewCC);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// This contains all DAGCombine rules which reduce two values combined by
|
|
/// an And operation to a single value. This makes them reusable in the context
|
|
/// of visitSELECT(). Rules involving constants are not included as
|
|
/// visitSELECT() already handles those cases.
|
|
SDValue DAGCombiner::visitANDLike(SDValue N0, SDValue N1, SDNode *N) {
|
|
EVT VT = N1.getValueType();
|
|
SDLoc DL(N);
|
|
|
|
// fold (and x, undef) -> 0
|
|
if (N0.isUndef() || N1.isUndef())
|
|
return DAG.getConstant(0, DL, VT);
|
|
|
|
if (SDValue V = foldLogicOfSetCCs(true, N0, N1, DL))
|
|
return V;
|
|
|
|
// TODO: Rewrite this to return a new 'AND' instead of using CombineTo.
|
|
if (N0.getOpcode() == ISD::ADD && N1.getOpcode() == ISD::SRL &&
|
|
VT.getSizeInBits() <= 64 && N0->hasOneUse()) {
|
|
if (ConstantSDNode *ADDI = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
|
|
if (ConstantSDNode *SRLI = dyn_cast<ConstantSDNode>(N1.getOperand(1))) {
|
|
// Look for (and (add x, c1), (lshr y, c2)). If C1 wasn't a legal
|
|
// immediate for an add, but it is legal if its top c2 bits are set,
|
|
// transform the ADD so the immediate doesn't need to be materialized
|
|
// in a register.
|
|
APInt ADDC = ADDI->getAPIntValue();
|
|
APInt SRLC = SRLI->getAPIntValue();
|
|
if (ADDC.getMinSignedBits() <= 64 &&
|
|
SRLC.ult(VT.getSizeInBits()) &&
|
|
!TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
|
|
APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(),
|
|
SRLC.getZExtValue());
|
|
if (DAG.MaskedValueIsZero(N0.getOperand(1), Mask)) {
|
|
ADDC |= Mask;
|
|
if (TLI.isLegalAddImmediate(ADDC.getSExtValue())) {
|
|
SDLoc DL0(N0);
|
|
SDValue NewAdd =
|
|
DAG.getNode(ISD::ADD, DL0, VT,
|
|
N0.getOperand(0), DAG.getConstant(ADDC, DL, VT));
|
|
CombineTo(N0.getNode(), NewAdd);
|
|
// Return N so it doesn't get rechecked!
|
|
return SDValue(N, 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Reduce bit extract of low half of an integer to the narrower type.
|
|
// (and (srl i64:x, K), KMask) ->
|
|
// (i64 zero_extend (and (srl (i32 (trunc i64:x)), K)), KMask)
|
|
if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
|
|
if (ConstantSDNode *CAnd = dyn_cast<ConstantSDNode>(N1)) {
|
|
if (ConstantSDNode *CShift = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
|
|
unsigned Size = VT.getSizeInBits();
|
|
const APInt &AndMask = CAnd->getAPIntValue();
|
|
unsigned ShiftBits = CShift->getZExtValue();
|
|
|
|
// Bail out, this node will probably disappear anyway.
|
|
if (ShiftBits == 0)
|
|
return SDValue();
|
|
|
|
unsigned MaskBits = AndMask.countTrailingOnes();
|
|
EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), Size / 2);
|
|
|
|
if (AndMask.isMask() &&
|
|
// Required bits must not span the two halves of the integer and
|
|
// must fit in the half size type.
|
|
(ShiftBits + MaskBits <= Size / 2) &&
|
|
TLI.isNarrowingProfitable(VT, HalfVT) &&
|
|
TLI.isTypeDesirableForOp(ISD::AND, HalfVT) &&
|
|
TLI.isTypeDesirableForOp(ISD::SRL, HalfVT) &&
|
|
TLI.isTruncateFree(VT, HalfVT) &&
|
|
TLI.isZExtFree(HalfVT, VT)) {
|
|
// The isNarrowingProfitable is to avoid regressions on PPC and
|
|
// AArch64 which match a few 64-bit bit insert / bit extract patterns
|
|
// on downstream users of this. Those patterns could probably be
|
|
// extended to handle extensions mixed in.
|
|
|
|
SDValue SL(N0);
|
|
assert(MaskBits <= Size);
|
|
|
|
// Extracting the highest bit of the low half.
|
|
EVT ShiftVT = TLI.getShiftAmountTy(HalfVT, DAG.getDataLayout());
|
|
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, HalfVT,
|
|
N0.getOperand(0));
|
|
|
|
SDValue NewMask = DAG.getConstant(AndMask.trunc(Size / 2), SL, HalfVT);
|
|
SDValue ShiftK = DAG.getConstant(ShiftBits, SL, ShiftVT);
|
|
SDValue Shift = DAG.getNode(ISD::SRL, SL, HalfVT, Trunc, ShiftK);
|
|
SDValue And = DAG.getNode(ISD::AND, SL, HalfVT, Shift, NewMask);
|
|
return DAG.getNode(ISD::ZERO_EXTEND, SL, VT, And);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
bool DAGCombiner::isAndLoadExtLoad(ConstantSDNode *AndC, LoadSDNode *LoadN,
|
|
EVT LoadResultTy, EVT &ExtVT) {
|
|
if (!AndC->getAPIntValue().isMask())
|
|
return false;
|
|
|
|
unsigned ActiveBits = AndC->getAPIntValue().countTrailingOnes();
|
|
|
|
ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
|
|
EVT LoadedVT = LoadN->getMemoryVT();
|
|
|
|
if (ExtVT == LoadedVT &&
|
|
(!LegalOperations ||
|
|
TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))) {
|
|
// ZEXTLOAD will match without needing to change the size of the value being
|
|
// loaded.
|
|
return true;
|
|
}
|
|
|
|
// Do not change the width of a volatile or atomic loads.
|
|
if (!LoadN->isSimple())
|
|
return false;
|
|
|
|
// Do not generate loads of non-round integer types since these can
|
|
// be expensive (and would be wrong if the type is not byte sized).
|
|
if (!LoadedVT.bitsGT(ExtVT) || !ExtVT.isRound())
|
|
return false;
|
|
|
|
if (LegalOperations &&
|
|
!TLI.isLoadExtLegal(ISD::ZEXTLOAD, LoadResultTy, ExtVT))
|
|
return false;
|
|
|
|
if (!TLI.shouldReduceLoadWidth(LoadN, ISD::ZEXTLOAD, ExtVT))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool DAGCombiner::isLegalNarrowLdSt(LSBaseSDNode *LDST,
|
|
ISD::LoadExtType ExtType, EVT &MemVT,
|
|
unsigned ShAmt) {
|
|
if (!LDST)
|
|
return false;
|
|
// Only allow byte offsets.
|
|
if (ShAmt % 8)
|
|
return false;
|
|
|
|
// Do not generate loads of non-round integer types since these can
|
|
// be expensive (and would be wrong if the type is not byte sized).
|
|
if (!MemVT.isRound())
|
|
return false;
|
|
|
|
// Don't change the width of a volatile or atomic loads.
|
|
if (!LDST->isSimple())
|
|
return false;
|
|
|
|
EVT LdStMemVT = LDST->getMemoryVT();
|
|
|
|
// Bail out when changing the scalable property, since we can't be sure that
|
|
// we're actually narrowing here.
|
|
if (LdStMemVT.isScalableVector() != MemVT.isScalableVector())
|
|
return false;
|
|
|
|
// Verify that we are actually reducing a load width here.
|
|
if (LdStMemVT.bitsLT(MemVT))
|
|
return false;
|
|
|
|
// Ensure that this isn't going to produce an unsupported memory access.
|
|
if (ShAmt) {
|
|
assert(ShAmt % 8 == 0 && "ShAmt is byte offset");
|
|
const unsigned ByteShAmt = ShAmt / 8;
|
|
const Align LDSTAlign = LDST->getAlign();
|
|
const Align NarrowAlign = commonAlignment(LDSTAlign, ByteShAmt);
|
|
if (!TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT,
|
|
LDST->getAddressSpace(), NarrowAlign,
|
|
LDST->getMemOperand()->getFlags()))
|
|
return false;
|
|
}
|
|
|
|
// It's not possible to generate a constant of extended or untyped type.
|
|
EVT PtrType = LDST->getBasePtr().getValueType();
|
|
if (PtrType == MVT::Untyped || PtrType.isExtended())
|
|
return false;
|
|
|
|
if (isa<LoadSDNode>(LDST)) {
|
|
LoadSDNode *Load = cast<LoadSDNode>(LDST);
|
|
// Don't transform one with multiple uses, this would require adding a new
|
|
// load.
|
|
if (!SDValue(Load, 0).hasOneUse())
|
|
return false;
|
|
|
|
if (LegalOperations &&
|
|
!TLI.isLoadExtLegal(ExtType, Load->getValueType(0), MemVT))
|
|
return false;
|
|
|
|
// For the transform to be legal, the load must produce only two values
|
|
// (the value loaded and the chain). Don't transform a pre-increment
|
|
// load, for example, which produces an extra value. Otherwise the
|
|
// transformation is not equivalent, and the downstream logic to replace
|
|
// uses gets things wrong.
|
|
if (Load->getNumValues() > 2)
|
|
return false;
|
|
|
|
// If the load that we're shrinking is an extload and we're not just
|
|
// discarding the extension we can't simply shrink the load. Bail.
|
|
// TODO: It would be possible to merge the extensions in some cases.
|
|
if (Load->getExtensionType() != ISD::NON_EXTLOAD &&
|
|
Load->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt)
|
|
return false;
|
|
|
|
if (!TLI.shouldReduceLoadWidth(Load, ExtType, MemVT))
|
|
return false;
|
|
} else {
|
|
assert(isa<StoreSDNode>(LDST) && "It is not a Load nor a Store SDNode");
|
|
StoreSDNode *Store = cast<StoreSDNode>(LDST);
|
|
// Can't write outside the original store
|
|
if (Store->getMemoryVT().getSizeInBits() < MemVT.getSizeInBits() + ShAmt)
|
|
return false;
|
|
|
|
if (LegalOperations &&
|
|
!TLI.isTruncStoreLegal(Store->getValue().getValueType(), MemVT))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool DAGCombiner::SearchForAndLoads(SDNode *N,
|
|
SmallVectorImpl<LoadSDNode*> &Loads,
|
|
SmallPtrSetImpl<SDNode*> &NodesWithConsts,
|
|
ConstantSDNode *Mask,
|
|
SDNode *&NodeToMask) {
|
|
// Recursively search for the operands, looking for loads which can be
|
|
// narrowed.
|
|
for (SDValue Op : N->op_values()) {
|
|
if (Op.getValueType().isVector())
|
|
return false;
|
|
|
|
// Some constants may need fixing up later if they are too large.
|
|
if (auto *C = dyn_cast<ConstantSDNode>(Op)) {
|
|
if ((N->getOpcode() == ISD::OR || N->getOpcode() == ISD::XOR) &&
|
|
(Mask->getAPIntValue() & C->getAPIntValue()) != C->getAPIntValue())
|
|
NodesWithConsts.insert(N);
|
|
continue;
|
|
}
|
|
|
|
if (!Op.hasOneUse())
|
|
return false;
|
|
|
|
switch(Op.getOpcode()) {
|
|
case ISD::LOAD: {
|
|
auto *Load = cast<LoadSDNode>(Op);
|
|
EVT ExtVT;
|
|
if (isAndLoadExtLoad(Mask, Load, Load->getValueType(0), ExtVT) &&
|
|
isLegalNarrowLdSt(Load, ISD::ZEXTLOAD, ExtVT)) {
|
|
|
|
// ZEXTLOAD is already small enough.
|
|
if (Load->getExtensionType() == ISD::ZEXTLOAD &&
|
|
ExtVT.bitsGE(Load->getMemoryVT()))
|
|
continue;
|
|
|
|
// Use LE to convert equal sized loads to zext.
|
|
if (ExtVT.bitsLE(Load->getMemoryVT()))
|
|
Loads.push_back(Load);
|
|
|
|
continue;
|
|
}
|
|
return false;
|
|
}
|
|
case ISD::ZERO_EXTEND:
|
|
case ISD::AssertZext: {
|
|
unsigned ActiveBits = Mask->getAPIntValue().countTrailingOnes();
|
|
EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
|
|
EVT VT = Op.getOpcode() == ISD::AssertZext ?
|
|
cast<VTSDNode>(Op.getOperand(1))->getVT() :
|
|
Op.getOperand(0).getValueType();
|
|
|
|
// We can accept extending nodes if the mask is wider or an equal
|
|
// width to the original type.
|
|
if (ExtVT.bitsGE(VT))
|
|
continue;
|
|
break;
|
|
}
|
|
case ISD::OR:
|
|
case ISD::XOR:
|
|
case ISD::AND:
|
|
if (!SearchForAndLoads(Op.getNode(), Loads, NodesWithConsts, Mask,
|
|
NodeToMask))
|
|
return false;
|
|
continue;
|
|
}
|
|
|
|
// Allow one node which will masked along with any loads found.
|
|
if (NodeToMask)
|
|
return false;
|
|
|
|
// Also ensure that the node to be masked only produces one data result.
|
|
NodeToMask = Op.getNode();
|
|
if (NodeToMask->getNumValues() > 1) {
|
|
bool HasValue = false;
|
|
for (unsigned i = 0, e = NodeToMask->getNumValues(); i < e; ++i) {
|
|
MVT VT = SDValue(NodeToMask, i).getSimpleValueType();
|
|
if (VT != MVT::Glue && VT != MVT::Other) {
|
|
if (HasValue) {
|
|
NodeToMask = nullptr;
|
|
return false;
|
|
}
|
|
HasValue = true;
|
|
}
|
|
}
|
|
assert(HasValue && "Node to be masked has no data result?");
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool DAGCombiner::BackwardsPropagateMask(SDNode *N) {
|
|
auto *Mask = dyn_cast<ConstantSDNode>(N->getOperand(1));
|
|
if (!Mask)
|
|
return false;
|
|
|
|
if (!Mask->getAPIntValue().isMask())
|
|
return false;
|
|
|
|
// No need to do anything if the and directly uses a load.
|
|
if (isa<LoadSDNode>(N->getOperand(0)))
|
|
return false;
|
|
|
|
SmallVector<LoadSDNode*, 8> Loads;
|
|
SmallPtrSet<SDNode*, 2> NodesWithConsts;
|
|
SDNode *FixupNode = nullptr;
|
|
if (SearchForAndLoads(N, Loads, NodesWithConsts, Mask, FixupNode)) {
|
|
if (Loads.size() == 0)
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "Backwards propagate AND: "; N->dump());
|
|
SDValue MaskOp = N->getOperand(1);
|
|
|
|
// If it exists, fixup the single node we allow in the tree that needs
|
|
// masking.
|
|
if (FixupNode) {
|
|
LLVM_DEBUG(dbgs() << "First, need to fix up: "; FixupNode->dump());
|
|
SDValue And = DAG.getNode(ISD::AND, SDLoc(FixupNode),
|
|
FixupNode->getValueType(0),
|
|
SDValue(FixupNode, 0), MaskOp);
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(FixupNode, 0), And);
|
|
if (And.getOpcode() == ISD ::AND)
|
|
DAG.UpdateNodeOperands(And.getNode(), SDValue(FixupNode, 0), MaskOp);
|
|
}
|
|
|
|
// Narrow any constants that need it.
|
|
for (auto *LogicN : NodesWithConsts) {
|
|
SDValue Op0 = LogicN->getOperand(0);
|
|
SDValue Op1 = LogicN->getOperand(1);
|
|
|
|
if (isa<ConstantSDNode>(Op0))
|
|
std::swap(Op0, Op1);
|
|
|
|
SDValue And = DAG.getNode(ISD::AND, SDLoc(Op1), Op1.getValueType(),
|
|
Op1, MaskOp);
|
|
|
|
DAG.UpdateNodeOperands(LogicN, Op0, And);
|
|
}
|
|
|
|
// Create narrow loads.
|
|
for (auto *Load : Loads) {
|
|
LLVM_DEBUG(dbgs() << "Propagate AND back to: "; Load->dump());
|
|
SDValue And = DAG.getNode(ISD::AND, SDLoc(Load), Load->getValueType(0),
|
|
SDValue(Load, 0), MaskOp);
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 0), And);
|
|
if (And.getOpcode() == ISD ::AND)
|
|
And = SDValue(
|
|
DAG.UpdateNodeOperands(And.getNode(), SDValue(Load, 0), MaskOp), 0);
|
|
SDValue NewLoad = ReduceLoadWidth(And.getNode());
|
|
assert(NewLoad &&
|
|
"Shouldn't be masking the load if it can't be narrowed");
|
|
CombineTo(Load, NewLoad, NewLoad.getValue(1));
|
|
}
|
|
DAG.ReplaceAllUsesWith(N, N->getOperand(0).getNode());
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Unfold
|
|
// x & (-1 'logical shift' y)
|
|
// To
|
|
// (x 'opposite logical shift' y) 'logical shift' y
|
|
// if it is better for performance.
|
|
SDValue DAGCombiner::unfoldExtremeBitClearingToShifts(SDNode *N) {
|
|
assert(N->getOpcode() == ISD::AND);
|
|
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
|
|
// Do we actually prefer shifts over mask?
|
|
if (!TLI.shouldFoldMaskToVariableShiftPair(N0))
|
|
return SDValue();
|
|
|
|
// Try to match (-1 '[outer] logical shift' y)
|
|
unsigned OuterShift;
|
|
unsigned InnerShift; // The opposite direction to the OuterShift.
|
|
SDValue Y; // Shift amount.
|
|
auto matchMask = [&OuterShift, &InnerShift, &Y](SDValue M) -> bool {
|
|
if (!M.hasOneUse())
|
|
return false;
|
|
OuterShift = M->getOpcode();
|
|
if (OuterShift == ISD::SHL)
|
|
InnerShift = ISD::SRL;
|
|
else if (OuterShift == ISD::SRL)
|
|
InnerShift = ISD::SHL;
|
|
else
|
|
return false;
|
|
if (!isAllOnesConstant(M->getOperand(0)))
|
|
return false;
|
|
Y = M->getOperand(1);
|
|
return true;
|
|
};
|
|
|
|
SDValue X;
|
|
if (matchMask(N1))
|
|
X = N0;
|
|
else if (matchMask(N0))
|
|
X = N1;
|
|
else
|
|
return SDValue();
|
|
|
|
SDLoc DL(N);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// tmp = x 'opposite logical shift' y
|
|
SDValue T0 = DAG.getNode(InnerShift, DL, VT, X, Y);
|
|
// ret = tmp 'logical shift' y
|
|
SDValue T1 = DAG.getNode(OuterShift, DL, VT, T0, Y);
|
|
|
|
return T1;
|
|
}
|
|
|
|
/// Try to replace shift/logic that tests if a bit is clear with mask + setcc.
|
|
/// For a target with a bit test, this is expected to become test + set and save
|
|
/// at least 1 instruction.
|
|
static SDValue combineShiftAnd1ToBitTest(SDNode *And, SelectionDAG &DAG) {
|
|
assert(And->getOpcode() == ISD::AND && "Expected an 'and' op");
|
|
|
|
// This is probably not worthwhile without a supported type.
|
|
EVT VT = And->getValueType(0);
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
if (!TLI.isTypeLegal(VT))
|
|
return SDValue();
|
|
|
|
// Look through an optional extension and find a 'not'.
|
|
// TODO: Should we favor test+set even without the 'not' op?
|
|
SDValue Not = And->getOperand(0), And1 = And->getOperand(1);
|
|
if (Not.getOpcode() == ISD::ANY_EXTEND)
|
|
Not = Not.getOperand(0);
|
|
if (!isBitwiseNot(Not) || !Not.hasOneUse() || !isOneConstant(And1))
|
|
return SDValue();
|
|
|
|
// Look though an optional truncation. The source operand may not be the same
|
|
// type as the original 'and', but that is ok because we are masking off
|
|
// everything but the low bit.
|
|
SDValue Srl = Not.getOperand(0);
|
|
if (Srl.getOpcode() == ISD::TRUNCATE)
|
|
Srl = Srl.getOperand(0);
|
|
|
|
// Match a shift-right by constant.
|
|
if (Srl.getOpcode() != ISD::SRL || !Srl.hasOneUse() ||
|
|
!isa<ConstantSDNode>(Srl.getOperand(1)))
|
|
return SDValue();
|
|
|
|
// We might have looked through casts that make this transform invalid.
|
|
// TODO: If the source type is wider than the result type, do the mask and
|
|
// compare in the source type.
|
|
const APInt &ShiftAmt = Srl.getConstantOperandAPInt(1);
|
|
unsigned VTBitWidth = VT.getSizeInBits();
|
|
if (ShiftAmt.uge(VTBitWidth))
|
|
return SDValue();
|
|
|
|
// Turn this into a bit-test pattern using mask op + setcc:
|
|
// and (not (srl X, C)), 1 --> (and X, 1<<C) == 0
|
|
SDLoc DL(And);
|
|
SDValue X = DAG.getZExtOrTrunc(Srl.getOperand(0), DL, VT);
|
|
EVT CCVT = TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
|
|
SDValue Mask = DAG.getConstant(
|
|
APInt::getOneBitSet(VTBitWidth, ShiftAmt.getZExtValue()), DL, VT);
|
|
SDValue NewAnd = DAG.getNode(ISD::AND, DL, VT, X, Mask);
|
|
SDValue Zero = DAG.getConstant(0, DL, VT);
|
|
SDValue Setcc = DAG.getSetCC(DL, CCVT, NewAnd, Zero, ISD::SETEQ);
|
|
return DAG.getZExtOrTrunc(Setcc, DL, VT);
|
|
}
|
|
|
|
SDValue DAGCombiner::visitAND(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
EVT VT = N1.getValueType();
|
|
|
|
// x & x --> x
|
|
if (N0 == N1)
|
|
return N0;
|
|
|
|
// fold vector ops
|
|
if (VT.isVector()) {
|
|
if (SDValue FoldedVOp = SimplifyVBinOp(N))
|
|
return FoldedVOp;
|
|
|
|
// fold (and x, 0) -> 0, vector edition
|
|
if (ISD::isConstantSplatVectorAllZeros(N0.getNode()))
|
|
// do not return N0, because undef node may exist in N0
|
|
return DAG.getConstant(APInt::getNullValue(N0.getScalarValueSizeInBits()),
|
|
SDLoc(N), N0.getValueType());
|
|
if (ISD::isConstantSplatVectorAllZeros(N1.getNode()))
|
|
// do not return N1, because undef node may exist in N1
|
|
return DAG.getConstant(APInt::getNullValue(N1.getScalarValueSizeInBits()),
|
|
SDLoc(N), N1.getValueType());
|
|
|
|
// fold (and x, -1) -> x, vector edition
|
|
if (ISD::isConstantSplatVectorAllOnes(N0.getNode()))
|
|
return N1;
|
|
if (ISD::isConstantSplatVectorAllOnes(N1.getNode()))
|
|
return N0;
|
|
|
|
// fold (and (masked_load) (build_vec (x, ...))) to zext_masked_load
|
|
auto *MLoad = dyn_cast<MaskedLoadSDNode>(N0);
|
|
auto *BVec = dyn_cast<BuildVectorSDNode>(N1);
|
|
if (MLoad && BVec && MLoad->getExtensionType() == ISD::EXTLOAD &&
|
|
N0.hasOneUse() && N1.hasOneUse()) {
|
|
EVT LoadVT = MLoad->getMemoryVT();
|
|
EVT ExtVT = VT;
|
|
if (TLI.isLoadExtLegal(ISD::ZEXTLOAD, ExtVT, LoadVT)) {
|
|
// For this AND to be a zero extension of the masked load the elements
|
|
// of the BuildVec must mask the bottom bits of the extended element
|
|
// type
|
|
if (ConstantSDNode *Splat = BVec->getConstantSplatNode()) {
|
|
uint64_t ElementSize =
|
|
LoadVT.getVectorElementType().getScalarSizeInBits();
|
|
if (Splat->getAPIntValue().isMask(ElementSize)) {
|
|
return DAG.getMaskedLoad(
|
|
ExtVT, SDLoc(N), MLoad->getChain(), MLoad->getBasePtr(),
|
|
MLoad->getOffset(), MLoad->getMask(), MLoad->getPassThru(),
|
|
LoadVT, MLoad->getMemOperand(), MLoad->getAddressingMode(),
|
|
ISD::ZEXTLOAD, MLoad->isExpandingLoad());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// fold (and c1, c2) -> c1&c2
|
|
ConstantSDNode *N1C = isConstOrConstSplat(N1);
|
|
if (SDValue C = DAG.FoldConstantArithmetic(ISD::AND, SDLoc(N), VT, {N0, N1}))
|
|
return C;
|
|
|
|
// canonicalize constant to RHS
|
|
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
|
|
!DAG.isConstantIntBuildVectorOrConstantInt(N1))
|
|
return DAG.getNode(ISD::AND, SDLoc(N), VT, N1, N0);
|
|
|
|
// fold (and x, -1) -> x
|
|
if (isAllOnesConstant(N1))
|
|
return N0;
|
|
|
|
// if (and x, c) is known to be zero, return 0
|
|
unsigned BitWidth = VT.getScalarSizeInBits();
|
|
if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
|
|
APInt::getAllOnesValue(BitWidth)))
|
|
return DAG.getConstant(0, SDLoc(N), VT);
|
|
|
|
if (SDValue NewSel = foldBinOpIntoSelect(N))
|
|
return NewSel;
|
|
|
|
// reassociate and
|
|
if (SDValue RAND = reassociateOps(ISD::AND, SDLoc(N), N0, N1, N->getFlags()))
|
|
return RAND;
|
|
|
|
// Try to convert a constant mask AND into a shuffle clear mask.
|
|
if (VT.isVector())
|
|
if (SDValue Shuffle = XformToShuffleWithZero(N))
|
|
return Shuffle;
|
|
|
|
if (SDValue Combined = combineCarryDiamond(*this, DAG, TLI, N0, N1, N))
|
|
return Combined;
|
|
|
|
// fold (and (or x, C), D) -> D if (C & D) == D
|
|
auto MatchSubset = [](ConstantSDNode *LHS, ConstantSDNode *RHS) {
|
|
return RHS->getAPIntValue().isSubsetOf(LHS->getAPIntValue());
|
|
};
|
|
if (N0.getOpcode() == ISD::OR &&
|
|
ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchSubset))
|
|
return N1;
|
|
// fold (and (any_ext V), c) -> (zero_ext V) if 'and' only clears top bits.
|
|
if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
|
|
SDValue N0Op0 = N0.getOperand(0);
|
|
APInt Mask = ~N1C->getAPIntValue();
|
|
Mask = Mask.trunc(N0Op0.getScalarValueSizeInBits());
|
|
if (DAG.MaskedValueIsZero(N0Op0, Mask)) {
|
|
SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N),
|
|
N0.getValueType(), N0Op0);
|
|
|
|
// Replace uses of the AND with uses of the Zero extend node.
|
|
CombineTo(N, Zext);
|
|
|
|
// We actually want to replace all uses of the any_extend with the
|
|
// zero_extend, to avoid duplicating things. This will later cause this
|
|
// AND to be folded.
|
|
CombineTo(N0.getNode(), Zext);
|
|
return SDValue(N, 0); // Return N so it doesn't get rechecked!
|
|
}
|
|
}
|
|
|
|
// similarly fold (and (X (load ([non_ext|any_ext|zero_ext] V))), c) ->
|
|
// (X (load ([non_ext|zero_ext] V))) if 'and' only clears top bits which must
|
|
// already be zero by virtue of the width of the base type of the load.
|
|
//
|
|
// the 'X' node here can either be nothing or an extract_vector_elt to catch
|
|
// more cases.
|
|
if ((N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
|
|
N0.getValueSizeInBits() == N0.getOperand(0).getScalarValueSizeInBits() &&
|
|
N0.getOperand(0).getOpcode() == ISD::LOAD &&
|
|
N0.getOperand(0).getResNo() == 0) ||
|
|
(N0.getOpcode() == ISD::LOAD && N0.getResNo() == 0)) {
|
|
LoadSDNode *Load = cast<LoadSDNode>( (N0.getOpcode() == ISD::LOAD) ?
|
|
N0 : N0.getOperand(0) );
|
|
|
|
// Get the constant (if applicable) the zero'th operand is being ANDed with.
|
|
// This can be a pure constant or a vector splat, in which case we treat the
|
|
// vector as a scalar and use the splat value.
|
|
APInt Constant = APInt::getNullValue(1);
|
|
if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
|
|
Constant = C->getAPIntValue();
|
|
} else if (BuildVectorSDNode *Vector = dyn_cast<BuildVectorSDNode>(N1)) {
|
|
APInt SplatValue, SplatUndef;
|
|
unsigned SplatBitSize;
|
|
bool HasAnyUndefs;
|
|
bool IsSplat = Vector->isConstantSplat(SplatValue, SplatUndef,
|
|
SplatBitSize, HasAnyUndefs);
|
|
if (IsSplat) {
|
|
// Undef bits can contribute to a possible optimisation if set, so
|
|
// set them.
|
|
SplatValue |= SplatUndef;
|
|
|
|
// The splat value may be something like "0x00FFFFFF", which means 0 for
|
|
// the first vector value and FF for the rest, repeating. We need a mask
|
|
// that will apply equally to all members of the vector, so AND all the
|
|
// lanes of the constant together.
|
|
unsigned EltBitWidth = Vector->getValueType(0).getScalarSizeInBits();
|
|
|
|
// If the splat value has been compressed to a bitlength lower
|
|
// than the size of the vector lane, we need to re-expand it to
|
|
// the lane size.
|
|
if (EltBitWidth > SplatBitSize)
|
|
for (SplatValue = SplatValue.zextOrTrunc(EltBitWidth);
|
|
SplatBitSize < EltBitWidth; SplatBitSize = SplatBitSize * 2)
|
|
SplatValue |= SplatValue.shl(SplatBitSize);
|
|
|
|
// Make sure that variable 'Constant' is only set if 'SplatBitSize' is a
|
|
// multiple of 'BitWidth'. Otherwise, we could propagate a wrong value.
|
|
if ((SplatBitSize % EltBitWidth) == 0) {
|
|
Constant = APInt::getAllOnesValue(EltBitWidth);
|
|
for (unsigned i = 0, n = (SplatBitSize / EltBitWidth); i < n; ++i)
|
|
Constant &= SplatValue.extractBits(EltBitWidth, i * EltBitWidth);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we want to change an EXTLOAD to a ZEXTLOAD, ensure a ZEXTLOAD is
|
|
// actually legal and isn't going to get expanded, else this is a false
|
|
// optimisation.
|
|
bool CanZextLoadProfitably = TLI.isLoadExtLegal(ISD::ZEXTLOAD,
|
|
Load->getValueType(0),
|
|
Load->getMemoryVT());
|
|
|
|
// Resize the constant to the same size as the original memory access before
|
|
// extension. If it is still the AllOnesValue then this AND is completely
|
|
// unneeded.
|
|
Constant = Constant.zextOrTrunc(Load->getMemoryVT().getScalarSizeInBits());
|
|
|
|
bool B;
|
|
switch (Load->getExtensionType()) {
|
|
default: B = false; break;
|
|
case ISD::EXTLOAD: B = CanZextLoadProfitably; break;
|
|
case ISD::ZEXTLOAD:
|
|
case ISD::NON_EXTLOAD: B = true; break;
|
|
}
|
|
|
|
if (B && Constant.isAllOnesValue()) {
|
|
// If the load type was an EXTLOAD, convert to ZEXTLOAD in order to
|
|
// preserve semantics once we get rid of the AND.
|
|
SDValue NewLoad(Load, 0);
|
|
|
|
// Fold the AND away. NewLoad may get replaced immediately.
|
|
CombineTo(N, (N0.getNode() == Load) ? NewLoad : N0);
|
|
|
|
if (Load->getExtensionType() == ISD::EXTLOAD) {
|
|
NewLoad = DAG.getLoad(Load->getAddressingMode(), ISD::ZEXTLOAD,
|
|
Load->getValueType(0), SDLoc(Load),
|
|
Load->getChain(), Load->getBasePtr(),
|
|
Load->getOffset(), Load->getMemoryVT(),
|
|
Load->getMemOperand());
|
|
// Replace uses of the EXTLOAD with the new ZEXTLOAD.
|
|
if (Load->getNumValues() == 3) {
|
|
// PRE/POST_INC loads have 3 values.
|
|
SDValue To[] = { NewLoad.getValue(0), NewLoad.getValue(1),
|
|
NewLoad.getValue(2) };
|
|
CombineTo(Load, To, 3, true);
|
|
} else {
|
|
CombineTo(Load, NewLoad.getValue(0), NewLoad.getValue(1));
|
|
}
|
|
}
|
|
|
|
return SDValue(N, 0); // Return N so it doesn't get rechecked!
|
|
}
|
|
}
|
|
|
|
// fold (and (masked_gather x)) -> (zext_masked_gather x)
|
|
if (auto *GN0 = dyn_cast<MaskedGatherSDNode>(N0)) {
|
|
EVT MemVT = GN0->getMemoryVT();
|
|
EVT ScalarVT = MemVT.getScalarType();
|
|
|
|
if (SDValue(GN0, 0).hasOneUse() &&
|
|
isConstantSplatVectorMaskForType(N1.getNode(), ScalarVT) &&
|
|
TLI.isVectorLoadExtDesirable(SDValue(SDValue(GN0, 0)))) {
|
|
SDValue Ops[] = {GN0->getChain(), GN0->getPassThru(), GN0->getMask(),
|
|
GN0->getBasePtr(), GN0->getIndex(), GN0->getScale()};
|
|
|
|
SDValue ZExtLoad = DAG.getMaskedGather(
|
|
DAG.getVTList(VT, MVT::Other), MemVT, SDLoc(N), Ops,
|
|
GN0->getMemOperand(), GN0->getIndexType(), ISD::ZEXTLOAD);
|
|
|
|
CombineTo(N, ZExtLoad);
|
|
AddToWorklist(ZExtLoad.getNode());
|
|
// Avoid recheck of N.
|
|
return SDValue(N, 0);
|
|
}
|
|
}
|
|
|
|
// fold (and (load x), 255) -> (zextload x, i8)
|
|
// fold (and (extload x, i16), 255) -> (zextload x, i8)
|
|
// fold (and (any_ext (extload x, i16)), 255) -> (zextload x, i8)
|
|
if (!VT.isVector() && N1C && (N0.getOpcode() == ISD::LOAD ||
|
|
(N0.getOpcode() == ISD::ANY_EXTEND &&
|
|
N0.getOperand(0).getOpcode() == ISD::LOAD))) {
|
|
if (SDValue Res = ReduceLoadWidth(N)) {
|
|
LoadSDNode *LN0 = N0->getOpcode() == ISD::ANY_EXTEND
|
|
? cast<LoadSDNode>(N0.getOperand(0)) : cast<LoadSDNode>(N0);
|
|
AddToWorklist(N);
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 0), Res);
|
|
return SDValue(N, 0);
|
|
}
|
|
}
|
|
|
|
if (LegalTypes) {
|
|
// Attempt to propagate the AND back up to the leaves which, if they're
|
|
// loads, can be combined to narrow loads and the AND node can be removed.
|
|
// Perform after legalization so that extend nodes will already be
|
|
// combined into the loads.
|
|
if (BackwardsPropagateMask(N))
|
|
return SDValue(N, 0);
|
|
}
|
|
|
|
if (SDValue Combined = visitANDLike(N0, N1, N))
|
|
return Combined;
|
|
|
|
// Simplify: (and (op x...), (op y...)) -> (op (and x, y))
|
|
if (N0.getOpcode() == N1.getOpcode())
|
|
if (SDValue V = hoistLogicOpWithSameOpcodeHands(N))
|
|
return V;
|
|
|
|
// Masking the negated extension of a boolean is just the zero-extended
|
|
// boolean:
|
|
// and (sub 0, zext(bool X)), 1 --> zext(bool X)
|
|
// and (sub 0, sext(bool X)), 1 --> zext(bool X)
|
|
//
|
|
// Note: the SimplifyDemandedBits fold below can make an information-losing
|
|
// transform, and then we have no way to find this better fold.
|
|
if (N1C && N1C->isOne() && N0.getOpcode() == ISD::SUB) {
|
|
if (isNullOrNullSplat(N0.getOperand(0))) {
|
|
SDValue SubRHS = N0.getOperand(1);
|
|
if (SubRHS.getOpcode() == ISD::ZERO_EXTEND &&
|
|
SubRHS.getOperand(0).getScalarValueSizeInBits() == 1)
|
|
return SubRHS;
|
|
if (SubRHS.getOpcode() == ISD::SIGN_EXTEND &&
|
|
SubRHS.getOperand(0).getScalarValueSizeInBits() == 1)
|
|
return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, SubRHS.getOperand(0));
|
|
}
|
|
}
|
|
|
|
// fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
|
|
// fold (and (sra)) -> (and (srl)) when possible.
|
|
if (SimplifyDemandedBits(SDValue(N, 0)))
|
|
return SDValue(N, 0);
|
|
|
|
// fold (zext_inreg (extload x)) -> (zextload x)
|
|
// fold (zext_inreg (sextload x)) -> (zextload x) iff load has one use
|
|
if (ISD::isUNINDEXEDLoad(N0.getNode()) &&
|
|
(ISD::isEXTLoad(N0.getNode()) ||
|
|
(ISD::isSEXTLoad(N0.getNode()) && N0.hasOneUse()))) {
|
|
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
|
|
EVT MemVT = LN0->getMemoryVT();
|
|
// If we zero all the possible extended bits, then we can turn this into
|
|
// a zextload if we are running before legalize or the operation is legal.
|
|
unsigned ExtBitSize = N1.getScalarValueSizeInBits();
|
|
unsigned MemBitSize = MemVT.getScalarSizeInBits();
|
|
APInt ExtBits = APInt::getHighBitsSet(ExtBitSize, ExtBitSize - MemBitSize);
|
|
if (DAG.MaskedValueIsZero(N1, ExtBits) &&
|
|
((!LegalOperations && LN0->isSimple()) ||
|
|
TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT))) {
|
|
SDValue ExtLoad =
|
|
DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(N0), VT, LN0->getChain(),
|
|
LN0->getBasePtr(), MemVT, LN0->getMemOperand());
|
|
AddToWorklist(N);
|
|
CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
|
|
return SDValue(N, 0); // Return N so it doesn't get rechecked!
|
|
}
|
|
}
|
|
|
|
// fold (and (or (srl N, 8), (shl N, 8)), 0xffff) -> (srl (bswap N), const)
|
|
if (N1C && N1C->getAPIntValue() == 0xffff && N0.getOpcode() == ISD::OR) {
|
|
if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
|
|
N0.getOperand(1), false))
|
|
return BSwap;
|
|
}
|
|
|
|
if (SDValue Shifts = unfoldExtremeBitClearingToShifts(N))
|
|
return Shifts;
|
|
|
|
if (TLI.hasBitTest(N0, N1))
|
|
if (SDValue V = combineShiftAnd1ToBitTest(N, DAG))
|
|
return V;
|
|
|
|
// Recognize the following pattern:
|
|
//
|
|
// AndVT = (and (sign_extend NarrowVT to AndVT) #bitmask)
|
|
//
|
|
// where bitmask is a mask that clears the upper bits of AndVT. The
|
|
// number of bits in bitmask must be a power of two.
|
|
auto IsAndZeroExtMask = [](SDValue LHS, SDValue RHS) {
|
|
if (LHS->getOpcode() != ISD::SIGN_EXTEND)
|
|
return false;
|
|
|
|
auto *C = dyn_cast<ConstantSDNode>(RHS);
|
|
if (!C)
|
|
return false;
|
|
|
|
if (!C->getAPIntValue().isMask(
|
|
LHS.getOperand(0).getValueType().getFixedSizeInBits()))
|
|
return false;
|
|
|
|
return true;
|
|
};
|
|
|
|
// Replace (and (sign_extend ...) #bitmask) with (zero_extend ...).
|
|
if (IsAndZeroExtMask(N0, N1))
|
|
return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT, N0.getOperand(0));
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// Match (a >> 8) | (a << 8) as (bswap a) >> 16.
|
|
SDValue DAGCombiner::MatchBSwapHWordLow(SDNode *N, SDValue N0, SDValue N1,
|
|
bool DemandHighBits) {
|
|
if (!LegalOperations)
|
|
return SDValue();
|
|
|
|
EVT VT = N->getValueType(0);
|
|
if (VT != MVT::i64 && VT != MVT::i32 && VT != MVT::i16)
|
|
return SDValue();
|
|
if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT))
|
|
return SDValue();
|
|
|
|
// Recognize (and (shl a, 8), 0xff00), (and (srl a, 8), 0xff)
|
|
bool LookPassAnd0 = false;
|
|
bool LookPassAnd1 = false;
|
|
if (N0.getOpcode() == ISD::AND && N0.getOperand(0).getOpcode() == ISD::SRL)
|
|
std::swap(N0, N1);
|
|
if (N1.getOpcode() == ISD::AND && N1.getOperand(0).getOpcode() == ISD::SHL)
|
|
std::swap(N0, N1);
|
|
if (N0.getOpcode() == ISD::AND) {
|
|
if (!N0.getNode()->hasOneUse())
|
|
return SDValue();
|
|
ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
|
|
// Also handle 0xffff since the LHS is guaranteed to have zeros there.
|
|
// This is needed for X86.
|
|
if (!N01C || (N01C->getZExtValue() != 0xFF00 &&
|
|
N01C->getZExtValue() != 0xFFFF))
|
|
return SDValue();
|
|
N0 = N0.getOperand(0);
|
|
LookPassAnd0 = true;
|
|
}
|
|
|
|
if (N1.getOpcode() == ISD::AND) {
|
|
if (!N1.getNode()->hasOneUse())
|
|
return SDValue();
|
|
ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
|
|
if (!N11C || N11C->getZExtValue() != 0xFF)
|
|
return SDValue();
|
|
N1 = N1.getOperand(0);
|
|
LookPassAnd1 = true;
|
|
}
|
|
|
|
if (N0.getOpcode() == ISD::SRL && N1.getOpcode() == ISD::SHL)
|
|
std::swap(N0, N1);
|
|
if (N0.getOpcode() != ISD::SHL || N1.getOpcode() != ISD::SRL)
|
|
return SDValue();
|
|
if (!N0.getNode()->hasOneUse() || !N1.getNode()->hasOneUse())
|
|
return SDValue();
|
|
|
|
ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
|
|
ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
|
|
if (!N01C || !N11C)
|
|
return SDValue();
|
|
if (N01C->getZExtValue() != 8 || N11C->getZExtValue() != 8)
|
|
return SDValue();
|
|
|
|
// Look for (shl (and a, 0xff), 8), (srl (and a, 0xff00), 8)
|
|
SDValue N00 = N0->getOperand(0);
|
|
if (!LookPassAnd0 && N00.getOpcode() == ISD::AND) {
|
|
if (!N00.getNode()->hasOneUse())
|
|
return SDValue();
|
|
ConstantSDNode *N001C = dyn_cast<ConstantSDNode>(N00.getOperand(1));
|
|
if (!N001C || N001C->getZExtValue() != 0xFF)
|
|
return SDValue();
|
|
N00 = N00.getOperand(0);
|
|
LookPassAnd0 = true;
|
|
}
|
|
|
|
SDValue N10 = N1->getOperand(0);
|
|
if (!LookPassAnd1 && N10.getOpcode() == ISD::AND) {
|
|
if (!N10.getNode()->hasOneUse())
|
|
return SDValue();
|
|
ConstantSDNode *N101C = dyn_cast<ConstantSDNode>(N10.getOperand(1));
|
|
// Also allow 0xFFFF since the bits will be shifted out. This is needed
|
|
// for X86.
|
|
if (!N101C || (N101C->getZExtValue() != 0xFF00 &&
|
|
N101C->getZExtValue() != 0xFFFF))
|
|
return SDValue();
|
|
N10 = N10.getOperand(0);
|
|
LookPassAnd1 = true;
|
|
}
|
|
|
|
if (N00 != N10)
|
|
return SDValue();
|
|
|
|
// Make sure everything beyond the low halfword gets set to zero since the SRL
|
|
// 16 will clear the top bits.
|
|
unsigned OpSizeInBits = VT.getSizeInBits();
|
|
if (DemandHighBits && OpSizeInBits > 16) {
|
|
// If the left-shift isn't masked out then the only way this is a bswap is
|
|
// if all bits beyond the low 8 are 0. In that case the entire pattern
|
|
// reduces to a left shift anyway: leave it for other parts of the combiner.
|
|
if (!LookPassAnd0)
|
|
return SDValue();
|
|
|
|
// However, if the right shift isn't masked out then it might be because
|
|
// it's not needed. See if we can spot that too.
|
|
if (!LookPassAnd1 &&
|
|
!DAG.MaskedValueIsZero(
|
|
N10, APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - 16)))
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue Res = DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N00);
|
|
if (OpSizeInBits > 16) {
|
|
SDLoc DL(N);
|
|
Res = DAG.getNode(ISD::SRL, DL, VT, Res,
|
|
DAG.getConstant(OpSizeInBits - 16, DL,
|
|
getShiftAmountTy(VT)));
|
|
}
|
|
return Res;
|
|
}
|
|
|
|
/// Return true if the specified node is an element that makes up a 32-bit
|
|
/// packed halfword byteswap.
|
|
/// ((x & 0x000000ff) << 8) |
|
|
/// ((x & 0x0000ff00) >> 8) |
|
|
/// ((x & 0x00ff0000) << 8) |
|
|
/// ((x & 0xff000000) >> 8)
|
|
static bool isBSwapHWordElement(SDValue N, MutableArrayRef<SDNode *> Parts) {
|
|
if (!N.getNode()->hasOneUse())
|
|
return false;
|
|
|
|
unsigned Opc = N.getOpcode();
|
|
if (Opc != ISD::AND && Opc != ISD::SHL && Opc != ISD::SRL)
|
|
return false;
|
|
|
|
SDValue N0 = N.getOperand(0);
|
|
unsigned Opc0 = N0.getOpcode();
|
|
if (Opc0 != ISD::AND && Opc0 != ISD::SHL && Opc0 != ISD::SRL)
|
|
return false;
|
|
|
|
ConstantSDNode *N1C = nullptr;
|
|
// SHL or SRL: look upstream for AND mask operand
|
|
if (Opc == ISD::AND)
|
|
N1C = dyn_cast<ConstantSDNode>(N.getOperand(1));
|
|
else if (Opc0 == ISD::AND)
|
|
N1C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
|
|
if (!N1C)
|
|
return false;
|
|
|
|
unsigned MaskByteOffset;
|
|
switch (N1C->getZExtValue()) {
|
|
default:
|
|
return false;
|
|
case 0xFF: MaskByteOffset = 0; break;
|
|
case 0xFF00: MaskByteOffset = 1; break;
|
|
case 0xFFFF:
|
|
// In case demanded bits didn't clear the bits that will be shifted out.
|
|
// This is needed for X86.
|
|
if (Opc == ISD::SRL || (Opc == ISD::AND && Opc0 == ISD::SHL)) {
|
|
MaskByteOffset = 1;
|
|
break;
|
|
}
|
|
return false;
|
|
case 0xFF0000: MaskByteOffset = 2; break;
|
|
case 0xFF000000: MaskByteOffset = 3; break;
|
|
}
|
|
|
|
// Look for (x & 0xff) << 8 as well as ((x << 8) & 0xff00).
|
|
if (Opc == ISD::AND) {
|
|
if (MaskByteOffset == 0 || MaskByteOffset == 2) {
|
|
// (x >> 8) & 0xff
|
|
// (x >> 8) & 0xff0000
|
|
if (Opc0 != ISD::SRL)
|
|
return false;
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
|
|
if (!C || C->getZExtValue() != 8)
|
|
return false;
|
|
} else {
|
|
// (x << 8) & 0xff00
|
|
// (x << 8) & 0xff000000
|
|
if (Opc0 != ISD::SHL)
|
|
return false;
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N0.getOperand(1));
|
|
if (!C || C->getZExtValue() != 8)
|
|
return false;
|
|
}
|
|
} else if (Opc == ISD::SHL) {
|
|
// (x & 0xff) << 8
|
|
// (x & 0xff0000) << 8
|
|
if (MaskByteOffset != 0 && MaskByteOffset != 2)
|
|
return false;
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
|
|
if (!C || C->getZExtValue() != 8)
|
|
return false;
|
|
} else { // Opc == ISD::SRL
|
|
// (x & 0xff00) >> 8
|
|
// (x & 0xff000000) >> 8
|
|
if (MaskByteOffset != 1 && MaskByteOffset != 3)
|
|
return false;
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N.getOperand(1));
|
|
if (!C || C->getZExtValue() != 8)
|
|
return false;
|
|
}
|
|
|
|
if (Parts[MaskByteOffset])
|
|
return false;
|
|
|
|
Parts[MaskByteOffset] = N0.getOperand(0).getNode();
|
|
return true;
|
|
}
|
|
|
|
// Match 2 elements of a packed halfword bswap.
|
|
static bool isBSwapHWordPair(SDValue N, MutableArrayRef<SDNode *> Parts) {
|
|
if (N.getOpcode() == ISD::OR)
|
|
return isBSwapHWordElement(N.getOperand(0), Parts) &&
|
|
isBSwapHWordElement(N.getOperand(1), Parts);
|
|
|
|
if (N.getOpcode() == ISD::SRL && N.getOperand(0).getOpcode() == ISD::BSWAP) {
|
|
ConstantSDNode *C = isConstOrConstSplat(N.getOperand(1));
|
|
if (!C || C->getAPIntValue() != 16)
|
|
return false;
|
|
Parts[0] = Parts[1] = N.getOperand(0).getOperand(0).getNode();
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Match this pattern:
|
|
// (or (and (shl (A, 8)), 0xff00ff00), (and (srl (A, 8)), 0x00ff00ff))
|
|
// And rewrite this to:
|
|
// (rotr (bswap A), 16)
|
|
static SDValue matchBSwapHWordOrAndAnd(const TargetLowering &TLI,
|
|
SelectionDAG &DAG, SDNode *N, SDValue N0,
|
|
SDValue N1, EVT VT, EVT ShiftAmountTy) {
|
|
assert(N->getOpcode() == ISD::OR && VT == MVT::i32 &&
|
|
"MatchBSwapHWordOrAndAnd: expecting i32");
|
|
if (!TLI.isOperationLegalOrCustom(ISD::ROTR, VT))
|
|
return SDValue();
|
|
if (N0.getOpcode() != ISD::AND || N1.getOpcode() != ISD::AND)
|
|
return SDValue();
|
|
// TODO: this is too restrictive; lifting this restriction requires more tests
|
|
if (!N0->hasOneUse() || !N1->hasOneUse())
|
|
return SDValue();
|
|
ConstantSDNode *Mask0 = isConstOrConstSplat(N0.getOperand(1));
|
|
ConstantSDNode *Mask1 = isConstOrConstSplat(N1.getOperand(1));
|
|
if (!Mask0 || !Mask1)
|
|
return SDValue();
|
|
if (Mask0->getAPIntValue() != 0xff00ff00 ||
|
|
Mask1->getAPIntValue() != 0x00ff00ff)
|
|
return SDValue();
|
|
SDValue Shift0 = N0.getOperand(0);
|
|
SDValue Shift1 = N1.getOperand(0);
|
|
if (Shift0.getOpcode() != ISD::SHL || Shift1.getOpcode() != ISD::SRL)
|
|
return SDValue();
|
|
ConstantSDNode *ShiftAmt0 = isConstOrConstSplat(Shift0.getOperand(1));
|
|
ConstantSDNode *ShiftAmt1 = isConstOrConstSplat(Shift1.getOperand(1));
|
|
if (!ShiftAmt0 || !ShiftAmt1)
|
|
return SDValue();
|
|
if (ShiftAmt0->getAPIntValue() != 8 || ShiftAmt1->getAPIntValue() != 8)
|
|
return SDValue();
|
|
if (Shift0.getOperand(0) != Shift1.getOperand(0))
|
|
return SDValue();
|
|
|
|
SDLoc DL(N);
|
|
SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT, Shift0.getOperand(0));
|
|
SDValue ShAmt = DAG.getConstant(16, DL, ShiftAmountTy);
|
|
return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt);
|
|
}
|
|
|
|
/// Match a 32-bit packed halfword bswap. That is
|
|
/// ((x & 0x000000ff) << 8) |
|
|
/// ((x & 0x0000ff00) >> 8) |
|
|
/// ((x & 0x00ff0000) << 8) |
|
|
/// ((x & 0xff000000) >> 8)
|
|
/// => (rotl (bswap x), 16)
|
|
SDValue DAGCombiner::MatchBSwapHWord(SDNode *N, SDValue N0, SDValue N1) {
|
|
if (!LegalOperations)
|
|
return SDValue();
|
|
|
|
EVT VT = N->getValueType(0);
|
|
if (VT != MVT::i32)
|
|
return SDValue();
|
|
if (!TLI.isOperationLegalOrCustom(ISD::BSWAP, VT))
|
|
return SDValue();
|
|
|
|
if (SDValue BSwap = matchBSwapHWordOrAndAnd(TLI, DAG, N, N0, N1, VT,
|
|
getShiftAmountTy(VT)))
|
|
return BSwap;
|
|
|
|
// Try again with commuted operands.
|
|
if (SDValue BSwap = matchBSwapHWordOrAndAnd(TLI, DAG, N, N1, N0, VT,
|
|
getShiftAmountTy(VT)))
|
|
return BSwap;
|
|
|
|
|
|
// Look for either
|
|
// (or (bswaphpair), (bswaphpair))
|
|
// (or (or (bswaphpair), (and)), (and))
|
|
// (or (or (and), (bswaphpair)), (and))
|
|
SDNode *Parts[4] = {};
|
|
|
|
if (isBSwapHWordPair(N0, Parts)) {
|
|
// (or (or (and), (and)), (or (and), (and)))
|
|
if (!isBSwapHWordPair(N1, Parts))
|
|
return SDValue();
|
|
} else if (N0.getOpcode() == ISD::OR) {
|
|
// (or (or (or (and), (and)), (and)), (and))
|
|
if (!isBSwapHWordElement(N1, Parts))
|
|
return SDValue();
|
|
SDValue N00 = N0.getOperand(0);
|
|
SDValue N01 = N0.getOperand(1);
|
|
if (!(isBSwapHWordElement(N01, Parts) && isBSwapHWordPair(N00, Parts)) &&
|
|
!(isBSwapHWordElement(N00, Parts) && isBSwapHWordPair(N01, Parts)))
|
|
return SDValue();
|
|
} else
|
|
return SDValue();
|
|
|
|
// Make sure the parts are all coming from the same node.
|
|
if (Parts[0] != Parts[1] || Parts[0] != Parts[2] || Parts[0] != Parts[3])
|
|
return SDValue();
|
|
|
|
SDLoc DL(N);
|
|
SDValue BSwap = DAG.getNode(ISD::BSWAP, DL, VT,
|
|
SDValue(Parts[0], 0));
|
|
|
|
// Result of the bswap should be rotated by 16. If it's not legal, then
|
|
// do (x << 16) | (x >> 16).
|
|
SDValue ShAmt = DAG.getConstant(16, DL, getShiftAmountTy(VT));
|
|
if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT))
|
|
return DAG.getNode(ISD::ROTL, DL, VT, BSwap, ShAmt);
|
|
if (TLI.isOperationLegalOrCustom(ISD::ROTR, VT))
|
|
return DAG.getNode(ISD::ROTR, DL, VT, BSwap, ShAmt);
|
|
return DAG.getNode(ISD::OR, DL, VT,
|
|
DAG.getNode(ISD::SHL, DL, VT, BSwap, ShAmt),
|
|
DAG.getNode(ISD::SRL, DL, VT, BSwap, ShAmt));
|
|
}
|
|
|
|
/// This contains all DAGCombine rules which reduce two values combined by
|
|
/// an Or operation to a single value \see visitANDLike().
|
|
SDValue DAGCombiner::visitORLike(SDValue N0, SDValue N1, SDNode *N) {
|
|
EVT VT = N1.getValueType();
|
|
SDLoc DL(N);
|
|
|
|
// fold (or x, undef) -> -1
|
|
if (!LegalOperations && (N0.isUndef() || N1.isUndef()))
|
|
return DAG.getAllOnesConstant(DL, VT);
|
|
|
|
if (SDValue V = foldLogicOfSetCCs(false, N0, N1, DL))
|
|
return V;
|
|
|
|
// (or (and X, C1), (and Y, C2)) -> (and (or X, Y), C3) if possible.
|
|
if (N0.getOpcode() == ISD::AND && N1.getOpcode() == ISD::AND &&
|
|
// Don't increase # computations.
|
|
(N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
|
|
// We can only do this xform if we know that bits from X that are set in C2
|
|
// but not in C1 are already zero. Likewise for Y.
|
|
if (const ConstantSDNode *N0O1C =
|
|
getAsNonOpaqueConstant(N0.getOperand(1))) {
|
|
if (const ConstantSDNode *N1O1C =
|
|
getAsNonOpaqueConstant(N1.getOperand(1))) {
|
|
// We can only do this xform if we know that bits from X that are set in
|
|
// C2 but not in C1 are already zero. Likewise for Y.
|
|
const APInt &LHSMask = N0O1C->getAPIntValue();
|
|
const APInt &RHSMask = N1O1C->getAPIntValue();
|
|
|
|
if (DAG.MaskedValueIsZero(N0.getOperand(0), RHSMask&~LHSMask) &&
|
|
DAG.MaskedValueIsZero(N1.getOperand(0), LHSMask&~RHSMask)) {
|
|
SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT,
|
|
N0.getOperand(0), N1.getOperand(0));
|
|
return DAG.getNode(ISD::AND, DL, VT, X,
|
|
DAG.getConstant(LHSMask | RHSMask, DL, VT));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// (or (and X, M), (and X, N)) -> (and X, (or M, N))
|
|
if (N0.getOpcode() == ISD::AND &&
|
|
N1.getOpcode() == ISD::AND &&
|
|
N0.getOperand(0) == N1.getOperand(0) &&
|
|
// Don't increase # computations.
|
|
(N0.getNode()->hasOneUse() || N1.getNode()->hasOneUse())) {
|
|
SDValue X = DAG.getNode(ISD::OR, SDLoc(N0), VT,
|
|
N0.getOperand(1), N1.getOperand(1));
|
|
return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), X);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// OR combines for which the commuted variant will be tried as well.
|
|
static SDValue visitORCommutative(
|
|
SelectionDAG &DAG, SDValue N0, SDValue N1, SDNode *N) {
|
|
EVT VT = N0.getValueType();
|
|
if (N0.getOpcode() == ISD::AND) {
|
|
// fold (or (and X, (xor Y, -1)), Y) -> (or X, Y)
|
|
if (isBitwiseNot(N0.getOperand(1)) && N0.getOperand(1).getOperand(0) == N1)
|
|
return DAG.getNode(ISD::OR, SDLoc(N), VT, N0.getOperand(0), N1);
|
|
|
|
// fold (or (and (xor Y, -1), X), Y) -> (or X, Y)
|
|
if (isBitwiseNot(N0.getOperand(0)) && N0.getOperand(0).getOperand(0) == N1)
|
|
return DAG.getNode(ISD::OR, SDLoc(N), VT, N0.getOperand(1), N1);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitOR(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
EVT VT = N1.getValueType();
|
|
|
|
// x | x --> x
|
|
if (N0 == N1)
|
|
return N0;
|
|
|
|
// fold vector ops
|
|
if (VT.isVector()) {
|
|
if (SDValue FoldedVOp = SimplifyVBinOp(N))
|
|
return FoldedVOp;
|
|
|
|
// fold (or x, 0) -> x, vector edition
|
|
if (ISD::isConstantSplatVectorAllZeros(N0.getNode()))
|
|
return N1;
|
|
if (ISD::isConstantSplatVectorAllZeros(N1.getNode()))
|
|
return N0;
|
|
|
|
// fold (or x, -1) -> -1, vector edition
|
|
if (ISD::isConstantSplatVectorAllOnes(N0.getNode()))
|
|
// do not return N0, because undef node may exist in N0
|
|
return DAG.getAllOnesConstant(SDLoc(N), N0.getValueType());
|
|
if (ISD::isConstantSplatVectorAllOnes(N1.getNode()))
|
|
// do not return N1, because undef node may exist in N1
|
|
return DAG.getAllOnesConstant(SDLoc(N), N1.getValueType());
|
|
|
|
// fold (or (shuf A, V_0, MA), (shuf B, V_0, MB)) -> (shuf A, B, Mask)
|
|
// Do this only if the resulting shuffle is legal.
|
|
if (isa<ShuffleVectorSDNode>(N0) &&
|
|
isa<ShuffleVectorSDNode>(N1) &&
|
|
// Avoid folding a node with illegal type.
|
|
TLI.isTypeLegal(VT)) {
|
|
bool ZeroN00 = ISD::isBuildVectorAllZeros(N0.getOperand(0).getNode());
|
|
bool ZeroN01 = ISD::isBuildVectorAllZeros(N0.getOperand(1).getNode());
|
|
bool ZeroN10 = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode());
|
|
bool ZeroN11 = ISD::isBuildVectorAllZeros(N1.getOperand(1).getNode());
|
|
// Ensure both shuffles have a zero input.
|
|
if ((ZeroN00 != ZeroN01) && (ZeroN10 != ZeroN11)) {
|
|
assert((!ZeroN00 || !ZeroN01) && "Both inputs zero!");
|
|
assert((!ZeroN10 || !ZeroN11) && "Both inputs zero!");
|
|
const ShuffleVectorSDNode *SV0 = cast<ShuffleVectorSDNode>(N0);
|
|
const ShuffleVectorSDNode *SV1 = cast<ShuffleVectorSDNode>(N1);
|
|
bool CanFold = true;
|
|
int NumElts = VT.getVectorNumElements();
|
|
SmallVector<int, 4> Mask(NumElts);
|
|
|
|
for (int i = 0; i != NumElts; ++i) {
|
|
int M0 = SV0->getMaskElt(i);
|
|
int M1 = SV1->getMaskElt(i);
|
|
|
|
// Determine if either index is pointing to a zero vector.
|
|
bool M0Zero = M0 < 0 || (ZeroN00 == (M0 < NumElts));
|
|
bool M1Zero = M1 < 0 || (ZeroN10 == (M1 < NumElts));
|
|
|
|
// If one element is zero and the otherside is undef, keep undef.
|
|
// This also handles the case that both are undef.
|
|
if ((M0Zero && M1 < 0) || (M1Zero && M0 < 0)) {
|
|
Mask[i] = -1;
|
|
continue;
|
|
}
|
|
|
|
// Make sure only one of the elements is zero.
|
|
if (M0Zero == M1Zero) {
|
|
CanFold = false;
|
|
break;
|
|
}
|
|
|
|
assert((M0 >= 0 || M1 >= 0) && "Undef index!");
|
|
|
|
// We have a zero and non-zero element. If the non-zero came from
|
|
// SV0 make the index a LHS index. If it came from SV1, make it
|
|
// a RHS index. We need to mod by NumElts because we don't care
|
|
// which operand it came from in the original shuffles.
|
|
Mask[i] = M1Zero ? M0 % NumElts : (M1 % NumElts) + NumElts;
|
|
}
|
|
|
|
if (CanFold) {
|
|
SDValue NewLHS = ZeroN00 ? N0.getOperand(1) : N0.getOperand(0);
|
|
SDValue NewRHS = ZeroN10 ? N1.getOperand(1) : N1.getOperand(0);
|
|
|
|
SDValue LegalShuffle =
|
|
TLI.buildLegalVectorShuffle(VT, SDLoc(N), NewLHS, NewRHS,
|
|
Mask, DAG);
|
|
if (LegalShuffle)
|
|
return LegalShuffle;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// fold (or c1, c2) -> c1|c2
|
|
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
|
|
if (SDValue C = DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N), VT, {N0, N1}))
|
|
return C;
|
|
|
|
// canonicalize constant to RHS
|
|
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
|
|
!DAG.isConstantIntBuildVectorOrConstantInt(N1))
|
|
return DAG.getNode(ISD::OR, SDLoc(N), VT, N1, N0);
|
|
|
|
// fold (or x, 0) -> x
|
|
if (isNullConstant(N1))
|
|
return N0;
|
|
|
|
// fold (or x, -1) -> -1
|
|
if (isAllOnesConstant(N1))
|
|
return N1;
|
|
|
|
if (SDValue NewSel = foldBinOpIntoSelect(N))
|
|
return NewSel;
|
|
|
|
// fold (or x, c) -> c iff (x & ~c) == 0
|
|
if (N1C && DAG.MaskedValueIsZero(N0, ~N1C->getAPIntValue()))
|
|
return N1;
|
|
|
|
if (SDValue Combined = visitORLike(N0, N1, N))
|
|
return Combined;
|
|
|
|
if (SDValue Combined = combineCarryDiamond(*this, DAG, TLI, N0, N1, N))
|
|
return Combined;
|
|
|
|
// Recognize halfword bswaps as (bswap + rotl 16) or (bswap + shl 16)
|
|
if (SDValue BSwap = MatchBSwapHWord(N, N0, N1))
|
|
return BSwap;
|
|
if (SDValue BSwap = MatchBSwapHWordLow(N, N0, N1))
|
|
return BSwap;
|
|
|
|
// reassociate or
|
|
if (SDValue ROR = reassociateOps(ISD::OR, SDLoc(N), N0, N1, N->getFlags()))
|
|
return ROR;
|
|
|
|
// Canonicalize (or (and X, c1), c2) -> (and (or X, c2), c1|c2)
|
|
// iff (c1 & c2) != 0 or c1/c2 are undef.
|
|
auto MatchIntersect = [](ConstantSDNode *C1, ConstantSDNode *C2) {
|
|
return !C1 || !C2 || C1->getAPIntValue().intersects(C2->getAPIntValue());
|
|
};
|
|
if (N0.getOpcode() == ISD::AND && N0.getNode()->hasOneUse() &&
|
|
ISD::matchBinaryPredicate(N0.getOperand(1), N1, MatchIntersect, true)) {
|
|
if (SDValue COR = DAG.FoldConstantArithmetic(ISD::OR, SDLoc(N1), VT,
|
|
{N1, N0.getOperand(1)})) {
|
|
SDValue IOR = DAG.getNode(ISD::OR, SDLoc(N0), VT, N0.getOperand(0), N1);
|
|
AddToWorklist(IOR.getNode());
|
|
return DAG.getNode(ISD::AND, SDLoc(N), VT, COR, IOR);
|
|
}
|
|
}
|
|
|
|
if (SDValue Combined = visitORCommutative(DAG, N0, N1, N))
|
|
return Combined;
|
|
if (SDValue Combined = visitORCommutative(DAG, N1, N0, N))
|
|
return Combined;
|
|
|
|
// Simplify: (or (op x...), (op y...)) -> (op (or x, y))
|
|
if (N0.getOpcode() == N1.getOpcode())
|
|
if (SDValue V = hoistLogicOpWithSameOpcodeHands(N))
|
|
return V;
|
|
|
|
// See if this is some rotate idiom.
|
|
if (SDValue Rot = MatchRotate(N0, N1, SDLoc(N)))
|
|
return Rot;
|
|
|
|
if (SDValue Load = MatchLoadCombine(N))
|
|
return Load;
|
|
|
|
// Simplify the operands using demanded-bits information.
|
|
if (SimplifyDemandedBits(SDValue(N, 0)))
|
|
return SDValue(N, 0);
|
|
|
|
// If OR can be rewritten into ADD, try combines based on ADD.
|
|
if ((!LegalOperations || TLI.isOperationLegal(ISD::ADD, VT)) &&
|
|
DAG.haveNoCommonBitsSet(N0, N1))
|
|
if (SDValue Combined = visitADDLike(N))
|
|
return Combined;
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue stripConstantMask(SelectionDAG &DAG, SDValue Op, SDValue &Mask) {
|
|
if (Op.getOpcode() == ISD::AND &&
|
|
DAG.isConstantIntBuildVectorOrConstantInt(Op.getOperand(1))) {
|
|
Mask = Op.getOperand(1);
|
|
return Op.getOperand(0);
|
|
}
|
|
return Op;
|
|
}
|
|
|
|
/// Match "(X shl/srl V1) & V2" where V2 may not be present.
|
|
static bool matchRotateHalf(SelectionDAG &DAG, SDValue Op, SDValue &Shift,
|
|
SDValue &Mask) {
|
|
Op = stripConstantMask(DAG, Op, Mask);
|
|
if (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SHL) {
|
|
Shift = Op;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Helper function for visitOR to extract the needed side of a rotate idiom
|
|
/// from a shl/srl/mul/udiv. This is meant to handle cases where
|
|
/// InstCombine merged some outside op with one of the shifts from
|
|
/// the rotate pattern.
|
|
/// \returns An empty \c SDValue if the needed shift couldn't be extracted.
|
|
/// Otherwise, returns an expansion of \p ExtractFrom based on the following
|
|
/// patterns:
|
|
///
|
|
/// (or (add v v) (shrl v bitwidth-1)):
|
|
/// expands (add v v) -> (shl v 1)
|
|
///
|
|
/// (or (mul v c0) (shrl (mul v c1) c2)):
|
|
/// expands (mul v c0) -> (shl (mul v c1) c3)
|
|
///
|
|
/// (or (udiv v c0) (shl (udiv v c1) c2)):
|
|
/// expands (udiv v c0) -> (shrl (udiv v c1) c3)
|
|
///
|
|
/// (or (shl v c0) (shrl (shl v c1) c2)):
|
|
/// expands (shl v c0) -> (shl (shl v c1) c3)
|
|
///
|
|
/// (or (shrl v c0) (shl (shrl v c1) c2)):
|
|
/// expands (shrl v c0) -> (shrl (shrl v c1) c3)
|
|
///
|
|
/// Such that in all cases, c3+c2==bitwidth(op v c1).
|
|
static SDValue extractShiftForRotate(SelectionDAG &DAG, SDValue OppShift,
|
|
SDValue ExtractFrom, SDValue &Mask,
|
|
const SDLoc &DL) {
|
|
assert(OppShift && ExtractFrom && "Empty SDValue");
|
|
assert(
|
|
(OppShift.getOpcode() == ISD::SHL || OppShift.getOpcode() == ISD::SRL) &&
|
|
"Existing shift must be valid as a rotate half");
|
|
|
|
ExtractFrom = stripConstantMask(DAG, ExtractFrom, Mask);
|
|
|
|
// Value and Type of the shift.
|
|
SDValue OppShiftLHS = OppShift.getOperand(0);
|
|
EVT ShiftedVT = OppShiftLHS.getValueType();
|
|
|
|
// Amount of the existing shift.
|
|
ConstantSDNode *OppShiftCst = isConstOrConstSplat(OppShift.getOperand(1));
|
|
|
|
// (add v v) -> (shl v 1)
|
|
// TODO: Should this be a general DAG canonicalization?
|
|
if (OppShift.getOpcode() == ISD::SRL && OppShiftCst &&
|
|
ExtractFrom.getOpcode() == ISD::ADD &&
|
|
ExtractFrom.getOperand(0) == ExtractFrom.getOperand(1) &&
|
|
ExtractFrom.getOperand(0) == OppShiftLHS &&
|
|
OppShiftCst->getAPIntValue() == ShiftedVT.getScalarSizeInBits() - 1)
|
|
return DAG.getNode(ISD::SHL, DL, ShiftedVT, OppShiftLHS,
|
|
DAG.getShiftAmountConstant(1, ShiftedVT, DL));
|
|
|
|
// Preconditions:
|
|
// (or (op0 v c0) (shiftl/r (op0 v c1) c2))
|
|
//
|
|
// Find opcode of the needed shift to be extracted from (op0 v c0).
|
|
unsigned Opcode = ISD::DELETED_NODE;
|
|
bool IsMulOrDiv = false;
|
|
// Set Opcode and IsMulOrDiv if the extract opcode matches the needed shift
|
|
// opcode or its arithmetic (mul or udiv) variant.
|
|
auto SelectOpcode = [&](unsigned NeededShift, unsigned MulOrDivVariant) {
|
|
IsMulOrDiv = ExtractFrom.getOpcode() == MulOrDivVariant;
|
|
if (!IsMulOrDiv && ExtractFrom.getOpcode() != NeededShift)
|
|
return false;
|
|
Opcode = NeededShift;
|
|
return true;
|
|
};
|
|
// op0 must be either the needed shift opcode or the mul/udiv equivalent
|
|
// that the needed shift can be extracted from.
|
|
if ((OppShift.getOpcode() != ISD::SRL || !SelectOpcode(ISD::SHL, ISD::MUL)) &&
|
|
(OppShift.getOpcode() != ISD::SHL || !SelectOpcode(ISD::SRL, ISD::UDIV)))
|
|
return SDValue();
|
|
|
|
// op0 must be the same opcode on both sides, have the same LHS argument,
|
|
// and produce the same value type.
|
|
if (OppShiftLHS.getOpcode() != ExtractFrom.getOpcode() ||
|
|
OppShiftLHS.getOperand(0) != ExtractFrom.getOperand(0) ||
|
|
ShiftedVT != ExtractFrom.getValueType())
|
|
return SDValue();
|
|
|
|
// Constant mul/udiv/shift amount from the RHS of the shift's LHS op.
|
|
ConstantSDNode *OppLHSCst = isConstOrConstSplat(OppShiftLHS.getOperand(1));
|
|
// Constant mul/udiv/shift amount from the RHS of the ExtractFrom op.
|
|
ConstantSDNode *ExtractFromCst =
|
|
isConstOrConstSplat(ExtractFrom.getOperand(1));
|
|
// TODO: We should be able to handle non-uniform constant vectors for these values
|
|
// Check that we have constant values.
|
|
if (!OppShiftCst || !OppShiftCst->getAPIntValue() ||
|
|
!OppLHSCst || !OppLHSCst->getAPIntValue() ||
|
|
!ExtractFromCst || !ExtractFromCst->getAPIntValue())
|
|
return SDValue();
|
|
|
|
// Compute the shift amount we need to extract to complete the rotate.
|
|
const unsigned VTWidth = ShiftedVT.getScalarSizeInBits();
|
|
if (OppShiftCst->getAPIntValue().ugt(VTWidth))
|
|
return SDValue();
|
|
APInt NeededShiftAmt = VTWidth - OppShiftCst->getAPIntValue();
|
|
// Normalize the bitwidth of the two mul/udiv/shift constant operands.
|
|
APInt ExtractFromAmt = ExtractFromCst->getAPIntValue();
|
|
APInt OppLHSAmt = OppLHSCst->getAPIntValue();
|
|
zeroExtendToMatch(ExtractFromAmt, OppLHSAmt);
|
|
|
|
// Now try extract the needed shift from the ExtractFrom op and see if the
|
|
// result matches up with the existing shift's LHS op.
|
|
if (IsMulOrDiv) {
|
|
// Op to extract from is a mul or udiv by a constant.
|
|
// Check:
|
|
// c2 / (1 << (bitwidth(op0 v c0) - c1)) == c0
|
|
// c2 % (1 << (bitwidth(op0 v c0) - c1)) == 0
|
|
const APInt ExtractDiv = APInt::getOneBitSet(ExtractFromAmt.getBitWidth(),
|
|
NeededShiftAmt.getZExtValue());
|
|
APInt ResultAmt;
|
|
APInt Rem;
|
|
APInt::udivrem(ExtractFromAmt, ExtractDiv, ResultAmt, Rem);
|
|
if (Rem != 0 || ResultAmt != OppLHSAmt)
|
|
return SDValue();
|
|
} else {
|
|
// Op to extract from is a shift by a constant.
|
|
// Check:
|
|
// c2 - (bitwidth(op0 v c0) - c1) == c0
|
|
if (OppLHSAmt != ExtractFromAmt - NeededShiftAmt.zextOrTrunc(
|
|
ExtractFromAmt.getBitWidth()))
|
|
return SDValue();
|
|
}
|
|
|
|
// Return the expanded shift op that should allow a rotate to be formed.
|
|
EVT ShiftVT = OppShift.getOperand(1).getValueType();
|
|
EVT ResVT = ExtractFrom.getValueType();
|
|
SDValue NewShiftNode = DAG.getConstant(NeededShiftAmt, DL, ShiftVT);
|
|
return DAG.getNode(Opcode, DL, ResVT, OppShiftLHS, NewShiftNode);
|
|
}
|
|
|
|
// Return true if we can prove that, whenever Neg and Pos are both in the
|
|
// range [0, EltSize), Neg == (Pos == 0 ? 0 : EltSize - Pos). This means that
|
|
// for two opposing shifts shift1 and shift2 and a value X with OpBits bits:
|
|
//
|
|
// (or (shift1 X, Neg), (shift2 X, Pos))
|
|
//
|
|
// reduces to a rotate in direction shift2 by Pos or (equivalently) a rotate
|
|
// in direction shift1 by Neg. The range [0, EltSize) means that we only need
|
|
// to consider shift amounts with defined behavior.
|
|
//
|
|
// The IsRotate flag should be set when the LHS of both shifts is the same.
|
|
// Otherwise if matching a general funnel shift, it should be clear.
|
|
static bool matchRotateSub(SDValue Pos, SDValue Neg, unsigned EltSize,
|
|
SelectionDAG &DAG, bool IsRotate) {
|
|
// If EltSize is a power of 2 then:
|
|
//
|
|
// (a) (Pos == 0 ? 0 : EltSize - Pos) == (EltSize - Pos) & (EltSize - 1)
|
|
// (b) Neg == Neg & (EltSize - 1) whenever Neg is in [0, EltSize).
|
|
//
|
|
// So if EltSize is a power of 2 and Neg is (and Neg', EltSize-1), we check
|
|
// for the stronger condition:
|
|
//
|
|
// Neg & (EltSize - 1) == (EltSize - Pos) & (EltSize - 1) [A]
|
|
//
|
|
// for all Neg and Pos. Since Neg & (EltSize - 1) == Neg' & (EltSize - 1)
|
|
// we can just replace Neg with Neg' for the rest of the function.
|
|
//
|
|
// In other cases we check for the even stronger condition:
|
|
//
|
|
// Neg == EltSize - Pos [B]
|
|
//
|
|
// for all Neg and Pos. Note that the (or ...) then invokes undefined
|
|
// behavior if Pos == 0 (and consequently Neg == EltSize).
|
|
//
|
|
// We could actually use [A] whenever EltSize is a power of 2, but the
|
|
// only extra cases that it would match are those uninteresting ones
|
|
// where Neg and Pos are never in range at the same time. E.g. for
|
|
// EltSize == 32, using [A] would allow a Neg of the form (sub 64, Pos)
|
|
// as well as (sub 32, Pos), but:
|
|
//
|
|
// (or (shift1 X, (sub 64, Pos)), (shift2 X, Pos))
|
|
//
|
|
// always invokes undefined behavior for 32-bit X.
|
|
//
|
|
// Below, Mask == EltSize - 1 when using [A] and is all-ones otherwise.
|
|
//
|
|
// NOTE: We can only do this when matching an AND and not a general
|
|
// funnel shift.
|
|
unsigned MaskLoBits = 0;
|
|
if (IsRotate && Neg.getOpcode() == ISD::AND && isPowerOf2_64(EltSize)) {
|
|
if (ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(1))) {
|
|
KnownBits Known = DAG.computeKnownBits(Neg.getOperand(0));
|
|
unsigned Bits = Log2_64(EltSize);
|
|
if (NegC->getAPIntValue().getActiveBits() <= Bits &&
|
|
((NegC->getAPIntValue() | Known.Zero).countTrailingOnes() >= Bits)) {
|
|
Neg = Neg.getOperand(0);
|
|
MaskLoBits = Bits;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check whether Neg has the form (sub NegC, NegOp1) for some NegC and NegOp1.
|
|
if (Neg.getOpcode() != ISD::SUB)
|
|
return false;
|
|
ConstantSDNode *NegC = isConstOrConstSplat(Neg.getOperand(0));
|
|
if (!NegC)
|
|
return false;
|
|
SDValue NegOp1 = Neg.getOperand(1);
|
|
|
|
// On the RHS of [A], if Pos is Pos' & (EltSize - 1), just replace Pos with
|
|
// Pos'. The truncation is redundant for the purpose of the equality.
|
|
if (MaskLoBits && Pos.getOpcode() == ISD::AND) {
|
|
if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1))) {
|
|
KnownBits Known = DAG.computeKnownBits(Pos.getOperand(0));
|
|
if (PosC->getAPIntValue().getActiveBits() <= MaskLoBits &&
|
|
((PosC->getAPIntValue() | Known.Zero).countTrailingOnes() >=
|
|
MaskLoBits))
|
|
Pos = Pos.getOperand(0);
|
|
}
|
|
}
|
|
|
|
// The condition we need is now:
|
|
//
|
|
// (NegC - NegOp1) & Mask == (EltSize - Pos) & Mask
|
|
//
|
|
// If NegOp1 == Pos then we need:
|
|
//
|
|
// EltSize & Mask == NegC & Mask
|
|
//
|
|
// (because "x & Mask" is a truncation and distributes through subtraction).
|
|
//
|
|
// We also need to account for a potential truncation of NegOp1 if the amount
|
|
// has already been legalized to a shift amount type.
|
|
APInt Width;
|
|
if ((Pos == NegOp1) ||
|
|
(NegOp1.getOpcode() == ISD::TRUNCATE && Pos == NegOp1.getOperand(0)))
|
|
Width = NegC->getAPIntValue();
|
|
|
|
// Check for cases where Pos has the form (add NegOp1, PosC) for some PosC.
|
|
// Then the condition we want to prove becomes:
|
|
//
|
|
// (NegC - NegOp1) & Mask == (EltSize - (NegOp1 + PosC)) & Mask
|
|
//
|
|
// which, again because "x & Mask" is a truncation, becomes:
|
|
//
|
|
// NegC & Mask == (EltSize - PosC) & Mask
|
|
// EltSize & Mask == (NegC + PosC) & Mask
|
|
else if (Pos.getOpcode() == ISD::ADD && Pos.getOperand(0) == NegOp1) {
|
|
if (ConstantSDNode *PosC = isConstOrConstSplat(Pos.getOperand(1)))
|
|
Width = PosC->getAPIntValue() + NegC->getAPIntValue();
|
|
else
|
|
return false;
|
|
} else
|
|
return false;
|
|
|
|
// Now we just need to check that EltSize & Mask == Width & Mask.
|
|
if (MaskLoBits)
|
|
// EltSize & Mask is 0 since Mask is EltSize - 1.
|
|
return Width.getLoBits(MaskLoBits) == 0;
|
|
return Width == EltSize;
|
|
}
|
|
|
|
// A subroutine of MatchRotate used once we have found an OR of two opposite
|
|
// shifts of Shifted. If Neg == <operand size> - Pos then the OR reduces
|
|
// to both (PosOpcode Shifted, Pos) and (NegOpcode Shifted, Neg), with the
|
|
// former being preferred if supported. InnerPos and InnerNeg are Pos and
|
|
// Neg with outer conversions stripped away.
|
|
SDValue DAGCombiner::MatchRotatePosNeg(SDValue Shifted, SDValue Pos,
|
|
SDValue Neg, SDValue InnerPos,
|
|
SDValue InnerNeg, unsigned PosOpcode,
|
|
unsigned NegOpcode, const SDLoc &DL) {
|
|
// fold (or (shl x, (*ext y)),
|
|
// (srl x, (*ext (sub 32, y)))) ->
|
|
// (rotl x, y) or (rotr x, (sub 32, y))
|
|
//
|
|
// fold (or (shl x, (*ext (sub 32, y))),
|
|
// (srl x, (*ext y))) ->
|
|
// (rotr x, y) or (rotl x, (sub 32, y))
|
|
EVT VT = Shifted.getValueType();
|
|
if (matchRotateSub(InnerPos, InnerNeg, VT.getScalarSizeInBits(), DAG,
|
|
/*IsRotate*/ true)) {
|
|
bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT);
|
|
return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, Shifted,
|
|
HasPos ? Pos : Neg);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// A subroutine of MatchRotate used once we have found an OR of two opposite
|
|
// shifts of N0 + N1. If Neg == <operand size> - Pos then the OR reduces
|
|
// to both (PosOpcode N0, N1, Pos) and (NegOpcode N0, N1, Neg), with the
|
|
// former being preferred if supported. InnerPos and InnerNeg are Pos and
|
|
// Neg with outer conversions stripped away.
|
|
// TODO: Merge with MatchRotatePosNeg.
|
|
SDValue DAGCombiner::MatchFunnelPosNeg(SDValue N0, SDValue N1, SDValue Pos,
|
|
SDValue Neg, SDValue InnerPos,
|
|
SDValue InnerNeg, unsigned PosOpcode,
|
|
unsigned NegOpcode, const SDLoc &DL) {
|
|
EVT VT = N0.getValueType();
|
|
unsigned EltBits = VT.getScalarSizeInBits();
|
|
|
|
// fold (or (shl x0, (*ext y)),
|
|
// (srl x1, (*ext (sub 32, y)))) ->
|
|
// (fshl x0, x1, y) or (fshr x0, x1, (sub 32, y))
|
|
//
|
|
// fold (or (shl x0, (*ext (sub 32, y))),
|
|
// (srl x1, (*ext y))) ->
|
|
// (fshr x0, x1, y) or (fshl x0, x1, (sub 32, y))
|
|
if (matchRotateSub(InnerPos, InnerNeg, EltBits, DAG, /*IsRotate*/ N0 == N1)) {
|
|
bool HasPos = TLI.isOperationLegalOrCustom(PosOpcode, VT);
|
|
return DAG.getNode(HasPos ? PosOpcode : NegOpcode, DL, VT, N0, N1,
|
|
HasPos ? Pos : Neg);
|
|
}
|
|
|
|
// Matching the shift+xor cases, we can't easily use the xor'd shift amount
|
|
// so for now just use the PosOpcode case if its legal.
|
|
// TODO: When can we use the NegOpcode case?
|
|
if (PosOpcode == ISD::FSHL && isPowerOf2_32(EltBits)) {
|
|
auto IsBinOpImm = [](SDValue Op, unsigned BinOpc, unsigned Imm) {
|
|
if (Op.getOpcode() != BinOpc)
|
|
return false;
|
|
ConstantSDNode *Cst = isConstOrConstSplat(Op.getOperand(1));
|
|
return Cst && (Cst->getAPIntValue() == Imm);
|
|
};
|
|
|
|
// fold (or (shl x0, y), (srl (srl x1, 1), (xor y, 31)))
|
|
// -> (fshl x0, x1, y)
|
|
if (IsBinOpImm(N1, ISD::SRL, 1) &&
|
|
IsBinOpImm(InnerNeg, ISD::XOR, EltBits - 1) &&
|
|
InnerPos == InnerNeg.getOperand(0) &&
|
|
TLI.isOperationLegalOrCustom(ISD::FSHL, VT)) {
|
|
return DAG.getNode(ISD::FSHL, DL, VT, N0, N1.getOperand(0), Pos);
|
|
}
|
|
|
|
// fold (or (shl (shl x0, 1), (xor y, 31)), (srl x1, y))
|
|
// -> (fshr x0, x1, y)
|
|
if (IsBinOpImm(N0, ISD::SHL, 1) &&
|
|
IsBinOpImm(InnerPos, ISD::XOR, EltBits - 1) &&
|
|
InnerNeg == InnerPos.getOperand(0) &&
|
|
TLI.isOperationLegalOrCustom(ISD::FSHR, VT)) {
|
|
return DAG.getNode(ISD::FSHR, DL, VT, N0.getOperand(0), N1, Neg);
|
|
}
|
|
|
|
// fold (or (shl (add x0, x0), (xor y, 31)), (srl x1, y))
|
|
// -> (fshr x0, x1, y)
|
|
// TODO: Should add(x,x) -> shl(x,1) be a general DAG canonicalization?
|
|
if (N0.getOpcode() == ISD::ADD && N0.getOperand(0) == N0.getOperand(1) &&
|
|
IsBinOpImm(InnerPos, ISD::XOR, EltBits - 1) &&
|
|
InnerNeg == InnerPos.getOperand(0) &&
|
|
TLI.isOperationLegalOrCustom(ISD::FSHR, VT)) {
|
|
return DAG.getNode(ISD::FSHR, DL, VT, N0.getOperand(0), N1, Neg);
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// MatchRotate - Handle an 'or' of two operands. If this is one of the many
|
|
// idioms for rotate, and if the target supports rotation instructions, generate
|
|
// a rot[lr]. This also matches funnel shift patterns, similar to rotation but
|
|
// with different shifted sources.
|
|
SDValue DAGCombiner::MatchRotate(SDValue LHS, SDValue RHS, const SDLoc &DL) {
|
|
// Must be a legal type. Expanded 'n promoted things won't work with rotates.
|
|
EVT VT = LHS.getValueType();
|
|
if (!TLI.isTypeLegal(VT))
|
|
return SDValue();
|
|
|
|
// The target must have at least one rotate/funnel flavor.
|
|
bool HasROTL = hasOperation(ISD::ROTL, VT);
|
|
bool HasROTR = hasOperation(ISD::ROTR, VT);
|
|
bool HasFSHL = hasOperation(ISD::FSHL, VT);
|
|
bool HasFSHR = hasOperation(ISD::FSHR, VT);
|
|
if (!HasROTL && !HasROTR && !HasFSHL && !HasFSHR)
|
|
return SDValue();
|
|
|
|
// Check for truncated rotate.
|
|
if (LHS.getOpcode() == ISD::TRUNCATE && RHS.getOpcode() == ISD::TRUNCATE &&
|
|
LHS.getOperand(0).getValueType() == RHS.getOperand(0).getValueType()) {
|
|
assert(LHS.getValueType() == RHS.getValueType());
|
|
if (SDValue Rot = MatchRotate(LHS.getOperand(0), RHS.getOperand(0), DL)) {
|
|
return DAG.getNode(ISD::TRUNCATE, SDLoc(LHS), LHS.getValueType(), Rot);
|
|
}
|
|
}
|
|
|
|
// Match "(X shl/srl V1) & V2" where V2 may not be present.
|
|
SDValue LHSShift; // The shift.
|
|
SDValue LHSMask; // AND value if any.
|
|
matchRotateHalf(DAG, LHS, LHSShift, LHSMask);
|
|
|
|
SDValue RHSShift; // The shift.
|
|
SDValue RHSMask; // AND value if any.
|
|
matchRotateHalf(DAG, RHS, RHSShift, RHSMask);
|
|
|
|
// If neither side matched a rotate half, bail
|
|
if (!LHSShift && !RHSShift)
|
|
return SDValue();
|
|
|
|
// InstCombine may have combined a constant shl, srl, mul, or udiv with one
|
|
// side of the rotate, so try to handle that here. In all cases we need to
|
|
// pass the matched shift from the opposite side to compute the opcode and
|
|
// needed shift amount to extract. We still want to do this if both sides
|
|
// matched a rotate half because one half may be a potential overshift that
|
|
// can be broken down (ie if InstCombine merged two shl or srl ops into a
|
|
// single one).
|
|
|
|
// Have LHS side of the rotate, try to extract the needed shift from the RHS.
|
|
if (LHSShift)
|
|
if (SDValue NewRHSShift =
|
|
extractShiftForRotate(DAG, LHSShift, RHS, RHSMask, DL))
|
|
RHSShift = NewRHSShift;
|
|
// Have RHS side of the rotate, try to extract the needed shift from the LHS.
|
|
if (RHSShift)
|
|
if (SDValue NewLHSShift =
|
|
extractShiftForRotate(DAG, RHSShift, LHS, LHSMask, DL))
|
|
LHSShift = NewLHSShift;
|
|
|
|
// If a side is still missing, nothing else we can do.
|
|
if (!RHSShift || !LHSShift)
|
|
return SDValue();
|
|
|
|
// At this point we've matched or extracted a shift op on each side.
|
|
|
|
if (LHSShift.getOpcode() == RHSShift.getOpcode())
|
|
return SDValue(); // Shifts must disagree.
|
|
|
|
bool IsRotate = LHSShift.getOperand(0) == RHSShift.getOperand(0);
|
|
if (!IsRotate && !(HasFSHL || HasFSHR))
|
|
return SDValue(); // Requires funnel shift support.
|
|
|
|
// Canonicalize shl to left side in a shl/srl pair.
|
|
if (RHSShift.getOpcode() == ISD::SHL) {
|
|
std::swap(LHS, RHS);
|
|
std::swap(LHSShift, RHSShift);
|
|
std::swap(LHSMask, RHSMask);
|
|
}
|
|
|
|
unsigned EltSizeInBits = VT.getScalarSizeInBits();
|
|
SDValue LHSShiftArg = LHSShift.getOperand(0);
|
|
SDValue LHSShiftAmt = LHSShift.getOperand(1);
|
|
SDValue RHSShiftArg = RHSShift.getOperand(0);
|
|
SDValue RHSShiftAmt = RHSShift.getOperand(1);
|
|
|
|
// fold (or (shl x, C1), (srl x, C2)) -> (rotl x, C1)
|
|
// fold (or (shl x, C1), (srl x, C2)) -> (rotr x, C2)
|
|
// fold (or (shl x, C1), (srl y, C2)) -> (fshl x, y, C1)
|
|
// fold (or (shl x, C1), (srl y, C2)) -> (fshr x, y, C2)
|
|
// iff C1+C2 == EltSizeInBits
|
|
auto MatchRotateSum = [EltSizeInBits](ConstantSDNode *LHS,
|
|
ConstantSDNode *RHS) {
|
|
return (LHS->getAPIntValue() + RHS->getAPIntValue()) == EltSizeInBits;
|
|
};
|
|
if (ISD::matchBinaryPredicate(LHSShiftAmt, RHSShiftAmt, MatchRotateSum)) {
|
|
SDValue Res;
|
|
if (IsRotate && (HasROTL || HasROTR))
|
|
Res = DAG.getNode(HasROTL ? ISD::ROTL : ISD::ROTR, DL, VT, LHSShiftArg,
|
|
HasROTL ? LHSShiftAmt : RHSShiftAmt);
|
|
else
|
|
Res = DAG.getNode(HasFSHL ? ISD::FSHL : ISD::FSHR, DL, VT, LHSShiftArg,
|
|
RHSShiftArg, HasFSHL ? LHSShiftAmt : RHSShiftAmt);
|
|
|
|
// If there is an AND of either shifted operand, apply it to the result.
|
|
if (LHSMask.getNode() || RHSMask.getNode()) {
|
|
SDValue AllOnes = DAG.getAllOnesConstant(DL, VT);
|
|
SDValue Mask = AllOnes;
|
|
|
|
if (LHSMask.getNode()) {
|
|
SDValue RHSBits = DAG.getNode(ISD::SRL, DL, VT, AllOnes, RHSShiftAmt);
|
|
Mask = DAG.getNode(ISD::AND, DL, VT, Mask,
|
|
DAG.getNode(ISD::OR, DL, VT, LHSMask, RHSBits));
|
|
}
|
|
if (RHSMask.getNode()) {
|
|
SDValue LHSBits = DAG.getNode(ISD::SHL, DL, VT, AllOnes, LHSShiftAmt);
|
|
Mask = DAG.getNode(ISD::AND, DL, VT, Mask,
|
|
DAG.getNode(ISD::OR, DL, VT, RHSMask, LHSBits));
|
|
}
|
|
|
|
Res = DAG.getNode(ISD::AND, DL, VT, Res, Mask);
|
|
}
|
|
|
|
return Res;
|
|
}
|
|
|
|
// If there is a mask here, and we have a variable shift, we can't be sure
|
|
// that we're masking out the right stuff.
|
|
if (LHSMask.getNode() || RHSMask.getNode())
|
|
return SDValue();
|
|
|
|
// If the shift amount is sign/zext/any-extended just peel it off.
|
|
SDValue LExtOp0 = LHSShiftAmt;
|
|
SDValue RExtOp0 = RHSShiftAmt;
|
|
if ((LHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
|
|
LHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
|
|
LHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
|
|
LHSShiftAmt.getOpcode() == ISD::TRUNCATE) &&
|
|
(RHSShiftAmt.getOpcode() == ISD::SIGN_EXTEND ||
|
|
RHSShiftAmt.getOpcode() == ISD::ZERO_EXTEND ||
|
|
RHSShiftAmt.getOpcode() == ISD::ANY_EXTEND ||
|
|
RHSShiftAmt.getOpcode() == ISD::TRUNCATE)) {
|
|
LExtOp0 = LHSShiftAmt.getOperand(0);
|
|
RExtOp0 = RHSShiftAmt.getOperand(0);
|
|
}
|
|
|
|
if (IsRotate && (HasROTL || HasROTR)) {
|
|
SDValue TryL =
|
|
MatchRotatePosNeg(LHSShiftArg, LHSShiftAmt, RHSShiftAmt, LExtOp0,
|
|
RExtOp0, ISD::ROTL, ISD::ROTR, DL);
|
|
if (TryL)
|
|
return TryL;
|
|
|
|
SDValue TryR =
|
|
MatchRotatePosNeg(RHSShiftArg, RHSShiftAmt, LHSShiftAmt, RExtOp0,
|
|
LExtOp0, ISD::ROTR, ISD::ROTL, DL);
|
|
if (TryR)
|
|
return TryR;
|
|
}
|
|
|
|
SDValue TryL =
|
|
MatchFunnelPosNeg(LHSShiftArg, RHSShiftArg, LHSShiftAmt, RHSShiftAmt,
|
|
LExtOp0, RExtOp0, ISD::FSHL, ISD::FSHR, DL);
|
|
if (TryL)
|
|
return TryL;
|
|
|
|
SDValue TryR =
|
|
MatchFunnelPosNeg(LHSShiftArg, RHSShiftArg, RHSShiftAmt, LHSShiftAmt,
|
|
RExtOp0, LExtOp0, ISD::FSHR, ISD::FSHL, DL);
|
|
if (TryR)
|
|
return TryR;
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// Represents known origin of an individual byte in load combine pattern. The
|
|
/// value of the byte is either constant zero or comes from memory.
|
|
struct ByteProvider {
|
|
// For constant zero providers Load is set to nullptr. For memory providers
|
|
// Load represents the node which loads the byte from memory.
|
|
// ByteOffset is the offset of the byte in the value produced by the load.
|
|
LoadSDNode *Load = nullptr;
|
|
unsigned ByteOffset = 0;
|
|
|
|
ByteProvider() = default;
|
|
|
|
static ByteProvider getMemory(LoadSDNode *Load, unsigned ByteOffset) {
|
|
return ByteProvider(Load, ByteOffset);
|
|
}
|
|
|
|
static ByteProvider getConstantZero() { return ByteProvider(nullptr, 0); }
|
|
|
|
bool isConstantZero() const { return !Load; }
|
|
bool isMemory() const { return Load; }
|
|
|
|
bool operator==(const ByteProvider &Other) const {
|
|
return Other.Load == Load && Other.ByteOffset == ByteOffset;
|
|
}
|
|
|
|
private:
|
|
ByteProvider(LoadSDNode *Load, unsigned ByteOffset)
|
|
: Load(Load), ByteOffset(ByteOffset) {}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// Recursively traverses the expression calculating the origin of the requested
|
|
/// byte of the given value. Returns None if the provider can't be calculated.
|
|
///
|
|
/// For all the values except the root of the expression verifies that the value
|
|
/// has exactly one use and if it's not true return None. This way if the origin
|
|
/// of the byte is returned it's guaranteed that the values which contribute to
|
|
/// the byte are not used outside of this expression.
|
|
///
|
|
/// Because the parts of the expression are not allowed to have more than one
|
|
/// use this function iterates over trees, not DAGs. So it never visits the same
|
|
/// node more than once.
|
|
static const Optional<ByteProvider>
|
|
calculateByteProvider(SDValue Op, unsigned Index, unsigned Depth,
|
|
bool Root = false) {
|
|
// Typical i64 by i8 pattern requires recursion up to 8 calls depth
|
|
if (Depth == 10)
|
|
return None;
|
|
|
|
if (!Root && !Op.hasOneUse())
|
|
return None;
|
|
|
|
assert(Op.getValueType().isScalarInteger() && "can't handle other types");
|
|
unsigned BitWidth = Op.getValueSizeInBits();
|
|
if (BitWidth % 8 != 0)
|
|
return None;
|
|
unsigned ByteWidth = BitWidth / 8;
|
|
assert(Index < ByteWidth && "invalid index requested");
|
|
(void) ByteWidth;
|
|
|
|
switch (Op.getOpcode()) {
|
|
case ISD::OR: {
|
|
auto LHS = calculateByteProvider(Op->getOperand(0), Index, Depth + 1);
|
|
if (!LHS)
|
|
return None;
|
|
auto RHS = calculateByteProvider(Op->getOperand(1), Index, Depth + 1);
|
|
if (!RHS)
|
|
return None;
|
|
|
|
if (LHS->isConstantZero())
|
|
return RHS;
|
|
if (RHS->isConstantZero())
|
|
return LHS;
|
|
return None;
|
|
}
|
|
case ISD::SHL: {
|
|
auto ShiftOp = dyn_cast<ConstantSDNode>(Op->getOperand(1));
|
|
if (!ShiftOp)
|
|
return None;
|
|
|
|
uint64_t BitShift = ShiftOp->getZExtValue();
|
|
if (BitShift % 8 != 0)
|
|
return None;
|
|
uint64_t ByteShift = BitShift / 8;
|
|
|
|
return Index < ByteShift
|
|
? ByteProvider::getConstantZero()
|
|
: calculateByteProvider(Op->getOperand(0), Index - ByteShift,
|
|
Depth + 1);
|
|
}
|
|
case ISD::ANY_EXTEND:
|
|
case ISD::SIGN_EXTEND:
|
|
case ISD::ZERO_EXTEND: {
|
|
SDValue NarrowOp = Op->getOperand(0);
|
|
unsigned NarrowBitWidth = NarrowOp.getScalarValueSizeInBits();
|
|
if (NarrowBitWidth % 8 != 0)
|
|
return None;
|
|
uint64_t NarrowByteWidth = NarrowBitWidth / 8;
|
|
|
|
if (Index >= NarrowByteWidth)
|
|
return Op.getOpcode() == ISD::ZERO_EXTEND
|
|
? Optional<ByteProvider>(ByteProvider::getConstantZero())
|
|
: None;
|
|
return calculateByteProvider(NarrowOp, Index, Depth + 1);
|
|
}
|
|
case ISD::BSWAP:
|
|
return calculateByteProvider(Op->getOperand(0), ByteWidth - Index - 1,
|
|
Depth + 1);
|
|
case ISD::LOAD: {
|
|
auto L = cast<LoadSDNode>(Op.getNode());
|
|
if (!L->isSimple() || L->isIndexed())
|
|
return None;
|
|
|
|
unsigned NarrowBitWidth = L->getMemoryVT().getSizeInBits();
|
|
if (NarrowBitWidth % 8 != 0)
|
|
return None;
|
|
uint64_t NarrowByteWidth = NarrowBitWidth / 8;
|
|
|
|
if (Index >= NarrowByteWidth)
|
|
return L->getExtensionType() == ISD::ZEXTLOAD
|
|
? Optional<ByteProvider>(ByteProvider::getConstantZero())
|
|
: None;
|
|
return ByteProvider::getMemory(L, Index);
|
|
}
|
|
}
|
|
|
|
return None;
|
|
}
|
|
|
|
static unsigned littleEndianByteAt(unsigned BW, unsigned i) {
|
|
return i;
|
|
}
|
|
|
|
static unsigned bigEndianByteAt(unsigned BW, unsigned i) {
|
|
return BW - i - 1;
|
|
}
|
|
|
|
// Check if the bytes offsets we are looking at match with either big or
|
|
// little endian value loaded. Return true for big endian, false for little
|
|
// endian, and None if match failed.
|
|
static Optional<bool> isBigEndian(const ArrayRef<int64_t> ByteOffsets,
|
|
int64_t FirstOffset) {
|
|
// The endian can be decided only when it is 2 bytes at least.
|
|
unsigned Width = ByteOffsets.size();
|
|
if (Width < 2)
|
|
return None;
|
|
|
|
bool BigEndian = true, LittleEndian = true;
|
|
for (unsigned i = 0; i < Width; i++) {
|
|
int64_t CurrentByteOffset = ByteOffsets[i] - FirstOffset;
|
|
LittleEndian &= CurrentByteOffset == littleEndianByteAt(Width, i);
|
|
BigEndian &= CurrentByteOffset == bigEndianByteAt(Width, i);
|
|
if (!BigEndian && !LittleEndian)
|
|
return None;
|
|
}
|
|
|
|
assert((BigEndian != LittleEndian) && "It should be either big endian or"
|
|
"little endian");
|
|
return BigEndian;
|
|
}
|
|
|
|
static SDValue stripTruncAndExt(SDValue Value) {
|
|
switch (Value.getOpcode()) {
|
|
case ISD::TRUNCATE:
|
|
case ISD::ZERO_EXTEND:
|
|
case ISD::SIGN_EXTEND:
|
|
case ISD::ANY_EXTEND:
|
|
return stripTruncAndExt(Value.getOperand(0));
|
|
}
|
|
return Value;
|
|
}
|
|
|
|
/// Match a pattern where a wide type scalar value is stored by several narrow
|
|
/// stores. Fold it into a single store or a BSWAP and a store if the targets
|
|
/// supports it.
|
|
///
|
|
/// Assuming little endian target:
|
|
/// i8 *p = ...
|
|
/// i32 val = ...
|
|
/// p[0] = (val >> 0) & 0xFF;
|
|
/// p[1] = (val >> 8) & 0xFF;
|
|
/// p[2] = (val >> 16) & 0xFF;
|
|
/// p[3] = (val >> 24) & 0xFF;
|
|
/// =>
|
|
/// *((i32)p) = val;
|
|
///
|
|
/// i8 *p = ...
|
|
/// i32 val = ...
|
|
/// p[0] = (val >> 24) & 0xFF;
|
|
/// p[1] = (val >> 16) & 0xFF;
|
|
/// p[2] = (val >> 8) & 0xFF;
|
|
/// p[3] = (val >> 0) & 0xFF;
|
|
/// =>
|
|
/// *((i32)p) = BSWAP(val);
|
|
SDValue DAGCombiner::mergeTruncStores(StoreSDNode *N) {
|
|
// The matching looks for "store (trunc x)" patterns that appear early but are
|
|
// likely to be replaced by truncating store nodes during combining.
|
|
// TODO: If there is evidence that running this later would help, this
|
|
// limitation could be removed. Legality checks may need to be added
|
|
// for the created store and optional bswap/rotate.
|
|
if (LegalOperations)
|
|
return SDValue();
|
|
|
|
// We only handle merging simple stores of 1-4 bytes.
|
|
// TODO: Allow unordered atomics when wider type is legal (see D66309)
|
|
EVT MemVT = N->getMemoryVT();
|
|
if (!(MemVT == MVT::i8 || MemVT == MVT::i16 || MemVT == MVT::i32) ||
|
|
!N->isSimple() || N->isIndexed())
|
|
return SDValue();
|
|
|
|
// Collect all of the stores in the chain.
|
|
SDValue Chain = N->getChain();
|
|
SmallVector<StoreSDNode *, 8> Stores = {N};
|
|
while (auto *Store = dyn_cast<StoreSDNode>(Chain)) {
|
|
// All stores must be the same size to ensure that we are writing all of the
|
|
// bytes in the wide value.
|
|
// TODO: We could allow multiple sizes by tracking each stored byte.
|
|
if (Store->getMemoryVT() != MemVT || !Store->isSimple() ||
|
|
Store->isIndexed())
|
|
return SDValue();
|
|
Stores.push_back(Store);
|
|
Chain = Store->getChain();
|
|
}
|
|
// There is no reason to continue if we do not have at least a pair of stores.
|
|
if (Stores.size() < 2)
|
|
return SDValue();
|
|
|
|
// Handle simple types only.
|
|
LLVMContext &Context = *DAG.getContext();
|
|
unsigned NumStores = Stores.size();
|
|
unsigned NarrowNumBits = N->getMemoryVT().getScalarSizeInBits();
|
|
unsigned WideNumBits = NumStores * NarrowNumBits;
|
|
EVT WideVT = EVT::getIntegerVT(Context, WideNumBits);
|
|
if (WideVT != MVT::i16 && WideVT != MVT::i32 && WideVT != MVT::i64)
|
|
return SDValue();
|
|
|
|
// Check if all bytes of the source value that we are looking at are stored
|
|
// to the same base address. Collect offsets from Base address into OffsetMap.
|
|
SDValue SourceValue;
|
|
SmallVector<int64_t, 8> OffsetMap(NumStores, INT64_MAX);
|
|
int64_t FirstOffset = INT64_MAX;
|
|
StoreSDNode *FirstStore = nullptr;
|
|
Optional<BaseIndexOffset> Base;
|
|
for (auto Store : Stores) {
|
|
// All the stores store different parts of the CombinedValue. A truncate is
|
|
// required to get the partial value.
|
|
SDValue Trunc = Store->getValue();
|
|
if (Trunc.getOpcode() != ISD::TRUNCATE)
|
|
return SDValue();
|
|
// Other than the first/last part, a shift operation is required to get the
|
|
// offset.
|
|
int64_t Offset = 0;
|
|
SDValue WideVal = Trunc.getOperand(0);
|
|
if ((WideVal.getOpcode() == ISD::SRL || WideVal.getOpcode() == ISD::SRA) &&
|
|
isa<ConstantSDNode>(WideVal.getOperand(1))) {
|
|
// The shift amount must be a constant multiple of the narrow type.
|
|
// It is translated to the offset address in the wide source value "y".
|
|
//
|
|
// x = srl y, ShiftAmtC
|
|
// i8 z = trunc x
|
|
// store z, ...
|
|
uint64_t ShiftAmtC = WideVal.getConstantOperandVal(1);
|
|
if (ShiftAmtC % NarrowNumBits != 0)
|
|
return SDValue();
|
|
|
|
Offset = ShiftAmtC / NarrowNumBits;
|
|
WideVal = WideVal.getOperand(0);
|
|
}
|
|
|
|
// Stores must share the same source value with different offsets.
|
|
// Truncate and extends should be stripped to get the single source value.
|
|
if (!SourceValue)
|
|
SourceValue = WideVal;
|
|
else if (stripTruncAndExt(SourceValue) != stripTruncAndExt(WideVal))
|
|
return SDValue();
|
|
else if (SourceValue.getValueType() != WideVT) {
|
|
if (WideVal.getValueType() == WideVT ||
|
|
WideVal.getScalarValueSizeInBits() >
|
|
SourceValue.getScalarValueSizeInBits())
|
|
SourceValue = WideVal;
|
|
// Give up if the source value type is smaller than the store size.
|
|
if (SourceValue.getScalarValueSizeInBits() < WideVT.getScalarSizeInBits())
|
|
return SDValue();
|
|
}
|
|
|
|
// Stores must share the same base address.
|
|
BaseIndexOffset Ptr = BaseIndexOffset::match(Store, DAG);
|
|
int64_t ByteOffsetFromBase = 0;
|
|
if (!Base)
|
|
Base = Ptr;
|
|
else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase))
|
|
return SDValue();
|
|
|
|
// Remember the first store.
|
|
if (ByteOffsetFromBase < FirstOffset) {
|
|
FirstStore = Store;
|
|
FirstOffset = ByteOffsetFromBase;
|
|
}
|
|
// Map the offset in the store and the offset in the combined value, and
|
|
// early return if it has been set before.
|
|
if (Offset < 0 || Offset >= NumStores || OffsetMap[Offset] != INT64_MAX)
|
|
return SDValue();
|
|
OffsetMap[Offset] = ByteOffsetFromBase;
|
|
}
|
|
|
|
assert(FirstOffset != INT64_MAX && "First byte offset must be set");
|
|
assert(FirstStore && "First store must be set");
|
|
|
|
// Check that a store of the wide type is both allowed and fast on the target
|
|
const DataLayout &Layout = DAG.getDataLayout();
|
|
bool Fast = false;
|
|
bool Allowed = TLI.allowsMemoryAccess(Context, Layout, WideVT,
|
|
*FirstStore->getMemOperand(), &Fast);
|
|
if (!Allowed || !Fast)
|
|
return SDValue();
|
|
|
|
// Check if the pieces of the value are going to the expected places in memory
|
|
// to merge the stores.
|
|
auto checkOffsets = [&](bool MatchLittleEndian) {
|
|
if (MatchLittleEndian) {
|
|
for (unsigned i = 0; i != NumStores; ++i)
|
|
if (OffsetMap[i] != i * (NarrowNumBits / 8) + FirstOffset)
|
|
return false;
|
|
} else { // MatchBigEndian by reversing loop counter.
|
|
for (unsigned i = 0, j = NumStores - 1; i != NumStores; ++i, --j)
|
|
if (OffsetMap[j] != i * (NarrowNumBits / 8) + FirstOffset)
|
|
return false;
|
|
}
|
|
return true;
|
|
};
|
|
|
|
// Check if the offsets line up for the native data layout of this target.
|
|
bool NeedBswap = false;
|
|
bool NeedRotate = false;
|
|
if (!checkOffsets(Layout.isLittleEndian())) {
|
|
// Special-case: check if byte offsets line up for the opposite endian.
|
|
if (NarrowNumBits == 8 && checkOffsets(Layout.isBigEndian()))
|
|
NeedBswap = true;
|
|
else if (NumStores == 2 && checkOffsets(Layout.isBigEndian()))
|
|
NeedRotate = true;
|
|
else
|
|
return SDValue();
|
|
}
|
|
|
|
SDLoc DL(N);
|
|
if (WideVT != SourceValue.getValueType()) {
|
|
assert(SourceValue.getValueType().getScalarSizeInBits() > WideNumBits &&
|
|
"Unexpected store value to merge");
|
|
SourceValue = DAG.getNode(ISD::TRUNCATE, DL, WideVT, SourceValue);
|
|
}
|
|
|
|
// Before legalize we can introduce illegal bswaps/rotates which will be later
|
|
// converted to an explicit bswap sequence. This way we end up with a single
|
|
// store and byte shuffling instead of several stores and byte shuffling.
|
|
if (NeedBswap) {
|
|
SourceValue = DAG.getNode(ISD::BSWAP, DL, WideVT, SourceValue);
|
|
} else if (NeedRotate) {
|
|
assert(WideNumBits % 2 == 0 && "Unexpected type for rotate");
|
|
SDValue RotAmt = DAG.getConstant(WideNumBits / 2, DL, WideVT);
|
|
SourceValue = DAG.getNode(ISD::ROTR, DL, WideVT, SourceValue, RotAmt);
|
|
}
|
|
|
|
SDValue NewStore =
|
|
DAG.getStore(Chain, DL, SourceValue, FirstStore->getBasePtr(),
|
|
FirstStore->getPointerInfo(), FirstStore->getAlign());
|
|
|
|
// Rely on other DAG combine rules to remove the other individual stores.
|
|
DAG.ReplaceAllUsesWith(N, NewStore.getNode());
|
|
return NewStore;
|
|
}
|
|
|
|
/// Match a pattern where a wide type scalar value is loaded by several narrow
|
|
/// loads and combined by shifts and ors. Fold it into a single load or a load
|
|
/// and a BSWAP if the targets supports it.
|
|
///
|
|
/// Assuming little endian target:
|
|
/// i8 *a = ...
|
|
/// i32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24)
|
|
/// =>
|
|
/// i32 val = *((i32)a)
|
|
///
|
|
/// i8 *a = ...
|
|
/// i32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3]
|
|
/// =>
|
|
/// i32 val = BSWAP(*((i32)a))
|
|
///
|
|
/// TODO: This rule matches complex patterns with OR node roots and doesn't
|
|
/// interact well with the worklist mechanism. When a part of the pattern is
|
|
/// updated (e.g. one of the loads) its direct users are put into the worklist,
|
|
/// but the root node of the pattern which triggers the load combine is not
|
|
/// necessarily a direct user of the changed node. For example, once the address
|
|
/// of t28 load is reassociated load combine won't be triggered:
|
|
/// t25: i32 = add t4, Constant:i32<2>
|
|
/// t26: i64 = sign_extend t25
|
|
/// t27: i64 = add t2, t26
|
|
/// t28: i8,ch = load<LD1[%tmp9]> t0, t27, undef:i64
|
|
/// t29: i32 = zero_extend t28
|
|
/// t32: i32 = shl t29, Constant:i8<8>
|
|
/// t33: i32 = or t23, t32
|
|
/// As a possible fix visitLoad can check if the load can be a part of a load
|
|
/// combine pattern and add corresponding OR roots to the worklist.
|
|
SDValue DAGCombiner::MatchLoadCombine(SDNode *N) {
|
|
assert(N->getOpcode() == ISD::OR &&
|
|
"Can only match load combining against OR nodes");
|
|
|
|
// Handles simple types only
|
|
EVT VT = N->getValueType(0);
|
|
if (VT != MVT::i16 && VT != MVT::i32 && VT != MVT::i64)
|
|
return SDValue();
|
|
unsigned ByteWidth = VT.getSizeInBits() / 8;
|
|
|
|
bool IsBigEndianTarget = DAG.getDataLayout().isBigEndian();
|
|
auto MemoryByteOffset = [&] (ByteProvider P) {
|
|
assert(P.isMemory() && "Must be a memory byte provider");
|
|
unsigned LoadBitWidth = P.Load->getMemoryVT().getSizeInBits();
|
|
assert(LoadBitWidth % 8 == 0 &&
|
|
"can only analyze providers for individual bytes not bit");
|
|
unsigned LoadByteWidth = LoadBitWidth / 8;
|
|
return IsBigEndianTarget
|
|
? bigEndianByteAt(LoadByteWidth, P.ByteOffset)
|
|
: littleEndianByteAt(LoadByteWidth, P.ByteOffset);
|
|
};
|
|
|
|
Optional<BaseIndexOffset> Base;
|
|
SDValue Chain;
|
|
|
|
SmallPtrSet<LoadSDNode *, 8> Loads;
|
|
Optional<ByteProvider> FirstByteProvider;
|
|
int64_t FirstOffset = INT64_MAX;
|
|
|
|
// Check if all the bytes of the OR we are looking at are loaded from the same
|
|
// base address. Collect bytes offsets from Base address in ByteOffsets.
|
|
SmallVector<int64_t, 8> ByteOffsets(ByteWidth);
|
|
unsigned ZeroExtendedBytes = 0;
|
|
for (int i = ByteWidth - 1; i >= 0; --i) {
|
|
auto P = calculateByteProvider(SDValue(N, 0), i, 0, /*Root=*/true);
|
|
if (!P)
|
|
return SDValue();
|
|
|
|
if (P->isConstantZero()) {
|
|
// It's OK for the N most significant bytes to be 0, we can just
|
|
// zero-extend the load.
|
|
if (++ZeroExtendedBytes != (ByteWidth - static_cast<unsigned>(i)))
|
|
return SDValue();
|
|
continue;
|
|
}
|
|
assert(P->isMemory() && "provenance should either be memory or zero");
|
|
|
|
LoadSDNode *L = P->Load;
|
|
assert(L->hasNUsesOfValue(1, 0) && L->isSimple() &&
|
|
!L->isIndexed() &&
|
|
"Must be enforced by calculateByteProvider");
|
|
assert(L->getOffset().isUndef() && "Unindexed load must have undef offset");
|
|
|
|
// All loads must share the same chain
|
|
SDValue LChain = L->getChain();
|
|
if (!Chain)
|
|
Chain = LChain;
|
|
else if (Chain != LChain)
|
|
return SDValue();
|
|
|
|
// Loads must share the same base address
|
|
BaseIndexOffset Ptr = BaseIndexOffset::match(L, DAG);
|
|
int64_t ByteOffsetFromBase = 0;
|
|
if (!Base)
|
|
Base = Ptr;
|
|
else if (!Base->equalBaseIndex(Ptr, DAG, ByteOffsetFromBase))
|
|
return SDValue();
|
|
|
|
// Calculate the offset of the current byte from the base address
|
|
ByteOffsetFromBase += MemoryByteOffset(*P);
|
|
ByteOffsets[i] = ByteOffsetFromBase;
|
|
|
|
// Remember the first byte load
|
|
if (ByteOffsetFromBase < FirstOffset) {
|
|
FirstByteProvider = P;
|
|
FirstOffset = ByteOffsetFromBase;
|
|
}
|
|
|
|
Loads.insert(L);
|
|
}
|
|
assert(!Loads.empty() && "All the bytes of the value must be loaded from "
|
|
"memory, so there must be at least one load which produces the value");
|
|
assert(Base && "Base address of the accessed memory location must be set");
|
|
assert(FirstOffset != INT64_MAX && "First byte offset must be set");
|
|
|
|
bool NeedsZext = ZeroExtendedBytes > 0;
|
|
|
|
EVT MemVT =
|
|
EVT::getIntegerVT(*DAG.getContext(), (ByteWidth - ZeroExtendedBytes) * 8);
|
|
|
|
if (!MemVT.isSimple())
|
|
return SDValue();
|
|
|
|
// Before legalize we can introduce too wide illegal loads which will be later
|
|
// split into legal sized loads. This enables us to combine i64 load by i8
|
|
// patterns to a couple of i32 loads on 32 bit targets.
|
|
if (LegalOperations &&
|
|
!TLI.isOperationLegal(NeedsZext ? ISD::ZEXTLOAD : ISD::NON_EXTLOAD,
|
|
MemVT))
|
|
return SDValue();
|
|
|
|
// Check if the bytes of the OR we are looking at match with either big or
|
|
// little endian value load
|
|
Optional<bool> IsBigEndian = isBigEndian(
|
|
makeArrayRef(ByteOffsets).drop_back(ZeroExtendedBytes), FirstOffset);
|
|
if (!IsBigEndian.hasValue())
|
|
return SDValue();
|
|
|
|
assert(FirstByteProvider && "must be set");
|
|
|
|
// Ensure that the first byte is loaded from zero offset of the first load.
|
|
// So the combined value can be loaded from the first load address.
|
|
if (MemoryByteOffset(*FirstByteProvider) != 0)
|
|
return SDValue();
|
|
LoadSDNode *FirstLoad = FirstByteProvider->Load;
|
|
|
|
// The node we are looking at matches with the pattern, check if we can
|
|
// replace it with a single (possibly zero-extended) load and bswap + shift if
|
|
// needed.
|
|
|
|
// If the load needs byte swap check if the target supports it
|
|
bool NeedsBswap = IsBigEndianTarget != *IsBigEndian;
|
|
|
|
// Before legalize we can introduce illegal bswaps which will be later
|
|
// converted to an explicit bswap sequence. This way we end up with a single
|
|
// load and byte shuffling instead of several loads and byte shuffling.
|
|
// We do not introduce illegal bswaps when zero-extending as this tends to
|
|
// introduce too many arithmetic instructions.
|
|
if (NeedsBswap && (LegalOperations || NeedsZext) &&
|
|
!TLI.isOperationLegal(ISD::BSWAP, VT))
|
|
return SDValue();
|
|
|
|
// If we need to bswap and zero extend, we have to insert a shift. Check that
|
|
// it is legal.
|
|
if (NeedsBswap && NeedsZext && LegalOperations &&
|
|
!TLI.isOperationLegal(ISD::SHL, VT))
|
|
return SDValue();
|
|
|
|
// Check that a load of the wide type is both allowed and fast on the target
|
|
bool Fast = false;
|
|
bool Allowed =
|
|
TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT,
|
|
*FirstLoad->getMemOperand(), &Fast);
|
|
if (!Allowed || !Fast)
|
|
return SDValue();
|
|
|
|
SDValue NewLoad =
|
|
DAG.getExtLoad(NeedsZext ? ISD::ZEXTLOAD : ISD::NON_EXTLOAD, SDLoc(N), VT,
|
|
Chain, FirstLoad->getBasePtr(),
|
|
FirstLoad->getPointerInfo(), MemVT, FirstLoad->getAlign());
|
|
|
|
// Transfer chain users from old loads to the new load.
|
|
for (LoadSDNode *L : Loads)
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(L, 1), SDValue(NewLoad.getNode(), 1));
|
|
|
|
if (!NeedsBswap)
|
|
return NewLoad;
|
|
|
|
SDValue ShiftedLoad =
|
|
NeedsZext
|
|
? DAG.getNode(ISD::SHL, SDLoc(N), VT, NewLoad,
|
|
DAG.getShiftAmountConstant(ZeroExtendedBytes * 8, VT,
|
|
SDLoc(N), LegalOperations))
|
|
: NewLoad;
|
|
return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, ShiftedLoad);
|
|
}
|
|
|
|
// If the target has andn, bsl, or a similar bit-select instruction,
|
|
// we want to unfold masked merge, with canonical pattern of:
|
|
// | A | |B|
|
|
// ((x ^ y) & m) ^ y
|
|
// | D |
|
|
// Into:
|
|
// (x & m) | (y & ~m)
|
|
// If y is a constant, and the 'andn' does not work with immediates,
|
|
// we unfold into a different pattern:
|
|
// ~(~x & m) & (m | y)
|
|
// NOTE: we don't unfold the pattern if 'xor' is actually a 'not', because at
|
|
// the very least that breaks andnpd / andnps patterns, and because those
|
|
// patterns are simplified in IR and shouldn't be created in the DAG
|
|
SDValue DAGCombiner::unfoldMaskedMerge(SDNode *N) {
|
|
assert(N->getOpcode() == ISD::XOR);
|
|
|
|
// Don't touch 'not' (i.e. where y = -1).
|
|
if (isAllOnesOrAllOnesSplat(N->getOperand(1)))
|
|
return SDValue();
|
|
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// There are 3 commutable operators in the pattern,
|
|
// so we have to deal with 8 possible variants of the basic pattern.
|
|
SDValue X, Y, M;
|
|
auto matchAndXor = [&X, &Y, &M](SDValue And, unsigned XorIdx, SDValue Other) {
|
|
if (And.getOpcode() != ISD::AND || !And.hasOneUse())
|
|
return false;
|
|
SDValue Xor = And.getOperand(XorIdx);
|
|
if (Xor.getOpcode() != ISD::XOR || !Xor.hasOneUse())
|
|
return false;
|
|
SDValue Xor0 = Xor.getOperand(0);
|
|
SDValue Xor1 = Xor.getOperand(1);
|
|
// Don't touch 'not' (i.e. where y = -1).
|
|
if (isAllOnesOrAllOnesSplat(Xor1))
|
|
return false;
|
|
if (Other == Xor0)
|
|
std::swap(Xor0, Xor1);
|
|
if (Other != Xor1)
|
|
return false;
|
|
X = Xor0;
|
|
Y = Xor1;
|
|
M = And.getOperand(XorIdx ? 0 : 1);
|
|
return true;
|
|
};
|
|
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
if (!matchAndXor(N0, 0, N1) && !matchAndXor(N0, 1, N1) &&
|
|
!matchAndXor(N1, 0, N0) && !matchAndXor(N1, 1, N0))
|
|
return SDValue();
|
|
|
|
// Don't do anything if the mask is constant. This should not be reachable.
|
|
// InstCombine should have already unfolded this pattern, and DAGCombiner
|
|
// probably shouldn't produce it, too.
|
|
if (isa<ConstantSDNode>(M.getNode()))
|
|
return SDValue();
|
|
|
|
// We can transform if the target has AndNot
|
|
if (!TLI.hasAndNot(M))
|
|
return SDValue();
|
|
|
|
SDLoc DL(N);
|
|
|
|
// If Y is a constant, check that 'andn' works with immediates.
|
|
if (!TLI.hasAndNot(Y)) {
|
|
assert(TLI.hasAndNot(X) && "Only mask is a variable? Unreachable.");
|
|
// If not, we need to do a bit more work to make sure andn is still used.
|
|
SDValue NotX = DAG.getNOT(DL, X, VT);
|
|
SDValue LHS = DAG.getNode(ISD::AND, DL, VT, NotX, M);
|
|
SDValue NotLHS = DAG.getNOT(DL, LHS, VT);
|
|
SDValue RHS = DAG.getNode(ISD::OR, DL, VT, M, Y);
|
|
return DAG.getNode(ISD::AND, DL, VT, NotLHS, RHS);
|
|
}
|
|
|
|
SDValue LHS = DAG.getNode(ISD::AND, DL, VT, X, M);
|
|
SDValue NotM = DAG.getNOT(DL, M, VT);
|
|
SDValue RHS = DAG.getNode(ISD::AND, DL, VT, Y, NotM);
|
|
|
|
return DAG.getNode(ISD::OR, DL, VT, LHS, RHS);
|
|
}
|
|
|
|
SDValue DAGCombiner::visitXOR(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
EVT VT = N0.getValueType();
|
|
|
|
// fold vector ops
|
|
if (VT.isVector()) {
|
|
if (SDValue FoldedVOp = SimplifyVBinOp(N))
|
|
return FoldedVOp;
|
|
|
|
// fold (xor x, 0) -> x, vector edition
|
|
if (ISD::isConstantSplatVectorAllZeros(N0.getNode()))
|
|
return N1;
|
|
if (ISD::isConstantSplatVectorAllZeros(N1.getNode()))
|
|
return N0;
|
|
}
|
|
|
|
// fold (xor undef, undef) -> 0. This is a common idiom (misuse).
|
|
SDLoc DL(N);
|
|
if (N0.isUndef() && N1.isUndef())
|
|
return DAG.getConstant(0, DL, VT);
|
|
|
|
// fold (xor x, undef) -> undef
|
|
if (N0.isUndef())
|
|
return N0;
|
|
if (N1.isUndef())
|
|
return N1;
|
|
|
|
// fold (xor c1, c2) -> c1^c2
|
|
if (SDValue C = DAG.FoldConstantArithmetic(ISD::XOR, DL, VT, {N0, N1}))
|
|
return C;
|
|
|
|
// canonicalize constant to RHS
|
|
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
|
|
!DAG.isConstantIntBuildVectorOrConstantInt(N1))
|
|
return DAG.getNode(ISD::XOR, DL, VT, N1, N0);
|
|
|
|
// fold (xor x, 0) -> x
|
|
if (isNullConstant(N1))
|
|
return N0;
|
|
|
|
if (SDValue NewSel = foldBinOpIntoSelect(N))
|
|
return NewSel;
|
|
|
|
// reassociate xor
|
|
if (SDValue RXOR = reassociateOps(ISD::XOR, DL, N0, N1, N->getFlags()))
|
|
return RXOR;
|
|
|
|
// fold !(x cc y) -> (x !cc y)
|
|
unsigned N0Opcode = N0.getOpcode();
|
|
SDValue LHS, RHS, CC;
|
|
if (TLI.isConstTrueVal(N1.getNode()) &&
|
|
isSetCCEquivalent(N0, LHS, RHS, CC, /*MatchStrict*/true)) {
|
|
ISD::CondCode NotCC = ISD::getSetCCInverse(cast<CondCodeSDNode>(CC)->get(),
|
|
LHS.getValueType());
|
|
if (!LegalOperations ||
|
|
TLI.isCondCodeLegal(NotCC, LHS.getSimpleValueType())) {
|
|
switch (N0Opcode) {
|
|
default:
|
|
llvm_unreachable("Unhandled SetCC Equivalent!");
|
|
case ISD::SETCC:
|
|
return DAG.getSetCC(SDLoc(N0), VT, LHS, RHS, NotCC);
|
|
case ISD::SELECT_CC:
|
|
return DAG.getSelectCC(SDLoc(N0), LHS, RHS, N0.getOperand(2),
|
|
N0.getOperand(3), NotCC);
|
|
case ISD::STRICT_FSETCC:
|
|
case ISD::STRICT_FSETCCS: {
|
|
if (N0.hasOneUse()) {
|
|
// FIXME Can we handle multiple uses? Could we token factor the chain
|
|
// results from the new/old setcc?
|
|
SDValue SetCC =
|
|
DAG.getSetCC(SDLoc(N0), VT, LHS, RHS, NotCC,
|
|
N0.getOperand(0), N0Opcode == ISD::STRICT_FSETCCS);
|
|
CombineTo(N, SetCC);
|
|
DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), SetCC.getValue(1));
|
|
recursivelyDeleteUnusedNodes(N0.getNode());
|
|
return SDValue(N, 0); // Return N so it doesn't get rechecked!
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// fold (not (zext (setcc x, y))) -> (zext (not (setcc x, y)))
|
|
if (isOneConstant(N1) && N0Opcode == ISD::ZERO_EXTEND && N0.hasOneUse() &&
|
|
isSetCCEquivalent(N0.getOperand(0), LHS, RHS, CC)){
|
|
SDValue V = N0.getOperand(0);
|
|
SDLoc DL0(N0);
|
|
V = DAG.getNode(ISD::XOR, DL0, V.getValueType(), V,
|
|
DAG.getConstant(1, DL0, V.getValueType()));
|
|
AddToWorklist(V.getNode());
|
|
return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, V);
|
|
}
|
|
|
|
// fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are setcc
|
|
if (isOneConstant(N1) && VT == MVT::i1 && N0.hasOneUse() &&
|
|
(N0Opcode == ISD::OR || N0Opcode == ISD::AND)) {
|
|
SDValue N00 = N0.getOperand(0), N01 = N0.getOperand(1);
|
|
if (isOneUseSetCC(N01) || isOneUseSetCC(N00)) {
|
|
unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND;
|
|
N00 = DAG.getNode(ISD::XOR, SDLoc(N00), VT, N00, N1); // N00 = ~N00
|
|
N01 = DAG.getNode(ISD::XOR, SDLoc(N01), VT, N01, N1); // N01 = ~N01
|
|
AddToWorklist(N00.getNode()); AddToWorklist(N01.getNode());
|
|
return DAG.getNode(NewOpcode, DL, VT, N00, N01);
|
|
}
|
|
}
|
|
// fold (not (or x, y)) -> (and (not x), (not y)) iff x or y are constants
|
|
if (isAllOnesConstant(N1) && N0.hasOneUse() &&
|
|
(N0Opcode == ISD::OR || N0Opcode == ISD::AND)) {
|
|
SDValue N00 = N0.getOperand(0), N01 = N0.getOperand(1);
|
|
if (isa<ConstantSDNode>(N01) || isa<ConstantSDNode>(N00)) {
|
|
unsigned NewOpcode = N0Opcode == ISD::AND ? ISD::OR : ISD::AND;
|
|
N00 = DAG.getNode(ISD::XOR, SDLoc(N00), VT, N00, N1); // N00 = ~N00
|
|
N01 = DAG.getNode(ISD::XOR, SDLoc(N01), VT, N01, N1); // N01 = ~N01
|
|
AddToWorklist(N00.getNode()); AddToWorklist(N01.getNode());
|
|
return DAG.getNode(NewOpcode, DL, VT, N00, N01);
|
|
}
|
|
}
|
|
|
|
// fold (not (neg x)) -> (add X, -1)
|
|
// FIXME: This can be generalized to (not (sub Y, X)) -> (add X, ~Y) if
|
|
// Y is a constant or the subtract has a single use.
|
|
if (isAllOnesConstant(N1) && N0.getOpcode() == ISD::SUB &&
|
|
isNullConstant(N0.getOperand(0))) {
|
|
return DAG.getNode(ISD::ADD, DL, VT, N0.getOperand(1),
|
|
DAG.getAllOnesConstant(DL, VT));
|
|
}
|
|
|
|
// fold (not (add X, -1)) -> (neg X)
|
|
if (isAllOnesConstant(N1) && N0.getOpcode() == ISD::ADD &&
|
|
isAllOnesOrAllOnesSplat(N0.getOperand(1))) {
|
|
return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
|
|
N0.getOperand(0));
|
|
}
|
|
|
|
// fold (xor (and x, y), y) -> (and (not x), y)
|
|
if (N0Opcode == ISD::AND && N0.hasOneUse() && N0->getOperand(1) == N1) {
|
|
SDValue X = N0.getOperand(0);
|
|
SDValue NotX = DAG.getNOT(SDLoc(X), X, VT);
|
|
AddToWorklist(NotX.getNode());
|
|
return DAG.getNode(ISD::AND, DL, VT, NotX, N1);
|
|
}
|
|
|
|
if ((N0Opcode == ISD::SRL || N0Opcode == ISD::SHL) && N0.hasOneUse()) {
|
|
ConstantSDNode *XorC = isConstOrConstSplat(N1);
|
|
ConstantSDNode *ShiftC = isConstOrConstSplat(N0.getOperand(1));
|
|
unsigned BitWidth = VT.getScalarSizeInBits();
|
|
if (XorC && ShiftC) {
|
|
// Don't crash on an oversized shift. We can not guarantee that a bogus
|
|
// shift has been simplified to undef.
|
|
uint64_t ShiftAmt = ShiftC->getLimitedValue();
|
|
if (ShiftAmt < BitWidth) {
|
|
APInt Ones = APInt::getAllOnesValue(BitWidth);
|
|
Ones = N0Opcode == ISD::SHL ? Ones.shl(ShiftAmt) : Ones.lshr(ShiftAmt);
|
|
if (XorC->getAPIntValue() == Ones) {
|
|
// If the xor constant is a shifted -1, do a 'not' before the shift:
|
|
// xor (X << ShiftC), XorC --> (not X) << ShiftC
|
|
// xor (X >> ShiftC), XorC --> (not X) >> ShiftC
|
|
SDValue Not = DAG.getNOT(DL, N0.getOperand(0), VT);
|
|
return DAG.getNode(N0Opcode, DL, VT, Not, N0.getOperand(1));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// fold Y = sra (X, size(X)-1); xor (add (X, Y), Y) -> (abs X)
|
|
if (TLI.isOperationLegalOrCustom(ISD::ABS, VT)) {
|
|
SDValue A = N0Opcode == ISD::ADD ? N0 : N1;
|
|
SDValue S = N0Opcode == ISD::SRA ? N0 : N1;
|
|
if (A.getOpcode() == ISD::ADD && S.getOpcode() == ISD::SRA) {
|
|
SDValue A0 = A.getOperand(0), A1 = A.getOperand(1);
|
|
SDValue S0 = S.getOperand(0);
|
|
if ((A0 == S && A1 == S0) || (A1 == S && A0 == S0))
|
|
if (ConstantSDNode *C = isConstOrConstSplat(S.getOperand(1)))
|
|
if (C->getAPIntValue() == (VT.getScalarSizeInBits() - 1))
|
|
return DAG.getNode(ISD::ABS, DL, VT, S0);
|
|
}
|
|
}
|
|
|
|
// fold (xor x, x) -> 0
|
|
if (N0 == N1)
|
|
return tryFoldToZero(DL, TLI, VT, DAG, LegalOperations);
|
|
|
|
// fold (xor (shl 1, x), -1) -> (rotl ~1, x)
|
|
// Here is a concrete example of this equivalence:
|
|
// i16 x == 14
|
|
// i16 shl == 1 << 14 == 16384 == 0b0100000000000000
|
|
// i16 xor == ~(1 << 14) == 49151 == 0b1011111111111111
|
|
//
|
|
// =>
|
|
//
|
|
// i16 ~1 == 0b1111111111111110
|
|
// i16 rol(~1, 14) == 0b1011111111111111
|
|
//
|
|
// Some additional tips to help conceptualize this transform:
|
|
// - Try to see the operation as placing a single zero in a value of all ones.
|
|
// - There exists no value for x which would allow the result to contain zero.
|
|
// - Values of x larger than the bitwidth are undefined and do not require a
|
|
// consistent result.
|
|
// - Pushing the zero left requires shifting one bits in from the right.
|
|
// A rotate left of ~1 is a nice way of achieving the desired result.
|
|
if (TLI.isOperationLegalOrCustom(ISD::ROTL, VT) && N0Opcode == ISD::SHL &&
|
|
isAllOnesConstant(N1) && isOneConstant(N0.getOperand(0))) {
|
|
return DAG.getNode(ISD::ROTL, DL, VT, DAG.getConstant(~1, DL, VT),
|
|
N0.getOperand(1));
|
|
}
|
|
|
|
// Simplify: xor (op x...), (op y...) -> (op (xor x, y))
|
|
if (N0Opcode == N1.getOpcode())
|
|
if (SDValue V = hoistLogicOpWithSameOpcodeHands(N))
|
|
return V;
|
|
|
|
// Unfold ((x ^ y) & m) ^ y into (x & m) | (y & ~m) if profitable
|
|
if (SDValue MM = unfoldMaskedMerge(N))
|
|
return MM;
|
|
|
|
// Simplify the expression using non-local knowledge.
|
|
if (SimplifyDemandedBits(SDValue(N, 0)))
|
|
return SDValue(N, 0);
|
|
|
|
if (SDValue Combined = combineCarryDiamond(*this, DAG, TLI, N0, N1, N))
|
|
return Combined;
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// If we have a shift-by-constant of a bitwise logic op that itself has a
|
|
/// shift-by-constant operand with identical opcode, we may be able to convert
|
|
/// that into 2 independent shifts followed by the logic op. This is a
|
|
/// throughput improvement.
|
|
static SDValue combineShiftOfShiftedLogic(SDNode *Shift, SelectionDAG &DAG) {
|
|
// Match a one-use bitwise logic op.
|
|
SDValue LogicOp = Shift->getOperand(0);
|
|
if (!LogicOp.hasOneUse())
|
|
return SDValue();
|
|
|
|
unsigned LogicOpcode = LogicOp.getOpcode();
|
|
if (LogicOpcode != ISD::AND && LogicOpcode != ISD::OR &&
|
|
LogicOpcode != ISD::XOR)
|
|
return SDValue();
|
|
|
|
// Find a matching one-use shift by constant.
|
|
unsigned ShiftOpcode = Shift->getOpcode();
|
|
SDValue C1 = Shift->getOperand(1);
|
|
ConstantSDNode *C1Node = isConstOrConstSplat(C1);
|
|
assert(C1Node && "Expected a shift with constant operand");
|
|
const APInt &C1Val = C1Node->getAPIntValue();
|
|
auto matchFirstShift = [&](SDValue V, SDValue &ShiftOp,
|
|
const APInt *&ShiftAmtVal) {
|
|
if (V.getOpcode() != ShiftOpcode || !V.hasOneUse())
|
|
return false;
|
|
|
|
ConstantSDNode *ShiftCNode = isConstOrConstSplat(V.getOperand(1));
|
|
if (!ShiftCNode)
|
|
return false;
|
|
|
|
// Capture the shifted operand and shift amount value.
|
|
ShiftOp = V.getOperand(0);
|
|
ShiftAmtVal = &ShiftCNode->getAPIntValue();
|
|
|
|
// Shift amount types do not have to match their operand type, so check that
|
|
// the constants are the same width.
|
|
if (ShiftAmtVal->getBitWidth() != C1Val.getBitWidth())
|
|
return false;
|
|
|
|
// The fold is not valid if the sum of the shift values exceeds bitwidth.
|
|
if ((*ShiftAmtVal + C1Val).uge(V.getScalarValueSizeInBits()))
|
|
return false;
|
|
|
|
return true;
|
|
};
|
|
|
|
// Logic ops are commutative, so check each operand for a match.
|
|
SDValue X, Y;
|
|
const APInt *C0Val;
|
|
if (matchFirstShift(LogicOp.getOperand(0), X, C0Val))
|
|
Y = LogicOp.getOperand(1);
|
|
else if (matchFirstShift(LogicOp.getOperand(1), X, C0Val))
|
|
Y = LogicOp.getOperand(0);
|
|
else
|
|
return SDValue();
|
|
|
|
// shift (logic (shift X, C0), Y), C1 -> logic (shift X, C0+C1), (shift Y, C1)
|
|
SDLoc DL(Shift);
|
|
EVT VT = Shift->getValueType(0);
|
|
EVT ShiftAmtVT = Shift->getOperand(1).getValueType();
|
|
SDValue ShiftSumC = DAG.getConstant(*C0Val + C1Val, DL, ShiftAmtVT);
|
|
SDValue NewShift1 = DAG.getNode(ShiftOpcode, DL, VT, X, ShiftSumC);
|
|
SDValue NewShift2 = DAG.getNode(ShiftOpcode, DL, VT, Y, C1);
|
|
return DAG.getNode(LogicOpcode, DL, VT, NewShift1, NewShift2);
|
|
}
|
|
|
|
/// Handle transforms common to the three shifts, when the shift amount is a
|
|
/// constant.
|
|
/// We are looking for: (shift being one of shl/sra/srl)
|
|
/// shift (binop X, C0), C1
|
|
/// And want to transform into:
|
|
/// binop (shift X, C1), (shift C0, C1)
|
|
SDValue DAGCombiner::visitShiftByConstant(SDNode *N) {
|
|
assert(isConstOrConstSplat(N->getOperand(1)) && "Expected constant operand");
|
|
|
|
// Do not turn a 'not' into a regular xor.
|
|
if (isBitwiseNot(N->getOperand(0)))
|
|
return SDValue();
|
|
|
|
// The inner binop must be one-use, since we want to replace it.
|
|
SDValue LHS = N->getOperand(0);
|
|
if (!LHS.hasOneUse() || !TLI.isDesirableToCommuteWithShift(N, Level))
|
|
return SDValue();
|
|
|
|
// TODO: This is limited to early combining because it may reveal regressions
|
|
// otherwise. But since we just checked a target hook to see if this is
|
|
// desirable, that should have filtered out cases where this interferes
|
|
// with some other pattern matching.
|
|
if (!LegalTypes)
|
|
if (SDValue R = combineShiftOfShiftedLogic(N, DAG))
|
|
return R;
|
|
|
|
// We want to pull some binops through shifts, so that we have (and (shift))
|
|
// instead of (shift (and)), likewise for add, or, xor, etc. This sort of
|
|
// thing happens with address calculations, so it's important to canonicalize
|
|
// it.
|
|
switch (LHS.getOpcode()) {
|
|
default:
|
|
return SDValue();
|
|
case ISD::OR:
|
|
case ISD::XOR:
|
|
case ISD::AND:
|
|
break;
|
|
case ISD::ADD:
|
|
if (N->getOpcode() != ISD::SHL)
|
|
return SDValue(); // only shl(add) not sr[al](add).
|
|
break;
|
|
}
|
|
|
|
// We require the RHS of the binop to be a constant and not opaque as well.
|
|
ConstantSDNode *BinOpCst = getAsNonOpaqueConstant(LHS.getOperand(1));
|
|
if (!BinOpCst)
|
|
return SDValue();
|
|
|
|
// FIXME: disable this unless the input to the binop is a shift by a constant
|
|
// or is copy/select. Enable this in other cases when figure out it's exactly
|
|
// profitable.
|
|
SDValue BinOpLHSVal = LHS.getOperand(0);
|
|
bool IsShiftByConstant = (BinOpLHSVal.getOpcode() == ISD::SHL ||
|
|
BinOpLHSVal.getOpcode() == ISD::SRA ||
|
|
BinOpLHSVal.getOpcode() == ISD::SRL) &&
|
|
isa<ConstantSDNode>(BinOpLHSVal.getOperand(1));
|
|
bool IsCopyOrSelect = BinOpLHSVal.getOpcode() == ISD::CopyFromReg ||
|
|
BinOpLHSVal.getOpcode() == ISD::SELECT;
|
|
|
|
if (!IsShiftByConstant && !IsCopyOrSelect)
|
|
return SDValue();
|
|
|
|
if (IsCopyOrSelect && N->hasOneUse())
|
|
return SDValue();
|
|
|
|
// Fold the constants, shifting the binop RHS by the shift amount.
|
|
SDLoc DL(N);
|
|
EVT VT = N->getValueType(0);
|
|
SDValue NewRHS = DAG.getNode(N->getOpcode(), DL, VT, LHS.getOperand(1),
|
|
N->getOperand(1));
|
|
assert(isa<ConstantSDNode>(NewRHS) && "Folding was not successful!");
|
|
|
|
SDValue NewShift = DAG.getNode(N->getOpcode(), DL, VT, LHS.getOperand(0),
|
|
N->getOperand(1));
|
|
return DAG.getNode(LHS.getOpcode(), DL, VT, NewShift, NewRHS);
|
|
}
|
|
|
|
SDValue DAGCombiner::distributeTruncateThroughAnd(SDNode *N) {
|
|
assert(N->getOpcode() == ISD::TRUNCATE);
|
|
assert(N->getOperand(0).getOpcode() == ISD::AND);
|
|
|
|
// (truncate:TruncVT (and N00, N01C)) -> (and (truncate:TruncVT N00), TruncC)
|
|
EVT TruncVT = N->getValueType(0);
|
|
if (N->hasOneUse() && N->getOperand(0).hasOneUse() &&
|
|
TLI.isTypeDesirableForOp(ISD::AND, TruncVT)) {
|
|
SDValue N01 = N->getOperand(0).getOperand(1);
|
|
if (isConstantOrConstantVector(N01, /* NoOpaques */ true)) {
|
|
SDLoc DL(N);
|
|
SDValue N00 = N->getOperand(0).getOperand(0);
|
|
SDValue Trunc00 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N00);
|
|
SDValue Trunc01 = DAG.getNode(ISD::TRUNCATE, DL, TruncVT, N01);
|
|
AddToWorklist(Trunc00.getNode());
|
|
AddToWorklist(Trunc01.getNode());
|
|
return DAG.getNode(ISD::AND, DL, TruncVT, Trunc00, Trunc01);
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitRotate(SDNode *N) {
|
|
SDLoc dl(N);
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
EVT VT = N->getValueType(0);
|
|
unsigned Bitsize = VT.getScalarSizeInBits();
|
|
|
|
// fold (rot x, 0) -> x
|
|
if (isNullOrNullSplat(N1))
|
|
return N0;
|
|
|
|
// fold (rot x, c) -> x iff (c % BitSize) == 0
|
|
if (isPowerOf2_32(Bitsize) && Bitsize > 1) {
|
|
APInt ModuloMask(N1.getScalarValueSizeInBits(), Bitsize - 1);
|
|
if (DAG.MaskedValueIsZero(N1, ModuloMask))
|
|
return N0;
|
|
}
|
|
|
|
// fold (rot x, c) -> (rot x, c % BitSize)
|
|
bool OutOfRange = false;
|
|
auto MatchOutOfRange = [Bitsize, &OutOfRange](ConstantSDNode *C) {
|
|
OutOfRange |= C->getAPIntValue().uge(Bitsize);
|
|
return true;
|
|
};
|
|
if (ISD::matchUnaryPredicate(N1, MatchOutOfRange) && OutOfRange) {
|
|
EVT AmtVT = N1.getValueType();
|
|
SDValue Bits = DAG.getConstant(Bitsize, dl, AmtVT);
|
|
if (SDValue Amt =
|
|
DAG.FoldConstantArithmetic(ISD::UREM, dl, AmtVT, {N1, Bits}))
|
|
return DAG.getNode(N->getOpcode(), dl, VT, N0, Amt);
|
|
}
|
|
|
|
// rot i16 X, 8 --> bswap X
|
|
auto *RotAmtC = isConstOrConstSplat(N1);
|
|
if (RotAmtC && RotAmtC->getAPIntValue() == 8 &&
|
|
VT.getScalarSizeInBits() == 16 && hasOperation(ISD::BSWAP, VT))
|
|
return DAG.getNode(ISD::BSWAP, dl, VT, N0);
|
|
|
|
// Simplify the operands using demanded-bits information.
|
|
if (SimplifyDemandedBits(SDValue(N, 0)))
|
|
return SDValue(N, 0);
|
|
|
|
// fold (rot* x, (trunc (and y, c))) -> (rot* x, (and (trunc y), (trunc c))).
|
|
if (N1.getOpcode() == ISD::TRUNCATE &&
|
|
N1.getOperand(0).getOpcode() == ISD::AND) {
|
|
if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
|
|
return DAG.getNode(N->getOpcode(), dl, VT, N0, NewOp1);
|
|
}
|
|
|
|
unsigned NextOp = N0.getOpcode();
|
|
// fold (rot* (rot* x, c2), c1) -> (rot* x, c1 +- c2 % bitsize)
|
|
if (NextOp == ISD::ROTL || NextOp == ISD::ROTR) {
|
|
SDNode *C1 = DAG.isConstantIntBuildVectorOrConstantInt(N1);
|
|
SDNode *C2 = DAG.isConstantIntBuildVectorOrConstantInt(N0.getOperand(1));
|
|
if (C1 && C2 && C1->getValueType(0) == C2->getValueType(0)) {
|
|
EVT ShiftVT = C1->getValueType(0);
|
|
bool SameSide = (N->getOpcode() == NextOp);
|
|
unsigned CombineOp = SameSide ? ISD::ADD : ISD::SUB;
|
|
if (SDValue CombinedShift = DAG.FoldConstantArithmetic(
|
|
CombineOp, dl, ShiftVT, {N1, N0.getOperand(1)})) {
|
|
SDValue BitsizeC = DAG.getConstant(Bitsize, dl, ShiftVT);
|
|
SDValue CombinedShiftNorm = DAG.FoldConstantArithmetic(
|
|
ISD::SREM, dl, ShiftVT, {CombinedShift, BitsizeC});
|
|
return DAG.getNode(N->getOpcode(), dl, VT, N0->getOperand(0),
|
|
CombinedShiftNorm);
|
|
}
|
|
}
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitSHL(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
if (SDValue V = DAG.simplifyShift(N0, N1))
|
|
return V;
|
|
|
|
EVT VT = N0.getValueType();
|
|
EVT ShiftVT = N1.getValueType();
|
|
unsigned OpSizeInBits = VT.getScalarSizeInBits();
|
|
|
|
// fold vector ops
|
|
if (VT.isVector()) {
|
|
if (SDValue FoldedVOp = SimplifyVBinOp(N))
|
|
return FoldedVOp;
|
|
|
|
BuildVectorSDNode *N1CV = dyn_cast<BuildVectorSDNode>(N1);
|
|
// If setcc produces all-one true value then:
|
|
// (shl (and (setcc) N01CV) N1CV) -> (and (setcc) N01CV<<N1CV)
|
|
if (N1CV && N1CV->isConstant()) {
|
|
if (N0.getOpcode() == ISD::AND) {
|
|
SDValue N00 = N0->getOperand(0);
|
|
SDValue N01 = N0->getOperand(1);
|
|
BuildVectorSDNode *N01CV = dyn_cast<BuildVectorSDNode>(N01);
|
|
|
|
if (N01CV && N01CV->isConstant() && N00.getOpcode() == ISD::SETCC &&
|
|
TLI.getBooleanContents(N00.getOperand(0).getValueType()) ==
|
|
TargetLowering::ZeroOrNegativeOneBooleanContent) {
|
|
if (SDValue C =
|
|
DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, {N01, N1}))
|
|
return DAG.getNode(ISD::AND, SDLoc(N), VT, N00, C);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
ConstantSDNode *N1C = isConstOrConstSplat(N1);
|
|
|
|
// fold (shl c1, c2) -> c1<<c2
|
|
if (SDValue C = DAG.FoldConstantArithmetic(ISD::SHL, SDLoc(N), VT, {N0, N1}))
|
|
return C;
|
|
|
|
if (SDValue NewSel = foldBinOpIntoSelect(N))
|
|
return NewSel;
|
|
|
|
// if (shl x, c) is known to be zero, return 0
|
|
if (DAG.MaskedValueIsZero(SDValue(N, 0),
|
|
APInt::getAllOnesValue(OpSizeInBits)))
|
|
return DAG.getConstant(0, SDLoc(N), VT);
|
|
|
|
// fold (shl x, (trunc (and y, c))) -> (shl x, (and (trunc y), (trunc c))).
|
|
if (N1.getOpcode() == ISD::TRUNCATE &&
|
|
N1.getOperand(0).getOpcode() == ISD::AND) {
|
|
if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
|
|
return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, NewOp1);
|
|
}
|
|
|
|
if (SimplifyDemandedBits(SDValue(N, 0)))
|
|
return SDValue(N, 0);
|
|
|
|
// fold (shl (shl x, c1), c2) -> 0 or (shl x, (add c1, c2))
|
|
if (N0.getOpcode() == ISD::SHL) {
|
|
auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS,
|
|
ConstantSDNode *RHS) {
|
|
APInt c1 = LHS->getAPIntValue();
|
|
APInt c2 = RHS->getAPIntValue();
|
|
zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
|
|
return (c1 + c2).uge(OpSizeInBits);
|
|
};
|
|
if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange))
|
|
return DAG.getConstant(0, SDLoc(N), VT);
|
|
|
|
auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS,
|
|
ConstantSDNode *RHS) {
|
|
APInt c1 = LHS->getAPIntValue();
|
|
APInt c2 = RHS->getAPIntValue();
|
|
zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
|
|
return (c1 + c2).ult(OpSizeInBits);
|
|
};
|
|
if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) {
|
|
SDLoc DL(N);
|
|
SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1));
|
|
return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0), Sum);
|
|
}
|
|
}
|
|
|
|
// fold (shl (ext (shl x, c1)), c2) -> (shl (ext x), (add c1, c2))
|
|
// For this to be valid, the second form must not preserve any of the bits
|
|
// that are shifted out by the inner shift in the first form. This means
|
|
// the outer shift size must be >= the number of bits added by the ext.
|
|
// As a corollary, we don't care what kind of ext it is.
|
|
if ((N0.getOpcode() == ISD::ZERO_EXTEND ||
|
|
N0.getOpcode() == ISD::ANY_EXTEND ||
|
|
N0.getOpcode() == ISD::SIGN_EXTEND) &&
|
|
N0.getOperand(0).getOpcode() == ISD::SHL) {
|
|
SDValue N0Op0 = N0.getOperand(0);
|
|
SDValue InnerShiftAmt = N0Op0.getOperand(1);
|
|
EVT InnerVT = N0Op0.getValueType();
|
|
uint64_t InnerBitwidth = InnerVT.getScalarSizeInBits();
|
|
|
|
auto MatchOutOfRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS,
|
|
ConstantSDNode *RHS) {
|
|
APInt c1 = LHS->getAPIntValue();
|
|
APInt c2 = RHS->getAPIntValue();
|
|
zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
|
|
return c2.uge(OpSizeInBits - InnerBitwidth) &&
|
|
(c1 + c2).uge(OpSizeInBits);
|
|
};
|
|
if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchOutOfRange,
|
|
/*AllowUndefs*/ false,
|
|
/*AllowTypeMismatch*/ true))
|
|
return DAG.getConstant(0, SDLoc(N), VT);
|
|
|
|
auto MatchInRange = [OpSizeInBits, InnerBitwidth](ConstantSDNode *LHS,
|
|
ConstantSDNode *RHS) {
|
|
APInt c1 = LHS->getAPIntValue();
|
|
APInt c2 = RHS->getAPIntValue();
|
|
zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
|
|
return c2.uge(OpSizeInBits - InnerBitwidth) &&
|
|
(c1 + c2).ult(OpSizeInBits);
|
|
};
|
|
if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchInRange,
|
|
/*AllowUndefs*/ false,
|
|
/*AllowTypeMismatch*/ true)) {
|
|
SDLoc DL(N);
|
|
SDValue Ext = DAG.getNode(N0.getOpcode(), DL, VT, N0Op0.getOperand(0));
|
|
SDValue Sum = DAG.getZExtOrTrunc(InnerShiftAmt, DL, ShiftVT);
|
|
Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, Sum, N1);
|
|
return DAG.getNode(ISD::SHL, DL, VT, Ext, Sum);
|
|
}
|
|
}
|
|
|
|
// fold (shl (zext (srl x, C)), C) -> (zext (shl (srl x, C), C))
|
|
// Only fold this if the inner zext has no other uses to avoid increasing
|
|
// the total number of instructions.
|
|
if (N0.getOpcode() == ISD::ZERO_EXTEND && N0.hasOneUse() &&
|
|
N0.getOperand(0).getOpcode() == ISD::SRL) {
|
|
SDValue N0Op0 = N0.getOperand(0);
|
|
SDValue InnerShiftAmt = N0Op0.getOperand(1);
|
|
|
|
auto MatchEqual = [VT](ConstantSDNode *LHS, ConstantSDNode *RHS) {
|
|
APInt c1 = LHS->getAPIntValue();
|
|
APInt c2 = RHS->getAPIntValue();
|
|
zeroExtendToMatch(c1, c2);
|
|
return c1.ult(VT.getScalarSizeInBits()) && (c1 == c2);
|
|
};
|
|
if (ISD::matchBinaryPredicate(InnerShiftAmt, N1, MatchEqual,
|
|
/*AllowUndefs*/ false,
|
|
/*AllowTypeMismatch*/ true)) {
|
|
SDLoc DL(N);
|
|
EVT InnerShiftAmtVT = N0Op0.getOperand(1).getValueType();
|
|
SDValue NewSHL = DAG.getZExtOrTrunc(N1, DL, InnerShiftAmtVT);
|
|
NewSHL = DAG.getNode(ISD::SHL, DL, N0Op0.getValueType(), N0Op0, NewSHL);
|
|
AddToWorklist(NewSHL.getNode());
|
|
return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N0), VT, NewSHL);
|
|
}
|
|
}
|
|
|
|
// fold (shl (sr[la] exact X, C1), C2) -> (shl X, (C2-C1)) if C1 <= C2
|
|
// fold (shl (sr[la] exact X, C1), C2) -> (sr[la] X, (C2-C1)) if C1 > C2
|
|
// TODO - support non-uniform vector shift amounts.
|
|
if (N1C && (N0.getOpcode() == ISD::SRL || N0.getOpcode() == ISD::SRA) &&
|
|
N0->getFlags().hasExact()) {
|
|
if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) {
|
|
uint64_t C1 = N0C1->getZExtValue();
|
|
uint64_t C2 = N1C->getZExtValue();
|
|
SDLoc DL(N);
|
|
if (C1 <= C2)
|
|
return DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0),
|
|
DAG.getConstant(C2 - C1, DL, ShiftVT));
|
|
return DAG.getNode(N0.getOpcode(), DL, VT, N0.getOperand(0),
|
|
DAG.getConstant(C1 - C2, DL, ShiftVT));
|
|
}
|
|
}
|
|
|
|
// fold (shl (srl x, c1), c2) -> (and (shl x, (sub c2, c1), MASK) or
|
|
// (and (srl x, (sub c1, c2), MASK)
|
|
// Only fold this if the inner shift has no other uses -- if it does, folding
|
|
// this will increase the total number of instructions.
|
|
// TODO - drop hasOneUse requirement if c1 == c2?
|
|
// TODO - support non-uniform vector shift amounts.
|
|
if (N1C && N0.getOpcode() == ISD::SRL && N0.hasOneUse() &&
|
|
TLI.shouldFoldConstantShiftPairToMask(N, Level)) {
|
|
if (ConstantSDNode *N0C1 = isConstOrConstSplat(N0.getOperand(1))) {
|
|
if (N0C1->getAPIntValue().ult(OpSizeInBits)) {
|
|
uint64_t c1 = N0C1->getZExtValue();
|
|
uint64_t c2 = N1C->getZExtValue();
|
|
APInt Mask = APInt::getHighBitsSet(OpSizeInBits, OpSizeInBits - c1);
|
|
SDValue Shift;
|
|
if (c2 > c1) {
|
|
Mask <<= c2 - c1;
|
|
SDLoc DL(N);
|
|
Shift = DAG.getNode(ISD::SHL, DL, VT, N0.getOperand(0),
|
|
DAG.getConstant(c2 - c1, DL, ShiftVT));
|
|
} else {
|
|
Mask.lshrInPlace(c1 - c2);
|
|
SDLoc DL(N);
|
|
Shift = DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0),
|
|
DAG.getConstant(c1 - c2, DL, ShiftVT));
|
|
}
|
|
SDLoc DL(N0);
|
|
return DAG.getNode(ISD::AND, DL, VT, Shift,
|
|
DAG.getConstant(Mask, DL, VT));
|
|
}
|
|
}
|
|
}
|
|
|
|
// fold (shl (sra x, c1), c1) -> (and x, (shl -1, c1))
|
|
if (N0.getOpcode() == ISD::SRA && N1 == N0.getOperand(1) &&
|
|
isConstantOrConstantVector(N1, /* No Opaques */ true)) {
|
|
SDLoc DL(N);
|
|
SDValue AllBits = DAG.getAllOnesConstant(DL, VT);
|
|
SDValue HiBitsMask = DAG.getNode(ISD::SHL, DL, VT, AllBits, N1);
|
|
return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), HiBitsMask);
|
|
}
|
|
|
|
// fold (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
|
|
// fold (shl (or x, c1), c2) -> (or (shl x, c2), c1 << c2)
|
|
// Variant of version done on multiply, except mul by a power of 2 is turned
|
|
// into a shift.
|
|
if ((N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::OR) &&
|
|
N0.getNode()->hasOneUse() &&
|
|
isConstantOrConstantVector(N1, /* No Opaques */ true) &&
|
|
isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true) &&
|
|
TLI.isDesirableToCommuteWithShift(N, Level)) {
|
|
SDValue Shl0 = DAG.getNode(ISD::SHL, SDLoc(N0), VT, N0.getOperand(0), N1);
|
|
SDValue Shl1 = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1);
|
|
AddToWorklist(Shl0.getNode());
|
|
AddToWorklist(Shl1.getNode());
|
|
return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, Shl0, Shl1);
|
|
}
|
|
|
|
// fold (shl (mul x, c1), c2) -> (mul x, c1 << c2)
|
|
if (N0.getOpcode() == ISD::MUL && N0.getNode()->hasOneUse() &&
|
|
isConstantOrConstantVector(N1, /* No Opaques */ true) &&
|
|
isConstantOrConstantVector(N0.getOperand(1), /* No Opaques */ true)) {
|
|
SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N1), VT, N0.getOperand(1), N1);
|
|
if (isConstantOrConstantVector(Shl))
|
|
return DAG.getNode(ISD::MUL, SDLoc(N), VT, N0.getOperand(0), Shl);
|
|
}
|
|
|
|
if (N1C && !N1C->isOpaque())
|
|
if (SDValue NewSHL = visitShiftByConstant(N))
|
|
return NewSHL;
|
|
|
|
// Fold (shl (vscale * C0), C1) to (vscale * (C0 << C1)).
|
|
if (N0.getOpcode() == ISD::VSCALE)
|
|
if (ConstantSDNode *NC1 = isConstOrConstSplat(N->getOperand(1))) {
|
|
const APInt &C0 = N0.getConstantOperandAPInt(0);
|
|
const APInt &C1 = NC1->getAPIntValue();
|
|
return DAG.getVScale(SDLoc(N), VT, C0 << C1);
|
|
}
|
|
|
|
// Fold (shl step_vector(C0), C1) to (step_vector(C0 << C1)).
|
|
APInt ShlVal;
|
|
if (N0.getOpcode() == ISD::STEP_VECTOR)
|
|
if (ISD::isConstantSplatVector(N1.getNode(), ShlVal)) {
|
|
const APInt &C0 = N0.getConstantOperandAPInt(0);
|
|
if (ShlVal.ult(C0.getBitWidth())) {
|
|
APInt NewStep = C0 << ShlVal;
|
|
return DAG.getStepVector(SDLoc(N), VT, NewStep);
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// Transform a right shift of a multiply into a multiply-high.
|
|
// Examples:
|
|
// (srl (mul (zext i32:$a to i64), (zext i32:$a to i64)), 32) -> (mulhu $a, $b)
|
|
// (sra (mul (sext i32:$a to i64), (sext i32:$a to i64)), 32) -> (mulhs $a, $b)
|
|
static SDValue combineShiftToMULH(SDNode *N, SelectionDAG &DAG,
|
|
const TargetLowering &TLI) {
|
|
assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
|
|
"SRL or SRA node is required here!");
|
|
|
|
// Check the shift amount. Proceed with the transformation if the shift
|
|
// amount is constant.
|
|
ConstantSDNode *ShiftAmtSrc = isConstOrConstSplat(N->getOperand(1));
|
|
if (!ShiftAmtSrc)
|
|
return SDValue();
|
|
|
|
SDLoc DL(N);
|
|
|
|
// The operation feeding into the shift must be a multiply.
|
|
SDValue ShiftOperand = N->getOperand(0);
|
|
if (ShiftOperand.getOpcode() != ISD::MUL)
|
|
return SDValue();
|
|
|
|
// Both operands must be equivalent extend nodes.
|
|
SDValue LeftOp = ShiftOperand.getOperand(0);
|
|
SDValue RightOp = ShiftOperand.getOperand(1);
|
|
bool IsSignExt = LeftOp.getOpcode() == ISD::SIGN_EXTEND;
|
|
bool IsZeroExt = LeftOp.getOpcode() == ISD::ZERO_EXTEND;
|
|
|
|
if ((!(IsSignExt || IsZeroExt)) || LeftOp.getOpcode() != RightOp.getOpcode())
|
|
return SDValue();
|
|
|
|
EVT WideVT1 = LeftOp.getValueType();
|
|
EVT WideVT2 = RightOp.getValueType();
|
|
(void)WideVT2;
|
|
// Proceed with the transformation if the wide types match.
|
|
assert((WideVT1 == WideVT2) &&
|
|
"Cannot have a multiply node with two different operand types.");
|
|
|
|
EVT NarrowVT = LeftOp.getOperand(0).getValueType();
|
|
// Check that the two extend nodes are the same type.
|
|
if (NarrowVT != RightOp.getOperand(0).getValueType())
|
|
return SDValue();
|
|
|
|
// Proceed with the transformation if the wide type is twice as large
|
|
// as the narrow type.
|
|
unsigned NarrowVTSize = NarrowVT.getScalarSizeInBits();
|
|
if (WideVT1.getScalarSizeInBits() != 2 * NarrowVTSize)
|
|
return SDValue();
|
|
|
|
// Check the shift amount with the narrow type size.
|
|
// Proceed with the transformation if the shift amount is the width
|
|
// of the narrow type.
|
|
unsigned ShiftAmt = ShiftAmtSrc->getZExtValue();
|
|
if (ShiftAmt != NarrowVTSize)
|
|
return SDValue();
|
|
|
|
// If the operation feeding into the MUL is a sign extend (sext),
|
|
// we use mulhs. Othewise, zero extends (zext) use mulhu.
|
|
unsigned MulhOpcode = IsSignExt ? ISD::MULHS : ISD::MULHU;
|
|
|
|
// Combine to mulh if mulh is legal/custom for the narrow type on the target.
|
|
if (!TLI.isOperationLegalOrCustom(MulhOpcode, NarrowVT))
|
|
return SDValue();
|
|
|
|
SDValue Result = DAG.getNode(MulhOpcode, DL, NarrowVT, LeftOp.getOperand(0),
|
|
RightOp.getOperand(0));
|
|
return (N->getOpcode() == ISD::SRA ? DAG.getSExtOrTrunc(Result, DL, WideVT1)
|
|
: DAG.getZExtOrTrunc(Result, DL, WideVT1));
|
|
}
|
|
|
|
SDValue DAGCombiner::visitSRA(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
if (SDValue V = DAG.simplifyShift(N0, N1))
|
|
return V;
|
|
|
|
EVT VT = N0.getValueType();
|
|
unsigned OpSizeInBits = VT.getScalarSizeInBits();
|
|
|
|
// Arithmetic shifting an all-sign-bit value is a no-op.
|
|
// fold (sra 0, x) -> 0
|
|
// fold (sra -1, x) -> -1
|
|
if (DAG.ComputeNumSignBits(N0) == OpSizeInBits)
|
|
return N0;
|
|
|
|
// fold vector ops
|
|
if (VT.isVector())
|
|
if (SDValue FoldedVOp = SimplifyVBinOp(N))
|
|
return FoldedVOp;
|
|
|
|
ConstantSDNode *N1C = isConstOrConstSplat(N1);
|
|
|
|
// fold (sra c1, c2) -> (sra c1, c2)
|
|
if (SDValue C = DAG.FoldConstantArithmetic(ISD::SRA, SDLoc(N), VT, {N0, N1}))
|
|
return C;
|
|
|
|
if (SDValue NewSel = foldBinOpIntoSelect(N))
|
|
return NewSel;
|
|
|
|
// fold (sra (shl x, c1), c1) -> sext_inreg for some c1 and target supports
|
|
// sext_inreg.
|
|
if (N1C && N0.getOpcode() == ISD::SHL && N1 == N0.getOperand(1)) {
|
|
unsigned LowBits = OpSizeInBits - (unsigned)N1C->getZExtValue();
|
|
EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), LowBits);
|
|
if (VT.isVector())
|
|
ExtVT = EVT::getVectorVT(*DAG.getContext(), ExtVT,
|
|
VT.getVectorElementCount());
|
|
if (!LegalOperations ||
|
|
TLI.getOperationAction(ISD::SIGN_EXTEND_INREG, ExtVT) ==
|
|
TargetLowering::Legal)
|
|
return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT,
|
|
N0.getOperand(0), DAG.getValueType(ExtVT));
|
|
// Even if we can't convert to sext_inreg, we might be able to remove
|
|
// this shift pair if the input is already sign extended.
|
|
if (DAG.ComputeNumSignBits(N0.getOperand(0)) > N1C->getZExtValue())
|
|
return N0.getOperand(0);
|
|
}
|
|
|
|
// fold (sra (sra x, c1), c2) -> (sra x, (add c1, c2))
|
|
// clamp (add c1, c2) to max shift.
|
|
if (N0.getOpcode() == ISD::SRA) {
|
|
SDLoc DL(N);
|
|
EVT ShiftVT = N1.getValueType();
|
|
EVT ShiftSVT = ShiftVT.getScalarType();
|
|
SmallVector<SDValue, 16> ShiftValues;
|
|
|
|
auto SumOfShifts = [&](ConstantSDNode *LHS, ConstantSDNode *RHS) {
|
|
APInt c1 = LHS->getAPIntValue();
|
|
APInt c2 = RHS->getAPIntValue();
|
|
zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
|
|
APInt Sum = c1 + c2;
|
|
unsigned ShiftSum =
|
|
Sum.uge(OpSizeInBits) ? (OpSizeInBits - 1) : Sum.getZExtValue();
|
|
ShiftValues.push_back(DAG.getConstant(ShiftSum, DL, ShiftSVT));
|
|
return true;
|
|
};
|
|
if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), SumOfShifts)) {
|
|
SDValue ShiftValue;
|
|
if (N1.getOpcode() == ISD::BUILD_VECTOR)
|
|
ShiftValue = DAG.getBuildVector(ShiftVT, DL, ShiftValues);
|
|
else if (N1.getOpcode() == ISD::SPLAT_VECTOR) {
|
|
assert(ShiftValues.size() == 1 &&
|
|
"Expected matchBinaryPredicate to return one element for "
|
|
"SPLAT_VECTORs");
|
|
ShiftValue = DAG.getSplatVector(ShiftVT, DL, ShiftValues[0]);
|
|
} else
|
|
ShiftValue = ShiftValues[0];
|
|
return DAG.getNode(ISD::SRA, DL, VT, N0.getOperand(0), ShiftValue);
|
|
}
|
|
}
|
|
|
|
// fold (sra (shl X, m), (sub result_size, n))
|
|
// -> (sign_extend (trunc (shl X, (sub (sub result_size, n), m)))) for
|
|
// result_size - n != m.
|
|
// If truncate is free for the target sext(shl) is likely to result in better
|
|
// code.
|
|
if (N0.getOpcode() == ISD::SHL && N1C) {
|
|
// Get the two constanst of the shifts, CN0 = m, CN = n.
|
|
const ConstantSDNode *N01C = isConstOrConstSplat(N0.getOperand(1));
|
|
if (N01C) {
|
|
LLVMContext &Ctx = *DAG.getContext();
|
|
// Determine what the truncate's result bitsize and type would be.
|
|
EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - N1C->getZExtValue());
|
|
|
|
if (VT.isVector())
|
|
TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorElementCount());
|
|
|
|
// Determine the residual right-shift amount.
|
|
int ShiftAmt = N1C->getZExtValue() - N01C->getZExtValue();
|
|
|
|
// If the shift is not a no-op (in which case this should be just a sign
|
|
// extend already), the truncated to type is legal, sign_extend is legal
|
|
// on that type, and the truncate to that type is both legal and free,
|
|
// perform the transform.
|
|
if ((ShiftAmt > 0) &&
|
|
TLI.isOperationLegalOrCustom(ISD::SIGN_EXTEND, TruncVT) &&
|
|
TLI.isOperationLegalOrCustom(ISD::TRUNCATE, VT) &&
|
|
TLI.isTruncateFree(VT, TruncVT)) {
|
|
SDLoc DL(N);
|
|
SDValue Amt = DAG.getConstant(ShiftAmt, DL,
|
|
getShiftAmountTy(N0.getOperand(0).getValueType()));
|
|
SDValue Shift = DAG.getNode(ISD::SRL, DL, VT,
|
|
N0.getOperand(0), Amt);
|
|
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, TruncVT,
|
|
Shift);
|
|
return DAG.getNode(ISD::SIGN_EXTEND, DL,
|
|
N->getValueType(0), Trunc);
|
|
}
|
|
}
|
|
}
|
|
|
|
// We convert trunc/ext to opposing shifts in IR, but casts may be cheaper.
|
|
// sra (add (shl X, N1C), AddC), N1C -->
|
|
// sext (add (trunc X to (width - N1C)), AddC')
|
|
if (N0.getOpcode() == ISD::ADD && N0.hasOneUse() && N1C &&
|
|
N0.getOperand(0).getOpcode() == ISD::SHL &&
|
|
N0.getOperand(0).getOperand(1) == N1 && N0.getOperand(0).hasOneUse()) {
|
|
if (ConstantSDNode *AddC = isConstOrConstSplat(N0.getOperand(1))) {
|
|
SDValue Shl = N0.getOperand(0);
|
|
// Determine what the truncate's type would be and ask the target if that
|
|
// is a free operation.
|
|
LLVMContext &Ctx = *DAG.getContext();
|
|
unsigned ShiftAmt = N1C->getZExtValue();
|
|
EVT TruncVT = EVT::getIntegerVT(Ctx, OpSizeInBits - ShiftAmt);
|
|
if (VT.isVector())
|
|
TruncVT = EVT::getVectorVT(Ctx, TruncVT, VT.getVectorElementCount());
|
|
|
|
// TODO: The simple type check probably belongs in the default hook
|
|
// implementation and/or target-specific overrides (because
|
|
// non-simple types likely require masking when legalized), but that
|
|
// restriction may conflict with other transforms.
|
|
if (TruncVT.isSimple() && isTypeLegal(TruncVT) &&
|
|
TLI.isTruncateFree(VT, TruncVT)) {
|
|
SDLoc DL(N);
|
|
SDValue Trunc = DAG.getZExtOrTrunc(Shl.getOperand(0), DL, TruncVT);
|
|
SDValue ShiftC = DAG.getConstant(AddC->getAPIntValue().lshr(ShiftAmt).
|
|
trunc(TruncVT.getScalarSizeInBits()), DL, TruncVT);
|
|
SDValue Add = DAG.getNode(ISD::ADD, DL, TruncVT, Trunc, ShiftC);
|
|
return DAG.getSExtOrTrunc(Add, DL, VT);
|
|
}
|
|
}
|
|
}
|
|
|
|
// fold (sra x, (trunc (and y, c))) -> (sra x, (and (trunc y), (trunc c))).
|
|
if (N1.getOpcode() == ISD::TRUNCATE &&
|
|
N1.getOperand(0).getOpcode() == ISD::AND) {
|
|
if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
|
|
return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0, NewOp1);
|
|
}
|
|
|
|
// fold (sra (trunc (sra x, c1)), c2) -> (trunc (sra x, c1 + c2))
|
|
// fold (sra (trunc (srl x, c1)), c2) -> (trunc (sra x, c1 + c2))
|
|
// if c1 is equal to the number of bits the trunc removes
|
|
// TODO - support non-uniform vector shift amounts.
|
|
if (N0.getOpcode() == ISD::TRUNCATE &&
|
|
(N0.getOperand(0).getOpcode() == ISD::SRL ||
|
|
N0.getOperand(0).getOpcode() == ISD::SRA) &&
|
|
N0.getOperand(0).hasOneUse() &&
|
|
N0.getOperand(0).getOperand(1).hasOneUse() && N1C) {
|
|
SDValue N0Op0 = N0.getOperand(0);
|
|
if (ConstantSDNode *LargeShift = isConstOrConstSplat(N0Op0.getOperand(1))) {
|
|
EVT LargeVT = N0Op0.getValueType();
|
|
unsigned TruncBits = LargeVT.getScalarSizeInBits() - OpSizeInBits;
|
|
if (LargeShift->getAPIntValue() == TruncBits) {
|
|
SDLoc DL(N);
|
|
SDValue Amt = DAG.getConstant(N1C->getZExtValue() + TruncBits, DL,
|
|
getShiftAmountTy(LargeVT));
|
|
SDValue SRA =
|
|
DAG.getNode(ISD::SRA, DL, LargeVT, N0Op0.getOperand(0), Amt);
|
|
return DAG.getNode(ISD::TRUNCATE, DL, VT, SRA);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Simplify, based on bits shifted out of the LHS.
|
|
if (SimplifyDemandedBits(SDValue(N, 0)))
|
|
return SDValue(N, 0);
|
|
|
|
// If the sign bit is known to be zero, switch this to a SRL.
|
|
if (DAG.SignBitIsZero(N0))
|
|
return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, N1);
|
|
|
|
if (N1C && !N1C->isOpaque())
|
|
if (SDValue NewSRA = visitShiftByConstant(N))
|
|
return NewSRA;
|
|
|
|
// Try to transform this shift into a multiply-high if
|
|
// it matches the appropriate pattern detected in combineShiftToMULH.
|
|
if (SDValue MULH = combineShiftToMULH(N, DAG, TLI))
|
|
return MULH;
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitSRL(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
if (SDValue V = DAG.simplifyShift(N0, N1))
|
|
return V;
|
|
|
|
EVT VT = N0.getValueType();
|
|
unsigned OpSizeInBits = VT.getScalarSizeInBits();
|
|
|
|
// fold vector ops
|
|
if (VT.isVector())
|
|
if (SDValue FoldedVOp = SimplifyVBinOp(N))
|
|
return FoldedVOp;
|
|
|
|
ConstantSDNode *N1C = isConstOrConstSplat(N1);
|
|
|
|
// fold (srl c1, c2) -> c1 >>u c2
|
|
if (SDValue C = DAG.FoldConstantArithmetic(ISD::SRL, SDLoc(N), VT, {N0, N1}))
|
|
return C;
|
|
|
|
if (SDValue NewSel = foldBinOpIntoSelect(N))
|
|
return NewSel;
|
|
|
|
// if (srl x, c) is known to be zero, return 0
|
|
if (N1C && DAG.MaskedValueIsZero(SDValue(N, 0),
|
|
APInt::getAllOnesValue(OpSizeInBits)))
|
|
return DAG.getConstant(0, SDLoc(N), VT);
|
|
|
|
// fold (srl (srl x, c1), c2) -> 0 or (srl x, (add c1, c2))
|
|
if (N0.getOpcode() == ISD::SRL) {
|
|
auto MatchOutOfRange = [OpSizeInBits](ConstantSDNode *LHS,
|
|
ConstantSDNode *RHS) {
|
|
APInt c1 = LHS->getAPIntValue();
|
|
APInt c2 = RHS->getAPIntValue();
|
|
zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
|
|
return (c1 + c2).uge(OpSizeInBits);
|
|
};
|
|
if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchOutOfRange))
|
|
return DAG.getConstant(0, SDLoc(N), VT);
|
|
|
|
auto MatchInRange = [OpSizeInBits](ConstantSDNode *LHS,
|
|
ConstantSDNode *RHS) {
|
|
APInt c1 = LHS->getAPIntValue();
|
|
APInt c2 = RHS->getAPIntValue();
|
|
zeroExtendToMatch(c1, c2, 1 /* Overflow Bit */);
|
|
return (c1 + c2).ult(OpSizeInBits);
|
|
};
|
|
if (ISD::matchBinaryPredicate(N1, N0.getOperand(1), MatchInRange)) {
|
|
SDLoc DL(N);
|
|
EVT ShiftVT = N1.getValueType();
|
|
SDValue Sum = DAG.getNode(ISD::ADD, DL, ShiftVT, N1, N0.getOperand(1));
|
|
return DAG.getNode(ISD::SRL, DL, VT, N0.getOperand(0), Sum);
|
|
}
|
|
}
|
|
|
|
if (N1C && N0.getOpcode() == ISD::TRUNCATE &&
|
|
N0.getOperand(0).getOpcode() == ISD::SRL) {
|
|
SDValue InnerShift = N0.getOperand(0);
|
|
// TODO - support non-uniform vector shift amounts.
|
|
if (auto *N001C = isConstOrConstSplat(InnerShift.getOperand(1))) {
|
|
uint64_t c1 = N001C->getZExtValue();
|
|
uint64_t c2 = N1C->getZExtValue();
|
|
EVT InnerShiftVT = InnerShift.getValueType();
|
|
EVT ShiftAmtVT = InnerShift.getOperand(1).getValueType();
|
|
uint64_t InnerShiftSize = InnerShiftVT.getScalarSizeInBits();
|
|
// srl (trunc (srl x, c1)), c2 --> 0 or (trunc (srl x, (add c1, c2)))
|
|
// This is only valid if the OpSizeInBits + c1 = size of inner shift.
|
|
if (c1 + OpSizeInBits == InnerShiftSize) {
|
|
SDLoc DL(N);
|
|
if (c1 + c2 >= InnerShiftSize)
|
|
return DAG.getConstant(0, DL, VT);
|
|
SDValue NewShiftAmt = DAG.getConstant(c1 + c2, DL, ShiftAmtVT);
|
|
SDValue NewShift = DAG.getNode(ISD::SRL, DL, InnerShiftVT,
|
|
InnerShift.getOperand(0), NewShiftAmt);
|
|
return DAG.getNode(ISD::TRUNCATE, DL, VT, NewShift);
|
|
}
|
|
// In the more general case, we can clear the high bits after the shift:
|
|
// srl (trunc (srl x, c1)), c2 --> trunc (and (srl x, (c1+c2)), Mask)
|
|
if (N0.hasOneUse() && InnerShift.hasOneUse() &&
|
|
c1 + c2 < InnerShiftSize) {
|
|
SDLoc DL(N);
|
|
SDValue NewShiftAmt = DAG.getConstant(c1 + c2, DL, ShiftAmtVT);
|
|
SDValue NewShift = DAG.getNode(ISD::SRL, DL, InnerShiftVT,
|
|
InnerShift.getOperand(0), NewShiftAmt);
|
|
SDValue Mask = DAG.getConstant(APInt::getLowBitsSet(InnerShiftSize,
|
|
OpSizeInBits - c2),
|
|
DL, InnerShiftVT);
|
|
SDValue And = DAG.getNode(ISD::AND, DL, InnerShiftVT, NewShift, Mask);
|
|
return DAG.getNode(ISD::TRUNCATE, DL, VT, And);
|
|
}
|
|
}
|
|
}
|
|
|
|
// fold (srl (shl x, c), c) -> (and x, cst2)
|
|
// TODO - (srl (shl x, c1), c2).
|
|
if (N0.getOpcode() == ISD::SHL && N0.getOperand(1) == N1 &&
|
|
isConstantOrConstantVector(N1, /* NoOpaques */ true)) {
|
|
SDLoc DL(N);
|
|
SDValue Mask =
|
|
DAG.getNode(ISD::SRL, DL, VT, DAG.getAllOnesConstant(DL, VT), N1);
|
|
AddToWorklist(Mask.getNode());
|
|
return DAG.getNode(ISD::AND, DL, VT, N0.getOperand(0), Mask);
|
|
}
|
|
|
|
// fold (srl (anyextend x), c) -> (and (anyextend (srl x, c)), mask)
|
|
// TODO - support non-uniform vector shift amounts.
|
|
if (N1C && N0.getOpcode() == ISD::ANY_EXTEND) {
|
|
// Shifting in all undef bits?
|
|
EVT SmallVT = N0.getOperand(0).getValueType();
|
|
unsigned BitSize = SmallVT.getScalarSizeInBits();
|
|
if (N1C->getAPIntValue().uge(BitSize))
|
|
return DAG.getUNDEF(VT);
|
|
|
|
if (!LegalTypes || TLI.isTypeDesirableForOp(ISD::SRL, SmallVT)) {
|
|
uint64_t ShiftAmt = N1C->getZExtValue();
|
|
SDLoc DL0(N0);
|
|
SDValue SmallShift = DAG.getNode(ISD::SRL, DL0, SmallVT,
|
|
N0.getOperand(0),
|
|
DAG.getConstant(ShiftAmt, DL0,
|
|
getShiftAmountTy(SmallVT)));
|
|
AddToWorklist(SmallShift.getNode());
|
|
APInt Mask = APInt::getLowBitsSet(OpSizeInBits, OpSizeInBits - ShiftAmt);
|
|
SDLoc DL(N);
|
|
return DAG.getNode(ISD::AND, DL, VT,
|
|
DAG.getNode(ISD::ANY_EXTEND, DL, VT, SmallShift),
|
|
DAG.getConstant(Mask, DL, VT));
|
|
}
|
|
}
|
|
|
|
// fold (srl (sra X, Y), 31) -> (srl X, 31). This srl only looks at the sign
|
|
// bit, which is unmodified by sra.
|
|
if (N1C && N1C->getAPIntValue() == (OpSizeInBits - 1)) {
|
|
if (N0.getOpcode() == ISD::SRA)
|
|
return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0.getOperand(0), N1);
|
|
}
|
|
|
|
// fold (srl (ctlz x), "5") -> x iff x has one bit set (the low bit).
|
|
if (N1C && N0.getOpcode() == ISD::CTLZ &&
|
|
N1C->getAPIntValue() == Log2_32(OpSizeInBits)) {
|
|
KnownBits Known = DAG.computeKnownBits(N0.getOperand(0));
|
|
|
|
// If any of the input bits are KnownOne, then the input couldn't be all
|
|
// zeros, thus the result of the srl will always be zero.
|
|
if (Known.One.getBoolValue()) return DAG.getConstant(0, SDLoc(N0), VT);
|
|
|
|
// If all of the bits input the to ctlz node are known to be zero, then
|
|
// the result of the ctlz is "32" and the result of the shift is one.
|
|
APInt UnknownBits = ~Known.Zero;
|
|
if (UnknownBits == 0) return DAG.getConstant(1, SDLoc(N0), VT);
|
|
|
|
// Otherwise, check to see if there is exactly one bit input to the ctlz.
|
|
if (UnknownBits.isPowerOf2()) {
|
|
// Okay, we know that only that the single bit specified by UnknownBits
|
|
// could be set on input to the CTLZ node. If this bit is set, the SRL
|
|
// will return 0, if it is clear, it returns 1. Change the CTLZ/SRL pair
|
|
// to an SRL/XOR pair, which is likely to simplify more.
|
|
unsigned ShAmt = UnknownBits.countTrailingZeros();
|
|
SDValue Op = N0.getOperand(0);
|
|
|
|
if (ShAmt) {
|
|
SDLoc DL(N0);
|
|
Op = DAG.getNode(ISD::SRL, DL, VT, Op,
|
|
DAG.getConstant(ShAmt, DL,
|
|
getShiftAmountTy(Op.getValueType())));
|
|
AddToWorklist(Op.getNode());
|
|
}
|
|
|
|
SDLoc DL(N);
|
|
return DAG.getNode(ISD::XOR, DL, VT,
|
|
Op, DAG.getConstant(1, DL, VT));
|
|
}
|
|
}
|
|
|
|
// fold (srl x, (trunc (and y, c))) -> (srl x, (and (trunc y), (trunc c))).
|
|
if (N1.getOpcode() == ISD::TRUNCATE &&
|
|
N1.getOperand(0).getOpcode() == ISD::AND) {
|
|
if (SDValue NewOp1 = distributeTruncateThroughAnd(N1.getNode()))
|
|
return DAG.getNode(ISD::SRL, SDLoc(N), VT, N0, NewOp1);
|
|
}
|
|
|
|
// fold operands of srl based on knowledge that the low bits are not
|
|
// demanded.
|
|
if (SimplifyDemandedBits(SDValue(N, 0)))
|
|
return SDValue(N, 0);
|
|
|
|
if (N1C && !N1C->isOpaque())
|
|
if (SDValue NewSRL = visitShiftByConstant(N))
|
|
return NewSRL;
|
|
|
|
// Attempt to convert a srl of a load into a narrower zero-extending load.
|
|
if (SDValue NarrowLoad = ReduceLoadWidth(N))
|
|
return NarrowLoad;
|
|
|
|
// Here is a common situation. We want to optimize:
|
|
//
|
|
// %a = ...
|
|
// %b = and i32 %a, 2
|
|
// %c = srl i32 %b, 1
|
|
// brcond i32 %c ...
|
|
//
|
|
// into
|
|
//
|
|
// %a = ...
|
|
// %b = and %a, 2
|
|
// %c = setcc eq %b, 0
|
|
// brcond %c ...
|
|
//
|
|
// However when after the source operand of SRL is optimized into AND, the SRL
|
|
// itself may not be optimized further. Look for it and add the BRCOND into
|
|
// the worklist.
|
|
if (N->hasOneUse()) {
|
|
SDNode *Use = *N->use_begin();
|
|
if (Use->getOpcode() == ISD::BRCOND)
|
|
AddToWorklist(Use);
|
|
else if (Use->getOpcode() == ISD::TRUNCATE && Use->hasOneUse()) {
|
|
// Also look pass the truncate.
|
|
Use = *Use->use_begin();
|
|
if (Use->getOpcode() == ISD::BRCOND)
|
|
AddToWorklist(Use);
|
|
}
|
|
}
|
|
|
|
// Try to transform this shift into a multiply-high if
|
|
// it matches the appropriate pattern detected in combineShiftToMULH.
|
|
if (SDValue MULH = combineShiftToMULH(N, DAG, TLI))
|
|
return MULH;
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitFunnelShift(SDNode *N) {
|
|
EVT VT = N->getValueType(0);
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
SDValue N2 = N->getOperand(2);
|
|
bool IsFSHL = N->getOpcode() == ISD::FSHL;
|
|
unsigned BitWidth = VT.getScalarSizeInBits();
|
|
|
|
// fold (fshl N0, N1, 0) -> N0
|
|
// fold (fshr N0, N1, 0) -> N1
|
|
if (isPowerOf2_32(BitWidth))
|
|
if (DAG.MaskedValueIsZero(
|
|
N2, APInt(N2.getScalarValueSizeInBits(), BitWidth - 1)))
|
|
return IsFSHL ? N0 : N1;
|
|
|
|
auto IsUndefOrZero = [](SDValue V) {
|
|
return V.isUndef() || isNullOrNullSplat(V, /*AllowUndefs*/ true);
|
|
};
|
|
|
|
// TODO - support non-uniform vector shift amounts.
|
|
if (ConstantSDNode *Cst = isConstOrConstSplat(N2)) {
|
|
EVT ShAmtTy = N2.getValueType();
|
|
|
|
// fold (fsh* N0, N1, c) -> (fsh* N0, N1, c % BitWidth)
|
|
if (Cst->getAPIntValue().uge(BitWidth)) {
|
|
uint64_t RotAmt = Cst->getAPIntValue().urem(BitWidth);
|
|
return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N0, N1,
|
|
DAG.getConstant(RotAmt, SDLoc(N), ShAmtTy));
|
|
}
|
|
|
|
unsigned ShAmt = Cst->getZExtValue();
|
|
if (ShAmt == 0)
|
|
return IsFSHL ? N0 : N1;
|
|
|
|
// fold fshl(undef_or_zero, N1, C) -> lshr(N1, BW-C)
|
|
// fold fshr(undef_or_zero, N1, C) -> lshr(N1, C)
|
|
// fold fshl(N0, undef_or_zero, C) -> shl(N0, C)
|
|
// fold fshr(N0, undef_or_zero, C) -> shl(N0, BW-C)
|
|
if (IsUndefOrZero(N0))
|
|
return DAG.getNode(ISD::SRL, SDLoc(N), VT, N1,
|
|
DAG.getConstant(IsFSHL ? BitWidth - ShAmt : ShAmt,
|
|
SDLoc(N), ShAmtTy));
|
|
if (IsUndefOrZero(N1))
|
|
return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0,
|
|
DAG.getConstant(IsFSHL ? ShAmt : BitWidth - ShAmt,
|
|
SDLoc(N), ShAmtTy));
|
|
|
|
// fold (fshl ld1, ld0, c) -> (ld0[ofs]) iff ld0 and ld1 are consecutive.
|
|
// fold (fshr ld1, ld0, c) -> (ld0[ofs]) iff ld0 and ld1 are consecutive.
|
|
// TODO - bigendian support once we have test coverage.
|
|
// TODO - can we merge this with CombineConseutiveLoads/MatchLoadCombine?
|
|
// TODO - permit LHS EXTLOAD if extensions are shifted out.
|
|
if ((BitWidth % 8) == 0 && (ShAmt % 8) == 0 && !VT.isVector() &&
|
|
!DAG.getDataLayout().isBigEndian()) {
|
|
auto *LHS = dyn_cast<LoadSDNode>(N0);
|
|
auto *RHS = dyn_cast<LoadSDNode>(N1);
|
|
if (LHS && RHS && LHS->isSimple() && RHS->isSimple() &&
|
|
LHS->getAddressSpace() == RHS->getAddressSpace() &&
|
|
(LHS->hasOneUse() || RHS->hasOneUse()) && ISD::isNON_EXTLoad(RHS) &&
|
|
ISD::isNON_EXTLoad(LHS)) {
|
|
if (DAG.areNonVolatileConsecutiveLoads(LHS, RHS, BitWidth / 8, 1)) {
|
|
SDLoc DL(RHS);
|
|
uint64_t PtrOff =
|
|
IsFSHL ? (((BitWidth - ShAmt) % BitWidth) / 8) : (ShAmt / 8);
|
|
Align NewAlign = commonAlignment(RHS->getAlign(), PtrOff);
|
|
bool Fast = false;
|
|
if (TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
|
|
RHS->getAddressSpace(), NewAlign,
|
|
RHS->getMemOperand()->getFlags(), &Fast) &&
|
|
Fast) {
|
|
SDValue NewPtr = DAG.getMemBasePlusOffset(
|
|
RHS->getBasePtr(), TypeSize::Fixed(PtrOff), DL);
|
|
AddToWorklist(NewPtr.getNode());
|
|
SDValue Load = DAG.getLoad(
|
|
VT, DL, RHS->getChain(), NewPtr,
|
|
RHS->getPointerInfo().getWithOffset(PtrOff), NewAlign,
|
|
RHS->getMemOperand()->getFlags(), RHS->getAAInfo());
|
|
// Replace the old load's chain with the new load's chain.
|
|
WorklistRemover DeadNodes(*this);
|
|
DAG.ReplaceAllUsesOfValueWith(N1.getValue(1), Load.getValue(1));
|
|
return Load;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// fold fshr(undef_or_zero, N1, N2) -> lshr(N1, N2)
|
|
// fold fshl(N0, undef_or_zero, N2) -> shl(N0, N2)
|
|
// iff We know the shift amount is in range.
|
|
// TODO: when is it worth doing SUB(BW, N2) as well?
|
|
if (isPowerOf2_32(BitWidth)) {
|
|
APInt ModuloBits(N2.getScalarValueSizeInBits(), BitWidth - 1);
|
|
if (IsUndefOrZero(N0) && !IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits))
|
|
return DAG.getNode(ISD::SRL, SDLoc(N), VT, N1, N2);
|
|
if (IsUndefOrZero(N1) && IsFSHL && DAG.MaskedValueIsZero(N2, ~ModuloBits))
|
|
return DAG.getNode(ISD::SHL, SDLoc(N), VT, N0, N2);
|
|
}
|
|
|
|
// fold (fshl N0, N0, N2) -> (rotl N0, N2)
|
|
// fold (fshr N0, N0, N2) -> (rotr N0, N2)
|
|
// TODO: Investigate flipping this rotate if only one is legal, if funnel shift
|
|
// is legal as well we might be better off avoiding non-constant (BW - N2).
|
|
unsigned RotOpc = IsFSHL ? ISD::ROTL : ISD::ROTR;
|
|
if (N0 == N1 && hasOperation(RotOpc, VT))
|
|
return DAG.getNode(RotOpc, SDLoc(N), VT, N0, N2);
|
|
|
|
// Simplify, based on bits shifted out of N0/N1.
|
|
if (SimplifyDemandedBits(SDValue(N, 0)))
|
|
return SDValue(N, 0);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// Given a ABS node, detect the following pattern:
|
|
// (ABS (SUB (EXTEND a), (EXTEND b))).
|
|
// Generates UABD/SABD instruction.
|
|
static SDValue combineABSToABD(SDNode *N, SelectionDAG &DAG,
|
|
const TargetLowering &TLI) {
|
|
SDValue AbsOp1 = N->getOperand(0);
|
|
SDValue Op0, Op1;
|
|
|
|
if (AbsOp1.getOpcode() != ISD::SUB)
|
|
return SDValue();
|
|
|
|
Op0 = AbsOp1.getOperand(0);
|
|
Op1 = AbsOp1.getOperand(1);
|
|
|
|
unsigned Opc0 = Op0.getOpcode();
|
|
// Check if the operands of the sub are (zero|sign)-extended.
|
|
if (Opc0 != Op1.getOpcode() ||
|
|
(Opc0 != ISD::ZERO_EXTEND && Opc0 != ISD::SIGN_EXTEND))
|
|
return SDValue();
|
|
|
|
EVT VT1 = Op0.getOperand(0).getValueType();
|
|
EVT VT2 = Op1.getOperand(0).getValueType();
|
|
// Check if the operands are of same type and valid size.
|
|
unsigned ABDOpcode = (Opc0 == ISD::SIGN_EXTEND) ? ISD::ABDS : ISD::ABDU;
|
|
if (VT1 != VT2 || !TLI.isOperationLegalOrCustom(ABDOpcode, VT1))
|
|
return SDValue();
|
|
|
|
Op0 = Op0.getOperand(0);
|
|
Op1 = Op1.getOperand(0);
|
|
SDValue ABD =
|
|
DAG.getNode(ABDOpcode, SDLoc(N), Op0->getValueType(0), Op0, Op1);
|
|
return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), N->getValueType(0), ABD);
|
|
}
|
|
|
|
SDValue DAGCombiner::visitABS(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// fold (abs c1) -> c2
|
|
if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
|
|
return DAG.getNode(ISD::ABS, SDLoc(N), VT, N0);
|
|
// fold (abs (abs x)) -> (abs x)
|
|
if (N0.getOpcode() == ISD::ABS)
|
|
return N0;
|
|
// fold (abs x) -> x iff not-negative
|
|
if (DAG.SignBitIsZero(N0))
|
|
return N0;
|
|
|
|
if (SDValue ABD = combineABSToABD(N, DAG, TLI))
|
|
return ABD;
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitBSWAP(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// fold (bswap c1) -> c2
|
|
if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
|
|
return DAG.getNode(ISD::BSWAP, SDLoc(N), VT, N0);
|
|
// fold (bswap (bswap x)) -> x
|
|
if (N0.getOpcode() == ISD::BSWAP)
|
|
return N0->getOperand(0);
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitBITREVERSE(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// fold (bitreverse c1) -> c2
|
|
if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
|
|
return DAG.getNode(ISD::BITREVERSE, SDLoc(N), VT, N0);
|
|
// fold (bitreverse (bitreverse x)) -> x
|
|
if (N0.getOpcode() == ISD::BITREVERSE)
|
|
return N0.getOperand(0);
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitCTLZ(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// fold (ctlz c1) -> c2
|
|
if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
|
|
return DAG.getNode(ISD::CTLZ, SDLoc(N), VT, N0);
|
|
|
|
// If the value is known never to be zero, switch to the undef version.
|
|
if (!LegalOperations || TLI.isOperationLegal(ISD::CTLZ_ZERO_UNDEF, VT)) {
|
|
if (DAG.isKnownNeverZero(N0))
|
|
return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitCTLZ_ZERO_UNDEF(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// fold (ctlz_zero_undef c1) -> c2
|
|
if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
|
|
return DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SDLoc(N), VT, N0);
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitCTTZ(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// fold (cttz c1) -> c2
|
|
if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
|
|
return DAG.getNode(ISD::CTTZ, SDLoc(N), VT, N0);
|
|
|
|
// If the value is known never to be zero, switch to the undef version.
|
|
if (!LegalOperations || TLI.isOperationLegal(ISD::CTTZ_ZERO_UNDEF, VT)) {
|
|
if (DAG.isKnownNeverZero(N0))
|
|
return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitCTTZ_ZERO_UNDEF(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// fold (cttz_zero_undef c1) -> c2
|
|
if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
|
|
return DAG.getNode(ISD::CTTZ_ZERO_UNDEF, SDLoc(N), VT, N0);
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitCTPOP(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// fold (ctpop c1) -> c2
|
|
if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
|
|
return DAG.getNode(ISD::CTPOP, SDLoc(N), VT, N0);
|
|
return SDValue();
|
|
}
|
|
|
|
// FIXME: This should be checking for no signed zeros on individual operands, as
|
|
// well as no nans.
|
|
static bool isLegalToCombineMinNumMaxNum(SelectionDAG &DAG, SDValue LHS,
|
|
SDValue RHS,
|
|
const TargetLowering &TLI) {
|
|
const TargetOptions &Options = DAG.getTarget().Options;
|
|
EVT VT = LHS.getValueType();
|
|
|
|
return Options.NoSignedZerosFPMath && VT.isFloatingPoint() &&
|
|
TLI.isProfitableToCombineMinNumMaxNum(VT) &&
|
|
DAG.isKnownNeverNaN(LHS) && DAG.isKnownNeverNaN(RHS);
|
|
}
|
|
|
|
/// Generate Min/Max node
|
|
static SDValue combineMinNumMaxNum(const SDLoc &DL, EVT VT, SDValue LHS,
|
|
SDValue RHS, SDValue True, SDValue False,
|
|
ISD::CondCode CC, const TargetLowering &TLI,
|
|
SelectionDAG &DAG) {
|
|
if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
|
|
return SDValue();
|
|
|
|
EVT TransformVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
|
|
switch (CC) {
|
|
case ISD::SETOLT:
|
|
case ISD::SETOLE:
|
|
case ISD::SETLT:
|
|
case ISD::SETLE:
|
|
case ISD::SETULT:
|
|
case ISD::SETULE: {
|
|
// Since it's known never nan to get here already, either fminnum or
|
|
// fminnum_ieee are OK. Try the ieee version first, since it's fminnum is
|
|
// expanded in terms of it.
|
|
unsigned IEEEOpcode = (LHS == True) ? ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
|
|
if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT))
|
|
return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS);
|
|
|
|
unsigned Opcode = (LHS == True) ? ISD::FMINNUM : ISD::FMAXNUM;
|
|
if (TLI.isOperationLegalOrCustom(Opcode, TransformVT))
|
|
return DAG.getNode(Opcode, DL, VT, LHS, RHS);
|
|
return SDValue();
|
|
}
|
|
case ISD::SETOGT:
|
|
case ISD::SETOGE:
|
|
case ISD::SETGT:
|
|
case ISD::SETGE:
|
|
case ISD::SETUGT:
|
|
case ISD::SETUGE: {
|
|
unsigned IEEEOpcode = (LHS == True) ? ISD::FMAXNUM_IEEE : ISD::FMINNUM_IEEE;
|
|
if (TLI.isOperationLegalOrCustom(IEEEOpcode, VT))
|
|
return DAG.getNode(IEEEOpcode, DL, VT, LHS, RHS);
|
|
|
|
unsigned Opcode = (LHS == True) ? ISD::FMAXNUM : ISD::FMINNUM;
|
|
if (TLI.isOperationLegalOrCustom(Opcode, TransformVT))
|
|
return DAG.getNode(Opcode, DL, VT, LHS, RHS);
|
|
return SDValue();
|
|
}
|
|
default:
|
|
return SDValue();
|
|
}
|
|
}
|
|
|
|
/// If a (v)select has a condition value that is a sign-bit test, try to smear
|
|
/// the condition operand sign-bit across the value width and use it as a mask.
|
|
static SDValue foldSelectOfConstantsUsingSra(SDNode *N, SelectionDAG &DAG) {
|
|
SDValue Cond = N->getOperand(0);
|
|
SDValue C1 = N->getOperand(1);
|
|
SDValue C2 = N->getOperand(2);
|
|
if (!isConstantOrConstantVector(C1) || !isConstantOrConstantVector(C2))
|
|
return SDValue();
|
|
|
|
EVT VT = N->getValueType(0);
|
|
if (Cond.getOpcode() != ISD::SETCC || !Cond.hasOneUse() ||
|
|
VT != Cond.getOperand(0).getValueType())
|
|
return SDValue();
|
|
|
|
// The inverted-condition + commuted-select variants of these patterns are
|
|
// canonicalized to these forms in IR.
|
|
SDValue X = Cond.getOperand(0);
|
|
SDValue CondC = Cond.getOperand(1);
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
|
|
if (CC == ISD::SETGT && isAllOnesOrAllOnesSplat(CondC) &&
|
|
isAllOnesOrAllOnesSplat(C2)) {
|
|
// i32 X > -1 ? C1 : -1 --> (X >>s 31) | C1
|
|
SDLoc DL(N);
|
|
SDValue ShAmtC = DAG.getConstant(X.getScalarValueSizeInBits() - 1, DL, VT);
|
|
SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, X, ShAmtC);
|
|
return DAG.getNode(ISD::OR, DL, VT, Sra, C1);
|
|
}
|
|
if (CC == ISD::SETLT && isNullOrNullSplat(CondC) && isNullOrNullSplat(C2)) {
|
|
// i8 X < 0 ? C1 : 0 --> (X >>s 7) & C1
|
|
SDLoc DL(N);
|
|
SDValue ShAmtC = DAG.getConstant(X.getScalarValueSizeInBits() - 1, DL, VT);
|
|
SDValue Sra = DAG.getNode(ISD::SRA, DL, VT, X, ShAmtC);
|
|
return DAG.getNode(ISD::AND, DL, VT, Sra, C1);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::foldSelectOfConstants(SDNode *N) {
|
|
SDValue Cond = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
SDValue N2 = N->getOperand(2);
|
|
EVT VT = N->getValueType(0);
|
|
EVT CondVT = Cond.getValueType();
|
|
SDLoc DL(N);
|
|
|
|
if (!VT.isInteger())
|
|
return SDValue();
|
|
|
|
auto *C1 = dyn_cast<ConstantSDNode>(N1);
|
|
auto *C2 = dyn_cast<ConstantSDNode>(N2);
|
|
if (!C1 || !C2)
|
|
return SDValue();
|
|
|
|
// Only do this before legalization to avoid conflicting with target-specific
|
|
// transforms in the other direction (create a select from a zext/sext). There
|
|
// is also a target-independent combine here in DAGCombiner in the other
|
|
// direction for (select Cond, -1, 0) when the condition is not i1.
|
|
if (CondVT == MVT::i1 && !LegalOperations) {
|
|
if (C1->isNullValue() && C2->isOne()) {
|
|
// select Cond, 0, 1 --> zext (!Cond)
|
|
SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1);
|
|
if (VT != MVT::i1)
|
|
NotCond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, NotCond);
|
|
return NotCond;
|
|
}
|
|
if (C1->isNullValue() && C2->isAllOnesValue()) {
|
|
// select Cond, 0, -1 --> sext (!Cond)
|
|
SDValue NotCond = DAG.getNOT(DL, Cond, MVT::i1);
|
|
if (VT != MVT::i1)
|
|
NotCond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, NotCond);
|
|
return NotCond;
|
|
}
|
|
if (C1->isOne() && C2->isNullValue()) {
|
|
// select Cond, 1, 0 --> zext (Cond)
|
|
if (VT != MVT::i1)
|
|
Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond);
|
|
return Cond;
|
|
}
|
|
if (C1->isAllOnesValue() && C2->isNullValue()) {
|
|
// select Cond, -1, 0 --> sext (Cond)
|
|
if (VT != MVT::i1)
|
|
Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond);
|
|
return Cond;
|
|
}
|
|
|
|
// Use a target hook because some targets may prefer to transform in the
|
|
// other direction.
|
|
if (TLI.convertSelectOfConstantsToMath(VT)) {
|
|
// For any constants that differ by 1, we can transform the select into an
|
|
// extend and add.
|
|
const APInt &C1Val = C1->getAPIntValue();
|
|
const APInt &C2Val = C2->getAPIntValue();
|
|
if (C1Val - 1 == C2Val) {
|
|
// select Cond, C1, C1-1 --> add (zext Cond), C1-1
|
|
if (VT != MVT::i1)
|
|
Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond);
|
|
return DAG.getNode(ISD::ADD, DL, VT, Cond, N2);
|
|
}
|
|
if (C1Val + 1 == C2Val) {
|
|
// select Cond, C1, C1+1 --> add (sext Cond), C1+1
|
|
if (VT != MVT::i1)
|
|
Cond = DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Cond);
|
|
return DAG.getNode(ISD::ADD, DL, VT, Cond, N2);
|
|
}
|
|
|
|
// select Cond, Pow2, 0 --> (zext Cond) << log2(Pow2)
|
|
if (C1Val.isPowerOf2() && C2Val.isNullValue()) {
|
|
if (VT != MVT::i1)
|
|
Cond = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Cond);
|
|
SDValue ShAmtC = DAG.getConstant(C1Val.exactLogBase2(), DL, VT);
|
|
return DAG.getNode(ISD::SHL, DL, VT, Cond, ShAmtC);
|
|
}
|
|
|
|
if (SDValue V = foldSelectOfConstantsUsingSra(N, DAG))
|
|
return V;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// fold (select Cond, 0, 1) -> (xor Cond, 1)
|
|
// We can't do this reliably if integer based booleans have different contents
|
|
// to floating point based booleans. This is because we can't tell whether we
|
|
// have an integer-based boolean or a floating-point-based boolean unless we
|
|
// can find the SETCC that produced it and inspect its operands. This is
|
|
// fairly easy if C is the SETCC node, but it can potentially be
|
|
// undiscoverable (or not reasonably discoverable). For example, it could be
|
|
// in another basic block or it could require searching a complicated
|
|
// expression.
|
|
if (CondVT.isInteger() &&
|
|
TLI.getBooleanContents(/*isVec*/false, /*isFloat*/true) ==
|
|
TargetLowering::ZeroOrOneBooleanContent &&
|
|
TLI.getBooleanContents(/*isVec*/false, /*isFloat*/false) ==
|
|
TargetLowering::ZeroOrOneBooleanContent &&
|
|
C1->isNullValue() && C2->isOne()) {
|
|
SDValue NotCond =
|
|
DAG.getNode(ISD::XOR, DL, CondVT, Cond, DAG.getConstant(1, DL, CondVT));
|
|
if (VT.bitsEq(CondVT))
|
|
return NotCond;
|
|
return DAG.getZExtOrTrunc(NotCond, DL, VT);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue foldBoolSelectToLogic(SDNode *N, SelectionDAG &DAG) {
|
|
assert((N->getOpcode() == ISD::SELECT || N->getOpcode() == ISD::VSELECT) &&
|
|
"Expected a (v)select");
|
|
SDValue Cond = N->getOperand(0);
|
|
SDValue T = N->getOperand(1), F = N->getOperand(2);
|
|
EVT VT = N->getValueType(0);
|
|
if (VT != Cond.getValueType() || VT.getScalarSizeInBits() != 1)
|
|
return SDValue();
|
|
|
|
// select Cond, Cond, F --> or Cond, F
|
|
// select Cond, 1, F --> or Cond, F
|
|
if (Cond == T || isOneOrOneSplat(T, /* AllowUndefs */ true))
|
|
return DAG.getNode(ISD::OR, SDLoc(N), VT, Cond, F);
|
|
|
|
// select Cond, T, Cond --> and Cond, T
|
|
// select Cond, T, 0 --> and Cond, T
|
|
if (Cond == F || isNullOrNullSplat(F, /* AllowUndefs */ true))
|
|
return DAG.getNode(ISD::AND, SDLoc(N), VT, Cond, T);
|
|
|
|
// select Cond, T, 1 --> or (not Cond), T
|
|
if (isOneOrOneSplat(F, /* AllowUndefs */ true)) {
|
|
SDValue NotCond = DAG.getNOT(SDLoc(N), Cond, VT);
|
|
return DAG.getNode(ISD::OR, SDLoc(N), VT, NotCond, T);
|
|
}
|
|
|
|
// select Cond, 0, F --> and (not Cond), F
|
|
if (isNullOrNullSplat(T, /* AllowUndefs */ true)) {
|
|
SDValue NotCond = DAG.getNOT(SDLoc(N), Cond, VT);
|
|
return DAG.getNode(ISD::AND, SDLoc(N), VT, NotCond, F);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitSELECT(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
SDValue N2 = N->getOperand(2);
|
|
EVT VT = N->getValueType(0);
|
|
EVT VT0 = N0.getValueType();
|
|
SDLoc DL(N);
|
|
SDNodeFlags Flags = N->getFlags();
|
|
|
|
if (SDValue V = DAG.simplifySelect(N0, N1, N2))
|
|
return V;
|
|
|
|
if (SDValue V = foldSelectOfConstants(N))
|
|
return V;
|
|
|
|
if (SDValue V = foldBoolSelectToLogic(N, DAG))
|
|
return V;
|
|
|
|
// If we can fold this based on the true/false value, do so.
|
|
if (SimplifySelectOps(N, N1, N2))
|
|
return SDValue(N, 0); // Don't revisit N.
|
|
|
|
if (VT0 == MVT::i1) {
|
|
// The code in this block deals with the following 2 equivalences:
|
|
// select(C0|C1, x, y) <=> select(C0, x, select(C1, x, y))
|
|
// select(C0&C1, x, y) <=> select(C0, select(C1, x, y), y)
|
|
// The target can specify its preferred form with the
|
|
// shouldNormalizeToSelectSequence() callback. However we always transform
|
|
// to the right anyway if we find the inner select exists in the DAG anyway
|
|
// and we always transform to the left side if we know that we can further
|
|
// optimize the combination of the conditions.
|
|
bool normalizeToSequence =
|
|
TLI.shouldNormalizeToSelectSequence(*DAG.getContext(), VT);
|
|
// select (and Cond0, Cond1), X, Y
|
|
// -> select Cond0, (select Cond1, X, Y), Y
|
|
if (N0->getOpcode() == ISD::AND && N0->hasOneUse()) {
|
|
SDValue Cond0 = N0->getOperand(0);
|
|
SDValue Cond1 = N0->getOperand(1);
|
|
SDValue InnerSelect =
|
|
DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond1, N1, N2, Flags);
|
|
if (normalizeToSequence || !InnerSelect.use_empty())
|
|
return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0,
|
|
InnerSelect, N2, Flags);
|
|
// Cleanup on failure.
|
|
if (InnerSelect.use_empty())
|
|
recursivelyDeleteUnusedNodes(InnerSelect.getNode());
|
|
}
|
|
// select (or Cond0, Cond1), X, Y -> select Cond0, X, (select Cond1, X, Y)
|
|
if (N0->getOpcode() == ISD::OR && N0->hasOneUse()) {
|
|
SDValue Cond0 = N0->getOperand(0);
|
|
SDValue Cond1 = N0->getOperand(1);
|
|
SDValue InnerSelect = DAG.getNode(ISD::SELECT, DL, N1.getValueType(),
|
|
Cond1, N1, N2, Flags);
|
|
if (normalizeToSequence || !InnerSelect.use_empty())
|
|
return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Cond0, N1,
|
|
InnerSelect, Flags);
|
|
// Cleanup on failure.
|
|
if (InnerSelect.use_empty())
|
|
recursivelyDeleteUnusedNodes(InnerSelect.getNode());
|
|
}
|
|
|
|
// select Cond0, (select Cond1, X, Y), Y -> select (and Cond0, Cond1), X, Y
|
|
if (N1->getOpcode() == ISD::SELECT && N1->hasOneUse()) {
|
|
SDValue N1_0 = N1->getOperand(0);
|
|
SDValue N1_1 = N1->getOperand(1);
|
|
SDValue N1_2 = N1->getOperand(2);
|
|
if (N1_2 == N2 && N0.getValueType() == N1_0.getValueType()) {
|
|
// Create the actual and node if we can generate good code for it.
|
|
if (!normalizeToSequence) {
|
|
SDValue And = DAG.getNode(ISD::AND, DL, N0.getValueType(), N0, N1_0);
|
|
return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), And, N1_1,
|
|
N2, Flags);
|
|
}
|
|
// Otherwise see if we can optimize the "and" to a better pattern.
|
|
if (SDValue Combined = visitANDLike(N0, N1_0, N)) {
|
|
return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1_1,
|
|
N2, Flags);
|
|
}
|
|
}
|
|
}
|
|
// select Cond0, X, (select Cond1, X, Y) -> select (or Cond0, Cond1), X, Y
|
|
if (N2->getOpcode() == ISD::SELECT && N2->hasOneUse()) {
|
|
SDValue N2_0 = N2->getOperand(0);
|
|
SDValue N2_1 = N2->getOperand(1);
|
|
SDValue N2_2 = N2->getOperand(2);
|
|
if (N2_1 == N1 && N0.getValueType() == N2_0.getValueType()) {
|
|
// Create the actual or node if we can generate good code for it.
|
|
if (!normalizeToSequence) {
|
|
SDValue Or = DAG.getNode(ISD::OR, DL, N0.getValueType(), N0, N2_0);
|
|
return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Or, N1,
|
|
N2_2, Flags);
|
|
}
|
|
// Otherwise see if we can optimize to a better pattern.
|
|
if (SDValue Combined = visitORLike(N0, N2_0, N))
|
|
return DAG.getNode(ISD::SELECT, DL, N1.getValueType(), Combined, N1,
|
|
N2_2, Flags);
|
|
}
|
|
}
|
|
}
|
|
|
|
// select (not Cond), N1, N2 -> select Cond, N2, N1
|
|
if (SDValue F = extractBooleanFlip(N0, DAG, TLI, false)) {
|
|
SDValue SelectOp = DAG.getSelect(DL, VT, F, N2, N1);
|
|
SelectOp->setFlags(Flags);
|
|
return SelectOp;
|
|
}
|
|
|
|
// Fold selects based on a setcc into other things, such as min/max/abs.
|
|
if (N0.getOpcode() == ISD::SETCC) {
|
|
SDValue Cond0 = N0.getOperand(0), Cond1 = N0.getOperand(1);
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
|
|
|
|
// select (fcmp lt x, y), x, y -> fminnum x, y
|
|
// select (fcmp gt x, y), x, y -> fmaxnum x, y
|
|
//
|
|
// This is OK if we don't care what happens if either operand is a NaN.
|
|
if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, N1, N2, TLI))
|
|
if (SDValue FMinMax = combineMinNumMaxNum(DL, VT, Cond0, Cond1, N1, N2,
|
|
CC, TLI, DAG))
|
|
return FMinMax;
|
|
|
|
// Use 'unsigned add with overflow' to optimize an unsigned saturating add.
|
|
// This is conservatively limited to pre-legal-operations to give targets
|
|
// a chance to reverse the transform if they want to do that. Also, it is
|
|
// unlikely that the pattern would be formed late, so it's probably not
|
|
// worth going through the other checks.
|
|
if (!LegalOperations && TLI.isOperationLegalOrCustom(ISD::UADDO, VT) &&
|
|
CC == ISD::SETUGT && N0.hasOneUse() && isAllOnesConstant(N1) &&
|
|
N2.getOpcode() == ISD::ADD && Cond0 == N2.getOperand(0)) {
|
|
auto *C = dyn_cast<ConstantSDNode>(N2.getOperand(1));
|
|
auto *NotC = dyn_cast<ConstantSDNode>(Cond1);
|
|
if (C && NotC && C->getAPIntValue() == ~NotC->getAPIntValue()) {
|
|
// select (setcc Cond0, ~C, ugt), -1, (add Cond0, C) -->
|
|
// uaddo Cond0, C; select uaddo.1, -1, uaddo.0
|
|
//
|
|
// The IR equivalent of this transform would have this form:
|
|
// %a = add %x, C
|
|
// %c = icmp ugt %x, ~C
|
|
// %r = select %c, -1, %a
|
|
// =>
|
|
// %u = call {iN,i1} llvm.uadd.with.overflow(%x, C)
|
|
// %u0 = extractvalue %u, 0
|
|
// %u1 = extractvalue %u, 1
|
|
// %r = select %u1, -1, %u0
|
|
SDVTList VTs = DAG.getVTList(VT, VT0);
|
|
SDValue UAO = DAG.getNode(ISD::UADDO, DL, VTs, Cond0, N2.getOperand(1));
|
|
return DAG.getSelect(DL, VT, UAO.getValue(1), N1, UAO.getValue(0));
|
|
}
|
|
}
|
|
|
|
if (TLI.isOperationLegal(ISD::SELECT_CC, VT) ||
|
|
(!LegalOperations &&
|
|
TLI.isOperationLegalOrCustom(ISD::SELECT_CC, VT))) {
|
|
// Any flags available in a select/setcc fold will be on the setcc as they
|
|
// migrated from fcmp
|
|
Flags = N0.getNode()->getFlags();
|
|
SDValue SelectNode = DAG.getNode(ISD::SELECT_CC, DL, VT, Cond0, Cond1, N1,
|
|
N2, N0.getOperand(2));
|
|
SelectNode->setFlags(Flags);
|
|
return SelectNode;
|
|
}
|
|
|
|
if (SDValue NewSel = SimplifySelect(DL, N0, N1, N2))
|
|
return NewSel;
|
|
}
|
|
|
|
if (!VT.isVector())
|
|
if (SDValue BinOp = foldSelectOfBinops(N))
|
|
return BinOp;
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// This function assumes all the vselect's arguments are CONCAT_VECTOR
|
|
// nodes and that the condition is a BV of ConstantSDNodes (or undefs).
|
|
static SDValue ConvertSelectToConcatVector(SDNode *N, SelectionDAG &DAG) {
|
|
SDLoc DL(N);
|
|
SDValue Cond = N->getOperand(0);
|
|
SDValue LHS = N->getOperand(1);
|
|
SDValue RHS = N->getOperand(2);
|
|
EVT VT = N->getValueType(0);
|
|
int NumElems = VT.getVectorNumElements();
|
|
assert(LHS.getOpcode() == ISD::CONCAT_VECTORS &&
|
|
RHS.getOpcode() == ISD::CONCAT_VECTORS &&
|
|
Cond.getOpcode() == ISD::BUILD_VECTOR);
|
|
|
|
// CONCAT_VECTOR can take an arbitrary number of arguments. We only care about
|
|
// binary ones here.
|
|
if (LHS->getNumOperands() != 2 || RHS->getNumOperands() != 2)
|
|
return SDValue();
|
|
|
|
// We're sure we have an even number of elements due to the
|
|
// concat_vectors we have as arguments to vselect.
|
|
// Skip BV elements until we find one that's not an UNDEF
|
|
// After we find an UNDEF element, keep looping until we get to half the
|
|
// length of the BV and see if all the non-undef nodes are the same.
|
|
ConstantSDNode *BottomHalf = nullptr;
|
|
for (int i = 0; i < NumElems / 2; ++i) {
|
|
if (Cond->getOperand(i)->isUndef())
|
|
continue;
|
|
|
|
if (BottomHalf == nullptr)
|
|
BottomHalf = cast<ConstantSDNode>(Cond.getOperand(i));
|
|
else if (Cond->getOperand(i).getNode() != BottomHalf)
|
|
return SDValue();
|
|
}
|
|
|
|
// Do the same for the second half of the BuildVector
|
|
ConstantSDNode *TopHalf = nullptr;
|
|
for (int i = NumElems / 2; i < NumElems; ++i) {
|
|
if (Cond->getOperand(i)->isUndef())
|
|
continue;
|
|
|
|
if (TopHalf == nullptr)
|
|
TopHalf = cast<ConstantSDNode>(Cond.getOperand(i));
|
|
else if (Cond->getOperand(i).getNode() != TopHalf)
|
|
return SDValue();
|
|
}
|
|
|
|
assert(TopHalf && BottomHalf &&
|
|
"One half of the selector was all UNDEFs and the other was all the "
|
|
"same value. This should have been addressed before this function.");
|
|
return DAG.getNode(
|
|
ISD::CONCAT_VECTORS, DL, VT,
|
|
BottomHalf->isNullValue() ? RHS->getOperand(0) : LHS->getOperand(0),
|
|
TopHalf->isNullValue() ? RHS->getOperand(1) : LHS->getOperand(1));
|
|
}
|
|
|
|
bool refineUniformBase(SDValue &BasePtr, SDValue &Index, SelectionDAG &DAG) {
|
|
if (!isNullConstant(BasePtr) || Index.getOpcode() != ISD::ADD)
|
|
return false;
|
|
|
|
// For now we check only the LHS of the add.
|
|
SDValue LHS = Index.getOperand(0);
|
|
SDValue SplatVal = DAG.getSplatValue(LHS);
|
|
if (!SplatVal)
|
|
return false;
|
|
|
|
BasePtr = SplatVal;
|
|
Index = Index.getOperand(1);
|
|
return true;
|
|
}
|
|
|
|
// Fold sext/zext of index into index type.
|
|
bool refineIndexType(MaskedGatherScatterSDNode *MGS, SDValue &Index,
|
|
bool Scaled, SelectionDAG &DAG) {
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
|
|
if (Index.getOpcode() == ISD::ZERO_EXTEND) {
|
|
SDValue Op = Index.getOperand(0);
|
|
MGS->setIndexType(Scaled ? ISD::UNSIGNED_SCALED : ISD::UNSIGNED_UNSCALED);
|
|
if (TLI.shouldRemoveExtendFromGSIndex(Op.getValueType())) {
|
|
Index = Op;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (Index.getOpcode() == ISD::SIGN_EXTEND) {
|
|
SDValue Op = Index.getOperand(0);
|
|
MGS->setIndexType(Scaled ? ISD::SIGNED_SCALED : ISD::SIGNED_UNSCALED);
|
|
if (TLI.shouldRemoveExtendFromGSIndex(Op.getValueType())) {
|
|
Index = Op;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
SDValue DAGCombiner::visitMSCATTER(SDNode *N) {
|
|
MaskedScatterSDNode *MSC = cast<MaskedScatterSDNode>(N);
|
|
SDValue Mask = MSC->getMask();
|
|
SDValue Chain = MSC->getChain();
|
|
SDValue Index = MSC->getIndex();
|
|
SDValue Scale = MSC->getScale();
|
|
SDValue StoreVal = MSC->getValue();
|
|
SDValue BasePtr = MSC->getBasePtr();
|
|
SDLoc DL(N);
|
|
|
|
// Zap scatters with a zero mask.
|
|
if (ISD::isConstantSplatVectorAllZeros(Mask.getNode()))
|
|
return Chain;
|
|
|
|
if (refineUniformBase(BasePtr, Index, DAG)) {
|
|
SDValue Ops[] = {Chain, StoreVal, Mask, BasePtr, Index, Scale};
|
|
return DAG.getMaskedScatter(
|
|
DAG.getVTList(MVT::Other), MSC->getMemoryVT(), DL, Ops,
|
|
MSC->getMemOperand(), MSC->getIndexType(), MSC->isTruncatingStore());
|
|
}
|
|
|
|
if (refineIndexType(MSC, Index, MSC->isIndexScaled(), DAG)) {
|
|
SDValue Ops[] = {Chain, StoreVal, Mask, BasePtr, Index, Scale};
|
|
return DAG.getMaskedScatter(
|
|
DAG.getVTList(MVT::Other), MSC->getMemoryVT(), DL, Ops,
|
|
MSC->getMemOperand(), MSC->getIndexType(), MSC->isTruncatingStore());
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitMSTORE(SDNode *N) {
|
|
MaskedStoreSDNode *MST = cast<MaskedStoreSDNode>(N);
|
|
SDValue Mask = MST->getMask();
|
|
SDValue Chain = MST->getChain();
|
|
SDLoc DL(N);
|
|
|
|
// Zap masked stores with a zero mask.
|
|
if (ISD::isConstantSplatVectorAllZeros(Mask.getNode()))
|
|
return Chain;
|
|
|
|
// If this is a masked load with an all ones mask, we can use a unmasked load.
|
|
// FIXME: Can we do this for indexed, compressing, or truncating stores?
|
|
if (ISD::isConstantSplatVectorAllOnes(Mask.getNode()) &&
|
|
MST->isUnindexed() && !MST->isCompressingStore() &&
|
|
!MST->isTruncatingStore())
|
|
return DAG.getStore(MST->getChain(), SDLoc(N), MST->getValue(),
|
|
MST->getBasePtr(), MST->getMemOperand());
|
|
|
|
// Try transforming N to an indexed store.
|
|
if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
|
|
return SDValue(N, 0);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitMGATHER(SDNode *N) {
|
|
MaskedGatherSDNode *MGT = cast<MaskedGatherSDNode>(N);
|
|
SDValue Mask = MGT->getMask();
|
|
SDValue Chain = MGT->getChain();
|
|
SDValue Index = MGT->getIndex();
|
|
SDValue Scale = MGT->getScale();
|
|
SDValue PassThru = MGT->getPassThru();
|
|
SDValue BasePtr = MGT->getBasePtr();
|
|
SDLoc DL(N);
|
|
|
|
// Zap gathers with a zero mask.
|
|
if (ISD::isConstantSplatVectorAllZeros(Mask.getNode()))
|
|
return CombineTo(N, PassThru, MGT->getChain());
|
|
|
|
if (refineUniformBase(BasePtr, Index, DAG)) {
|
|
SDValue Ops[] = {Chain, PassThru, Mask, BasePtr, Index, Scale};
|
|
return DAG.getMaskedGather(DAG.getVTList(N->getValueType(0), MVT::Other),
|
|
MGT->getMemoryVT(), DL, Ops,
|
|
MGT->getMemOperand(), MGT->getIndexType(),
|
|
MGT->getExtensionType());
|
|
}
|
|
|
|
if (refineIndexType(MGT, Index, MGT->isIndexScaled(), DAG)) {
|
|
SDValue Ops[] = {Chain, PassThru, Mask, BasePtr, Index, Scale};
|
|
return DAG.getMaskedGather(DAG.getVTList(N->getValueType(0), MVT::Other),
|
|
MGT->getMemoryVT(), DL, Ops,
|
|
MGT->getMemOperand(), MGT->getIndexType(),
|
|
MGT->getExtensionType());
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitMLOAD(SDNode *N) {
|
|
MaskedLoadSDNode *MLD = cast<MaskedLoadSDNode>(N);
|
|
SDValue Mask = MLD->getMask();
|
|
SDLoc DL(N);
|
|
|
|
// Zap masked loads with a zero mask.
|
|
if (ISD::isConstantSplatVectorAllZeros(Mask.getNode()))
|
|
return CombineTo(N, MLD->getPassThru(), MLD->getChain());
|
|
|
|
// If this is a masked load with an all ones mask, we can use a unmasked load.
|
|
// FIXME: Can we do this for indexed, expanding, or extending loads?
|
|
if (ISD::isConstantSplatVectorAllOnes(Mask.getNode()) &&
|
|
MLD->isUnindexed() && !MLD->isExpandingLoad() &&
|
|
MLD->getExtensionType() == ISD::NON_EXTLOAD) {
|
|
SDValue NewLd = DAG.getLoad(N->getValueType(0), SDLoc(N), MLD->getChain(),
|
|
MLD->getBasePtr(), MLD->getMemOperand());
|
|
return CombineTo(N, NewLd, NewLd.getValue(1));
|
|
}
|
|
|
|
// Try transforming N to an indexed load.
|
|
if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
|
|
return SDValue(N, 0);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// A vector select of 2 constant vectors can be simplified to math/logic to
|
|
/// avoid a variable select instruction and possibly avoid constant loads.
|
|
SDValue DAGCombiner::foldVSelectOfConstants(SDNode *N) {
|
|
SDValue Cond = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
SDValue N2 = N->getOperand(2);
|
|
EVT VT = N->getValueType(0);
|
|
if (!Cond.hasOneUse() || Cond.getScalarValueSizeInBits() != 1 ||
|
|
!TLI.convertSelectOfConstantsToMath(VT) ||
|
|
!ISD::isBuildVectorOfConstantSDNodes(N1.getNode()) ||
|
|
!ISD::isBuildVectorOfConstantSDNodes(N2.getNode()))
|
|
return SDValue();
|
|
|
|
// Check if we can use the condition value to increment/decrement a single
|
|
// constant value. This simplifies a select to an add and removes a constant
|
|
// load/materialization from the general case.
|
|
bool AllAddOne = true;
|
|
bool AllSubOne = true;
|
|
unsigned Elts = VT.getVectorNumElements();
|
|
for (unsigned i = 0; i != Elts; ++i) {
|
|
SDValue N1Elt = N1.getOperand(i);
|
|
SDValue N2Elt = N2.getOperand(i);
|
|
if (N1Elt.isUndef() || N2Elt.isUndef())
|
|
continue;
|
|
if (N1Elt.getValueType() != N2Elt.getValueType())
|
|
continue;
|
|
|
|
const APInt &C1 = cast<ConstantSDNode>(N1Elt)->getAPIntValue();
|
|
const APInt &C2 = cast<ConstantSDNode>(N2Elt)->getAPIntValue();
|
|
if (C1 != C2 + 1)
|
|
AllAddOne = false;
|
|
if (C1 != C2 - 1)
|
|
AllSubOne = false;
|
|
}
|
|
|
|
// Further simplifications for the extra-special cases where the constants are
|
|
// all 0 or all -1 should be implemented as folds of these patterns.
|
|
SDLoc DL(N);
|
|
if (AllAddOne || AllSubOne) {
|
|
// vselect <N x i1> Cond, C+1, C --> add (zext Cond), C
|
|
// vselect <N x i1> Cond, C-1, C --> add (sext Cond), C
|
|
auto ExtendOpcode = AllAddOne ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND;
|
|
SDValue ExtendedCond = DAG.getNode(ExtendOpcode, DL, VT, Cond);
|
|
return DAG.getNode(ISD::ADD, DL, VT, ExtendedCond, N2);
|
|
}
|
|
|
|
// select Cond, Pow2C, 0 --> (zext Cond) << log2(Pow2C)
|
|
APInt Pow2C;
|
|
if (ISD::isConstantSplatVector(N1.getNode(), Pow2C) && Pow2C.isPowerOf2() &&
|
|
isNullOrNullSplat(N2)) {
|
|
SDValue ZextCond = DAG.getZExtOrTrunc(Cond, DL, VT);
|
|
SDValue ShAmtC = DAG.getConstant(Pow2C.exactLogBase2(), DL, VT);
|
|
return DAG.getNode(ISD::SHL, DL, VT, ZextCond, ShAmtC);
|
|
}
|
|
|
|
if (SDValue V = foldSelectOfConstantsUsingSra(N, DAG))
|
|
return V;
|
|
|
|
// The general case for select-of-constants:
|
|
// vselect <N x i1> Cond, C1, C2 --> xor (and (sext Cond), (C1^C2)), C2
|
|
// ...but that only makes sense if a vselect is slower than 2 logic ops, so
|
|
// leave that to a machine-specific pass.
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitVSELECT(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
SDValue N2 = N->getOperand(2);
|
|
EVT VT = N->getValueType(0);
|
|
SDLoc DL(N);
|
|
|
|
if (SDValue V = DAG.simplifySelect(N0, N1, N2))
|
|
return V;
|
|
|
|
if (SDValue V = foldBoolSelectToLogic(N, DAG))
|
|
return V;
|
|
|
|
// vselect (not Cond), N1, N2 -> vselect Cond, N2, N1
|
|
if (SDValue F = extractBooleanFlip(N0, DAG, TLI, false))
|
|
return DAG.getSelect(DL, VT, F, N2, N1);
|
|
|
|
// Canonicalize integer abs.
|
|
// vselect (setg[te] X, 0), X, -X ->
|
|
// vselect (setgt X, -1), X, -X ->
|
|
// vselect (setl[te] X, 0), -X, X ->
|
|
// Y = sra (X, size(X)-1); xor (add (X, Y), Y)
|
|
if (N0.getOpcode() == ISD::SETCC) {
|
|
SDValue LHS = N0.getOperand(0), RHS = N0.getOperand(1);
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
|
|
bool isAbs = false;
|
|
bool RHSIsAllZeros = ISD::isBuildVectorAllZeros(RHS.getNode());
|
|
|
|
if (((RHSIsAllZeros && (CC == ISD::SETGT || CC == ISD::SETGE)) ||
|
|
(ISD::isBuildVectorAllOnes(RHS.getNode()) && CC == ISD::SETGT)) &&
|
|
N1 == LHS && N2.getOpcode() == ISD::SUB && N1 == N2.getOperand(1))
|
|
isAbs = ISD::isBuildVectorAllZeros(N2.getOperand(0).getNode());
|
|
else if ((RHSIsAllZeros && (CC == ISD::SETLT || CC == ISD::SETLE)) &&
|
|
N2 == LHS && N1.getOpcode() == ISD::SUB && N2 == N1.getOperand(1))
|
|
isAbs = ISD::isBuildVectorAllZeros(N1.getOperand(0).getNode());
|
|
|
|
if (isAbs) {
|
|
if (TLI.isOperationLegalOrCustom(ISD::ABS, VT))
|
|
return DAG.getNode(ISD::ABS, DL, VT, LHS);
|
|
|
|
SDValue Shift = DAG.getNode(ISD::SRA, DL, VT, LHS,
|
|
DAG.getConstant(VT.getScalarSizeInBits() - 1,
|
|
DL, getShiftAmountTy(VT)));
|
|
SDValue Add = DAG.getNode(ISD::ADD, DL, VT, LHS, Shift);
|
|
AddToWorklist(Shift.getNode());
|
|
AddToWorklist(Add.getNode());
|
|
return DAG.getNode(ISD::XOR, DL, VT, Add, Shift);
|
|
}
|
|
|
|
// vselect x, y (fcmp lt x, y) -> fminnum x, y
|
|
// vselect x, y (fcmp gt x, y) -> fmaxnum x, y
|
|
//
|
|
// This is OK if we don't care about what happens if either operand is a
|
|
// NaN.
|
|
//
|
|
if (N0.hasOneUse() && isLegalToCombineMinNumMaxNum(DAG, LHS, RHS, TLI)) {
|
|
if (SDValue FMinMax =
|
|
combineMinNumMaxNum(DL, VT, LHS, RHS, N1, N2, CC, TLI, DAG))
|
|
return FMinMax;
|
|
}
|
|
|
|
// If this select has a condition (setcc) with narrower operands than the
|
|
// select, try to widen the compare to match the select width.
|
|
// TODO: This should be extended to handle any constant.
|
|
// TODO: This could be extended to handle non-loading patterns, but that
|
|
// requires thorough testing to avoid regressions.
|
|
if (isNullOrNullSplat(RHS)) {
|
|
EVT NarrowVT = LHS.getValueType();
|
|
EVT WideVT = N1.getValueType().changeVectorElementTypeToInteger();
|
|
EVT SetCCVT = getSetCCResultType(LHS.getValueType());
|
|
unsigned SetCCWidth = SetCCVT.getScalarSizeInBits();
|
|
unsigned WideWidth = WideVT.getScalarSizeInBits();
|
|
bool IsSigned = isSignedIntSetCC(CC);
|
|
auto LoadExtOpcode = IsSigned ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
|
|
if (LHS.getOpcode() == ISD::LOAD && LHS.hasOneUse() &&
|
|
SetCCWidth != 1 && SetCCWidth < WideWidth &&
|
|
TLI.isLoadExtLegalOrCustom(LoadExtOpcode, WideVT, NarrowVT) &&
|
|
TLI.isOperationLegalOrCustom(ISD::SETCC, WideVT)) {
|
|
// Both compare operands can be widened for free. The LHS can use an
|
|
// extended load, and the RHS is a constant:
|
|
// vselect (ext (setcc load(X), C)), N1, N2 -->
|
|
// vselect (setcc extload(X), C'), N1, N2
|
|
auto ExtOpcode = IsSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
|
|
SDValue WideLHS = DAG.getNode(ExtOpcode, DL, WideVT, LHS);
|
|
SDValue WideRHS = DAG.getNode(ExtOpcode, DL, WideVT, RHS);
|
|
EVT WideSetCCVT = getSetCCResultType(WideVT);
|
|
SDValue WideSetCC = DAG.getSetCC(DL, WideSetCCVT, WideLHS, WideRHS, CC);
|
|
return DAG.getSelect(DL, N1.getValueType(), WideSetCC, N1, N2);
|
|
}
|
|
}
|
|
|
|
// Match VSELECTs into add with unsigned saturation.
|
|
if (hasOperation(ISD::UADDSAT, VT)) {
|
|
// Check if one of the arms of the VSELECT is vector with all bits set.
|
|
// If it's on the left side invert the predicate to simplify logic below.
|
|
SDValue Other;
|
|
ISD::CondCode SatCC = CC;
|
|
if (ISD::isConstantSplatVectorAllOnes(N1.getNode())) {
|
|
Other = N2;
|
|
SatCC = ISD::getSetCCInverse(SatCC, VT.getScalarType());
|
|
} else if (ISD::isConstantSplatVectorAllOnes(N2.getNode())) {
|
|
Other = N1;
|
|
}
|
|
|
|
if (Other && Other.getOpcode() == ISD::ADD) {
|
|
SDValue CondLHS = LHS, CondRHS = RHS;
|
|
SDValue OpLHS = Other.getOperand(0), OpRHS = Other.getOperand(1);
|
|
|
|
// Canonicalize condition operands.
|
|
if (SatCC == ISD::SETUGE) {
|
|
std::swap(CondLHS, CondRHS);
|
|
SatCC = ISD::SETULE;
|
|
}
|
|
|
|
// We can test against either of the addition operands.
|
|
// x <= x+y ? x+y : ~0 --> uaddsat x, y
|
|
// x+y >= x ? x+y : ~0 --> uaddsat x, y
|
|
if (SatCC == ISD::SETULE && Other == CondRHS &&
|
|
(OpLHS == CondLHS || OpRHS == CondLHS))
|
|
return DAG.getNode(ISD::UADDSAT, DL, VT, OpLHS, OpRHS);
|
|
|
|
if (OpRHS.getOpcode() == CondRHS.getOpcode() &&
|
|
(OpRHS.getOpcode() == ISD::BUILD_VECTOR ||
|
|
OpRHS.getOpcode() == ISD::SPLAT_VECTOR) &&
|
|
CondLHS == OpLHS) {
|
|
// If the RHS is a constant we have to reverse the const
|
|
// canonicalization.
|
|
// x >= ~C ? x+C : ~0 --> uaddsat x, C
|
|
auto MatchUADDSAT = [](ConstantSDNode *Op, ConstantSDNode *Cond) {
|
|
return Cond->getAPIntValue() == ~Op->getAPIntValue();
|
|
};
|
|
if (SatCC == ISD::SETULE &&
|
|
ISD::matchBinaryPredicate(OpRHS, CondRHS, MatchUADDSAT))
|
|
return DAG.getNode(ISD::UADDSAT, DL, VT, OpLHS, OpRHS);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Match VSELECTs into sub with unsigned saturation.
|
|
if (hasOperation(ISD::USUBSAT, VT)) {
|
|
// Check if one of the arms of the VSELECT is a zero vector. If it's on
|
|
// the left side invert the predicate to simplify logic below.
|
|
SDValue Other;
|
|
ISD::CondCode SatCC = CC;
|
|
if (ISD::isConstantSplatVectorAllZeros(N1.getNode())) {
|
|
Other = N2;
|
|
SatCC = ISD::getSetCCInverse(SatCC, VT.getScalarType());
|
|
} else if (ISD::isConstantSplatVectorAllZeros(N2.getNode())) {
|
|
Other = N1;
|
|
}
|
|
|
|
if (Other && Other.getNumOperands() == 2) {
|
|
SDValue CondRHS = RHS;
|
|
SDValue OpLHS = Other.getOperand(0), OpRHS = Other.getOperand(1);
|
|
|
|
if (Other.getOpcode() == ISD::SUB &&
|
|
LHS.getOpcode() == ISD::ZERO_EXTEND && LHS.getOperand(0) == OpLHS &&
|
|
OpRHS.getOpcode() == ISD::TRUNCATE && OpRHS.getOperand(0) == RHS) {
|
|
// Look for a general sub with unsigned saturation first.
|
|
// zext(x) >= y ? x - trunc(y) : 0
|
|
// --> usubsat(x,trunc(umin(y,SatLimit)))
|
|
// zext(x) > y ? x - trunc(y) : 0
|
|
// --> usubsat(x,trunc(umin(y,SatLimit)))
|
|
if (SatCC == ISD::SETUGE || SatCC == ISD::SETUGT)
|
|
return getTruncatedUSUBSAT(VT, LHS.getValueType(), LHS, RHS, DAG,
|
|
DL);
|
|
}
|
|
|
|
if (OpLHS == LHS) {
|
|
// Look for a general sub with unsigned saturation first.
|
|
// x >= y ? x-y : 0 --> usubsat x, y
|
|
// x > y ? x-y : 0 --> usubsat x, y
|
|
if ((SatCC == ISD::SETUGE || SatCC == ISD::SETUGT) &&
|
|
Other.getOpcode() == ISD::SUB && OpRHS == CondRHS)
|
|
return DAG.getNode(ISD::USUBSAT, DL, VT, OpLHS, OpRHS);
|
|
|
|
if (OpRHS.getOpcode() == ISD::BUILD_VECTOR ||
|
|
OpRHS.getOpcode() == ISD::SPLAT_VECTOR) {
|
|
if (CondRHS.getOpcode() == ISD::BUILD_VECTOR ||
|
|
CondRHS.getOpcode() == ISD::SPLAT_VECTOR) {
|
|
// If the RHS is a constant we have to reverse the const
|
|
// canonicalization.
|
|
// x > C-1 ? x+-C : 0 --> usubsat x, C
|
|
auto MatchUSUBSAT = [](ConstantSDNode *Op, ConstantSDNode *Cond) {
|
|
return (!Op && !Cond) ||
|
|
(Op && Cond &&
|
|
Cond->getAPIntValue() == (-Op->getAPIntValue() - 1));
|
|
};
|
|
if (SatCC == ISD::SETUGT && Other.getOpcode() == ISD::ADD &&
|
|
ISD::matchBinaryPredicate(OpRHS, CondRHS, MatchUSUBSAT,
|
|
/*AllowUndefs*/ true)) {
|
|
OpRHS = DAG.getNode(ISD::SUB, DL, VT,
|
|
DAG.getConstant(0, DL, VT), OpRHS);
|
|
return DAG.getNode(ISD::USUBSAT, DL, VT, OpLHS, OpRHS);
|
|
}
|
|
|
|
// Another special case: If C was a sign bit, the sub has been
|
|
// canonicalized into a xor.
|
|
// FIXME: Would it be better to use computeKnownBits to determine
|
|
// whether it's safe to decanonicalize the xor?
|
|
// x s< 0 ? x^C : 0 --> usubsat x, C
|
|
APInt SplatValue;
|
|
if (SatCC == ISD::SETLT && Other.getOpcode() == ISD::XOR &&
|
|
ISD::isConstantSplatVector(OpRHS.getNode(), SplatValue) &&
|
|
ISD::isConstantSplatVectorAllZeros(CondRHS.getNode()) &&
|
|
SplatValue.isSignMask()) {
|
|
// Note that we have to rebuild the RHS constant here to
|
|
// ensure we don't rely on particular values of undef lanes.
|
|
OpRHS = DAG.getConstant(SplatValue, DL, VT);
|
|
return DAG.getNode(ISD::USUBSAT, DL, VT, OpLHS, OpRHS);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (SimplifySelectOps(N, N1, N2))
|
|
return SDValue(N, 0); // Don't revisit N.
|
|
|
|
// Fold (vselect all_ones, N1, N2) -> N1
|
|
if (ISD::isConstantSplatVectorAllOnes(N0.getNode()))
|
|
return N1;
|
|
// Fold (vselect all_zeros, N1, N2) -> N2
|
|
if (ISD::isConstantSplatVectorAllZeros(N0.getNode()))
|
|
return N2;
|
|
|
|
// The ConvertSelectToConcatVector function is assuming both the above
|
|
// checks for (vselect (build_vector all{ones,zeros) ...) have been made
|
|
// and addressed.
|
|
if (N1.getOpcode() == ISD::CONCAT_VECTORS &&
|
|
N2.getOpcode() == ISD::CONCAT_VECTORS &&
|
|
ISD::isBuildVectorOfConstantSDNodes(N0.getNode())) {
|
|
if (SDValue CV = ConvertSelectToConcatVector(N, DAG))
|
|
return CV;
|
|
}
|
|
|
|
if (SDValue V = foldVSelectOfConstants(N))
|
|
return V;
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitSELECT_CC(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
SDValue N2 = N->getOperand(2);
|
|
SDValue N3 = N->getOperand(3);
|
|
SDValue N4 = N->getOperand(4);
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(N4)->get();
|
|
|
|
// fold select_cc lhs, rhs, x, x, cc -> x
|
|
if (N2 == N3)
|
|
return N2;
|
|
|
|
// Determine if the condition we're dealing with is constant
|
|
if (SDValue SCC = SimplifySetCC(getSetCCResultType(N0.getValueType()), N0, N1,
|
|
CC, SDLoc(N), false)) {
|
|
AddToWorklist(SCC.getNode());
|
|
|
|
if (ConstantSDNode *SCCC = dyn_cast<ConstantSDNode>(SCC.getNode())) {
|
|
if (!SCCC->isNullValue())
|
|
return N2; // cond always true -> true val
|
|
else
|
|
return N3; // cond always false -> false val
|
|
} else if (SCC->isUndef()) {
|
|
// When the condition is UNDEF, just return the first operand. This is
|
|
// coherent the DAG creation, no setcc node is created in this case
|
|
return N2;
|
|
} else if (SCC.getOpcode() == ISD::SETCC) {
|
|
// Fold to a simpler select_cc
|
|
SDValue SelectOp = DAG.getNode(
|
|
ISD::SELECT_CC, SDLoc(N), N2.getValueType(), SCC.getOperand(0),
|
|
SCC.getOperand(1), N2, N3, SCC.getOperand(2));
|
|
SelectOp->setFlags(SCC->getFlags());
|
|
return SelectOp;
|
|
}
|
|
}
|
|
|
|
// If we can fold this based on the true/false value, do so.
|
|
if (SimplifySelectOps(N, N2, N3))
|
|
return SDValue(N, 0); // Don't revisit N.
|
|
|
|
// fold select_cc into other things, such as min/max/abs
|
|
return SimplifySelectCC(SDLoc(N), N0, N1, N2, N3, CC);
|
|
}
|
|
|
|
SDValue DAGCombiner::visitSETCC(SDNode *N) {
|
|
// setcc is very commonly used as an argument to brcond. This pattern
|
|
// also lend itself to numerous combines and, as a result, it is desired
|
|
// we keep the argument to a brcond as a setcc as much as possible.
|
|
bool PreferSetCC =
|
|
N->hasOneUse() && N->use_begin()->getOpcode() == ISD::BRCOND;
|
|
|
|
ISD::CondCode Cond = cast<CondCodeSDNode>(N->getOperand(2))->get();
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// SETCC(FREEZE(X), CONST, Cond)
|
|
// =>
|
|
// FREEZE(SETCC(X, CONST, Cond))
|
|
// This is correct if FREEZE(X) has one use and SETCC(FREEZE(X), CONST, Cond)
|
|
// isn't equivalent to true or false.
|
|
// For example, SETCC(FREEZE(X), -128, SETULT) cannot be folded to
|
|
// FREEZE(SETCC(X, -128, SETULT)) because X can be poison.
|
|
//
|
|
// This transformation is beneficial because visitBRCOND can fold
|
|
// BRCOND(FREEZE(X)) to BRCOND(X).
|
|
|
|
// Conservatively optimize integer comparisons only.
|
|
if (PreferSetCC) {
|
|
// Do this only when SETCC is going to be used by BRCOND.
|
|
|
|
SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
|
|
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
|
|
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
|
|
bool Updated = false;
|
|
|
|
// Is 'X Cond C' always true or false?
|
|
auto IsAlwaysTrueOrFalse = [](ISD::CondCode Cond, ConstantSDNode *C) {
|
|
bool False = (Cond == ISD::SETULT && C->isNullValue()) ||
|
|
(Cond == ISD::SETLT && C->isMinSignedValue()) ||
|
|
(Cond == ISD::SETUGT && C->isAllOnesValue()) ||
|
|
(Cond == ISD::SETGT && C->isMaxSignedValue());
|
|
bool True = (Cond == ISD::SETULE && C->isAllOnesValue()) ||
|
|
(Cond == ISD::SETLE && C->isMaxSignedValue()) ||
|
|
(Cond == ISD::SETUGE && C->isNullValue()) ||
|
|
(Cond == ISD::SETGE && C->isMinSignedValue());
|
|
return True || False;
|
|
};
|
|
|
|
if (N0->getOpcode() == ISD::FREEZE && N0.hasOneUse() && N1C) {
|
|
if (!IsAlwaysTrueOrFalse(Cond, N1C)) {
|
|
N0 = N0->getOperand(0);
|
|
Updated = true;
|
|
}
|
|
}
|
|
if (N1->getOpcode() == ISD::FREEZE && N1.hasOneUse() && N0C) {
|
|
if (!IsAlwaysTrueOrFalse(ISD::getSetCCSwappedOperands(Cond),
|
|
N0C)) {
|
|
N1 = N1->getOperand(0);
|
|
Updated = true;
|
|
}
|
|
}
|
|
|
|
if (Updated)
|
|
return DAG.getFreeze(DAG.getSetCC(SDLoc(N), VT, N0, N1, Cond));
|
|
}
|
|
|
|
SDValue Combined = SimplifySetCC(VT, N->getOperand(0), N->getOperand(1), Cond,
|
|
SDLoc(N), !PreferSetCC);
|
|
|
|
if (!Combined)
|
|
return SDValue();
|
|
|
|
// If we prefer to have a setcc, and we don't, we'll try our best to
|
|
// recreate one using rebuildSetCC.
|
|
if (PreferSetCC && Combined.getOpcode() != ISD::SETCC) {
|
|
SDValue NewSetCC = rebuildSetCC(Combined);
|
|
|
|
// We don't have anything interesting to combine to.
|
|
if (NewSetCC.getNode() == N)
|
|
return SDValue();
|
|
|
|
if (NewSetCC)
|
|
return NewSetCC;
|
|
}
|
|
|
|
return Combined;
|
|
}
|
|
|
|
SDValue DAGCombiner::visitSETCCCARRY(SDNode *N) {
|
|
SDValue LHS = N->getOperand(0);
|
|
SDValue RHS = N->getOperand(1);
|
|
SDValue Carry = N->getOperand(2);
|
|
SDValue Cond = N->getOperand(3);
|
|
|
|
// If Carry is false, fold to a regular SETCC.
|
|
if (isNullConstant(Carry))
|
|
return DAG.getNode(ISD::SETCC, SDLoc(N), N->getVTList(), LHS, RHS, Cond);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// Check if N satisfies:
|
|
/// N is used once.
|
|
/// N is a Load.
|
|
/// The load is compatible with ExtOpcode. It means
|
|
/// If load has explicit zero/sign extension, ExpOpcode must have the same
|
|
/// extension.
|
|
/// Otherwise returns true.
|
|
static bool isCompatibleLoad(SDValue N, unsigned ExtOpcode) {
|
|
if (!N.hasOneUse())
|
|
return false;
|
|
|
|
if (!isa<LoadSDNode>(N))
|
|
return false;
|
|
|
|
LoadSDNode *Load = cast<LoadSDNode>(N);
|
|
ISD::LoadExtType LoadExt = Load->getExtensionType();
|
|
if (LoadExt == ISD::NON_EXTLOAD || LoadExt == ISD::EXTLOAD)
|
|
return true;
|
|
|
|
// Now LoadExt is either SEXTLOAD or ZEXTLOAD, ExtOpcode must have the same
|
|
// extension.
|
|
if ((LoadExt == ISD::SEXTLOAD && ExtOpcode != ISD::SIGN_EXTEND) ||
|
|
(LoadExt == ISD::ZEXTLOAD && ExtOpcode != ISD::ZERO_EXTEND))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Fold
|
|
/// (sext (select c, load x, load y)) -> (select c, sextload x, sextload y)
|
|
/// (zext (select c, load x, load y)) -> (select c, zextload x, zextload y)
|
|
/// (aext (select c, load x, load y)) -> (select c, extload x, extload y)
|
|
/// This function is called by the DAGCombiner when visiting sext/zext/aext
|
|
/// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND).
|
|
static SDValue tryToFoldExtendSelectLoad(SDNode *N, const TargetLowering &TLI,
|
|
SelectionDAG &DAG) {
|
|
unsigned Opcode = N->getOpcode();
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
SDLoc DL(N);
|
|
|
|
assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND ||
|
|
Opcode == ISD::ANY_EXTEND) &&
|
|
"Expected EXTEND dag node in input!");
|
|
|
|
if (!(N0->getOpcode() == ISD::SELECT || N0->getOpcode() == ISD::VSELECT) ||
|
|
!N0.hasOneUse())
|
|
return SDValue();
|
|
|
|
SDValue Op1 = N0->getOperand(1);
|
|
SDValue Op2 = N0->getOperand(2);
|
|
if (!isCompatibleLoad(Op1, Opcode) || !isCompatibleLoad(Op2, Opcode))
|
|
return SDValue();
|
|
|
|
auto ExtLoadOpcode = ISD::EXTLOAD;
|
|
if (Opcode == ISD::SIGN_EXTEND)
|
|
ExtLoadOpcode = ISD::SEXTLOAD;
|
|
else if (Opcode == ISD::ZERO_EXTEND)
|
|
ExtLoadOpcode = ISD::ZEXTLOAD;
|
|
|
|
LoadSDNode *Load1 = cast<LoadSDNode>(Op1);
|
|
LoadSDNode *Load2 = cast<LoadSDNode>(Op2);
|
|
if (!TLI.isLoadExtLegal(ExtLoadOpcode, VT, Load1->getMemoryVT()) ||
|
|
!TLI.isLoadExtLegal(ExtLoadOpcode, VT, Load2->getMemoryVT()))
|
|
return SDValue();
|
|
|
|
SDValue Ext1 = DAG.getNode(Opcode, DL, VT, Op1);
|
|
SDValue Ext2 = DAG.getNode(Opcode, DL, VT, Op2);
|
|
return DAG.getSelect(DL, VT, N0->getOperand(0), Ext1, Ext2);
|
|
}
|
|
|
|
/// Try to fold a sext/zext/aext dag node into a ConstantSDNode or
|
|
/// a build_vector of constants.
|
|
/// This function is called by the DAGCombiner when visiting sext/zext/aext
|
|
/// dag nodes (see for example method DAGCombiner::visitSIGN_EXTEND).
|
|
/// Vector extends are not folded if operations are legal; this is to
|
|
/// avoid introducing illegal build_vector dag nodes.
|
|
static SDValue tryToFoldExtendOfConstant(SDNode *N, const TargetLowering &TLI,
|
|
SelectionDAG &DAG, bool LegalTypes) {
|
|
unsigned Opcode = N->getOpcode();
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
SDLoc DL(N);
|
|
|
|
assert((Opcode == ISD::SIGN_EXTEND || Opcode == ISD::ZERO_EXTEND ||
|
|
Opcode == ISD::ANY_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG ||
|
|
Opcode == ISD::ZERO_EXTEND_VECTOR_INREG)
|
|
&& "Expected EXTEND dag node in input!");
|
|
|
|
// fold (sext c1) -> c1
|
|
// fold (zext c1) -> c1
|
|
// fold (aext c1) -> c1
|
|
if (isa<ConstantSDNode>(N0))
|
|
return DAG.getNode(Opcode, DL, VT, N0);
|
|
|
|
// fold (sext (select cond, c1, c2)) -> (select cond, sext c1, sext c2)
|
|
// fold (zext (select cond, c1, c2)) -> (select cond, zext c1, zext c2)
|
|
// fold (aext (select cond, c1, c2)) -> (select cond, sext c1, sext c2)
|
|
if (N0->getOpcode() == ISD::SELECT) {
|
|
SDValue Op1 = N0->getOperand(1);
|
|
SDValue Op2 = N0->getOperand(2);
|
|
if (isa<ConstantSDNode>(Op1) && isa<ConstantSDNode>(Op2) &&
|
|
(Opcode != ISD::ZERO_EXTEND || !TLI.isZExtFree(N0.getValueType(), VT))) {
|
|
// For any_extend, choose sign extension of the constants to allow a
|
|
// possible further transform to sign_extend_inreg.i.e.
|
|
//
|
|
// t1: i8 = select t0, Constant:i8<-1>, Constant:i8<0>
|
|
// t2: i64 = any_extend t1
|
|
// -->
|
|
// t3: i64 = select t0, Constant:i64<-1>, Constant:i64<0>
|
|
// -->
|
|
// t4: i64 = sign_extend_inreg t3
|
|
unsigned FoldOpc = Opcode;
|
|
if (FoldOpc == ISD::ANY_EXTEND)
|
|
FoldOpc = ISD::SIGN_EXTEND;
|
|
return DAG.getSelect(DL, VT, N0->getOperand(0),
|
|
DAG.getNode(FoldOpc, DL, VT, Op1),
|
|
DAG.getNode(FoldOpc, DL, VT, Op2));
|
|
}
|
|
}
|
|
|
|
// fold (sext (build_vector AllConstants) -> (build_vector AllConstants)
|
|
// fold (zext (build_vector AllConstants) -> (build_vector AllConstants)
|
|
// fold (aext (build_vector AllConstants) -> (build_vector AllConstants)
|
|
EVT SVT = VT.getScalarType();
|
|
if (!(VT.isVector() && (!LegalTypes || TLI.isTypeLegal(SVT)) &&
|
|
ISD::isBuildVectorOfConstantSDNodes(N0.getNode())))
|
|
return SDValue();
|
|
|
|
// We can fold this node into a build_vector.
|
|
unsigned VTBits = SVT.getSizeInBits();
|
|
unsigned EVTBits = N0->getValueType(0).getScalarSizeInBits();
|
|
SmallVector<SDValue, 8> Elts;
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
|
|
// For zero-extensions, UNDEF elements still guarantee to have the upper
|
|
// bits set to zero.
|
|
bool IsZext =
|
|
Opcode == ISD::ZERO_EXTEND || Opcode == ISD::ZERO_EXTEND_VECTOR_INREG;
|
|
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
SDValue Op = N0.getOperand(i);
|
|
if (Op.isUndef()) {
|
|
Elts.push_back(IsZext ? DAG.getConstant(0, DL, SVT) : DAG.getUNDEF(SVT));
|
|
continue;
|
|
}
|
|
|
|
SDLoc DL(Op);
|
|
// Get the constant value and if needed trunc it to the size of the type.
|
|
// Nodes like build_vector might have constants wider than the scalar type.
|
|
APInt C = cast<ConstantSDNode>(Op)->getAPIntValue().zextOrTrunc(EVTBits);
|
|
if (Opcode == ISD::SIGN_EXTEND || Opcode == ISD::SIGN_EXTEND_VECTOR_INREG)
|
|
Elts.push_back(DAG.getConstant(C.sext(VTBits), DL, SVT));
|
|
else
|
|
Elts.push_back(DAG.getConstant(C.zext(VTBits), DL, SVT));
|
|
}
|
|
|
|
return DAG.getBuildVector(VT, DL, Elts);
|
|
}
|
|
|
|
// ExtendUsesToFormExtLoad - Trying to extend uses of a load to enable this:
|
|
// "fold ({s|z|a}ext (load x)) -> ({s|z|a}ext (truncate ({s|z|a}extload x)))"
|
|
// transformation. Returns true if extension are possible and the above
|
|
// mentioned transformation is profitable.
|
|
static bool ExtendUsesToFormExtLoad(EVT VT, SDNode *N, SDValue N0,
|
|
unsigned ExtOpc,
|
|
SmallVectorImpl<SDNode *> &ExtendNodes,
|
|
const TargetLowering &TLI) {
|
|
bool HasCopyToRegUses = false;
|
|
bool isTruncFree = TLI.isTruncateFree(VT, N0.getValueType());
|
|
for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
|
|
UE = N0.getNode()->use_end();
|
|
UI != UE; ++UI) {
|
|
SDNode *User = *UI;
|
|
if (User == N)
|
|
continue;
|
|
if (UI.getUse().getResNo() != N0.getResNo())
|
|
continue;
|
|
// FIXME: Only extend SETCC N, N and SETCC N, c for now.
|
|
if (ExtOpc != ISD::ANY_EXTEND && User->getOpcode() == ISD::SETCC) {
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(User->getOperand(2))->get();
|
|
if (ExtOpc == ISD::ZERO_EXTEND && ISD::isSignedIntSetCC(CC))
|
|
// Sign bits will be lost after a zext.
|
|
return false;
|
|
bool Add = false;
|
|
for (unsigned i = 0; i != 2; ++i) {
|
|
SDValue UseOp = User->getOperand(i);
|
|
if (UseOp == N0)
|
|
continue;
|
|
if (!isa<ConstantSDNode>(UseOp))
|
|
return false;
|
|
Add = true;
|
|
}
|
|
if (Add)
|
|
ExtendNodes.push_back(User);
|
|
continue;
|
|
}
|
|
// If truncates aren't free and there are users we can't
|
|
// extend, it isn't worthwhile.
|
|
if (!isTruncFree)
|
|
return false;
|
|
// Remember if this value is live-out.
|
|
if (User->getOpcode() == ISD::CopyToReg)
|
|
HasCopyToRegUses = true;
|
|
}
|
|
|
|
if (HasCopyToRegUses) {
|
|
bool BothLiveOut = false;
|
|
for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
|
|
UI != UE; ++UI) {
|
|
SDUse &Use = UI.getUse();
|
|
if (Use.getResNo() == 0 && Use.getUser()->getOpcode() == ISD::CopyToReg) {
|
|
BothLiveOut = true;
|
|
break;
|
|
}
|
|
}
|
|
if (BothLiveOut)
|
|
// Both unextended and extended values are live out. There had better be
|
|
// a good reason for the transformation.
|
|
return ExtendNodes.size();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void DAGCombiner::ExtendSetCCUses(const SmallVectorImpl<SDNode *> &SetCCs,
|
|
SDValue OrigLoad, SDValue ExtLoad,
|
|
ISD::NodeType ExtType) {
|
|
// Extend SetCC uses if necessary.
|
|
SDLoc DL(ExtLoad);
|
|
for (SDNode *SetCC : SetCCs) {
|
|
SmallVector<SDValue, 4> Ops;
|
|
|
|
for (unsigned j = 0; j != 2; ++j) {
|
|
SDValue SOp = SetCC->getOperand(j);
|
|
if (SOp == OrigLoad)
|
|
Ops.push_back(ExtLoad);
|
|
else
|
|
Ops.push_back(DAG.getNode(ExtType, DL, ExtLoad->getValueType(0), SOp));
|
|
}
|
|
|
|
Ops.push_back(SetCC->getOperand(2));
|
|
CombineTo(SetCC, DAG.getNode(ISD::SETCC, DL, SetCC->getValueType(0), Ops));
|
|
}
|
|
}
|
|
|
|
// FIXME: Bring more similar combines here, common to sext/zext (maybe aext?).
|
|
SDValue DAGCombiner::CombineExtLoad(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT DstVT = N->getValueType(0);
|
|
EVT SrcVT = N0.getValueType();
|
|
|
|
assert((N->getOpcode() == ISD::SIGN_EXTEND ||
|
|
N->getOpcode() == ISD::ZERO_EXTEND) &&
|
|
"Unexpected node type (not an extend)!");
|
|
|
|
// fold (sext (load x)) to multiple smaller sextloads; same for zext.
|
|
// For example, on a target with legal v4i32, but illegal v8i32, turn:
|
|
// (v8i32 (sext (v8i16 (load x))))
|
|
// into:
|
|
// (v8i32 (concat_vectors (v4i32 (sextload x)),
|
|
// (v4i32 (sextload (x + 16)))))
|
|
// Where uses of the original load, i.e.:
|
|
// (v8i16 (load x))
|
|
// are replaced with:
|
|
// (v8i16 (truncate
|
|
// (v8i32 (concat_vectors (v4i32 (sextload x)),
|
|
// (v4i32 (sextload (x + 16)))))))
|
|
//
|
|
// This combine is only applicable to illegal, but splittable, vectors.
|
|
// All legal types, and illegal non-vector types, are handled elsewhere.
|
|
// This combine is controlled by TargetLowering::isVectorLoadExtDesirable.
|
|
//
|
|
if (N0->getOpcode() != ISD::LOAD)
|
|
return SDValue();
|
|
|
|
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
|
|
|
|
if (!ISD::isNON_EXTLoad(LN0) || !ISD::isUNINDEXEDLoad(LN0) ||
|
|
!N0.hasOneUse() || !LN0->isSimple() ||
|
|
!DstVT.isVector() || !DstVT.isPow2VectorType() ||
|
|
!TLI.isVectorLoadExtDesirable(SDValue(N, 0)))
|
|
return SDValue();
|
|
|
|
SmallVector<SDNode *, 4> SetCCs;
|
|
if (!ExtendUsesToFormExtLoad(DstVT, N, N0, N->getOpcode(), SetCCs, TLI))
|
|
return SDValue();
|
|
|
|
ISD::LoadExtType ExtType =
|
|
N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
|
|
|
|
// Try to split the vector types to get down to legal types.
|
|
EVT SplitSrcVT = SrcVT;
|
|
EVT SplitDstVT = DstVT;
|
|
while (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT) &&
|
|
SplitSrcVT.getVectorNumElements() > 1) {
|
|
SplitDstVT = DAG.GetSplitDestVTs(SplitDstVT).first;
|
|
SplitSrcVT = DAG.GetSplitDestVTs(SplitSrcVT).first;
|
|
}
|
|
|
|
if (!TLI.isLoadExtLegalOrCustom(ExtType, SplitDstVT, SplitSrcVT))
|
|
return SDValue();
|
|
|
|
assert(!DstVT.isScalableVector() && "Unexpected scalable vector type");
|
|
|
|
SDLoc DL(N);
|
|
const unsigned NumSplits =
|
|
DstVT.getVectorNumElements() / SplitDstVT.getVectorNumElements();
|
|
const unsigned Stride = SplitSrcVT.getStoreSize();
|
|
SmallVector<SDValue, 4> Loads;
|
|
SmallVector<SDValue, 4> Chains;
|
|
|
|
SDValue BasePtr = LN0->getBasePtr();
|
|
for (unsigned Idx = 0; Idx < NumSplits; Idx++) {
|
|
const unsigned Offset = Idx * Stride;
|
|
const Align Align = commonAlignment(LN0->getAlign(), Offset);
|
|
|
|
SDValue SplitLoad = DAG.getExtLoad(
|
|
ExtType, SDLoc(LN0), SplitDstVT, LN0->getChain(), BasePtr,
|
|
LN0->getPointerInfo().getWithOffset(Offset), SplitSrcVT, Align,
|
|
LN0->getMemOperand()->getFlags(), LN0->getAAInfo());
|
|
|
|
BasePtr = DAG.getMemBasePlusOffset(BasePtr, TypeSize::Fixed(Stride), DL);
|
|
|
|
Loads.push_back(SplitLoad.getValue(0));
|
|
Chains.push_back(SplitLoad.getValue(1));
|
|
}
|
|
|
|
SDValue NewChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
|
|
SDValue NewValue = DAG.getNode(ISD::CONCAT_VECTORS, DL, DstVT, Loads);
|
|
|
|
// Simplify TF.
|
|
AddToWorklist(NewChain.getNode());
|
|
|
|
CombineTo(N, NewValue);
|
|
|
|
// Replace uses of the original load (before extension)
|
|
// with a truncate of the concatenated sextloaded vectors.
|
|
SDValue Trunc =
|
|
DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), NewValue);
|
|
ExtendSetCCUses(SetCCs, N0, NewValue, (ISD::NodeType)N->getOpcode());
|
|
CombineTo(N0.getNode(), Trunc, NewChain);
|
|
return SDValue(N, 0); // Return N so it doesn't get rechecked!
|
|
}
|
|
|
|
// fold (zext (and/or/xor (shl/shr (load x), cst), cst)) ->
|
|
// (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst))
|
|
SDValue DAGCombiner::CombineZExtLogicopShiftLoad(SDNode *N) {
|
|
assert(N->getOpcode() == ISD::ZERO_EXTEND);
|
|
EVT VT = N->getValueType(0);
|
|
EVT OrigVT = N->getOperand(0).getValueType();
|
|
if (TLI.isZExtFree(OrigVT, VT))
|
|
return SDValue();
|
|
|
|
// and/or/xor
|
|
SDValue N0 = N->getOperand(0);
|
|
if (!(N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
|
|
N0.getOpcode() == ISD::XOR) ||
|
|
N0.getOperand(1).getOpcode() != ISD::Constant ||
|
|
(LegalOperations && !TLI.isOperationLegal(N0.getOpcode(), VT)))
|
|
return SDValue();
|
|
|
|
// shl/shr
|
|
SDValue N1 = N0->getOperand(0);
|
|
if (!(N1.getOpcode() == ISD::SHL || N1.getOpcode() == ISD::SRL) ||
|
|
N1.getOperand(1).getOpcode() != ISD::Constant ||
|
|
(LegalOperations && !TLI.isOperationLegal(N1.getOpcode(), VT)))
|
|
return SDValue();
|
|
|
|
// load
|
|
if (!isa<LoadSDNode>(N1.getOperand(0)))
|
|
return SDValue();
|
|
LoadSDNode *Load = cast<LoadSDNode>(N1.getOperand(0));
|
|
EVT MemVT = Load->getMemoryVT();
|
|
if (!TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) ||
|
|
Load->getExtensionType() == ISD::SEXTLOAD || Load->isIndexed())
|
|
return SDValue();
|
|
|
|
|
|
// If the shift op is SHL, the logic op must be AND, otherwise the result
|
|
// will be wrong.
|
|
if (N1.getOpcode() == ISD::SHL && N0.getOpcode() != ISD::AND)
|
|
return SDValue();
|
|
|
|
if (!N0.hasOneUse() || !N1.hasOneUse())
|
|
return SDValue();
|
|
|
|
SmallVector<SDNode*, 4> SetCCs;
|
|
if (!ExtendUsesToFormExtLoad(VT, N1.getNode(), N1.getOperand(0),
|
|
ISD::ZERO_EXTEND, SetCCs, TLI))
|
|
return SDValue();
|
|
|
|
// Actually do the transformation.
|
|
SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(Load), VT,
|
|
Load->getChain(), Load->getBasePtr(),
|
|
Load->getMemoryVT(), Load->getMemOperand());
|
|
|
|
SDLoc DL1(N1);
|
|
SDValue Shift = DAG.getNode(N1.getOpcode(), DL1, VT, ExtLoad,
|
|
N1.getOperand(1));
|
|
|
|
APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits());
|
|
SDLoc DL0(N0);
|
|
SDValue And = DAG.getNode(N0.getOpcode(), DL0, VT, Shift,
|
|
DAG.getConstant(Mask, DL0, VT));
|
|
|
|
ExtendSetCCUses(SetCCs, N1.getOperand(0), ExtLoad, ISD::ZERO_EXTEND);
|
|
CombineTo(N, And);
|
|
if (SDValue(Load, 0).hasOneUse()) {
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), ExtLoad.getValue(1));
|
|
} else {
|
|
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(Load),
|
|
Load->getValueType(0), ExtLoad);
|
|
CombineTo(Load, Trunc, ExtLoad.getValue(1));
|
|
}
|
|
|
|
// N0 is dead at this point.
|
|
recursivelyDeleteUnusedNodes(N0.getNode());
|
|
|
|
return SDValue(N,0); // Return N so it doesn't get rechecked!
|
|
}
|
|
|
|
/// If we're narrowing or widening the result of a vector select and the final
|
|
/// size is the same size as a setcc (compare) feeding the select, then try to
|
|
/// apply the cast operation to the select's operands because matching vector
|
|
/// sizes for a select condition and other operands should be more efficient.
|
|
SDValue DAGCombiner::matchVSelectOpSizesWithSetCC(SDNode *Cast) {
|
|
unsigned CastOpcode = Cast->getOpcode();
|
|
assert((CastOpcode == ISD::SIGN_EXTEND || CastOpcode == ISD::ZERO_EXTEND ||
|
|
CastOpcode == ISD::TRUNCATE || CastOpcode == ISD::FP_EXTEND ||
|
|
CastOpcode == ISD::FP_ROUND) &&
|
|
"Unexpected opcode for vector select narrowing/widening");
|
|
|
|
// We only do this transform before legal ops because the pattern may be
|
|
// obfuscated by target-specific operations after legalization. Do not create
|
|
// an illegal select op, however, because that may be difficult to lower.
|
|
EVT VT = Cast->getValueType(0);
|
|
if (LegalOperations || !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT))
|
|
return SDValue();
|
|
|
|
SDValue VSel = Cast->getOperand(0);
|
|
if (VSel.getOpcode() != ISD::VSELECT || !VSel.hasOneUse() ||
|
|
VSel.getOperand(0).getOpcode() != ISD::SETCC)
|
|
return SDValue();
|
|
|
|
// Does the setcc have the same vector size as the casted select?
|
|
SDValue SetCC = VSel.getOperand(0);
|
|
EVT SetCCVT = getSetCCResultType(SetCC.getOperand(0).getValueType());
|
|
if (SetCCVT.getSizeInBits() != VT.getSizeInBits())
|
|
return SDValue();
|
|
|
|
// cast (vsel (setcc X), A, B) --> vsel (setcc X), (cast A), (cast B)
|
|
SDValue A = VSel.getOperand(1);
|
|
SDValue B = VSel.getOperand(2);
|
|
SDValue CastA, CastB;
|
|
SDLoc DL(Cast);
|
|
if (CastOpcode == ISD::FP_ROUND) {
|
|
// FP_ROUND (fptrunc) has an extra flag operand to pass along.
|
|
CastA = DAG.getNode(CastOpcode, DL, VT, A, Cast->getOperand(1));
|
|
CastB = DAG.getNode(CastOpcode, DL, VT, B, Cast->getOperand(1));
|
|
} else {
|
|
CastA = DAG.getNode(CastOpcode, DL, VT, A);
|
|
CastB = DAG.getNode(CastOpcode, DL, VT, B);
|
|
}
|
|
return DAG.getNode(ISD::VSELECT, DL, VT, SetCC, CastA, CastB);
|
|
}
|
|
|
|
// fold ([s|z]ext ([s|z]extload x)) -> ([s|z]ext (truncate ([s|z]extload x)))
|
|
// fold ([s|z]ext ( extload x)) -> ([s|z]ext (truncate ([s|z]extload x)))
|
|
static SDValue tryToFoldExtOfExtload(SelectionDAG &DAG, DAGCombiner &Combiner,
|
|
const TargetLowering &TLI, EVT VT,
|
|
bool LegalOperations, SDNode *N,
|
|
SDValue N0, ISD::LoadExtType ExtLoadType) {
|
|
SDNode *N0Node = N0.getNode();
|
|
bool isAExtLoad = (ExtLoadType == ISD::SEXTLOAD) ? ISD::isSEXTLoad(N0Node)
|
|
: ISD::isZEXTLoad(N0Node);
|
|
if ((!isAExtLoad && !ISD::isEXTLoad(N0Node)) ||
|
|
!ISD::isUNINDEXEDLoad(N0Node) || !N0.hasOneUse())
|
|
return SDValue();
|
|
|
|
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
|
|
EVT MemVT = LN0->getMemoryVT();
|
|
if ((LegalOperations || !LN0->isSimple() ||
|
|
VT.isVector()) &&
|
|
!TLI.isLoadExtLegal(ExtLoadType, VT, MemVT))
|
|
return SDValue();
|
|
|
|
SDValue ExtLoad =
|
|
DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(),
|
|
LN0->getBasePtr(), MemVT, LN0->getMemOperand());
|
|
Combiner.CombineTo(N, ExtLoad);
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
|
|
if (LN0->use_empty())
|
|
Combiner.recursivelyDeleteUnusedNodes(LN0);
|
|
return SDValue(N, 0); // Return N so it doesn't get rechecked!
|
|
}
|
|
|
|
// fold ([s|z]ext (load x)) -> ([s|z]ext (truncate ([s|z]extload x)))
|
|
// Only generate vector extloads when 1) they're legal, and 2) they are
|
|
// deemed desirable by the target.
|
|
static SDValue tryToFoldExtOfLoad(SelectionDAG &DAG, DAGCombiner &Combiner,
|
|
const TargetLowering &TLI, EVT VT,
|
|
bool LegalOperations, SDNode *N, SDValue N0,
|
|
ISD::LoadExtType ExtLoadType,
|
|
ISD::NodeType ExtOpc) {
|
|
if (!ISD::isNON_EXTLoad(N0.getNode()) ||
|
|
!ISD::isUNINDEXEDLoad(N0.getNode()) ||
|
|
((LegalOperations || VT.isVector() ||
|
|
!cast<LoadSDNode>(N0)->isSimple()) &&
|
|
!TLI.isLoadExtLegal(ExtLoadType, VT, N0.getValueType())))
|
|
return {};
|
|
|
|
bool DoXform = true;
|
|
SmallVector<SDNode *, 4> SetCCs;
|
|
if (!N0.hasOneUse())
|
|
DoXform = ExtendUsesToFormExtLoad(VT, N, N0, ExtOpc, SetCCs, TLI);
|
|
if (VT.isVector())
|
|
DoXform &= TLI.isVectorLoadExtDesirable(SDValue(N, 0));
|
|
if (!DoXform)
|
|
return {};
|
|
|
|
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
|
|
SDValue ExtLoad = DAG.getExtLoad(ExtLoadType, SDLoc(LN0), VT, LN0->getChain(),
|
|
LN0->getBasePtr(), N0.getValueType(),
|
|
LN0->getMemOperand());
|
|
Combiner.ExtendSetCCUses(SetCCs, N0, ExtLoad, ExtOpc);
|
|
// If the load value is used only by N, replace it via CombineTo N.
|
|
bool NoReplaceTrunc = SDValue(LN0, 0).hasOneUse();
|
|
Combiner.CombineTo(N, ExtLoad);
|
|
if (NoReplaceTrunc) {
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
|
|
Combiner.recursivelyDeleteUnusedNodes(LN0);
|
|
} else {
|
|
SDValue Trunc =
|
|
DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad);
|
|
Combiner.CombineTo(LN0, Trunc, ExtLoad.getValue(1));
|
|
}
|
|
return SDValue(N, 0); // Return N so it doesn't get rechecked!
|
|
}
|
|
|
|
static SDValue tryToFoldExtOfMaskedLoad(SelectionDAG &DAG,
|
|
const TargetLowering &TLI, EVT VT,
|
|
SDNode *N, SDValue N0,
|
|
ISD::LoadExtType ExtLoadType,
|
|
ISD::NodeType ExtOpc) {
|
|
if (!N0.hasOneUse())
|
|
return SDValue();
|
|
|
|
MaskedLoadSDNode *Ld = dyn_cast<MaskedLoadSDNode>(N0);
|
|
if (!Ld || Ld->getExtensionType() != ISD::NON_EXTLOAD)
|
|
return SDValue();
|
|
|
|
if (!TLI.isLoadExtLegal(ExtLoadType, VT, Ld->getValueType(0)))
|
|
return SDValue();
|
|
|
|
if (!TLI.isVectorLoadExtDesirable(SDValue(N, 0)))
|
|
return SDValue();
|
|
|
|
SDLoc dl(Ld);
|
|
SDValue PassThru = DAG.getNode(ExtOpc, dl, VT, Ld->getPassThru());
|
|
SDValue NewLoad = DAG.getMaskedLoad(
|
|
VT, dl, Ld->getChain(), Ld->getBasePtr(), Ld->getOffset(), Ld->getMask(),
|
|
PassThru, Ld->getMemoryVT(), Ld->getMemOperand(), Ld->getAddressingMode(),
|
|
ExtLoadType, Ld->isExpandingLoad());
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1), SDValue(NewLoad.getNode(), 1));
|
|
return NewLoad;
|
|
}
|
|
|
|
static SDValue foldExtendedSignBitTest(SDNode *N, SelectionDAG &DAG,
|
|
bool LegalOperations) {
|
|
assert((N->getOpcode() == ISD::SIGN_EXTEND ||
|
|
N->getOpcode() == ISD::ZERO_EXTEND) && "Expected sext or zext");
|
|
|
|
SDValue SetCC = N->getOperand(0);
|
|
if (LegalOperations || SetCC.getOpcode() != ISD::SETCC ||
|
|
!SetCC.hasOneUse() || SetCC.getValueType() != MVT::i1)
|
|
return SDValue();
|
|
|
|
SDValue X = SetCC.getOperand(0);
|
|
SDValue Ones = SetCC.getOperand(1);
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(SetCC.getOperand(2))->get();
|
|
EVT VT = N->getValueType(0);
|
|
EVT XVT = X.getValueType();
|
|
// setge X, C is canonicalized to setgt, so we do not need to match that
|
|
// pattern. The setlt sibling is folded in SimplifySelectCC() because it does
|
|
// not require the 'not' op.
|
|
if (CC == ISD::SETGT && isAllOnesConstant(Ones) && VT == XVT) {
|
|
// Invert and smear/shift the sign bit:
|
|
// sext i1 (setgt iN X, -1) --> sra (not X), (N - 1)
|
|
// zext i1 (setgt iN X, -1) --> srl (not X), (N - 1)
|
|
SDLoc DL(N);
|
|
unsigned ShCt = VT.getSizeInBits() - 1;
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
if (!TLI.shouldAvoidTransformToShift(VT, ShCt)) {
|
|
SDValue NotX = DAG.getNOT(DL, X, VT);
|
|
SDValue ShiftAmount = DAG.getConstant(ShCt, DL, VT);
|
|
auto ShiftOpcode =
|
|
N->getOpcode() == ISD::SIGN_EXTEND ? ISD::SRA : ISD::SRL;
|
|
return DAG.getNode(ShiftOpcode, DL, VT, NotX, ShiftAmount);
|
|
}
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::foldSextSetcc(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
if (N0.getOpcode() != ISD::SETCC)
|
|
return SDValue();
|
|
|
|
SDValue N00 = N0.getOperand(0);
|
|
SDValue N01 = N0.getOperand(1);
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
|
|
EVT VT = N->getValueType(0);
|
|
EVT N00VT = N00.getValueType();
|
|
SDLoc DL(N);
|
|
|
|
// On some architectures (such as SSE/NEON/etc) the SETCC result type is
|
|
// the same size as the compared operands. Try to optimize sext(setcc())
|
|
// if this is the case.
|
|
if (VT.isVector() && !LegalOperations &&
|
|
TLI.getBooleanContents(N00VT) ==
|
|
TargetLowering::ZeroOrNegativeOneBooleanContent) {
|
|
EVT SVT = getSetCCResultType(N00VT);
|
|
|
|
// If we already have the desired type, don't change it.
|
|
if (SVT != N0.getValueType()) {
|
|
// We know that the # elements of the results is the same as the
|
|
// # elements of the compare (and the # elements of the compare result
|
|
// for that matter). Check to see that they are the same size. If so,
|
|
// we know that the element size of the sext'd result matches the
|
|
// element size of the compare operands.
|
|
if (VT.getSizeInBits() == SVT.getSizeInBits())
|
|
return DAG.getSetCC(DL, VT, N00, N01, CC);
|
|
|
|
// If the desired elements are smaller or larger than the source
|
|
// elements, we can use a matching integer vector type and then
|
|
// truncate/sign extend.
|
|
EVT MatchingVecType = N00VT.changeVectorElementTypeToInteger();
|
|
if (SVT == MatchingVecType) {
|
|
SDValue VsetCC = DAG.getSetCC(DL, MatchingVecType, N00, N01, CC);
|
|
return DAG.getSExtOrTrunc(VsetCC, DL, VT);
|
|
}
|
|
}
|
|
|
|
// Try to eliminate the sext of a setcc by zexting the compare operands.
|
|
if (N0.hasOneUse() && TLI.isOperationLegalOrCustom(ISD::SETCC, VT) &&
|
|
!TLI.isOperationLegalOrCustom(ISD::SETCC, SVT)) {
|
|
bool IsSignedCmp = ISD::isSignedIntSetCC(CC);
|
|
unsigned LoadOpcode = IsSignedCmp ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
|
|
unsigned ExtOpcode = IsSignedCmp ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
|
|
|
|
// We have an unsupported narrow vector compare op that would be legal
|
|
// if extended to the destination type. See if the compare operands
|
|
// can be freely extended to the destination type.
|
|
auto IsFreeToExtend = [&](SDValue V) {
|
|
if (isConstantOrConstantVector(V, /*NoOpaques*/ true))
|
|
return true;
|
|
// Match a simple, non-extended load that can be converted to a
|
|
// legal {z/s}ext-load.
|
|
// TODO: Allow widening of an existing {z/s}ext-load?
|
|
if (!(ISD::isNON_EXTLoad(V.getNode()) &&
|
|
ISD::isUNINDEXEDLoad(V.getNode()) &&
|
|
cast<LoadSDNode>(V)->isSimple() &&
|
|
TLI.isLoadExtLegal(LoadOpcode, VT, V.getValueType())))
|
|
return false;
|
|
|
|
// Non-chain users of this value must either be the setcc in this
|
|
// sequence or extends that can be folded into the new {z/s}ext-load.
|
|
for (SDNode::use_iterator UI = V->use_begin(), UE = V->use_end();
|
|
UI != UE; ++UI) {
|
|
// Skip uses of the chain and the setcc.
|
|
SDNode *User = *UI;
|
|
if (UI.getUse().getResNo() != 0 || User == N0.getNode())
|
|
continue;
|
|
// Extra users must have exactly the same cast we are about to create.
|
|
// TODO: This restriction could be eased if ExtendUsesToFormExtLoad()
|
|
// is enhanced similarly.
|
|
if (User->getOpcode() != ExtOpcode || User->getValueType(0) != VT)
|
|
return false;
|
|
}
|
|
return true;
|
|
};
|
|
|
|
if (IsFreeToExtend(N00) && IsFreeToExtend(N01)) {
|
|
SDValue Ext0 = DAG.getNode(ExtOpcode, DL, VT, N00);
|
|
SDValue Ext1 = DAG.getNode(ExtOpcode, DL, VT, N01);
|
|
return DAG.getSetCC(DL, VT, Ext0, Ext1, CC);
|
|
}
|
|
}
|
|
}
|
|
|
|
// sext(setcc x, y, cc) -> (select (setcc x, y, cc), T, 0)
|
|
// Here, T can be 1 or -1, depending on the type of the setcc and
|
|
// getBooleanContents().
|
|
unsigned SetCCWidth = N0.getScalarValueSizeInBits();
|
|
|
|
// To determine the "true" side of the select, we need to know the high bit
|
|
// of the value returned by the setcc if it evaluates to true.
|
|
// If the type of the setcc is i1, then the true case of the select is just
|
|
// sext(i1 1), that is, -1.
|
|
// If the type of the setcc is larger (say, i8) then the value of the high
|
|
// bit depends on getBooleanContents(), so ask TLI for a real "true" value
|
|
// of the appropriate width.
|
|
SDValue ExtTrueVal = (SetCCWidth == 1)
|
|
? DAG.getAllOnesConstant(DL, VT)
|
|
: DAG.getBoolConstant(true, DL, VT, N00VT);
|
|
SDValue Zero = DAG.getConstant(0, DL, VT);
|
|
if (SDValue SCC = SimplifySelectCC(DL, N00, N01, ExtTrueVal, Zero, CC, true))
|
|
return SCC;
|
|
|
|
if (!VT.isVector() && !TLI.convertSelectOfConstantsToMath(VT)) {
|
|
EVT SetCCVT = getSetCCResultType(N00VT);
|
|
// Don't do this transform for i1 because there's a select transform
|
|
// that would reverse it.
|
|
// TODO: We should not do this transform at all without a target hook
|
|
// because a sext is likely cheaper than a select?
|
|
if (SetCCVT.getScalarSizeInBits() != 1 &&
|
|
(!LegalOperations || TLI.isOperationLegal(ISD::SETCC, N00VT))) {
|
|
SDValue SetCC = DAG.getSetCC(DL, SetCCVT, N00, N01, CC);
|
|
return DAG.getSelect(DL, VT, SetCC, ExtTrueVal, Zero);
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitSIGN_EXTEND(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
SDLoc DL(N);
|
|
|
|
if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes))
|
|
return Res;
|
|
|
|
// fold (sext (sext x)) -> (sext x)
|
|
// fold (sext (aext x)) -> (sext x)
|
|
if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
|
|
return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, N0.getOperand(0));
|
|
|
|
if (N0.getOpcode() == ISD::TRUNCATE) {
|
|
// fold (sext (truncate (load x))) -> (sext (smaller load x))
|
|
// fold (sext (truncate (srl (load x), c))) -> (sext (smaller load (x+c/n)))
|
|
if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) {
|
|
SDNode *oye = N0.getOperand(0).getNode();
|
|
if (NarrowLoad.getNode() != N0.getNode()) {
|
|
CombineTo(N0.getNode(), NarrowLoad);
|
|
// CombineTo deleted the truncate, if needed, but not what's under it.
|
|
AddToWorklist(oye);
|
|
}
|
|
return SDValue(N, 0); // Return N so it doesn't get rechecked!
|
|
}
|
|
|
|
// See if the value being truncated is already sign extended. If so, just
|
|
// eliminate the trunc/sext pair.
|
|
SDValue Op = N0.getOperand(0);
|
|
unsigned OpBits = Op.getScalarValueSizeInBits();
|
|
unsigned MidBits = N0.getScalarValueSizeInBits();
|
|
unsigned DestBits = VT.getScalarSizeInBits();
|
|
unsigned NumSignBits = DAG.ComputeNumSignBits(Op);
|
|
|
|
if (OpBits == DestBits) {
|
|
// Op is i32, Mid is i8, and Dest is i32. If Op has more than 24 sign
|
|
// bits, it is already ready.
|
|
if (NumSignBits > DestBits-MidBits)
|
|
return Op;
|
|
} else if (OpBits < DestBits) {
|
|
// Op is i32, Mid is i8, and Dest is i64. If Op has more than 24 sign
|
|
// bits, just sext from i32.
|
|
if (NumSignBits > OpBits-MidBits)
|
|
return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, Op);
|
|
} else {
|
|
// Op is i64, Mid is i8, and Dest is i32. If Op has more than 56 sign
|
|
// bits, just truncate to i32.
|
|
if (NumSignBits > OpBits-MidBits)
|
|
return DAG.getNode(ISD::TRUNCATE, DL, VT, Op);
|
|
}
|
|
|
|
// fold (sext (truncate x)) -> (sextinreg x).
|
|
if (!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND_INREG,
|
|
N0.getValueType())) {
|
|
if (OpBits < DestBits)
|
|
Op = DAG.getNode(ISD::ANY_EXTEND, SDLoc(N0), VT, Op);
|
|
else if (OpBits > DestBits)
|
|
Op = DAG.getNode(ISD::TRUNCATE, SDLoc(N0), VT, Op);
|
|
return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Op,
|
|
DAG.getValueType(N0.getValueType()));
|
|
}
|
|
}
|
|
|
|
// Try to simplify (sext (load x)).
|
|
if (SDValue foldedExt =
|
|
tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0,
|
|
ISD::SEXTLOAD, ISD::SIGN_EXTEND))
|
|
return foldedExt;
|
|
|
|
if (SDValue foldedExt =
|
|
tryToFoldExtOfMaskedLoad(DAG, TLI, VT, N, N0, ISD::SEXTLOAD,
|
|
ISD::SIGN_EXTEND))
|
|
return foldedExt;
|
|
|
|
// fold (sext (load x)) to multiple smaller sextloads.
|
|
// Only on illegal but splittable vectors.
|
|
if (SDValue ExtLoad = CombineExtLoad(N))
|
|
return ExtLoad;
|
|
|
|
// Try to simplify (sext (sextload x)).
|
|
if (SDValue foldedExt = tryToFoldExtOfExtload(
|
|
DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::SEXTLOAD))
|
|
return foldedExt;
|
|
|
|
// fold (sext (and/or/xor (load x), cst)) ->
|
|
// (and/or/xor (sextload x), (sext cst))
|
|
if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
|
|
N0.getOpcode() == ISD::XOR) &&
|
|
isa<LoadSDNode>(N0.getOperand(0)) &&
|
|
N0.getOperand(1).getOpcode() == ISD::Constant &&
|
|
(!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
|
|
LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0));
|
|
EVT MemVT = LN00->getMemoryVT();
|
|
if (TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, MemVT) &&
|
|
LN00->getExtensionType() != ISD::ZEXTLOAD && LN00->isUnindexed()) {
|
|
SmallVector<SDNode*, 4> SetCCs;
|
|
bool DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0),
|
|
ISD::SIGN_EXTEND, SetCCs, TLI);
|
|
if (DoXform) {
|
|
SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(LN00), VT,
|
|
LN00->getChain(), LN00->getBasePtr(),
|
|
LN00->getMemoryVT(),
|
|
LN00->getMemOperand());
|
|
APInt Mask = N0.getConstantOperandAPInt(1).sext(VT.getSizeInBits());
|
|
SDValue And = DAG.getNode(N0.getOpcode(), DL, VT,
|
|
ExtLoad, DAG.getConstant(Mask, DL, VT));
|
|
ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::SIGN_EXTEND);
|
|
bool NoReplaceTruncAnd = !N0.hasOneUse();
|
|
bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse();
|
|
CombineTo(N, And);
|
|
// If N0 has multiple uses, change other uses as well.
|
|
if (NoReplaceTruncAnd) {
|
|
SDValue TruncAnd =
|
|
DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And);
|
|
CombineTo(N0.getNode(), TruncAnd);
|
|
}
|
|
if (NoReplaceTrunc) {
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1));
|
|
} else {
|
|
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00),
|
|
LN00->getValueType(0), ExtLoad);
|
|
CombineTo(LN00, Trunc, ExtLoad.getValue(1));
|
|
}
|
|
return SDValue(N,0); // Return N so it doesn't get rechecked!
|
|
}
|
|
}
|
|
}
|
|
|
|
if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations))
|
|
return V;
|
|
|
|
if (SDValue V = foldSextSetcc(N))
|
|
return V;
|
|
|
|
// fold (sext x) -> (zext x) if the sign bit is known zero.
|
|
if ((!LegalOperations || TLI.isOperationLegal(ISD::ZERO_EXTEND, VT)) &&
|
|
DAG.SignBitIsZero(N0))
|
|
return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0);
|
|
|
|
if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
|
|
return NewVSel;
|
|
|
|
// Eliminate this sign extend by doing a negation in the destination type:
|
|
// sext i32 (0 - (zext i8 X to i32)) to i64 --> 0 - (zext i8 X to i64)
|
|
if (N0.getOpcode() == ISD::SUB && N0.hasOneUse() &&
|
|
isNullOrNullSplat(N0.getOperand(0)) &&
|
|
N0.getOperand(1).getOpcode() == ISD::ZERO_EXTEND &&
|
|
TLI.isOperationLegalOrCustom(ISD::SUB, VT)) {
|
|
SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(1).getOperand(0), DL, VT);
|
|
return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Zext);
|
|
}
|
|
// Eliminate this sign extend by doing a decrement in the destination type:
|
|
// sext i32 ((zext i8 X to i32) + (-1)) to i64 --> (zext i8 X to i64) + (-1)
|
|
if (N0.getOpcode() == ISD::ADD && N0.hasOneUse() &&
|
|
isAllOnesOrAllOnesSplat(N0.getOperand(1)) &&
|
|
N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
|
|
TLI.isOperationLegalOrCustom(ISD::ADD, VT)) {
|
|
SDValue Zext = DAG.getZExtOrTrunc(N0.getOperand(0).getOperand(0), DL, VT);
|
|
return DAG.getNode(ISD::ADD, DL, VT, Zext, DAG.getAllOnesConstant(DL, VT));
|
|
}
|
|
|
|
// fold sext (not i1 X) -> add (zext i1 X), -1
|
|
// TODO: This could be extended to handle bool vectors.
|
|
if (N0.getValueType() == MVT::i1 && isBitwiseNot(N0) && N0.hasOneUse() &&
|
|
(!LegalOperations || (TLI.isOperationLegal(ISD::ZERO_EXTEND, VT) &&
|
|
TLI.isOperationLegal(ISD::ADD, VT)))) {
|
|
// If we can eliminate the 'not', the sext form should be better
|
|
if (SDValue NewXor = visitXOR(N0.getNode())) {
|
|
// Returning N0 is a form of in-visit replacement that may have
|
|
// invalidated N0.
|
|
if (NewXor.getNode() == N0.getNode()) {
|
|
// Return SDValue here as the xor should have already been replaced in
|
|
// this sext.
|
|
return SDValue();
|
|
} else {
|
|
// Return a new sext with the new xor.
|
|
return DAG.getNode(ISD::SIGN_EXTEND, DL, VT, NewXor);
|
|
}
|
|
}
|
|
|
|
SDValue Zext = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0));
|
|
return DAG.getNode(ISD::ADD, DL, VT, Zext, DAG.getAllOnesConstant(DL, VT));
|
|
}
|
|
|
|
if (SDValue Res = tryToFoldExtendSelectLoad(N, TLI, DAG))
|
|
return Res;
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// isTruncateOf - If N is a truncate of some other value, return true, record
|
|
// the value being truncated in Op and which of Op's bits are zero/one in Known.
|
|
// This function computes KnownBits to avoid a duplicated call to
|
|
// computeKnownBits in the caller.
|
|
static bool isTruncateOf(SelectionDAG &DAG, SDValue N, SDValue &Op,
|
|
KnownBits &Known) {
|
|
if (N->getOpcode() == ISD::TRUNCATE) {
|
|
Op = N->getOperand(0);
|
|
Known = DAG.computeKnownBits(Op);
|
|
return true;
|
|
}
|
|
|
|
if (N.getOpcode() != ISD::SETCC ||
|
|
N.getValueType().getScalarType() != MVT::i1 ||
|
|
cast<CondCodeSDNode>(N.getOperand(2))->get() != ISD::SETNE)
|
|
return false;
|
|
|
|
SDValue Op0 = N->getOperand(0);
|
|
SDValue Op1 = N->getOperand(1);
|
|
assert(Op0.getValueType() == Op1.getValueType());
|
|
|
|
if (isNullOrNullSplat(Op0))
|
|
Op = Op1;
|
|
else if (isNullOrNullSplat(Op1))
|
|
Op = Op0;
|
|
else
|
|
return false;
|
|
|
|
Known = DAG.computeKnownBits(Op);
|
|
|
|
return (Known.Zero | 1).isAllOnesValue();
|
|
}
|
|
|
|
/// Given an extending node with a pop-count operand, if the target does not
|
|
/// support a pop-count in the narrow source type but does support it in the
|
|
/// destination type, widen the pop-count to the destination type.
|
|
static SDValue widenCtPop(SDNode *Extend, SelectionDAG &DAG) {
|
|
assert((Extend->getOpcode() == ISD::ZERO_EXTEND ||
|
|
Extend->getOpcode() == ISD::ANY_EXTEND) && "Expected extend op");
|
|
|
|
SDValue CtPop = Extend->getOperand(0);
|
|
if (CtPop.getOpcode() != ISD::CTPOP || !CtPop.hasOneUse())
|
|
return SDValue();
|
|
|
|
EVT VT = Extend->getValueType(0);
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
if (TLI.isOperationLegalOrCustom(ISD::CTPOP, CtPop.getValueType()) ||
|
|
!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT))
|
|
return SDValue();
|
|
|
|
// zext (ctpop X) --> ctpop (zext X)
|
|
SDLoc DL(Extend);
|
|
SDValue NewZext = DAG.getZExtOrTrunc(CtPop.getOperand(0), DL, VT);
|
|
return DAG.getNode(ISD::CTPOP, DL, VT, NewZext);
|
|
}
|
|
|
|
SDValue DAGCombiner::visitZERO_EXTEND(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes))
|
|
return Res;
|
|
|
|
// fold (zext (zext x)) -> (zext x)
|
|
// fold (zext (aext x)) -> (zext x)
|
|
if (N0.getOpcode() == ISD::ZERO_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND)
|
|
return DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N), VT,
|
|
N0.getOperand(0));
|
|
|
|
// fold (zext (truncate x)) -> (zext x) or
|
|
// (zext (truncate x)) -> (truncate x)
|
|
// This is valid when the truncated bits of x are already zero.
|
|
SDValue Op;
|
|
KnownBits Known;
|
|
if (isTruncateOf(DAG, N0, Op, Known)) {
|
|
APInt TruncatedBits =
|
|
(Op.getScalarValueSizeInBits() == N0.getScalarValueSizeInBits()) ?
|
|
APInt(Op.getScalarValueSizeInBits(), 0) :
|
|
APInt::getBitsSet(Op.getScalarValueSizeInBits(),
|
|
N0.getScalarValueSizeInBits(),
|
|
std::min(Op.getScalarValueSizeInBits(),
|
|
VT.getScalarSizeInBits()));
|
|
if (TruncatedBits.isSubsetOf(Known.Zero))
|
|
return DAG.getZExtOrTrunc(Op, SDLoc(N), VT);
|
|
}
|
|
|
|
// fold (zext (truncate x)) -> (and x, mask)
|
|
if (N0.getOpcode() == ISD::TRUNCATE) {
|
|
// fold (zext (truncate (load x))) -> (zext (smaller load x))
|
|
// fold (zext (truncate (srl (load x), c))) -> (zext (smaller load (x+c/n)))
|
|
if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) {
|
|
SDNode *oye = N0.getOperand(0).getNode();
|
|
if (NarrowLoad.getNode() != N0.getNode()) {
|
|
CombineTo(N0.getNode(), NarrowLoad);
|
|
// CombineTo deleted the truncate, if needed, but not what's under it.
|
|
AddToWorklist(oye);
|
|
}
|
|
return SDValue(N, 0); // Return N so it doesn't get rechecked!
|
|
}
|
|
|
|
EVT SrcVT = N0.getOperand(0).getValueType();
|
|
EVT MinVT = N0.getValueType();
|
|
|
|
// Try to mask before the extension to avoid having to generate a larger mask,
|
|
// possibly over several sub-vectors.
|
|
if (SrcVT.bitsLT(VT) && VT.isVector()) {
|
|
if (!LegalOperations || (TLI.isOperationLegal(ISD::AND, SrcVT) &&
|
|
TLI.isOperationLegal(ISD::ZERO_EXTEND, VT))) {
|
|
SDValue Op = N0.getOperand(0);
|
|
Op = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT);
|
|
AddToWorklist(Op.getNode());
|
|
SDValue ZExtOrTrunc = DAG.getZExtOrTrunc(Op, SDLoc(N), VT);
|
|
// Transfer the debug info; the new node is equivalent to N0.
|
|
DAG.transferDbgValues(N0, ZExtOrTrunc);
|
|
return ZExtOrTrunc;
|
|
}
|
|
}
|
|
|
|
if (!LegalOperations || TLI.isOperationLegal(ISD::AND, VT)) {
|
|
SDValue Op = DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT);
|
|
AddToWorklist(Op.getNode());
|
|
SDValue And = DAG.getZeroExtendInReg(Op, SDLoc(N), MinVT);
|
|
// We may safely transfer the debug info describing the truncate node over
|
|
// to the equivalent and operation.
|
|
DAG.transferDbgValues(N0, And);
|
|
return And;
|
|
}
|
|
}
|
|
|
|
// Fold (zext (and (trunc x), cst)) -> (and x, cst),
|
|
// if either of the casts is not free.
|
|
if (N0.getOpcode() == ISD::AND &&
|
|
N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
|
|
N0.getOperand(1).getOpcode() == ISD::Constant &&
|
|
(!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
|
|
N0.getValueType()) ||
|
|
!TLI.isZExtFree(N0.getValueType(), VT))) {
|
|
SDValue X = N0.getOperand(0).getOperand(0);
|
|
X = DAG.getAnyExtOrTrunc(X, SDLoc(X), VT);
|
|
APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits());
|
|
SDLoc DL(N);
|
|
return DAG.getNode(ISD::AND, DL, VT,
|
|
X, DAG.getConstant(Mask, DL, VT));
|
|
}
|
|
|
|
// Try to simplify (zext (load x)).
|
|
if (SDValue foldedExt =
|
|
tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0,
|
|
ISD::ZEXTLOAD, ISD::ZERO_EXTEND))
|
|
return foldedExt;
|
|
|
|
if (SDValue foldedExt =
|
|
tryToFoldExtOfMaskedLoad(DAG, TLI, VT, N, N0, ISD::ZEXTLOAD,
|
|
ISD::ZERO_EXTEND))
|
|
return foldedExt;
|
|
|
|
// fold (zext (load x)) to multiple smaller zextloads.
|
|
// Only on illegal but splittable vectors.
|
|
if (SDValue ExtLoad = CombineExtLoad(N))
|
|
return ExtLoad;
|
|
|
|
// fold (zext (and/or/xor (load x), cst)) ->
|
|
// (and/or/xor (zextload x), (zext cst))
|
|
// Unless (and (load x) cst) will match as a zextload already and has
|
|
// additional users.
|
|
if ((N0.getOpcode() == ISD::AND || N0.getOpcode() == ISD::OR ||
|
|
N0.getOpcode() == ISD::XOR) &&
|
|
isa<LoadSDNode>(N0.getOperand(0)) &&
|
|
N0.getOperand(1).getOpcode() == ISD::Constant &&
|
|
(!LegalOperations && TLI.isOperationLegal(N0.getOpcode(), VT))) {
|
|
LoadSDNode *LN00 = cast<LoadSDNode>(N0.getOperand(0));
|
|
EVT MemVT = LN00->getMemoryVT();
|
|
if (TLI.isLoadExtLegal(ISD::ZEXTLOAD, VT, MemVT) &&
|
|
LN00->getExtensionType() != ISD::SEXTLOAD && LN00->isUnindexed()) {
|
|
bool DoXform = true;
|
|
SmallVector<SDNode*, 4> SetCCs;
|
|
if (!N0.hasOneUse()) {
|
|
if (N0.getOpcode() == ISD::AND) {
|
|
auto *AndC = cast<ConstantSDNode>(N0.getOperand(1));
|
|
EVT LoadResultTy = AndC->getValueType(0);
|
|
EVT ExtVT;
|
|
if (isAndLoadExtLoad(AndC, LN00, LoadResultTy, ExtVT))
|
|
DoXform = false;
|
|
}
|
|
}
|
|
if (DoXform)
|
|
DoXform = ExtendUsesToFormExtLoad(VT, N0.getNode(), N0.getOperand(0),
|
|
ISD::ZERO_EXTEND, SetCCs, TLI);
|
|
if (DoXform) {
|
|
SDValue ExtLoad = DAG.getExtLoad(ISD::ZEXTLOAD, SDLoc(LN00), VT,
|
|
LN00->getChain(), LN00->getBasePtr(),
|
|
LN00->getMemoryVT(),
|
|
LN00->getMemOperand());
|
|
APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits());
|
|
SDLoc DL(N);
|
|
SDValue And = DAG.getNode(N0.getOpcode(), DL, VT,
|
|
ExtLoad, DAG.getConstant(Mask, DL, VT));
|
|
ExtendSetCCUses(SetCCs, N0.getOperand(0), ExtLoad, ISD::ZERO_EXTEND);
|
|
bool NoReplaceTruncAnd = !N0.hasOneUse();
|
|
bool NoReplaceTrunc = SDValue(LN00, 0).hasOneUse();
|
|
CombineTo(N, And);
|
|
// If N0 has multiple uses, change other uses as well.
|
|
if (NoReplaceTruncAnd) {
|
|
SDValue TruncAnd =
|
|
DAG.getNode(ISD::TRUNCATE, DL, N0.getValueType(), And);
|
|
CombineTo(N0.getNode(), TruncAnd);
|
|
}
|
|
if (NoReplaceTrunc) {
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(LN00, 1), ExtLoad.getValue(1));
|
|
} else {
|
|
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SDLoc(LN00),
|
|
LN00->getValueType(0), ExtLoad);
|
|
CombineTo(LN00, Trunc, ExtLoad.getValue(1));
|
|
}
|
|
return SDValue(N,0); // Return N so it doesn't get rechecked!
|
|
}
|
|
}
|
|
}
|
|
|
|
// fold (zext (and/or/xor (shl/shr (load x), cst), cst)) ->
|
|
// (and/or/xor (shl/shr (zextload x), (zext cst)), (zext cst))
|
|
if (SDValue ZExtLoad = CombineZExtLogicopShiftLoad(N))
|
|
return ZExtLoad;
|
|
|
|
// Try to simplify (zext (zextload x)).
|
|
if (SDValue foldedExt = tryToFoldExtOfExtload(
|
|
DAG, *this, TLI, VT, LegalOperations, N, N0, ISD::ZEXTLOAD))
|
|
return foldedExt;
|
|
|
|
if (SDValue V = foldExtendedSignBitTest(N, DAG, LegalOperations))
|
|
return V;
|
|
|
|
if (N0.getOpcode() == ISD::SETCC) {
|
|
// Only do this before legalize for now.
|
|
if (!LegalOperations && VT.isVector() &&
|
|
N0.getValueType().getVectorElementType() == MVT::i1) {
|
|
EVT N00VT = N0.getOperand(0).getValueType();
|
|
if (getSetCCResultType(N00VT) == N0.getValueType())
|
|
return SDValue();
|
|
|
|
// We know that the # elements of the results is the same as the #
|
|
// elements of the compare (and the # elements of the compare result for
|
|
// that matter). Check to see that they are the same size. If so, we know
|
|
// that the element size of the sext'd result matches the element size of
|
|
// the compare operands.
|
|
SDLoc DL(N);
|
|
if (VT.getSizeInBits() == N00VT.getSizeInBits()) {
|
|
// zext(setcc) -> zext_in_reg(vsetcc) for vectors.
|
|
SDValue VSetCC = DAG.getNode(ISD::SETCC, DL, VT, N0.getOperand(0),
|
|
N0.getOperand(1), N0.getOperand(2));
|
|
return DAG.getZeroExtendInReg(VSetCC, DL, N0.getValueType());
|
|
}
|
|
|
|
// If the desired elements are smaller or larger than the source
|
|
// elements we can use a matching integer vector type and then
|
|
// truncate/any extend followed by zext_in_reg.
|
|
EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger();
|
|
SDValue VsetCC =
|
|
DAG.getNode(ISD::SETCC, DL, MatchingVectorType, N0.getOperand(0),
|
|
N0.getOperand(1), N0.getOperand(2));
|
|
return DAG.getZeroExtendInReg(DAG.getAnyExtOrTrunc(VsetCC, DL, VT), DL,
|
|
N0.getValueType());
|
|
}
|
|
|
|
// zext(setcc x,y,cc) -> zext(select x, y, true, false, cc)
|
|
SDLoc DL(N);
|
|
EVT N0VT = N0.getValueType();
|
|
EVT N00VT = N0.getOperand(0).getValueType();
|
|
if (SDValue SCC = SimplifySelectCC(
|
|
DL, N0.getOperand(0), N0.getOperand(1),
|
|
DAG.getBoolConstant(true, DL, N0VT, N00VT),
|
|
DAG.getBoolConstant(false, DL, N0VT, N00VT),
|
|
cast<CondCodeSDNode>(N0.getOperand(2))->get(), true))
|
|
return DAG.getNode(ISD::ZERO_EXTEND, DL, VT, SCC);
|
|
}
|
|
|
|
// (zext (shl (zext x), cst)) -> (shl (zext x), cst)
|
|
if ((N0.getOpcode() == ISD::SHL || N0.getOpcode() == ISD::SRL) &&
|
|
isa<ConstantSDNode>(N0.getOperand(1)) &&
|
|
N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
|
|
N0.hasOneUse()) {
|
|
SDValue ShAmt = N0.getOperand(1);
|
|
if (N0.getOpcode() == ISD::SHL) {
|
|
SDValue InnerZExt = N0.getOperand(0);
|
|
// If the original shl may be shifting out bits, do not perform this
|
|
// transformation.
|
|
unsigned KnownZeroBits = InnerZExt.getValueSizeInBits() -
|
|
InnerZExt.getOperand(0).getValueSizeInBits();
|
|
if (cast<ConstantSDNode>(ShAmt)->getAPIntValue().ugt(KnownZeroBits))
|
|
return SDValue();
|
|
}
|
|
|
|
SDLoc DL(N);
|
|
|
|
// Ensure that the shift amount is wide enough for the shifted value.
|
|
if (Log2_32_Ceil(VT.getSizeInBits()) > ShAmt.getValueSizeInBits())
|
|
ShAmt = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, ShAmt);
|
|
|
|
return DAG.getNode(N0.getOpcode(), DL, VT,
|
|
DAG.getNode(ISD::ZERO_EXTEND, DL, VT, N0.getOperand(0)),
|
|
ShAmt);
|
|
}
|
|
|
|
if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
|
|
return NewVSel;
|
|
|
|
if (SDValue NewCtPop = widenCtPop(N, DAG))
|
|
return NewCtPop;
|
|
|
|
if (SDValue Res = tryToFoldExtendSelectLoad(N, TLI, DAG))
|
|
return Res;
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitANY_EXTEND(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes))
|
|
return Res;
|
|
|
|
// fold (aext (aext x)) -> (aext x)
|
|
// fold (aext (zext x)) -> (zext x)
|
|
// fold (aext (sext x)) -> (sext x)
|
|
if (N0.getOpcode() == ISD::ANY_EXTEND ||
|
|
N0.getOpcode() == ISD::ZERO_EXTEND ||
|
|
N0.getOpcode() == ISD::SIGN_EXTEND)
|
|
return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0));
|
|
|
|
// fold (aext (truncate (load x))) -> (aext (smaller load x))
|
|
// fold (aext (truncate (srl (load x), c))) -> (aext (small load (x+c/n)))
|
|
if (N0.getOpcode() == ISD::TRUNCATE) {
|
|
if (SDValue NarrowLoad = ReduceLoadWidth(N0.getNode())) {
|
|
SDNode *oye = N0.getOperand(0).getNode();
|
|
if (NarrowLoad.getNode() != N0.getNode()) {
|
|
CombineTo(N0.getNode(), NarrowLoad);
|
|
// CombineTo deleted the truncate, if needed, but not what's under it.
|
|
AddToWorklist(oye);
|
|
}
|
|
return SDValue(N, 0); // Return N so it doesn't get rechecked!
|
|
}
|
|
}
|
|
|
|
// fold (aext (truncate x))
|
|
if (N0.getOpcode() == ISD::TRUNCATE)
|
|
return DAG.getAnyExtOrTrunc(N0.getOperand(0), SDLoc(N), VT);
|
|
|
|
// Fold (aext (and (trunc x), cst)) -> (and x, cst)
|
|
// if the trunc is not free.
|
|
if (N0.getOpcode() == ISD::AND &&
|
|
N0.getOperand(0).getOpcode() == ISD::TRUNCATE &&
|
|
N0.getOperand(1).getOpcode() == ISD::Constant &&
|
|
!TLI.isTruncateFree(N0.getOperand(0).getOperand(0).getValueType(),
|
|
N0.getValueType())) {
|
|
SDLoc DL(N);
|
|
SDValue X = N0.getOperand(0).getOperand(0);
|
|
X = DAG.getAnyExtOrTrunc(X, DL, VT);
|
|
APInt Mask = N0.getConstantOperandAPInt(1).zext(VT.getSizeInBits());
|
|
return DAG.getNode(ISD::AND, DL, VT,
|
|
X, DAG.getConstant(Mask, DL, VT));
|
|
}
|
|
|
|
// fold (aext (load x)) -> (aext (truncate (extload x)))
|
|
// None of the supported targets knows how to perform load and any_ext
|
|
// on vectors in one instruction, so attempt to fold to zext instead.
|
|
if (VT.isVector()) {
|
|
// Try to simplify (zext (load x)).
|
|
if (SDValue foldedExt =
|
|
tryToFoldExtOfLoad(DAG, *this, TLI, VT, LegalOperations, N, N0,
|
|
ISD::ZEXTLOAD, ISD::ZERO_EXTEND))
|
|
return foldedExt;
|
|
} else if (ISD::isNON_EXTLoad(N0.getNode()) &&
|
|
ISD::isUNINDEXEDLoad(N0.getNode()) &&
|
|
TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) {
|
|
bool DoXform = true;
|
|
SmallVector<SDNode *, 4> SetCCs;
|
|
if (!N0.hasOneUse())
|
|
DoXform =
|
|
ExtendUsesToFormExtLoad(VT, N, N0, ISD::ANY_EXTEND, SetCCs, TLI);
|
|
if (DoXform) {
|
|
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
|
|
SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
|
|
LN0->getChain(), LN0->getBasePtr(),
|
|
N0.getValueType(), LN0->getMemOperand());
|
|
ExtendSetCCUses(SetCCs, N0, ExtLoad, ISD::ANY_EXTEND);
|
|
// If the load value is used only by N, replace it via CombineTo N.
|
|
bool NoReplaceTrunc = N0.hasOneUse();
|
|
CombineTo(N, ExtLoad);
|
|
if (NoReplaceTrunc) {
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
|
|
recursivelyDeleteUnusedNodes(LN0);
|
|
} else {
|
|
SDValue Trunc =
|
|
DAG.getNode(ISD::TRUNCATE, SDLoc(N0), N0.getValueType(), ExtLoad);
|
|
CombineTo(LN0, Trunc, ExtLoad.getValue(1));
|
|
}
|
|
return SDValue(N, 0); // Return N so it doesn't get rechecked!
|
|
}
|
|
}
|
|
|
|
// fold (aext (zextload x)) -> (aext (truncate (zextload x)))
|
|
// fold (aext (sextload x)) -> (aext (truncate (sextload x)))
|
|
// fold (aext ( extload x)) -> (aext (truncate (extload x)))
|
|
if (N0.getOpcode() == ISD::LOAD && !ISD::isNON_EXTLoad(N0.getNode()) &&
|
|
ISD::isUNINDEXEDLoad(N0.getNode()) && N0.hasOneUse()) {
|
|
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
|
|
ISD::LoadExtType ExtType = LN0->getExtensionType();
|
|
EVT MemVT = LN0->getMemoryVT();
|
|
if (!LegalOperations || TLI.isLoadExtLegal(ExtType, VT, MemVT)) {
|
|
SDValue ExtLoad = DAG.getExtLoad(ExtType, SDLoc(N),
|
|
VT, LN0->getChain(), LN0->getBasePtr(),
|
|
MemVT, LN0->getMemOperand());
|
|
CombineTo(N, ExtLoad);
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(LN0, 1), ExtLoad.getValue(1));
|
|
recursivelyDeleteUnusedNodes(LN0);
|
|
return SDValue(N, 0); // Return N so it doesn't get rechecked!
|
|
}
|
|
}
|
|
|
|
if (N0.getOpcode() == ISD::SETCC) {
|
|
// For vectors:
|
|
// aext(setcc) -> vsetcc
|
|
// aext(setcc) -> truncate(vsetcc)
|
|
// aext(setcc) -> aext(vsetcc)
|
|
// Only do this before legalize for now.
|
|
if (VT.isVector() && !LegalOperations) {
|
|
EVT N00VT = N0.getOperand(0).getValueType();
|
|
if (getSetCCResultType(N00VT) == N0.getValueType())
|
|
return SDValue();
|
|
|
|
// We know that the # elements of the results is the same as the
|
|
// # elements of the compare (and the # elements of the compare result
|
|
// for that matter). Check to see that they are the same size. If so,
|
|
// we know that the element size of the sext'd result matches the
|
|
// element size of the compare operands.
|
|
if (VT.getSizeInBits() == N00VT.getSizeInBits())
|
|
return DAG.getSetCC(SDLoc(N), VT, N0.getOperand(0),
|
|
N0.getOperand(1),
|
|
cast<CondCodeSDNode>(N0.getOperand(2))->get());
|
|
|
|
// If the desired elements are smaller or larger than the source
|
|
// elements we can use a matching integer vector type and then
|
|
// truncate/any extend
|
|
EVT MatchingVectorType = N00VT.changeVectorElementTypeToInteger();
|
|
SDValue VsetCC =
|
|
DAG.getSetCC(SDLoc(N), MatchingVectorType, N0.getOperand(0),
|
|
N0.getOperand(1),
|
|
cast<CondCodeSDNode>(N0.getOperand(2))->get());
|
|
return DAG.getAnyExtOrTrunc(VsetCC, SDLoc(N), VT);
|
|
}
|
|
|
|
// aext(setcc x,y,cc) -> select_cc x, y, 1, 0, cc
|
|
SDLoc DL(N);
|
|
if (SDValue SCC = SimplifySelectCC(
|
|
DL, N0.getOperand(0), N0.getOperand(1), DAG.getConstant(1, DL, VT),
|
|
DAG.getConstant(0, DL, VT),
|
|
cast<CondCodeSDNode>(N0.getOperand(2))->get(), true))
|
|
return SCC;
|
|
}
|
|
|
|
if (SDValue NewCtPop = widenCtPop(N, DAG))
|
|
return NewCtPop;
|
|
|
|
if (SDValue Res = tryToFoldExtendSelectLoad(N, TLI, DAG))
|
|
return Res;
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitAssertExt(SDNode *N) {
|
|
unsigned Opcode = N->getOpcode();
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
EVT AssertVT = cast<VTSDNode>(N1)->getVT();
|
|
|
|
// fold (assert?ext (assert?ext x, vt), vt) -> (assert?ext x, vt)
|
|
if (N0.getOpcode() == Opcode &&
|
|
AssertVT == cast<VTSDNode>(N0.getOperand(1))->getVT())
|
|
return N0;
|
|
|
|
if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
|
|
N0.getOperand(0).getOpcode() == Opcode) {
|
|
// We have an assert, truncate, assert sandwich. Make one stronger assert
|
|
// by asserting on the smallest asserted type to the larger source type.
|
|
// This eliminates the later assert:
|
|
// assert (trunc (assert X, i8) to iN), i1 --> trunc (assert X, i1) to iN
|
|
// assert (trunc (assert X, i1) to iN), i8 --> trunc (assert X, i1) to iN
|
|
SDValue BigA = N0.getOperand(0);
|
|
EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT();
|
|
assert(BigA_AssertVT.bitsLE(N0.getValueType()) &&
|
|
"Asserting zero/sign-extended bits to a type larger than the "
|
|
"truncated destination does not provide information");
|
|
|
|
SDLoc DL(N);
|
|
EVT MinAssertVT = AssertVT.bitsLT(BigA_AssertVT) ? AssertVT : BigA_AssertVT;
|
|
SDValue MinAssertVTVal = DAG.getValueType(MinAssertVT);
|
|
SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(),
|
|
BigA.getOperand(0), MinAssertVTVal);
|
|
return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert);
|
|
}
|
|
|
|
// If we have (AssertZext (truncate (AssertSext X, iX)), iY) and Y is smaller
|
|
// than X. Just move the AssertZext in front of the truncate and drop the
|
|
// AssertSExt.
|
|
if (N0.getOpcode() == ISD::TRUNCATE && N0.hasOneUse() &&
|
|
N0.getOperand(0).getOpcode() == ISD::AssertSext &&
|
|
Opcode == ISD::AssertZext) {
|
|
SDValue BigA = N0.getOperand(0);
|
|
EVT BigA_AssertVT = cast<VTSDNode>(BigA.getOperand(1))->getVT();
|
|
assert(BigA_AssertVT.bitsLE(N0.getValueType()) &&
|
|
"Asserting zero/sign-extended bits to a type larger than the "
|
|
"truncated destination does not provide information");
|
|
|
|
if (AssertVT.bitsLT(BigA_AssertVT)) {
|
|
SDLoc DL(N);
|
|
SDValue NewAssert = DAG.getNode(Opcode, DL, BigA.getValueType(),
|
|
BigA.getOperand(0), N1);
|
|
return DAG.getNode(ISD::TRUNCATE, DL, N->getValueType(0), NewAssert);
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitAssertAlign(SDNode *N) {
|
|
SDLoc DL(N);
|
|
|
|
Align AL = cast<AssertAlignSDNode>(N)->getAlign();
|
|
SDValue N0 = N->getOperand(0);
|
|
|
|
// Fold (assertalign (assertalign x, AL0), AL1) ->
|
|
// (assertalign x, max(AL0, AL1))
|
|
if (auto *AAN = dyn_cast<AssertAlignSDNode>(N0))
|
|
return DAG.getAssertAlign(DL, N0.getOperand(0),
|
|
std::max(AL, AAN->getAlign()));
|
|
|
|
// In rare cases, there are trivial arithmetic ops in source operands. Sink
|
|
// this assert down to source operands so that those arithmetic ops could be
|
|
// exposed to the DAG combining.
|
|
switch (N0.getOpcode()) {
|
|
default:
|
|
break;
|
|
case ISD::ADD:
|
|
case ISD::SUB: {
|
|
unsigned AlignShift = Log2(AL);
|
|
SDValue LHS = N0.getOperand(0);
|
|
SDValue RHS = N0.getOperand(1);
|
|
unsigned LHSAlignShift = DAG.computeKnownBits(LHS).countMinTrailingZeros();
|
|
unsigned RHSAlignShift = DAG.computeKnownBits(RHS).countMinTrailingZeros();
|
|
if (LHSAlignShift >= AlignShift || RHSAlignShift >= AlignShift) {
|
|
if (LHSAlignShift < AlignShift)
|
|
LHS = DAG.getAssertAlign(DL, LHS, AL);
|
|
if (RHSAlignShift < AlignShift)
|
|
RHS = DAG.getAssertAlign(DL, RHS, AL);
|
|
return DAG.getNode(N0.getOpcode(), DL, N0.getValueType(), LHS, RHS);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// If the result of a wider load is shifted to right of N bits and then
|
|
/// truncated to a narrower type and where N is a multiple of number of bits of
|
|
/// the narrower type, transform it to a narrower load from address + N / num of
|
|
/// bits of new type. Also narrow the load if the result is masked with an AND
|
|
/// to effectively produce a smaller type. If the result is to be extended, also
|
|
/// fold the extension to form a extending load.
|
|
SDValue DAGCombiner::ReduceLoadWidth(SDNode *N) {
|
|
unsigned Opc = N->getOpcode();
|
|
|
|
ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
EVT ExtVT = VT;
|
|
|
|
// This transformation isn't valid for vector loads.
|
|
if (VT.isVector())
|
|
return SDValue();
|
|
|
|
unsigned ShAmt = 0;
|
|
bool HasShiftedOffset = false;
|
|
// Special case: SIGN_EXTEND_INREG is basically truncating to ExtVT then
|
|
// extended to VT.
|
|
if (Opc == ISD::SIGN_EXTEND_INREG) {
|
|
ExtType = ISD::SEXTLOAD;
|
|
ExtVT = cast<VTSDNode>(N->getOperand(1))->getVT();
|
|
} else if (Opc == ISD::SRL) {
|
|
// Another special-case: SRL is basically zero-extending a narrower value,
|
|
// or it maybe shifting a higher subword, half or byte into the lowest
|
|
// bits.
|
|
ExtType = ISD::ZEXTLOAD;
|
|
N0 = SDValue(N, 0);
|
|
|
|
auto *LN0 = dyn_cast<LoadSDNode>(N0.getOperand(0));
|
|
auto *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1));
|
|
if (!N01 || !LN0)
|
|
return SDValue();
|
|
|
|
uint64_t ShiftAmt = N01->getZExtValue();
|
|
uint64_t MemoryWidth = LN0->getMemoryVT().getScalarSizeInBits();
|
|
if (LN0->getExtensionType() != ISD::SEXTLOAD && MemoryWidth > ShiftAmt)
|
|
ExtVT = EVT::getIntegerVT(*DAG.getContext(), MemoryWidth - ShiftAmt);
|
|
else
|
|
ExtVT = EVT::getIntegerVT(*DAG.getContext(),
|
|
VT.getScalarSizeInBits() - ShiftAmt);
|
|
} else if (Opc == ISD::AND) {
|
|
// An AND with a constant mask is the same as a truncate + zero-extend.
|
|
auto AndC = dyn_cast<ConstantSDNode>(N->getOperand(1));
|
|
if (!AndC)
|
|
return SDValue();
|
|
|
|
const APInt &Mask = AndC->getAPIntValue();
|
|
unsigned ActiveBits = 0;
|
|
if (Mask.isMask()) {
|
|
ActiveBits = Mask.countTrailingOnes();
|
|
} else if (Mask.isShiftedMask()) {
|
|
ShAmt = Mask.countTrailingZeros();
|
|
APInt ShiftedMask = Mask.lshr(ShAmt);
|
|
ActiveBits = ShiftedMask.countTrailingOnes();
|
|
HasShiftedOffset = true;
|
|
} else
|
|
return SDValue();
|
|
|
|
ExtType = ISD::ZEXTLOAD;
|
|
ExtVT = EVT::getIntegerVT(*DAG.getContext(), ActiveBits);
|
|
}
|
|
|
|
if (N0.getOpcode() == ISD::SRL && N0.hasOneUse()) {
|
|
SDValue SRL = N0;
|
|
if (auto *ConstShift = dyn_cast<ConstantSDNode>(SRL.getOperand(1))) {
|
|
ShAmt = ConstShift->getZExtValue();
|
|
unsigned EVTBits = ExtVT.getScalarSizeInBits();
|
|
// Is the shift amount a multiple of size of VT?
|
|
if ((ShAmt & (EVTBits-1)) == 0) {
|
|
N0 = N0.getOperand(0);
|
|
// Is the load width a multiple of size of VT?
|
|
if ((N0.getScalarValueSizeInBits() & (EVTBits - 1)) != 0)
|
|
return SDValue();
|
|
}
|
|
|
|
// At this point, we must have a load or else we can't do the transform.
|
|
auto *LN0 = dyn_cast<LoadSDNode>(N0);
|
|
if (!LN0) return SDValue();
|
|
|
|
// Because a SRL must be assumed to *need* to zero-extend the high bits
|
|
// (as opposed to anyext the high bits), we can't combine the zextload
|
|
// lowering of SRL and an sextload.
|
|
if (LN0->getExtensionType() == ISD::SEXTLOAD)
|
|
return SDValue();
|
|
|
|
// If the shift amount is larger than the input type then we're not
|
|
// accessing any of the loaded bytes. If the load was a zextload/extload
|
|
// then the result of the shift+trunc is zero/undef (handled elsewhere).
|
|
if (ShAmt >= LN0->getMemoryVT().getSizeInBits())
|
|
return SDValue();
|
|
|
|
// If the SRL is only used by a masking AND, we may be able to adjust
|
|
// the ExtVT to make the AND redundant.
|
|
SDNode *Mask = *(SRL->use_begin());
|
|
if (Mask->getOpcode() == ISD::AND &&
|
|
isa<ConstantSDNode>(Mask->getOperand(1))) {
|
|
const APInt& ShiftMask = Mask->getConstantOperandAPInt(1);
|
|
if (ShiftMask.isMask()) {
|
|
EVT MaskedVT = EVT::getIntegerVT(*DAG.getContext(),
|
|
ShiftMask.countTrailingOnes());
|
|
// If the mask is smaller, recompute the type.
|
|
if ((ExtVT.getScalarSizeInBits() > MaskedVT.getScalarSizeInBits()) &&
|
|
TLI.isLoadExtLegal(ExtType, N0.getValueType(), MaskedVT))
|
|
ExtVT = MaskedVT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If the load is shifted left (and the result isn't shifted back right),
|
|
// we can fold the truncate through the shift.
|
|
unsigned ShLeftAmt = 0;
|
|
if (ShAmt == 0 && N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
|
|
ExtVT == VT && TLI.isNarrowingProfitable(N0.getValueType(), VT)) {
|
|
if (ConstantSDNode *N01 = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
|
|
ShLeftAmt = N01->getZExtValue();
|
|
N0 = N0.getOperand(0);
|
|
}
|
|
}
|
|
|
|
// If we haven't found a load, we can't narrow it.
|
|
if (!isa<LoadSDNode>(N0))
|
|
return SDValue();
|
|
|
|
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
|
|
// Reducing the width of a volatile load is illegal. For atomics, we may be
|
|
// able to reduce the width provided we never widen again. (see D66309)
|
|
if (!LN0->isSimple() ||
|
|
!isLegalNarrowLdSt(LN0, ExtType, ExtVT, ShAmt))
|
|
return SDValue();
|
|
|
|
auto AdjustBigEndianShift = [&](unsigned ShAmt) {
|
|
unsigned LVTStoreBits =
|
|
LN0->getMemoryVT().getStoreSizeInBits().getFixedSize();
|
|
unsigned EVTStoreBits = ExtVT.getStoreSizeInBits().getFixedSize();
|
|
return LVTStoreBits - EVTStoreBits - ShAmt;
|
|
};
|
|
|
|
// For big endian targets, we need to adjust the offset to the pointer to
|
|
// load the correct bytes.
|
|
if (DAG.getDataLayout().isBigEndian())
|
|
ShAmt = AdjustBigEndianShift(ShAmt);
|
|
|
|
uint64_t PtrOff = ShAmt / 8;
|
|
Align NewAlign = commonAlignment(LN0->getAlign(), PtrOff);
|
|
SDLoc DL(LN0);
|
|
// The original load itself didn't wrap, so an offset within it doesn't.
|
|
SDNodeFlags Flags;
|
|
Flags.setNoUnsignedWrap(true);
|
|
SDValue NewPtr = DAG.getMemBasePlusOffset(LN0->getBasePtr(),
|
|
TypeSize::Fixed(PtrOff), DL, Flags);
|
|
AddToWorklist(NewPtr.getNode());
|
|
|
|
SDValue Load;
|
|
if (ExtType == ISD::NON_EXTLOAD)
|
|
Load = DAG.getLoad(VT, DL, LN0->getChain(), NewPtr,
|
|
LN0->getPointerInfo().getWithOffset(PtrOff), NewAlign,
|
|
LN0->getMemOperand()->getFlags(), LN0->getAAInfo());
|
|
else
|
|
Load = DAG.getExtLoad(ExtType, DL, VT, LN0->getChain(), NewPtr,
|
|
LN0->getPointerInfo().getWithOffset(PtrOff), ExtVT,
|
|
NewAlign, LN0->getMemOperand()->getFlags(),
|
|
LN0->getAAInfo());
|
|
|
|
// Replace the old load's chain with the new load's chain.
|
|
WorklistRemover DeadNodes(*this);
|
|
DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
|
|
|
|
// Shift the result left, if we've swallowed a left shift.
|
|
SDValue Result = Load;
|
|
if (ShLeftAmt != 0) {
|
|
EVT ShImmTy = getShiftAmountTy(Result.getValueType());
|
|
if (!isUIntN(ShImmTy.getScalarSizeInBits(), ShLeftAmt))
|
|
ShImmTy = VT;
|
|
// If the shift amount is as large as the result size (but, presumably,
|
|
// no larger than the source) then the useful bits of the result are
|
|
// zero; we can't simply return the shortened shift, because the result
|
|
// of that operation is undefined.
|
|
if (ShLeftAmt >= VT.getScalarSizeInBits())
|
|
Result = DAG.getConstant(0, DL, VT);
|
|
else
|
|
Result = DAG.getNode(ISD::SHL, DL, VT,
|
|
Result, DAG.getConstant(ShLeftAmt, DL, ShImmTy));
|
|
}
|
|
|
|
if (HasShiftedOffset) {
|
|
// Recalculate the shift amount after it has been altered to calculate
|
|
// the offset.
|
|
if (DAG.getDataLayout().isBigEndian())
|
|
ShAmt = AdjustBigEndianShift(ShAmt);
|
|
|
|
// We're using a shifted mask, so the load now has an offset. This means
|
|
// that data has been loaded into the lower bytes than it would have been
|
|
// before, so we need to shl the loaded data into the correct position in the
|
|
// register.
|
|
SDValue ShiftC = DAG.getConstant(ShAmt, DL, VT);
|
|
Result = DAG.getNode(ISD::SHL, DL, VT, Result, ShiftC);
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result);
|
|
}
|
|
|
|
// Return the new loaded value.
|
|
return Result;
|
|
}
|
|
|
|
SDValue DAGCombiner::visitSIGN_EXTEND_INREG(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
EVT VT = N->getValueType(0);
|
|
EVT ExtVT = cast<VTSDNode>(N1)->getVT();
|
|
unsigned VTBits = VT.getScalarSizeInBits();
|
|
unsigned ExtVTBits = ExtVT.getScalarSizeInBits();
|
|
|
|
// sext_vector_inreg(undef) = 0 because the top bit will all be the same.
|
|
if (N0.isUndef())
|
|
return DAG.getConstant(0, SDLoc(N), VT);
|
|
|
|
// fold (sext_in_reg c1) -> c1
|
|
if (DAG.isConstantIntBuildVectorOrConstantInt(N0))
|
|
return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0, N1);
|
|
|
|
// If the input is already sign extended, just drop the extension.
|
|
if (DAG.ComputeNumSignBits(N0) >= (VTBits - ExtVTBits + 1))
|
|
return N0;
|
|
|
|
// fold (sext_in_reg (sext_in_reg x, VT2), VT1) -> (sext_in_reg x, minVT) pt2
|
|
if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
|
|
ExtVT.bitsLT(cast<VTSDNode>(N0.getOperand(1))->getVT()))
|
|
return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, N0.getOperand(0),
|
|
N1);
|
|
|
|
// fold (sext_in_reg (sext x)) -> (sext x)
|
|
// fold (sext_in_reg (aext x)) -> (sext x)
|
|
// if x is small enough or if we know that x has more than 1 sign bit and the
|
|
// sign_extend_inreg is extending from one of them.
|
|
if (N0.getOpcode() == ISD::SIGN_EXTEND || N0.getOpcode() == ISD::ANY_EXTEND) {
|
|
SDValue N00 = N0.getOperand(0);
|
|
unsigned N00Bits = N00.getScalarValueSizeInBits();
|
|
if ((N00Bits <= ExtVTBits ||
|
|
(N00Bits - DAG.ComputeNumSignBits(N00)) < ExtVTBits) &&
|
|
(!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
|
|
return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00);
|
|
}
|
|
|
|
// fold (sext_in_reg (*_extend_vector_inreg x)) -> (sext_vector_inreg x)
|
|
// if x is small enough or if we know that x has more than 1 sign bit and the
|
|
// sign_extend_inreg is extending from one of them.
|
|
if (N0.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG ||
|
|
N0.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG ||
|
|
N0.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
|
|
SDValue N00 = N0.getOperand(0);
|
|
unsigned N00Bits = N00.getScalarValueSizeInBits();
|
|
unsigned DstElts = N0.getValueType().getVectorMinNumElements();
|
|
unsigned SrcElts = N00.getValueType().getVectorMinNumElements();
|
|
bool IsZext = N0.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
|
|
APInt DemandedSrcElts = APInt::getLowBitsSet(SrcElts, DstElts);
|
|
if ((N00Bits == ExtVTBits ||
|
|
(!IsZext && (N00Bits < ExtVTBits ||
|
|
(N00Bits - DAG.ComputeNumSignBits(N00, DemandedSrcElts)) <
|
|
ExtVTBits))) &&
|
|
(!LegalOperations ||
|
|
TLI.isOperationLegal(ISD::SIGN_EXTEND_VECTOR_INREG, VT)))
|
|
return DAG.getNode(ISD::SIGN_EXTEND_VECTOR_INREG, SDLoc(N), VT, N00);
|
|
}
|
|
|
|
// fold (sext_in_reg (zext x)) -> (sext x)
|
|
// iff we are extending the source sign bit.
|
|
if (N0.getOpcode() == ISD::ZERO_EXTEND) {
|
|
SDValue N00 = N0.getOperand(0);
|
|
if (N00.getScalarValueSizeInBits() == ExtVTBits &&
|
|
(!LegalOperations || TLI.isOperationLegal(ISD::SIGN_EXTEND, VT)))
|
|
return DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, N00, N1);
|
|
}
|
|
|
|
// fold (sext_in_reg x) -> (zext_in_reg x) if the sign bit is known zero.
|
|
if (DAG.MaskedValueIsZero(N0, APInt::getOneBitSet(VTBits, ExtVTBits - 1)))
|
|
return DAG.getZeroExtendInReg(N0, SDLoc(N), ExtVT);
|
|
|
|
// fold operands of sext_in_reg based on knowledge that the top bits are not
|
|
// demanded.
|
|
if (SimplifyDemandedBits(SDValue(N, 0)))
|
|
return SDValue(N, 0);
|
|
|
|
// fold (sext_in_reg (load x)) -> (smaller sextload x)
|
|
// fold (sext_in_reg (srl (load x), c)) -> (smaller sextload (x+c/evtbits))
|
|
if (SDValue NarrowLoad = ReduceLoadWidth(N))
|
|
return NarrowLoad;
|
|
|
|
// fold (sext_in_reg (srl X, 24), i8) -> (sra X, 24)
|
|
// fold (sext_in_reg (srl X, 23), i8) -> (sra X, 23) iff possible.
|
|
// We already fold "(sext_in_reg (srl X, 25), i8) -> srl X, 25" above.
|
|
if (N0.getOpcode() == ISD::SRL) {
|
|
if (auto *ShAmt = dyn_cast<ConstantSDNode>(N0.getOperand(1)))
|
|
if (ShAmt->getAPIntValue().ule(VTBits - ExtVTBits)) {
|
|
// We can turn this into an SRA iff the input to the SRL is already sign
|
|
// extended enough.
|
|
unsigned InSignBits = DAG.ComputeNumSignBits(N0.getOperand(0));
|
|
if (((VTBits - ExtVTBits) - ShAmt->getZExtValue()) < InSignBits)
|
|
return DAG.getNode(ISD::SRA, SDLoc(N), VT, N0.getOperand(0),
|
|
N0.getOperand(1));
|
|
}
|
|
}
|
|
|
|
// fold (sext_inreg (extload x)) -> (sextload x)
|
|
// If sextload is not supported by target, we can only do the combine when
|
|
// load has one use. Doing otherwise can block folding the extload with other
|
|
// extends that the target does support.
|
|
if (ISD::isEXTLoad(N0.getNode()) &&
|
|
ISD::isUNINDEXEDLoad(N0.getNode()) &&
|
|
ExtVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
|
|
((!LegalOperations && cast<LoadSDNode>(N0)->isSimple() &&
|
|
N0.hasOneUse()) ||
|
|
TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, ExtVT))) {
|
|
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
|
|
SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
|
|
LN0->getChain(),
|
|
LN0->getBasePtr(), ExtVT,
|
|
LN0->getMemOperand());
|
|
CombineTo(N, ExtLoad);
|
|
CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
|
|
AddToWorklist(ExtLoad.getNode());
|
|
return SDValue(N, 0); // Return N so it doesn't get rechecked!
|
|
}
|
|
|
|
// fold (sext_inreg (zextload x)) -> (sextload x) iff load has one use
|
|
if (ISD::isZEXTLoad(N0.getNode()) && ISD::isUNINDEXEDLoad(N0.getNode()) &&
|
|
N0.hasOneUse() &&
|
|
ExtVT == cast<LoadSDNode>(N0)->getMemoryVT() &&
|
|
((!LegalOperations && cast<LoadSDNode>(N0)->isSimple()) &&
|
|
TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, ExtVT))) {
|
|
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
|
|
SDValue ExtLoad = DAG.getExtLoad(ISD::SEXTLOAD, SDLoc(N), VT,
|
|
LN0->getChain(),
|
|
LN0->getBasePtr(), ExtVT,
|
|
LN0->getMemOperand());
|
|
CombineTo(N, ExtLoad);
|
|
CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
|
|
return SDValue(N, 0); // Return N so it doesn't get rechecked!
|
|
}
|
|
|
|
// fold (sext_inreg (masked_load x)) -> (sext_masked_load x)
|
|
// ignore it if the masked load is already sign extended
|
|
if (MaskedLoadSDNode *Ld = dyn_cast<MaskedLoadSDNode>(N0)) {
|
|
if (ExtVT == Ld->getMemoryVT() && N0.hasOneUse() &&
|
|
Ld->getExtensionType() != ISD::LoadExtType::NON_EXTLOAD &&
|
|
TLI.isLoadExtLegal(ISD::SEXTLOAD, VT, ExtVT)) {
|
|
SDValue ExtMaskedLoad = DAG.getMaskedLoad(
|
|
VT, SDLoc(N), Ld->getChain(), Ld->getBasePtr(), Ld->getOffset(),
|
|
Ld->getMask(), Ld->getPassThru(), ExtVT, Ld->getMemOperand(),
|
|
Ld->getAddressingMode(), ISD::SEXTLOAD, Ld->isExpandingLoad());
|
|
CombineTo(N, ExtMaskedLoad);
|
|
CombineTo(N0.getNode(), ExtMaskedLoad, ExtMaskedLoad.getValue(1));
|
|
return SDValue(N, 0); // Return N so it doesn't get rechecked!
|
|
}
|
|
}
|
|
|
|
// fold (sext_inreg (masked_gather x)) -> (sext_masked_gather x)
|
|
if (auto *GN0 = dyn_cast<MaskedGatherSDNode>(N0)) {
|
|
if (SDValue(GN0, 0).hasOneUse() &&
|
|
ExtVT == GN0->getMemoryVT() &&
|
|
TLI.isVectorLoadExtDesirable(SDValue(SDValue(GN0, 0)))) {
|
|
SDValue Ops[] = {GN0->getChain(), GN0->getPassThru(), GN0->getMask(),
|
|
GN0->getBasePtr(), GN0->getIndex(), GN0->getScale()};
|
|
|
|
SDValue ExtLoad = DAG.getMaskedGather(
|
|
DAG.getVTList(VT, MVT::Other), ExtVT, SDLoc(N), Ops,
|
|
GN0->getMemOperand(), GN0->getIndexType(), ISD::SEXTLOAD);
|
|
|
|
CombineTo(N, ExtLoad);
|
|
CombineTo(N0.getNode(), ExtLoad, ExtLoad.getValue(1));
|
|
AddToWorklist(ExtLoad.getNode());
|
|
return SDValue(N, 0); // Return N so it doesn't get rechecked!
|
|
}
|
|
}
|
|
|
|
// Form (sext_inreg (bswap >> 16)) or (sext_inreg (rotl (bswap) 16))
|
|
if (ExtVTBits <= 16 && N0.getOpcode() == ISD::OR) {
|
|
if (SDValue BSwap = MatchBSwapHWordLow(N0.getNode(), N0.getOperand(0),
|
|
N0.getOperand(1), false))
|
|
return DAG.getNode(ISD::SIGN_EXTEND_INREG, SDLoc(N), VT, BSwap, N1);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitEXTEND_VECTOR_INREG(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// {s/z}ext_vector_inreg(undef) = 0 because the top bits must be the same.
|
|
if (N0.isUndef())
|
|
return DAG.getConstant(0, SDLoc(N), VT);
|
|
|
|
if (SDValue Res = tryToFoldExtendOfConstant(N, TLI, DAG, LegalTypes))
|
|
return Res;
|
|
|
|
if (SimplifyDemandedVectorElts(SDValue(N, 0)))
|
|
return SDValue(N, 0);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitTRUNCATE(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
EVT SrcVT = N0.getValueType();
|
|
bool isLE = DAG.getDataLayout().isLittleEndian();
|
|
|
|
// noop truncate
|
|
if (SrcVT == VT)
|
|
return N0;
|
|
|
|
// fold (truncate (truncate x)) -> (truncate x)
|
|
if (N0.getOpcode() == ISD::TRUNCATE)
|
|
return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
|
|
|
|
// fold (truncate c1) -> c1
|
|
if (DAG.isConstantIntBuildVectorOrConstantInt(N0)) {
|
|
SDValue C = DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0);
|
|
if (C.getNode() != N)
|
|
return C;
|
|
}
|
|
|
|
// fold (truncate (ext x)) -> (ext x) or (truncate x) or x
|
|
if (N0.getOpcode() == ISD::ZERO_EXTEND ||
|
|
N0.getOpcode() == ISD::SIGN_EXTEND ||
|
|
N0.getOpcode() == ISD::ANY_EXTEND) {
|
|
// if the source is smaller than the dest, we still need an extend.
|
|
if (N0.getOperand(0).getValueType().bitsLT(VT))
|
|
return DAG.getNode(N0.getOpcode(), SDLoc(N), VT, N0.getOperand(0));
|
|
// if the source is larger than the dest, than we just need the truncate.
|
|
if (N0.getOperand(0).getValueType().bitsGT(VT))
|
|
return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, N0.getOperand(0));
|
|
// if the source and dest are the same type, we can drop both the extend
|
|
// and the truncate.
|
|
return N0.getOperand(0);
|
|
}
|
|
|
|
// If this is anyext(trunc), don't fold it, allow ourselves to be folded.
|
|
if (N->hasOneUse() && (N->use_begin()->getOpcode() == ISD::ANY_EXTEND))
|
|
return SDValue();
|
|
|
|
// Fold extract-and-trunc into a narrow extract. For example:
|
|
// i64 x = EXTRACT_VECTOR_ELT(v2i64 val, i32 1)
|
|
// i32 y = TRUNCATE(i64 x)
|
|
// -- becomes --
|
|
// v16i8 b = BITCAST (v2i64 val)
|
|
// i8 x = EXTRACT_VECTOR_ELT(v16i8 b, i32 8)
|
|
//
|
|
// Note: We only run this optimization after type legalization (which often
|
|
// creates this pattern) and before operation legalization after which
|
|
// we need to be more careful about the vector instructions that we generate.
|
|
if (N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
|
|
LegalTypes && !LegalOperations && N0->hasOneUse() && VT != MVT::i1) {
|
|
EVT VecTy = N0.getOperand(0).getValueType();
|
|
EVT ExTy = N0.getValueType();
|
|
EVT TrTy = N->getValueType(0);
|
|
|
|
auto EltCnt = VecTy.getVectorElementCount();
|
|
unsigned SizeRatio = ExTy.getSizeInBits()/TrTy.getSizeInBits();
|
|
auto NewEltCnt = EltCnt * SizeRatio;
|
|
|
|
EVT NVT = EVT::getVectorVT(*DAG.getContext(), TrTy, NewEltCnt);
|
|
assert(NVT.getSizeInBits() == VecTy.getSizeInBits() && "Invalid Size");
|
|
|
|
SDValue EltNo = N0->getOperand(1);
|
|
if (isa<ConstantSDNode>(EltNo) && isTypeLegal(NVT)) {
|
|
int Elt = cast<ConstantSDNode>(EltNo)->getZExtValue();
|
|
int Index = isLE ? (Elt*SizeRatio) : (Elt*SizeRatio + (SizeRatio-1));
|
|
|
|
SDLoc DL(N);
|
|
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, TrTy,
|
|
DAG.getBitcast(NVT, N0.getOperand(0)),
|
|
DAG.getVectorIdxConstant(Index, DL));
|
|
}
|
|
}
|
|
|
|
// trunc (select c, a, b) -> select c, (trunc a), (trunc b)
|
|
if (N0.getOpcode() == ISD::SELECT && N0.hasOneUse()) {
|
|
if ((!LegalOperations || TLI.isOperationLegal(ISD::SELECT, SrcVT)) &&
|
|
TLI.isTruncateFree(SrcVT, VT)) {
|
|
SDLoc SL(N0);
|
|
SDValue Cond = N0.getOperand(0);
|
|
SDValue TruncOp0 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1));
|
|
SDValue TruncOp1 = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(2));
|
|
return DAG.getNode(ISD::SELECT, SDLoc(N), VT, Cond, TruncOp0, TruncOp1);
|
|
}
|
|
}
|
|
|
|
// trunc (shl x, K) -> shl (trunc x), K => K < VT.getScalarSizeInBits()
|
|
if (N0.getOpcode() == ISD::SHL && N0.hasOneUse() &&
|
|
(!LegalOperations || TLI.isOperationLegal(ISD::SHL, VT)) &&
|
|
TLI.isTypeDesirableForOp(ISD::SHL, VT)) {
|
|
SDValue Amt = N0.getOperand(1);
|
|
KnownBits Known = DAG.computeKnownBits(Amt);
|
|
unsigned Size = VT.getScalarSizeInBits();
|
|
if (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size)) {
|
|
SDLoc SL(N);
|
|
EVT AmtVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
|
|
|
|
SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0));
|
|
if (AmtVT != Amt.getValueType()) {
|
|
Amt = DAG.getZExtOrTrunc(Amt, SL, AmtVT);
|
|
AddToWorklist(Amt.getNode());
|
|
}
|
|
return DAG.getNode(ISD::SHL, SL, VT, Trunc, Amt);
|
|
}
|
|
}
|
|
|
|
if (SDValue V = foldSubToUSubSat(VT, N0.getNode()))
|
|
return V;
|
|
|
|
// Attempt to pre-truncate BUILD_VECTOR sources.
|
|
if (N0.getOpcode() == ISD::BUILD_VECTOR && !LegalOperations &&
|
|
TLI.isTruncateFree(SrcVT.getScalarType(), VT.getScalarType()) &&
|
|
// Avoid creating illegal types if running after type legalizer.
|
|
(!LegalTypes || TLI.isTypeLegal(VT.getScalarType()))) {
|
|
SDLoc DL(N);
|
|
EVT SVT = VT.getScalarType();
|
|
SmallVector<SDValue, 8> TruncOps;
|
|
for (const SDValue &Op : N0->op_values()) {
|
|
SDValue TruncOp = DAG.getNode(ISD::TRUNCATE, DL, SVT, Op);
|
|
TruncOps.push_back(TruncOp);
|
|
}
|
|
return DAG.getBuildVector(VT, DL, TruncOps);
|
|
}
|
|
|
|
// Fold a series of buildvector, bitcast, and truncate if possible.
|
|
// For example fold
|
|
// (2xi32 trunc (bitcast ((4xi32)buildvector x, x, y, y) 2xi64)) to
|
|
// (2xi32 (buildvector x, y)).
|
|
if (Level == AfterLegalizeVectorOps && VT.isVector() &&
|
|
N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() &&
|
|
N0.getOperand(0).getOpcode() == ISD::BUILD_VECTOR &&
|
|
N0.getOperand(0).hasOneUse()) {
|
|
SDValue BuildVect = N0.getOperand(0);
|
|
EVT BuildVectEltTy = BuildVect.getValueType().getVectorElementType();
|
|
EVT TruncVecEltTy = VT.getVectorElementType();
|
|
|
|
// Check that the element types match.
|
|
if (BuildVectEltTy == TruncVecEltTy) {
|
|
// Now we only need to compute the offset of the truncated elements.
|
|
unsigned BuildVecNumElts = BuildVect.getNumOperands();
|
|
unsigned TruncVecNumElts = VT.getVectorNumElements();
|
|
unsigned TruncEltOffset = BuildVecNumElts / TruncVecNumElts;
|
|
|
|
assert((BuildVecNumElts % TruncVecNumElts) == 0 &&
|
|
"Invalid number of elements");
|
|
|
|
SmallVector<SDValue, 8> Opnds;
|
|
for (unsigned i = 0, e = BuildVecNumElts; i != e; i += TruncEltOffset)
|
|
Opnds.push_back(BuildVect.getOperand(i));
|
|
|
|
return DAG.getBuildVector(VT, SDLoc(N), Opnds);
|
|
}
|
|
}
|
|
|
|
// See if we can simplify the input to this truncate through knowledge that
|
|
// only the low bits are being used.
|
|
// For example "trunc (or (shl x, 8), y)" // -> trunc y
|
|
// Currently we only perform this optimization on scalars because vectors
|
|
// may have different active low bits.
|
|
if (!VT.isVector()) {
|
|
APInt Mask =
|
|
APInt::getLowBitsSet(N0.getValueSizeInBits(), VT.getSizeInBits());
|
|
if (SDValue Shorter = DAG.GetDemandedBits(N0, Mask))
|
|
return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Shorter);
|
|
}
|
|
|
|
// fold (truncate (load x)) -> (smaller load x)
|
|
// fold (truncate (srl (load x), c)) -> (smaller load (x+c/evtbits))
|
|
if (!LegalTypes || TLI.isTypeDesirableForOp(N0.getOpcode(), VT)) {
|
|
if (SDValue Reduced = ReduceLoadWidth(N))
|
|
return Reduced;
|
|
|
|
// Handle the case where the load remains an extending load even
|
|
// after truncation.
|
|
if (N0.hasOneUse() && ISD::isUNINDEXEDLoad(N0.getNode())) {
|
|
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
|
|
if (LN0->isSimple() && LN0->getMemoryVT().bitsLT(VT)) {
|
|
SDValue NewLoad = DAG.getExtLoad(LN0->getExtensionType(), SDLoc(LN0),
|
|
VT, LN0->getChain(), LN0->getBasePtr(),
|
|
LN0->getMemoryVT(),
|
|
LN0->getMemOperand());
|
|
DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLoad.getValue(1));
|
|
return NewLoad;
|
|
}
|
|
}
|
|
}
|
|
|
|
// fold (trunc (concat ... x ...)) -> (concat ..., (trunc x), ...)),
|
|
// where ... are all 'undef'.
|
|
if (N0.getOpcode() == ISD::CONCAT_VECTORS && !LegalTypes) {
|
|
SmallVector<EVT, 8> VTs;
|
|
SDValue V;
|
|
unsigned Idx = 0;
|
|
unsigned NumDefs = 0;
|
|
|
|
for (unsigned i = 0, e = N0.getNumOperands(); i != e; ++i) {
|
|
SDValue X = N0.getOperand(i);
|
|
if (!X.isUndef()) {
|
|
V = X;
|
|
Idx = i;
|
|
NumDefs++;
|
|
}
|
|
// Stop if more than one members are non-undef.
|
|
if (NumDefs > 1)
|
|
break;
|
|
|
|
VTs.push_back(EVT::getVectorVT(*DAG.getContext(),
|
|
VT.getVectorElementType(),
|
|
X.getValueType().getVectorElementCount()));
|
|
}
|
|
|
|
if (NumDefs == 0)
|
|
return DAG.getUNDEF(VT);
|
|
|
|
if (NumDefs == 1) {
|
|
assert(V.getNode() && "The single defined operand is empty!");
|
|
SmallVector<SDValue, 8> Opnds;
|
|
for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
|
|
if (i != Idx) {
|
|
Opnds.push_back(DAG.getUNDEF(VTs[i]));
|
|
continue;
|
|
}
|
|
SDValue NV = DAG.getNode(ISD::TRUNCATE, SDLoc(V), VTs[i], V);
|
|
AddToWorklist(NV.getNode());
|
|
Opnds.push_back(NV);
|
|
}
|
|
return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Opnds);
|
|
}
|
|
}
|
|
|
|
// Fold truncate of a bitcast of a vector to an extract of the low vector
|
|
// element.
|
|
//
|
|
// e.g. trunc (i64 (bitcast v2i32:x)) -> extract_vector_elt v2i32:x, idx
|
|
if (N0.getOpcode() == ISD::BITCAST && !VT.isVector()) {
|
|
SDValue VecSrc = N0.getOperand(0);
|
|
EVT VecSrcVT = VecSrc.getValueType();
|
|
if (VecSrcVT.isVector() && VecSrcVT.getScalarType() == VT &&
|
|
(!LegalOperations ||
|
|
TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, VecSrcVT))) {
|
|
SDLoc SL(N);
|
|
|
|
unsigned Idx = isLE ? 0 : VecSrcVT.getVectorNumElements() - 1;
|
|
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, VT, VecSrc,
|
|
DAG.getVectorIdxConstant(Idx, SL));
|
|
}
|
|
}
|
|
|
|
// Simplify the operands using demanded-bits information.
|
|
if (SimplifyDemandedBits(SDValue(N, 0)))
|
|
return SDValue(N, 0);
|
|
|
|
// (trunc adde(X, Y, Carry)) -> (adde trunc(X), trunc(Y), Carry)
|
|
// (trunc addcarry(X, Y, Carry)) -> (addcarry trunc(X), trunc(Y), Carry)
|
|
// When the adde's carry is not used.
|
|
if ((N0.getOpcode() == ISD::ADDE || N0.getOpcode() == ISD::ADDCARRY) &&
|
|
N0.hasOneUse() && !N0.getNode()->hasAnyUseOfValue(1) &&
|
|
// We only do for addcarry before legalize operation
|
|
((!LegalOperations && N0.getOpcode() == ISD::ADDCARRY) ||
|
|
TLI.isOperationLegal(N0.getOpcode(), VT))) {
|
|
SDLoc SL(N);
|
|
auto X = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(0));
|
|
auto Y = DAG.getNode(ISD::TRUNCATE, SL, VT, N0.getOperand(1));
|
|
auto VTs = DAG.getVTList(VT, N0->getValueType(1));
|
|
return DAG.getNode(N0.getOpcode(), SL, VTs, X, Y, N0.getOperand(2));
|
|
}
|
|
|
|
// fold (truncate (extract_subvector(ext x))) ->
|
|
// (extract_subvector x)
|
|
// TODO: This can be generalized to cover cases where the truncate and extract
|
|
// do not fully cancel each other out.
|
|
if (!LegalTypes && N0.getOpcode() == ISD::EXTRACT_SUBVECTOR) {
|
|
SDValue N00 = N0.getOperand(0);
|
|
if (N00.getOpcode() == ISD::SIGN_EXTEND ||
|
|
N00.getOpcode() == ISD::ZERO_EXTEND ||
|
|
N00.getOpcode() == ISD::ANY_EXTEND) {
|
|
if (N00.getOperand(0)->getValueType(0).getVectorElementType() ==
|
|
VT.getVectorElementType())
|
|
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N0->getOperand(0)), VT,
|
|
N00.getOperand(0), N0.getOperand(1));
|
|
}
|
|
}
|
|
|
|
if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
|
|
return NewVSel;
|
|
|
|
// Narrow a suitable binary operation with a non-opaque constant operand by
|
|
// moving it ahead of the truncate. This is limited to pre-legalization
|
|
// because targets may prefer a wider type during later combines and invert
|
|
// this transform.
|
|
switch (N0.getOpcode()) {
|
|
case ISD::ADD:
|
|
case ISD::SUB:
|
|
case ISD::MUL:
|
|
case ISD::AND:
|
|
case ISD::OR:
|
|
case ISD::XOR:
|
|
if (!LegalOperations && N0.hasOneUse() &&
|
|
(isConstantOrConstantVector(N0.getOperand(0), true) ||
|
|
isConstantOrConstantVector(N0.getOperand(1), true))) {
|
|
// TODO: We already restricted this to pre-legalization, but for vectors
|
|
// we are extra cautious to not create an unsupported operation.
|
|
// Target-specific changes are likely needed to avoid regressions here.
|
|
if (VT.isScalarInteger() || TLI.isOperationLegal(N0.getOpcode(), VT)) {
|
|
SDLoc DL(N);
|
|
SDValue NarrowL = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(0));
|
|
SDValue NarrowR = DAG.getNode(ISD::TRUNCATE, DL, VT, N0.getOperand(1));
|
|
return DAG.getNode(N0.getOpcode(), DL, VT, NarrowL, NarrowR);
|
|
}
|
|
}
|
|
break;
|
|
case ISD::USUBSAT:
|
|
// Truncate the USUBSAT only if LHS is a known zero-extension, its not
|
|
// enough to know that the upper bits are zero we must ensure that we don't
|
|
// introduce an extra truncate.
|
|
if (!LegalOperations && N0.hasOneUse() &&
|
|
N0.getOperand(0).getOpcode() == ISD::ZERO_EXTEND &&
|
|
N0.getOperand(0).getOperand(0).getScalarValueSizeInBits() <=
|
|
VT.getScalarSizeInBits() &&
|
|
hasOperation(N0.getOpcode(), VT)) {
|
|
return getTruncatedUSUBSAT(VT, SrcVT, N0.getOperand(0), N0.getOperand(1),
|
|
DAG, SDLoc(N));
|
|
}
|
|
break;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDNode *getBuildPairElt(SDNode *N, unsigned i) {
|
|
SDValue Elt = N->getOperand(i);
|
|
if (Elt.getOpcode() != ISD::MERGE_VALUES)
|
|
return Elt.getNode();
|
|
return Elt.getOperand(Elt.getResNo()).getNode();
|
|
}
|
|
|
|
/// build_pair (load, load) -> load
|
|
/// if load locations are consecutive.
|
|
SDValue DAGCombiner::CombineConsecutiveLoads(SDNode *N, EVT VT) {
|
|
assert(N->getOpcode() == ISD::BUILD_PAIR);
|
|
|
|
LoadSDNode *LD1 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 0));
|
|
LoadSDNode *LD2 = dyn_cast<LoadSDNode>(getBuildPairElt(N, 1));
|
|
|
|
// A BUILD_PAIR is always having the least significant part in elt 0 and the
|
|
// most significant part in elt 1. So when combining into one large load, we
|
|
// need to consider the endianness.
|
|
if (DAG.getDataLayout().isBigEndian())
|
|
std::swap(LD1, LD2);
|
|
|
|
if (!LD1 || !LD2 || !ISD::isNON_EXTLoad(LD1) || !LD1->hasOneUse() ||
|
|
LD1->getAddressSpace() != LD2->getAddressSpace())
|
|
return SDValue();
|
|
EVT LD1VT = LD1->getValueType(0);
|
|
unsigned LD1Bytes = LD1VT.getStoreSize();
|
|
if (ISD::isNON_EXTLoad(LD2) && LD2->hasOneUse() &&
|
|
DAG.areNonVolatileConsecutiveLoads(LD2, LD1, LD1Bytes, 1)) {
|
|
Align Alignment = LD1->getAlign();
|
|
Align NewAlign = DAG.getDataLayout().getABITypeAlign(
|
|
VT.getTypeForEVT(*DAG.getContext()));
|
|
|
|
if (NewAlign <= Alignment &&
|
|
(!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)))
|
|
return DAG.getLoad(VT, SDLoc(N), LD1->getChain(), LD1->getBasePtr(),
|
|
LD1->getPointerInfo(), Alignment);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static unsigned getPPCf128HiElementSelector(const SelectionDAG &DAG) {
|
|
// On little-endian machines, bitcasting from ppcf128 to i128 does swap the Hi
|
|
// and Lo parts; on big-endian machines it doesn't.
|
|
return DAG.getDataLayout().isBigEndian() ? 1 : 0;
|
|
}
|
|
|
|
static SDValue foldBitcastedFPLogic(SDNode *N, SelectionDAG &DAG,
|
|
const TargetLowering &TLI) {
|
|
// If this is not a bitcast to an FP type or if the target doesn't have
|
|
// IEEE754-compliant FP logic, we're done.
|
|
EVT VT = N->getValueType(0);
|
|
if (!VT.isFloatingPoint() || !TLI.hasBitPreservingFPLogic(VT))
|
|
return SDValue();
|
|
|
|
// TODO: Handle cases where the integer constant is a different scalar
|
|
// bitwidth to the FP.
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT SourceVT = N0.getValueType();
|
|
if (VT.getScalarSizeInBits() != SourceVT.getScalarSizeInBits())
|
|
return SDValue();
|
|
|
|
unsigned FPOpcode;
|
|
APInt SignMask;
|
|
switch (N0.getOpcode()) {
|
|
case ISD::AND:
|
|
FPOpcode = ISD::FABS;
|
|
SignMask = ~APInt::getSignMask(SourceVT.getScalarSizeInBits());
|
|
break;
|
|
case ISD::XOR:
|
|
FPOpcode = ISD::FNEG;
|
|
SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits());
|
|
break;
|
|
case ISD::OR:
|
|
FPOpcode = ISD::FABS;
|
|
SignMask = APInt::getSignMask(SourceVT.getScalarSizeInBits());
|
|
break;
|
|
default:
|
|
return SDValue();
|
|
}
|
|
|
|
// Fold (bitcast int (and (bitcast fp X to int), 0x7fff...) to fp) -> fabs X
|
|
// Fold (bitcast int (xor (bitcast fp X to int), 0x8000...) to fp) -> fneg X
|
|
// Fold (bitcast int (or (bitcast fp X to int), 0x8000...) to fp) ->
|
|
// fneg (fabs X)
|
|
SDValue LogicOp0 = N0.getOperand(0);
|
|
ConstantSDNode *LogicOp1 = isConstOrConstSplat(N0.getOperand(1), true);
|
|
if (LogicOp1 && LogicOp1->getAPIntValue() == SignMask &&
|
|
LogicOp0.getOpcode() == ISD::BITCAST &&
|
|
LogicOp0.getOperand(0).getValueType() == VT) {
|
|
SDValue FPOp = DAG.getNode(FPOpcode, SDLoc(N), VT, LogicOp0.getOperand(0));
|
|
NumFPLogicOpsConv++;
|
|
if (N0.getOpcode() == ISD::OR)
|
|
return DAG.getNode(ISD::FNEG, SDLoc(N), VT, FPOp);
|
|
return FPOp;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitBITCAST(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
if (N0.isUndef())
|
|
return DAG.getUNDEF(VT);
|
|
|
|
// If the input is a BUILD_VECTOR with all constant elements, fold this now.
|
|
// Only do this before legalize types, unless both types are integer and the
|
|
// scalar type is legal. Only do this before legalize ops, since the target
|
|
// maybe depending on the bitcast.
|
|
// First check to see if this is all constant.
|
|
// TODO: Support FP bitcasts after legalize types.
|
|
if (VT.isVector() &&
|
|
(!LegalTypes ||
|
|
(!LegalOperations && VT.isInteger() && N0.getValueType().isInteger() &&
|
|
TLI.isTypeLegal(VT.getVectorElementType()))) &&
|
|
N0.getOpcode() == ISD::BUILD_VECTOR && N0.getNode()->hasOneUse() &&
|
|
cast<BuildVectorSDNode>(N0)->isConstant())
|
|
return ConstantFoldBITCASTofBUILD_VECTOR(N0.getNode(),
|
|
VT.getVectorElementType());
|
|
|
|
// If the input is a constant, let getNode fold it.
|
|
if (isIntOrFPConstant(N0)) {
|
|
// If we can't allow illegal operations, we need to check that this is just
|
|
// a fp -> int or int -> conversion and that the resulting operation will
|
|
// be legal.
|
|
if (!LegalOperations ||
|
|
(isa<ConstantSDNode>(N0) && VT.isFloatingPoint() && !VT.isVector() &&
|
|
TLI.isOperationLegal(ISD::ConstantFP, VT)) ||
|
|
(isa<ConstantFPSDNode>(N0) && VT.isInteger() && !VT.isVector() &&
|
|
TLI.isOperationLegal(ISD::Constant, VT))) {
|
|
SDValue C = DAG.getBitcast(VT, N0);
|
|
if (C.getNode() != N)
|
|
return C;
|
|
}
|
|
}
|
|
|
|
// (conv (conv x, t1), t2) -> (conv x, t2)
|
|
if (N0.getOpcode() == ISD::BITCAST)
|
|
return DAG.getBitcast(VT, N0.getOperand(0));
|
|
|
|
// fold (conv (load x)) -> (load (conv*)x)
|
|
// If the resultant load doesn't need a higher alignment than the original!
|
|
if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
|
|
// Do not remove the cast if the types differ in endian layout.
|
|
TLI.hasBigEndianPartOrdering(N0.getValueType(), DAG.getDataLayout()) ==
|
|
TLI.hasBigEndianPartOrdering(VT, DAG.getDataLayout()) &&
|
|
// If the load is volatile, we only want to change the load type if the
|
|
// resulting load is legal. Otherwise we might increase the number of
|
|
// memory accesses. We don't care if the original type was legal or not
|
|
// as we assume software couldn't rely on the number of accesses of an
|
|
// illegal type.
|
|
((!LegalOperations && cast<LoadSDNode>(N0)->isSimple()) ||
|
|
TLI.isOperationLegal(ISD::LOAD, VT))) {
|
|
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
|
|
|
|
if (TLI.isLoadBitCastBeneficial(N0.getValueType(), VT, DAG,
|
|
*LN0->getMemOperand())) {
|
|
SDValue Load =
|
|
DAG.getLoad(VT, SDLoc(N), LN0->getChain(), LN0->getBasePtr(),
|
|
LN0->getPointerInfo(), LN0->getAlign(),
|
|
LN0->getMemOperand()->getFlags(), LN0->getAAInfo());
|
|
DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), Load.getValue(1));
|
|
return Load;
|
|
}
|
|
}
|
|
|
|
if (SDValue V = foldBitcastedFPLogic(N, DAG, TLI))
|
|
return V;
|
|
|
|
// fold (bitconvert (fneg x)) -> (xor (bitconvert x), signbit)
|
|
// fold (bitconvert (fabs x)) -> (and (bitconvert x), (not signbit))
|
|
//
|
|
// For ppc_fp128:
|
|
// fold (bitcast (fneg x)) ->
|
|
// flipbit = signbit
|
|
// (xor (bitcast x) (build_pair flipbit, flipbit))
|
|
//
|
|
// fold (bitcast (fabs x)) ->
|
|
// flipbit = (and (extract_element (bitcast x), 0), signbit)
|
|
// (xor (bitcast x) (build_pair flipbit, flipbit))
|
|
// This often reduces constant pool loads.
|
|
if (((N0.getOpcode() == ISD::FNEG && !TLI.isFNegFree(N0.getValueType())) ||
|
|
(N0.getOpcode() == ISD::FABS && !TLI.isFAbsFree(N0.getValueType()))) &&
|
|
N0.getNode()->hasOneUse() && VT.isInteger() &&
|
|
!VT.isVector() && !N0.getValueType().isVector()) {
|
|
SDValue NewConv = DAG.getBitcast(VT, N0.getOperand(0));
|
|
AddToWorklist(NewConv.getNode());
|
|
|
|
SDLoc DL(N);
|
|
if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) {
|
|
assert(VT.getSizeInBits() == 128);
|
|
SDValue SignBit = DAG.getConstant(
|
|
APInt::getSignMask(VT.getSizeInBits() / 2), SDLoc(N0), MVT::i64);
|
|
SDValue FlipBit;
|
|
if (N0.getOpcode() == ISD::FNEG) {
|
|
FlipBit = SignBit;
|
|
AddToWorklist(FlipBit.getNode());
|
|
} else {
|
|
assert(N0.getOpcode() == ISD::FABS);
|
|
SDValue Hi =
|
|
DAG.getNode(ISD::EXTRACT_ELEMENT, SDLoc(NewConv), MVT::i64, NewConv,
|
|
DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG),
|
|
SDLoc(NewConv)));
|
|
AddToWorklist(Hi.getNode());
|
|
FlipBit = DAG.getNode(ISD::AND, SDLoc(N0), MVT::i64, Hi, SignBit);
|
|
AddToWorklist(FlipBit.getNode());
|
|
}
|
|
SDValue FlipBits =
|
|
DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit);
|
|
AddToWorklist(FlipBits.getNode());
|
|
return DAG.getNode(ISD::XOR, DL, VT, NewConv, FlipBits);
|
|
}
|
|
APInt SignBit = APInt::getSignMask(VT.getSizeInBits());
|
|
if (N0.getOpcode() == ISD::FNEG)
|
|
return DAG.getNode(ISD::XOR, DL, VT,
|
|
NewConv, DAG.getConstant(SignBit, DL, VT));
|
|
assert(N0.getOpcode() == ISD::FABS);
|
|
return DAG.getNode(ISD::AND, DL, VT,
|
|
NewConv, DAG.getConstant(~SignBit, DL, VT));
|
|
}
|
|
|
|
// fold (bitconvert (fcopysign cst, x)) ->
|
|
// (or (and (bitconvert x), sign), (and cst, (not sign)))
|
|
// Note that we don't handle (copysign x, cst) because this can always be
|
|
// folded to an fneg or fabs.
|
|
//
|
|
// For ppc_fp128:
|
|
// fold (bitcast (fcopysign cst, x)) ->
|
|
// flipbit = (and (extract_element
|
|
// (xor (bitcast cst), (bitcast x)), 0),
|
|
// signbit)
|
|
// (xor (bitcast cst) (build_pair flipbit, flipbit))
|
|
if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse() &&
|
|
isa<ConstantFPSDNode>(N0.getOperand(0)) &&
|
|
VT.isInteger() && !VT.isVector()) {
|
|
unsigned OrigXWidth = N0.getOperand(1).getValueSizeInBits();
|
|
EVT IntXVT = EVT::getIntegerVT(*DAG.getContext(), OrigXWidth);
|
|
if (isTypeLegal(IntXVT)) {
|
|
SDValue X = DAG.getBitcast(IntXVT, N0.getOperand(1));
|
|
AddToWorklist(X.getNode());
|
|
|
|
// If X has a different width than the result/lhs, sext it or truncate it.
|
|
unsigned VTWidth = VT.getSizeInBits();
|
|
if (OrigXWidth < VTWidth) {
|
|
X = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(N), VT, X);
|
|
AddToWorklist(X.getNode());
|
|
} else if (OrigXWidth > VTWidth) {
|
|
// To get the sign bit in the right place, we have to shift it right
|
|
// before truncating.
|
|
SDLoc DL(X);
|
|
X = DAG.getNode(ISD::SRL, DL,
|
|
X.getValueType(), X,
|
|
DAG.getConstant(OrigXWidth-VTWidth, DL,
|
|
X.getValueType()));
|
|
AddToWorklist(X.getNode());
|
|
X = DAG.getNode(ISD::TRUNCATE, SDLoc(X), VT, X);
|
|
AddToWorklist(X.getNode());
|
|
}
|
|
|
|
if (N0.getValueType() == MVT::ppcf128 && !LegalTypes) {
|
|
APInt SignBit = APInt::getSignMask(VT.getSizeInBits() / 2);
|
|
SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0));
|
|
AddToWorklist(Cst.getNode());
|
|
SDValue X = DAG.getBitcast(VT, N0.getOperand(1));
|
|
AddToWorklist(X.getNode());
|
|
SDValue XorResult = DAG.getNode(ISD::XOR, SDLoc(N0), VT, Cst, X);
|
|
AddToWorklist(XorResult.getNode());
|
|
SDValue XorResult64 = DAG.getNode(
|
|
ISD::EXTRACT_ELEMENT, SDLoc(XorResult), MVT::i64, XorResult,
|
|
DAG.getIntPtrConstant(getPPCf128HiElementSelector(DAG),
|
|
SDLoc(XorResult)));
|
|
AddToWorklist(XorResult64.getNode());
|
|
SDValue FlipBit =
|
|
DAG.getNode(ISD::AND, SDLoc(XorResult64), MVT::i64, XorResult64,
|
|
DAG.getConstant(SignBit, SDLoc(XorResult64), MVT::i64));
|
|
AddToWorklist(FlipBit.getNode());
|
|
SDValue FlipBits =
|
|
DAG.getNode(ISD::BUILD_PAIR, SDLoc(N0), VT, FlipBit, FlipBit);
|
|
AddToWorklist(FlipBits.getNode());
|
|
return DAG.getNode(ISD::XOR, SDLoc(N), VT, Cst, FlipBits);
|
|
}
|
|
APInt SignBit = APInt::getSignMask(VT.getSizeInBits());
|
|
X = DAG.getNode(ISD::AND, SDLoc(X), VT,
|
|
X, DAG.getConstant(SignBit, SDLoc(X), VT));
|
|
AddToWorklist(X.getNode());
|
|
|
|
SDValue Cst = DAG.getBitcast(VT, N0.getOperand(0));
|
|
Cst = DAG.getNode(ISD::AND, SDLoc(Cst), VT,
|
|
Cst, DAG.getConstant(~SignBit, SDLoc(Cst), VT));
|
|
AddToWorklist(Cst.getNode());
|
|
|
|
return DAG.getNode(ISD::OR, SDLoc(N), VT, X, Cst);
|
|
}
|
|
}
|
|
|
|
// bitconvert(build_pair(ld, ld)) -> ld iff load locations are consecutive.
|
|
if (N0.getOpcode() == ISD::BUILD_PAIR)
|
|
if (SDValue CombineLD = CombineConsecutiveLoads(N0.getNode(), VT))
|
|
return CombineLD;
|
|
|
|
// Remove double bitcasts from shuffles - this is often a legacy of
|
|
// XformToShuffleWithZero being used to combine bitmaskings (of
|
|
// float vectors bitcast to integer vectors) into shuffles.
|
|
// bitcast(shuffle(bitcast(s0),bitcast(s1))) -> shuffle(s0,s1)
|
|
if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT) && VT.isVector() &&
|
|
N0->getOpcode() == ISD::VECTOR_SHUFFLE && N0.hasOneUse() &&
|
|
VT.getVectorNumElements() >= N0.getValueType().getVectorNumElements() &&
|
|
!(VT.getVectorNumElements() % N0.getValueType().getVectorNumElements())) {
|
|
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N0);
|
|
|
|
// If operands are a bitcast, peek through if it casts the original VT.
|
|
// If operands are a constant, just bitcast back to original VT.
|
|
auto PeekThroughBitcast = [&](SDValue Op) {
|
|
if (Op.getOpcode() == ISD::BITCAST &&
|
|
Op.getOperand(0).getValueType() == VT)
|
|
return SDValue(Op.getOperand(0));
|
|
if (Op.isUndef() || ISD::isBuildVectorOfConstantSDNodes(Op.getNode()) ||
|
|
ISD::isBuildVectorOfConstantFPSDNodes(Op.getNode()))
|
|
return DAG.getBitcast(VT, Op);
|
|
return SDValue();
|
|
};
|
|
|
|
// FIXME: If either input vector is bitcast, try to convert the shuffle to
|
|
// the result type of this bitcast. This would eliminate at least one
|
|
// bitcast. See the transform in InstCombine.
|
|
SDValue SV0 = PeekThroughBitcast(N0->getOperand(0));
|
|
SDValue SV1 = PeekThroughBitcast(N0->getOperand(1));
|
|
if (!(SV0 && SV1))
|
|
return SDValue();
|
|
|
|
int MaskScale =
|
|
VT.getVectorNumElements() / N0.getValueType().getVectorNumElements();
|
|
SmallVector<int, 8> NewMask;
|
|
for (int M : SVN->getMask())
|
|
for (int i = 0; i != MaskScale; ++i)
|
|
NewMask.push_back(M < 0 ? -1 : M * MaskScale + i);
|
|
|
|
SDValue LegalShuffle =
|
|
TLI.buildLegalVectorShuffle(VT, SDLoc(N), SV0, SV1, NewMask, DAG);
|
|
if (LegalShuffle)
|
|
return LegalShuffle;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitBUILD_PAIR(SDNode *N) {
|
|
EVT VT = N->getValueType(0);
|
|
return CombineConsecutiveLoads(N, VT);
|
|
}
|
|
|
|
SDValue DAGCombiner::visitFREEZE(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
|
|
if (DAG.isGuaranteedNotToBeUndefOrPoison(N0, /*PoisonOnly*/ false))
|
|
return N0;
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// We know that BV is a build_vector node with Constant, ConstantFP or Undef
|
|
/// operands. DstEltVT indicates the destination element value type.
|
|
SDValue DAGCombiner::
|
|
ConstantFoldBITCASTofBUILD_VECTOR(SDNode *BV, EVT DstEltVT) {
|
|
EVT SrcEltVT = BV->getValueType(0).getVectorElementType();
|
|
|
|
// If this is already the right type, we're done.
|
|
if (SrcEltVT == DstEltVT) return SDValue(BV, 0);
|
|
|
|
unsigned SrcBitSize = SrcEltVT.getSizeInBits();
|
|
unsigned DstBitSize = DstEltVT.getSizeInBits();
|
|
|
|
// If this is a conversion of N elements of one type to N elements of another
|
|
// type, convert each element. This handles FP<->INT cases.
|
|
if (SrcBitSize == DstBitSize) {
|
|
SmallVector<SDValue, 8> Ops;
|
|
for (SDValue Op : BV->op_values()) {
|
|
// If the vector element type is not legal, the BUILD_VECTOR operands
|
|
// are promoted and implicitly truncated. Make that explicit here.
|
|
if (Op.getValueType() != SrcEltVT)
|
|
Op = DAG.getNode(ISD::TRUNCATE, SDLoc(BV), SrcEltVT, Op);
|
|
Ops.push_back(DAG.getBitcast(DstEltVT, Op));
|
|
AddToWorklist(Ops.back().getNode());
|
|
}
|
|
EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
|
|
BV->getValueType(0).getVectorNumElements());
|
|
return DAG.getBuildVector(VT, SDLoc(BV), Ops);
|
|
}
|
|
|
|
// Otherwise, we're growing or shrinking the elements. To avoid having to
|
|
// handle annoying details of growing/shrinking FP values, we convert them to
|
|
// int first.
|
|
if (SrcEltVT.isFloatingPoint()) {
|
|
// Convert the input float vector to a int vector where the elements are the
|
|
// same sizes.
|
|
EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), SrcEltVT.getSizeInBits());
|
|
BV = ConstantFoldBITCASTofBUILD_VECTOR(BV, IntVT).getNode();
|
|
SrcEltVT = IntVT;
|
|
}
|
|
|
|
// Now we know the input is an integer vector. If the output is a FP type,
|
|
// convert to integer first, then to FP of the right size.
|
|
if (DstEltVT.isFloatingPoint()) {
|
|
EVT TmpVT = EVT::getIntegerVT(*DAG.getContext(), DstEltVT.getSizeInBits());
|
|
SDNode *Tmp = ConstantFoldBITCASTofBUILD_VECTOR(BV, TmpVT).getNode();
|
|
|
|
// Next, convert to FP elements of the same size.
|
|
return ConstantFoldBITCASTofBUILD_VECTOR(Tmp, DstEltVT);
|
|
}
|
|
|
|
SDLoc DL(BV);
|
|
|
|
// Okay, we know the src/dst types are both integers of differing types.
|
|
// Handling growing first.
|
|
assert(SrcEltVT.isInteger() && DstEltVT.isInteger());
|
|
if (SrcBitSize < DstBitSize) {
|
|
unsigned NumInputsPerOutput = DstBitSize/SrcBitSize;
|
|
|
|
SmallVector<SDValue, 8> Ops;
|
|
for (unsigned i = 0, e = BV->getNumOperands(); i != e;
|
|
i += NumInputsPerOutput) {
|
|
bool isLE = DAG.getDataLayout().isLittleEndian();
|
|
APInt NewBits = APInt(DstBitSize, 0);
|
|
bool EltIsUndef = true;
|
|
for (unsigned j = 0; j != NumInputsPerOutput; ++j) {
|
|
// Shift the previously computed bits over.
|
|
NewBits <<= SrcBitSize;
|
|
SDValue Op = BV->getOperand(i+ (isLE ? (NumInputsPerOutput-j-1) : j));
|
|
if (Op.isUndef()) continue;
|
|
EltIsUndef = false;
|
|
|
|
NewBits |= cast<ConstantSDNode>(Op)->getAPIntValue().
|
|
zextOrTrunc(SrcBitSize).zext(DstBitSize);
|
|
}
|
|
|
|
if (EltIsUndef)
|
|
Ops.push_back(DAG.getUNDEF(DstEltVT));
|
|
else
|
|
Ops.push_back(DAG.getConstant(NewBits, DL, DstEltVT));
|
|
}
|
|
|
|
EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT, Ops.size());
|
|
return DAG.getBuildVector(VT, DL, Ops);
|
|
}
|
|
|
|
// Finally, this must be the case where we are shrinking elements: each input
|
|
// turns into multiple outputs.
|
|
unsigned NumOutputsPerInput = SrcBitSize/DstBitSize;
|
|
EVT VT = EVT::getVectorVT(*DAG.getContext(), DstEltVT,
|
|
NumOutputsPerInput*BV->getNumOperands());
|
|
SmallVector<SDValue, 8> Ops;
|
|
|
|
for (const SDValue &Op : BV->op_values()) {
|
|
if (Op.isUndef()) {
|
|
Ops.append(NumOutputsPerInput, DAG.getUNDEF(DstEltVT));
|
|
continue;
|
|
}
|
|
|
|
APInt OpVal = cast<ConstantSDNode>(Op)->
|
|
getAPIntValue().zextOrTrunc(SrcBitSize);
|
|
|
|
for (unsigned j = 0; j != NumOutputsPerInput; ++j) {
|
|
APInt ThisVal = OpVal.trunc(DstBitSize);
|
|
Ops.push_back(DAG.getConstant(ThisVal, DL, DstEltVT));
|
|
OpVal.lshrInPlace(DstBitSize);
|
|
}
|
|
|
|
// For big endian targets, swap the order of the pieces of each element.
|
|
if (DAG.getDataLayout().isBigEndian())
|
|
std::reverse(Ops.end()-NumOutputsPerInput, Ops.end());
|
|
}
|
|
|
|
return DAG.getBuildVector(VT, DL, Ops);
|
|
}
|
|
|
|
/// Try to perform FMA combining on a given FADD node.
|
|
SDValue DAGCombiner::visitFADDForFMACombine(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
EVT VT = N->getValueType(0);
|
|
SDLoc SL(N);
|
|
|
|
const TargetOptions &Options = DAG.getTarget().Options;
|
|
|
|
// Floating-point multiply-add with intermediate rounding.
|
|
bool HasFMAD = (LegalOperations && TLI.isFMADLegal(DAG, N));
|
|
|
|
// Floating-point multiply-add without intermediate rounding.
|
|
bool HasFMA =
|
|
TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT) &&
|
|
(!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT));
|
|
|
|
// No valid opcode, do not combine.
|
|
if (!HasFMAD && !HasFMA)
|
|
return SDValue();
|
|
|
|
bool CanReassociate =
|
|
Options.UnsafeFPMath || N->getFlags().hasAllowReassociation();
|
|
bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast ||
|
|
Options.UnsafeFPMath || HasFMAD);
|
|
// If the addition is not contractable, do not combine.
|
|
if (!AllowFusionGlobally && !N->getFlags().hasAllowContract())
|
|
return SDValue();
|
|
|
|
if (TLI.generateFMAsInMachineCombiner(VT, OptLevel))
|
|
return SDValue();
|
|
|
|
// Always prefer FMAD to FMA for precision.
|
|
unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
|
|
bool Aggressive = TLI.enableAggressiveFMAFusion(VT);
|
|
|
|
// Is the node an FMUL and contractable either due to global flags or
|
|
// SDNodeFlags.
|
|
auto isContractableFMUL = [AllowFusionGlobally](SDValue N) {
|
|
if (N.getOpcode() != ISD::FMUL)
|
|
return false;
|
|
return AllowFusionGlobally || N->getFlags().hasAllowContract();
|
|
};
|
|
// If we have two choices trying to fold (fadd (fmul u, v), (fmul x, y)),
|
|
// prefer to fold the multiply with fewer uses.
|
|
if (Aggressive && isContractableFMUL(N0) && isContractableFMUL(N1)) {
|
|
if (N0.getNode()->use_size() > N1.getNode()->use_size())
|
|
std::swap(N0, N1);
|
|
}
|
|
|
|
// fold (fadd (fmul x, y), z) -> (fma x, y, z)
|
|
if (isContractableFMUL(N0) && (Aggressive || N0->hasOneUse())) {
|
|
return DAG.getNode(PreferredFusedOpcode, SL, VT, N0.getOperand(0),
|
|
N0.getOperand(1), N1);
|
|
}
|
|
|
|
// fold (fadd x, (fmul y, z)) -> (fma y, z, x)
|
|
// Note: Commutes FADD operands.
|
|
if (isContractableFMUL(N1) && (Aggressive || N1->hasOneUse())) {
|
|
return DAG.getNode(PreferredFusedOpcode, SL, VT, N1.getOperand(0),
|
|
N1.getOperand(1), N0);
|
|
}
|
|
|
|
// fadd (fma A, B, (fmul C, D)), E --> fma A, B, (fma C, D, E)
|
|
// fadd E, (fma A, B, (fmul C, D)) --> fma A, B, (fma C, D, E)
|
|
// This requires reassociation because it changes the order of operations.
|
|
SDValue FMA, E;
|
|
if (CanReassociate && N0.getOpcode() == PreferredFusedOpcode &&
|
|
N0.getOperand(2).getOpcode() == ISD::FMUL && N0.hasOneUse() &&
|
|
N0.getOperand(2).hasOneUse()) {
|
|
FMA = N0;
|
|
E = N1;
|
|
} else if (CanReassociate && N1.getOpcode() == PreferredFusedOpcode &&
|
|
N1.getOperand(2).getOpcode() == ISD::FMUL && N1.hasOneUse() &&
|
|
N1.getOperand(2).hasOneUse()) {
|
|
FMA = N1;
|
|
E = N0;
|
|
}
|
|
if (FMA && E) {
|
|
SDValue A = FMA.getOperand(0);
|
|
SDValue B = FMA.getOperand(1);
|
|
SDValue C = FMA.getOperand(2).getOperand(0);
|
|
SDValue D = FMA.getOperand(2).getOperand(1);
|
|
SDValue CDE = DAG.getNode(PreferredFusedOpcode, SL, VT, C, D, E);
|
|
return DAG.getNode(PreferredFusedOpcode, SL, VT, A, B, CDE);
|
|
}
|
|
|
|
// Look through FP_EXTEND nodes to do more combining.
|
|
|
|
// fold (fadd (fpext (fmul x, y)), z) -> (fma (fpext x), (fpext y), z)
|
|
if (N0.getOpcode() == ISD::FP_EXTEND) {
|
|
SDValue N00 = N0.getOperand(0);
|
|
if (isContractableFMUL(N00) &&
|
|
TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
|
|
N00.getValueType())) {
|
|
return DAG.getNode(PreferredFusedOpcode, SL, VT,
|
|
DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)),
|
|
DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(1)),
|
|
N1);
|
|
}
|
|
}
|
|
|
|
// fold (fadd x, (fpext (fmul y, z))) -> (fma (fpext y), (fpext z), x)
|
|
// Note: Commutes FADD operands.
|
|
if (N1.getOpcode() == ISD::FP_EXTEND) {
|
|
SDValue N10 = N1.getOperand(0);
|
|
if (isContractableFMUL(N10) &&
|
|
TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
|
|
N10.getValueType())) {
|
|
return DAG.getNode(PreferredFusedOpcode, SL, VT,
|
|
DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(0)),
|
|
DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(1)),
|
|
N0);
|
|
}
|
|
}
|
|
|
|
// More folding opportunities when target permits.
|
|
if (Aggressive) {
|
|
// fold (fadd (fma x, y, (fpext (fmul u, v))), z)
|
|
// -> (fma x, y, (fma (fpext u), (fpext v), z))
|
|
auto FoldFAddFMAFPExtFMul = [&](SDValue X, SDValue Y, SDValue U, SDValue V,
|
|
SDValue Z) {
|
|
return DAG.getNode(PreferredFusedOpcode, SL, VT, X, Y,
|
|
DAG.getNode(PreferredFusedOpcode, SL, VT,
|
|
DAG.getNode(ISD::FP_EXTEND, SL, VT, U),
|
|
DAG.getNode(ISD::FP_EXTEND, SL, VT, V),
|
|
Z));
|
|
};
|
|
if (N0.getOpcode() == PreferredFusedOpcode) {
|
|
SDValue N02 = N0.getOperand(2);
|
|
if (N02.getOpcode() == ISD::FP_EXTEND) {
|
|
SDValue N020 = N02.getOperand(0);
|
|
if (isContractableFMUL(N020) &&
|
|
TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
|
|
N020.getValueType())) {
|
|
return FoldFAddFMAFPExtFMul(N0.getOperand(0), N0.getOperand(1),
|
|
N020.getOperand(0), N020.getOperand(1),
|
|
N1);
|
|
}
|
|
}
|
|
}
|
|
|
|
// fold (fadd (fpext (fma x, y, (fmul u, v))), z)
|
|
// -> (fma (fpext x), (fpext y), (fma (fpext u), (fpext v), z))
|
|
// FIXME: This turns two single-precision and one double-precision
|
|
// operation into two double-precision operations, which might not be
|
|
// interesting for all targets, especially GPUs.
|
|
auto FoldFAddFPExtFMAFMul = [&](SDValue X, SDValue Y, SDValue U, SDValue V,
|
|
SDValue Z) {
|
|
return DAG.getNode(
|
|
PreferredFusedOpcode, SL, VT, DAG.getNode(ISD::FP_EXTEND, SL, VT, X),
|
|
DAG.getNode(ISD::FP_EXTEND, SL, VT, Y),
|
|
DAG.getNode(PreferredFusedOpcode, SL, VT,
|
|
DAG.getNode(ISD::FP_EXTEND, SL, VT, U),
|
|
DAG.getNode(ISD::FP_EXTEND, SL, VT, V), Z));
|
|
};
|
|
if (N0.getOpcode() == ISD::FP_EXTEND) {
|
|
SDValue N00 = N0.getOperand(0);
|
|
if (N00.getOpcode() == PreferredFusedOpcode) {
|
|
SDValue N002 = N00.getOperand(2);
|
|
if (isContractableFMUL(N002) &&
|
|
TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
|
|
N00.getValueType())) {
|
|
return FoldFAddFPExtFMAFMul(N00.getOperand(0), N00.getOperand(1),
|
|
N002.getOperand(0), N002.getOperand(1),
|
|
N1);
|
|
}
|
|
}
|
|
}
|
|
|
|
// fold (fadd x, (fma y, z, (fpext (fmul u, v)))
|
|
// -> (fma y, z, (fma (fpext u), (fpext v), x))
|
|
if (N1.getOpcode() == PreferredFusedOpcode) {
|
|
SDValue N12 = N1.getOperand(2);
|
|
if (N12.getOpcode() == ISD::FP_EXTEND) {
|
|
SDValue N120 = N12.getOperand(0);
|
|
if (isContractableFMUL(N120) &&
|
|
TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
|
|
N120.getValueType())) {
|
|
return FoldFAddFMAFPExtFMul(N1.getOperand(0), N1.getOperand(1),
|
|
N120.getOperand(0), N120.getOperand(1),
|
|
N0);
|
|
}
|
|
}
|
|
}
|
|
|
|
// fold (fadd x, (fpext (fma y, z, (fmul u, v)))
|
|
// -> (fma (fpext y), (fpext z), (fma (fpext u), (fpext v), x))
|
|
// FIXME: This turns two single-precision and one double-precision
|
|
// operation into two double-precision operations, which might not be
|
|
// interesting for all targets, especially GPUs.
|
|
if (N1.getOpcode() == ISD::FP_EXTEND) {
|
|
SDValue N10 = N1.getOperand(0);
|
|
if (N10.getOpcode() == PreferredFusedOpcode) {
|
|
SDValue N102 = N10.getOperand(2);
|
|
if (isContractableFMUL(N102) &&
|
|
TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
|
|
N10.getValueType())) {
|
|
return FoldFAddFPExtFMAFMul(N10.getOperand(0), N10.getOperand(1),
|
|
N102.getOperand(0), N102.getOperand(1),
|
|
N0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// Try to perform FMA combining on a given FSUB node.
|
|
SDValue DAGCombiner::visitFSUBForFMACombine(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
EVT VT = N->getValueType(0);
|
|
SDLoc SL(N);
|
|
|
|
const TargetOptions &Options = DAG.getTarget().Options;
|
|
// Floating-point multiply-add with intermediate rounding.
|
|
bool HasFMAD = (LegalOperations && TLI.isFMADLegal(DAG, N));
|
|
|
|
// Floating-point multiply-add without intermediate rounding.
|
|
bool HasFMA =
|
|
TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT) &&
|
|
(!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT));
|
|
|
|
// No valid opcode, do not combine.
|
|
if (!HasFMAD && !HasFMA)
|
|
return SDValue();
|
|
|
|
const SDNodeFlags Flags = N->getFlags();
|
|
bool AllowFusionGlobally = (Options.AllowFPOpFusion == FPOpFusion::Fast ||
|
|
Options.UnsafeFPMath || HasFMAD);
|
|
|
|
// If the subtraction is not contractable, do not combine.
|
|
if (!AllowFusionGlobally && !N->getFlags().hasAllowContract())
|
|
return SDValue();
|
|
|
|
if (TLI.generateFMAsInMachineCombiner(VT, OptLevel))
|
|
return SDValue();
|
|
|
|
// Always prefer FMAD to FMA for precision.
|
|
unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
|
|
bool Aggressive = TLI.enableAggressiveFMAFusion(VT);
|
|
bool NoSignedZero = Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros();
|
|
|
|
// Is the node an FMUL and contractable either due to global flags or
|
|
// SDNodeFlags.
|
|
auto isContractableFMUL = [AllowFusionGlobally](SDValue N) {
|
|
if (N.getOpcode() != ISD::FMUL)
|
|
return false;
|
|
return AllowFusionGlobally || N->getFlags().hasAllowContract();
|
|
};
|
|
|
|
// fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
|
|
auto tryToFoldXYSubZ = [&](SDValue XY, SDValue Z) {
|
|
if (isContractableFMUL(XY) && (Aggressive || XY->hasOneUse())) {
|
|
return DAG.getNode(PreferredFusedOpcode, SL, VT, XY.getOperand(0),
|
|
XY.getOperand(1), DAG.getNode(ISD::FNEG, SL, VT, Z));
|
|
}
|
|
return SDValue();
|
|
};
|
|
|
|
// fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
|
|
// Note: Commutes FSUB operands.
|
|
auto tryToFoldXSubYZ = [&](SDValue X, SDValue YZ) {
|
|
if (isContractableFMUL(YZ) && (Aggressive || YZ->hasOneUse())) {
|
|
return DAG.getNode(PreferredFusedOpcode, SL, VT,
|
|
DAG.getNode(ISD::FNEG, SL, VT, YZ.getOperand(0)),
|
|
YZ.getOperand(1), X);
|
|
}
|
|
return SDValue();
|
|
};
|
|
|
|
// If we have two choices trying to fold (fsub (fmul u, v), (fmul x, y)),
|
|
// prefer to fold the multiply with fewer uses.
|
|
if (isContractableFMUL(N0) && isContractableFMUL(N1) &&
|
|
(N0.getNode()->use_size() > N1.getNode()->use_size())) {
|
|
// fold (fsub (fmul a, b), (fmul c, d)) -> (fma (fneg c), d, (fmul a, b))
|
|
if (SDValue V = tryToFoldXSubYZ(N0, N1))
|
|
return V;
|
|
// fold (fsub (fmul a, b), (fmul c, d)) -> (fma a, b, (fneg (fmul c, d)))
|
|
if (SDValue V = tryToFoldXYSubZ(N0, N1))
|
|
return V;
|
|
} else {
|
|
// fold (fsub (fmul x, y), z) -> (fma x, y, (fneg z))
|
|
if (SDValue V = tryToFoldXYSubZ(N0, N1))
|
|
return V;
|
|
// fold (fsub x, (fmul y, z)) -> (fma (fneg y), z, x)
|
|
if (SDValue V = tryToFoldXSubYZ(N0, N1))
|
|
return V;
|
|
}
|
|
|
|
// fold (fsub (fneg (fmul, x, y)), z) -> (fma (fneg x), y, (fneg z))
|
|
if (N0.getOpcode() == ISD::FNEG && isContractableFMUL(N0.getOperand(0)) &&
|
|
(Aggressive || (N0->hasOneUse() && N0.getOperand(0).hasOneUse()))) {
|
|
SDValue N00 = N0.getOperand(0).getOperand(0);
|
|
SDValue N01 = N0.getOperand(0).getOperand(1);
|
|
return DAG.getNode(PreferredFusedOpcode, SL, VT,
|
|
DAG.getNode(ISD::FNEG, SL, VT, N00), N01,
|
|
DAG.getNode(ISD::FNEG, SL, VT, N1));
|
|
}
|
|
|
|
// Look through FP_EXTEND nodes to do more combining.
|
|
|
|
// fold (fsub (fpext (fmul x, y)), z)
|
|
// -> (fma (fpext x), (fpext y), (fneg z))
|
|
if (N0.getOpcode() == ISD::FP_EXTEND) {
|
|
SDValue N00 = N0.getOperand(0);
|
|
if (isContractableFMUL(N00) &&
|
|
TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
|
|
N00.getValueType())) {
|
|
return DAG.getNode(PreferredFusedOpcode, SL, VT,
|
|
DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)),
|
|
DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(1)),
|
|
DAG.getNode(ISD::FNEG, SL, VT, N1));
|
|
}
|
|
}
|
|
|
|
// fold (fsub x, (fpext (fmul y, z)))
|
|
// -> (fma (fneg (fpext y)), (fpext z), x)
|
|
// Note: Commutes FSUB operands.
|
|
if (N1.getOpcode() == ISD::FP_EXTEND) {
|
|
SDValue N10 = N1.getOperand(0);
|
|
if (isContractableFMUL(N10) &&
|
|
TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
|
|
N10.getValueType())) {
|
|
return DAG.getNode(
|
|
PreferredFusedOpcode, SL, VT,
|
|
DAG.getNode(ISD::FNEG, SL, VT,
|
|
DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(0))),
|
|
DAG.getNode(ISD::FP_EXTEND, SL, VT, N10.getOperand(1)), N0);
|
|
}
|
|
}
|
|
|
|
// fold (fsub (fpext (fneg (fmul, x, y))), z)
|
|
// -> (fneg (fma (fpext x), (fpext y), z))
|
|
// Note: This could be removed with appropriate canonicalization of the
|
|
// input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the
|
|
// orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent
|
|
// from implementing the canonicalization in visitFSUB.
|
|
if (N0.getOpcode() == ISD::FP_EXTEND) {
|
|
SDValue N00 = N0.getOperand(0);
|
|
if (N00.getOpcode() == ISD::FNEG) {
|
|
SDValue N000 = N00.getOperand(0);
|
|
if (isContractableFMUL(N000) &&
|
|
TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
|
|
N00.getValueType())) {
|
|
return DAG.getNode(
|
|
ISD::FNEG, SL, VT,
|
|
DAG.getNode(PreferredFusedOpcode, SL, VT,
|
|
DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(0)),
|
|
DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(1)),
|
|
N1));
|
|
}
|
|
}
|
|
}
|
|
|
|
// fold (fsub (fneg (fpext (fmul, x, y))), z)
|
|
// -> (fneg (fma (fpext x)), (fpext y), z)
|
|
// Note: This could be removed with appropriate canonicalization of the
|
|
// input expression into (fneg (fadd (fpext (fmul, x, y)), z). However, the
|
|
// orthogonal flags -fp-contract=fast and -enable-unsafe-fp-math prevent
|
|
// from implementing the canonicalization in visitFSUB.
|
|
if (N0.getOpcode() == ISD::FNEG) {
|
|
SDValue N00 = N0.getOperand(0);
|
|
if (N00.getOpcode() == ISD::FP_EXTEND) {
|
|
SDValue N000 = N00.getOperand(0);
|
|
if (isContractableFMUL(N000) &&
|
|
TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
|
|
N000.getValueType())) {
|
|
return DAG.getNode(
|
|
ISD::FNEG, SL, VT,
|
|
DAG.getNode(PreferredFusedOpcode, SL, VT,
|
|
DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(0)),
|
|
DAG.getNode(ISD::FP_EXTEND, SL, VT, N000.getOperand(1)),
|
|
N1));
|
|
}
|
|
}
|
|
}
|
|
|
|
auto isReassociable = [Options](SDNode *N) {
|
|
return Options.UnsafeFPMath || N->getFlags().hasAllowReassociation();
|
|
};
|
|
|
|
auto isContractableAndReassociableFMUL = [isContractableFMUL,
|
|
isReassociable](SDValue N) {
|
|
return isContractableFMUL(N) && isReassociable(N.getNode());
|
|
};
|
|
|
|
// More folding opportunities when target permits.
|
|
if (Aggressive && isReassociable(N)) {
|
|
bool CanFuse = Options.UnsafeFPMath || N->getFlags().hasAllowContract();
|
|
// fold (fsub (fma x, y, (fmul u, v)), z)
|
|
// -> (fma x, y (fma u, v, (fneg z)))
|
|
if (CanFuse && N0.getOpcode() == PreferredFusedOpcode &&
|
|
isContractableAndReassociableFMUL(N0.getOperand(2)) &&
|
|
N0->hasOneUse() && N0.getOperand(2)->hasOneUse()) {
|
|
return DAG.getNode(PreferredFusedOpcode, SL, VT, N0.getOperand(0),
|
|
N0.getOperand(1),
|
|
DAG.getNode(PreferredFusedOpcode, SL, VT,
|
|
N0.getOperand(2).getOperand(0),
|
|
N0.getOperand(2).getOperand(1),
|
|
DAG.getNode(ISD::FNEG, SL, VT, N1)));
|
|
}
|
|
|
|
// fold (fsub x, (fma y, z, (fmul u, v)))
|
|
// -> (fma (fneg y), z, (fma (fneg u), v, x))
|
|
if (CanFuse && N1.getOpcode() == PreferredFusedOpcode &&
|
|
isContractableAndReassociableFMUL(N1.getOperand(2)) &&
|
|
N1->hasOneUse() && NoSignedZero) {
|
|
SDValue N20 = N1.getOperand(2).getOperand(0);
|
|
SDValue N21 = N1.getOperand(2).getOperand(1);
|
|
return DAG.getNode(
|
|
PreferredFusedOpcode, SL, VT,
|
|
DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)), N1.getOperand(1),
|
|
DAG.getNode(PreferredFusedOpcode, SL, VT,
|
|
DAG.getNode(ISD::FNEG, SL, VT, N20), N21, N0));
|
|
}
|
|
|
|
// fold (fsub (fma x, y, (fpext (fmul u, v))), z)
|
|
// -> (fma x, y (fma (fpext u), (fpext v), (fneg z)))
|
|
if (N0.getOpcode() == PreferredFusedOpcode &&
|
|
N0->hasOneUse()) {
|
|
SDValue N02 = N0.getOperand(2);
|
|
if (N02.getOpcode() == ISD::FP_EXTEND) {
|
|
SDValue N020 = N02.getOperand(0);
|
|
if (isContractableAndReassociableFMUL(N020) &&
|
|
TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
|
|
N020.getValueType())) {
|
|
return DAG.getNode(
|
|
PreferredFusedOpcode, SL, VT, N0.getOperand(0), N0.getOperand(1),
|
|
DAG.getNode(
|
|
PreferredFusedOpcode, SL, VT,
|
|
DAG.getNode(ISD::FP_EXTEND, SL, VT, N020.getOperand(0)),
|
|
DAG.getNode(ISD::FP_EXTEND, SL, VT, N020.getOperand(1)),
|
|
DAG.getNode(ISD::FNEG, SL, VT, N1)));
|
|
}
|
|
}
|
|
}
|
|
|
|
// fold (fsub (fpext (fma x, y, (fmul u, v))), z)
|
|
// -> (fma (fpext x), (fpext y),
|
|
// (fma (fpext u), (fpext v), (fneg z)))
|
|
// FIXME: This turns two single-precision and one double-precision
|
|
// operation into two double-precision operations, which might not be
|
|
// interesting for all targets, especially GPUs.
|
|
if (N0.getOpcode() == ISD::FP_EXTEND) {
|
|
SDValue N00 = N0.getOperand(0);
|
|
if (N00.getOpcode() == PreferredFusedOpcode) {
|
|
SDValue N002 = N00.getOperand(2);
|
|
if (isContractableAndReassociableFMUL(N002) &&
|
|
TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
|
|
N00.getValueType())) {
|
|
return DAG.getNode(
|
|
PreferredFusedOpcode, SL, VT,
|
|
DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(0)),
|
|
DAG.getNode(ISD::FP_EXTEND, SL, VT, N00.getOperand(1)),
|
|
DAG.getNode(
|
|
PreferredFusedOpcode, SL, VT,
|
|
DAG.getNode(ISD::FP_EXTEND, SL, VT, N002.getOperand(0)),
|
|
DAG.getNode(ISD::FP_EXTEND, SL, VT, N002.getOperand(1)),
|
|
DAG.getNode(ISD::FNEG, SL, VT, N1)));
|
|
}
|
|
}
|
|
}
|
|
|
|
// fold (fsub x, (fma y, z, (fpext (fmul u, v))))
|
|
// -> (fma (fneg y), z, (fma (fneg (fpext u)), (fpext v), x))
|
|
if (N1.getOpcode() == PreferredFusedOpcode &&
|
|
N1.getOperand(2).getOpcode() == ISD::FP_EXTEND &&
|
|
N1->hasOneUse()) {
|
|
SDValue N120 = N1.getOperand(2).getOperand(0);
|
|
if (isContractableAndReassociableFMUL(N120) &&
|
|
TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
|
|
N120.getValueType())) {
|
|
SDValue N1200 = N120.getOperand(0);
|
|
SDValue N1201 = N120.getOperand(1);
|
|
return DAG.getNode(
|
|
PreferredFusedOpcode, SL, VT,
|
|
DAG.getNode(ISD::FNEG, SL, VT, N1.getOperand(0)), N1.getOperand(1),
|
|
DAG.getNode(PreferredFusedOpcode, SL, VT,
|
|
DAG.getNode(ISD::FNEG, SL, VT,
|
|
DAG.getNode(ISD::FP_EXTEND, SL, VT, N1200)),
|
|
DAG.getNode(ISD::FP_EXTEND, SL, VT, N1201), N0));
|
|
}
|
|
}
|
|
|
|
// fold (fsub x, (fpext (fma y, z, (fmul u, v))))
|
|
// -> (fma (fneg (fpext y)), (fpext z),
|
|
// (fma (fneg (fpext u)), (fpext v), x))
|
|
// FIXME: This turns two single-precision and one double-precision
|
|
// operation into two double-precision operations, which might not be
|
|
// interesting for all targets, especially GPUs.
|
|
if (N1.getOpcode() == ISD::FP_EXTEND &&
|
|
N1.getOperand(0).getOpcode() == PreferredFusedOpcode) {
|
|
SDValue CvtSrc = N1.getOperand(0);
|
|
SDValue N100 = CvtSrc.getOperand(0);
|
|
SDValue N101 = CvtSrc.getOperand(1);
|
|
SDValue N102 = CvtSrc.getOperand(2);
|
|
if (isContractableAndReassociableFMUL(N102) &&
|
|
TLI.isFPExtFoldable(DAG, PreferredFusedOpcode, VT,
|
|
CvtSrc.getValueType())) {
|
|
SDValue N1020 = N102.getOperand(0);
|
|
SDValue N1021 = N102.getOperand(1);
|
|
return DAG.getNode(
|
|
PreferredFusedOpcode, SL, VT,
|
|
DAG.getNode(ISD::FNEG, SL, VT,
|
|
DAG.getNode(ISD::FP_EXTEND, SL, VT, N100)),
|
|
DAG.getNode(ISD::FP_EXTEND, SL, VT, N101),
|
|
DAG.getNode(PreferredFusedOpcode, SL, VT,
|
|
DAG.getNode(ISD::FNEG, SL, VT,
|
|
DAG.getNode(ISD::FP_EXTEND, SL, VT, N1020)),
|
|
DAG.getNode(ISD::FP_EXTEND, SL, VT, N1021), N0));
|
|
}
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// Try to perform FMA combining on a given FMUL node based on the distributive
|
|
/// law x * (y + 1) = x * y + x and variants thereof (commuted versions,
|
|
/// subtraction instead of addition).
|
|
SDValue DAGCombiner::visitFMULForFMADistributiveCombine(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
EVT VT = N->getValueType(0);
|
|
SDLoc SL(N);
|
|
|
|
assert(N->getOpcode() == ISD::FMUL && "Expected FMUL Operation");
|
|
|
|
const TargetOptions &Options = DAG.getTarget().Options;
|
|
|
|
// The transforms below are incorrect when x == 0 and y == inf, because the
|
|
// intermediate multiplication produces a nan.
|
|
if (!Options.NoInfsFPMath)
|
|
return SDValue();
|
|
|
|
// Floating-point multiply-add without intermediate rounding.
|
|
bool HasFMA =
|
|
(Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath) &&
|
|
TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT) &&
|
|
(!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FMA, VT));
|
|
|
|
// Floating-point multiply-add with intermediate rounding. This can result
|
|
// in a less precise result due to the changed rounding order.
|
|
bool HasFMAD = Options.UnsafeFPMath &&
|
|
(LegalOperations && TLI.isFMADLegal(DAG, N));
|
|
|
|
// No valid opcode, do not combine.
|
|
if (!HasFMAD && !HasFMA)
|
|
return SDValue();
|
|
|
|
// Always prefer FMAD to FMA for precision.
|
|
unsigned PreferredFusedOpcode = HasFMAD ? ISD::FMAD : ISD::FMA;
|
|
bool Aggressive = TLI.enableAggressiveFMAFusion(VT);
|
|
|
|
// fold (fmul (fadd x0, +1.0), y) -> (fma x0, y, y)
|
|
// fold (fmul (fadd x0, -1.0), y) -> (fma x0, y, (fneg y))
|
|
auto FuseFADD = [&](SDValue X, SDValue Y) {
|
|
if (X.getOpcode() == ISD::FADD && (Aggressive || X->hasOneUse())) {
|
|
if (auto *C = isConstOrConstSplatFP(X.getOperand(1), true)) {
|
|
if (C->isExactlyValue(+1.0))
|
|
return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
|
|
Y);
|
|
if (C->isExactlyValue(-1.0))
|
|
return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
|
|
DAG.getNode(ISD::FNEG, SL, VT, Y));
|
|
}
|
|
}
|
|
return SDValue();
|
|
};
|
|
|
|
if (SDValue FMA = FuseFADD(N0, N1))
|
|
return FMA;
|
|
if (SDValue FMA = FuseFADD(N1, N0))
|
|
return FMA;
|
|
|
|
// fold (fmul (fsub +1.0, x1), y) -> (fma (fneg x1), y, y)
|
|
// fold (fmul (fsub -1.0, x1), y) -> (fma (fneg x1), y, (fneg y))
|
|
// fold (fmul (fsub x0, +1.0), y) -> (fma x0, y, (fneg y))
|
|
// fold (fmul (fsub x0, -1.0), y) -> (fma x0, y, y)
|
|
auto FuseFSUB = [&](SDValue X, SDValue Y) {
|
|
if (X.getOpcode() == ISD::FSUB && (Aggressive || X->hasOneUse())) {
|
|
if (auto *C0 = isConstOrConstSplatFP(X.getOperand(0), true)) {
|
|
if (C0->isExactlyValue(+1.0))
|
|
return DAG.getNode(PreferredFusedOpcode, SL, VT,
|
|
DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y,
|
|
Y);
|
|
if (C0->isExactlyValue(-1.0))
|
|
return DAG.getNode(PreferredFusedOpcode, SL, VT,
|
|
DAG.getNode(ISD::FNEG, SL, VT, X.getOperand(1)), Y,
|
|
DAG.getNode(ISD::FNEG, SL, VT, Y));
|
|
}
|
|
if (auto *C1 = isConstOrConstSplatFP(X.getOperand(1), true)) {
|
|
if (C1->isExactlyValue(+1.0))
|
|
return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
|
|
DAG.getNode(ISD::FNEG, SL, VT, Y));
|
|
if (C1->isExactlyValue(-1.0))
|
|
return DAG.getNode(PreferredFusedOpcode, SL, VT, X.getOperand(0), Y,
|
|
Y);
|
|
}
|
|
}
|
|
return SDValue();
|
|
};
|
|
|
|
if (SDValue FMA = FuseFSUB(N0, N1))
|
|
return FMA;
|
|
if (SDValue FMA = FuseFSUB(N1, N0))
|
|
return FMA;
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitFADD(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
bool N0CFP = DAG.isConstantFPBuildVectorOrConstantFP(N0);
|
|
bool N1CFP = DAG.isConstantFPBuildVectorOrConstantFP(N1);
|
|
EVT VT = N->getValueType(0);
|
|
SDLoc DL(N);
|
|
const TargetOptions &Options = DAG.getTarget().Options;
|
|
SDNodeFlags Flags = N->getFlags();
|
|
SelectionDAG::FlagInserter FlagsInserter(DAG, N);
|
|
|
|
if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags))
|
|
return R;
|
|
|
|
// fold vector ops
|
|
if (VT.isVector())
|
|
if (SDValue FoldedVOp = SimplifyVBinOp(N))
|
|
return FoldedVOp;
|
|
|
|
// fold (fadd c1, c2) -> c1 + c2
|
|
if (N0CFP && N1CFP)
|
|
return DAG.getNode(ISD::FADD, DL, VT, N0, N1);
|
|
|
|
// canonicalize constant to RHS
|
|
if (N0CFP && !N1CFP)
|
|
return DAG.getNode(ISD::FADD, DL, VT, N1, N0);
|
|
|
|
// N0 + -0.0 --> N0 (also allowed with +0.0 and fast-math)
|
|
ConstantFPSDNode *N1C = isConstOrConstSplatFP(N1, true);
|
|
if (N1C && N1C->isZero())
|
|
if (N1C->isNegative() || Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros())
|
|
return N0;
|
|
|
|
if (SDValue NewSel = foldBinOpIntoSelect(N))
|
|
return NewSel;
|
|
|
|
// fold (fadd A, (fneg B)) -> (fsub A, B)
|
|
if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT))
|
|
if (SDValue NegN1 = TLI.getCheaperNegatedExpression(
|
|
N1, DAG, LegalOperations, ForCodeSize))
|
|
return DAG.getNode(ISD::FSUB, DL, VT, N0, NegN1);
|
|
|
|
// fold (fadd (fneg A), B) -> (fsub B, A)
|
|
if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::FSUB, VT))
|
|
if (SDValue NegN0 = TLI.getCheaperNegatedExpression(
|
|
N0, DAG, LegalOperations, ForCodeSize))
|
|
return DAG.getNode(ISD::FSUB, DL, VT, N1, NegN0);
|
|
|
|
auto isFMulNegTwo = [](SDValue FMul) {
|
|
if (!FMul.hasOneUse() || FMul.getOpcode() != ISD::FMUL)
|
|
return false;
|
|
auto *C = isConstOrConstSplatFP(FMul.getOperand(1), true);
|
|
return C && C->isExactlyValue(-2.0);
|
|
};
|
|
|
|
// fadd (fmul B, -2.0), A --> fsub A, (fadd B, B)
|
|
if (isFMulNegTwo(N0)) {
|
|
SDValue B = N0.getOperand(0);
|
|
SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B);
|
|
return DAG.getNode(ISD::FSUB, DL, VT, N1, Add);
|
|
}
|
|
// fadd A, (fmul B, -2.0) --> fsub A, (fadd B, B)
|
|
if (isFMulNegTwo(N1)) {
|
|
SDValue B = N1.getOperand(0);
|
|
SDValue Add = DAG.getNode(ISD::FADD, DL, VT, B, B);
|
|
return DAG.getNode(ISD::FSUB, DL, VT, N0, Add);
|
|
}
|
|
|
|
// No FP constant should be created after legalization as Instruction
|
|
// Selection pass has a hard time dealing with FP constants.
|
|
bool AllowNewConst = (Level < AfterLegalizeDAG);
|
|
|
|
// If nnan is enabled, fold lots of things.
|
|
if ((Options.NoNaNsFPMath || Flags.hasNoNaNs()) && AllowNewConst) {
|
|
// If allowed, fold (fadd (fneg x), x) -> 0.0
|
|
if (N0.getOpcode() == ISD::FNEG && N0.getOperand(0) == N1)
|
|
return DAG.getConstantFP(0.0, DL, VT);
|
|
|
|
// If allowed, fold (fadd x, (fneg x)) -> 0.0
|
|
if (N1.getOpcode() == ISD::FNEG && N1.getOperand(0) == N0)
|
|
return DAG.getConstantFP(0.0, DL, VT);
|
|
}
|
|
|
|
// If 'unsafe math' or reassoc and nsz, fold lots of things.
|
|
// TODO: break out portions of the transformations below for which Unsafe is
|
|
// considered and which do not require both nsz and reassoc
|
|
if (((Options.UnsafeFPMath && Options.NoSignedZerosFPMath) ||
|
|
(Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) &&
|
|
AllowNewConst) {
|
|
// fadd (fadd x, c1), c2 -> fadd x, c1 + c2
|
|
if (N1CFP && N0.getOpcode() == ISD::FADD &&
|
|
DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) {
|
|
SDValue NewC = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1), N1);
|
|
return DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(0), NewC);
|
|
}
|
|
|
|
// We can fold chains of FADD's of the same value into multiplications.
|
|
// This transform is not safe in general because we are reducing the number
|
|
// of rounding steps.
|
|
if (TLI.isOperationLegalOrCustom(ISD::FMUL, VT) && !N0CFP && !N1CFP) {
|
|
if (N0.getOpcode() == ISD::FMUL) {
|
|
bool CFP00 = DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(0));
|
|
bool CFP01 = DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(1));
|
|
|
|
// (fadd (fmul x, c), x) -> (fmul x, c+1)
|
|
if (CFP01 && !CFP00 && N0.getOperand(0) == N1) {
|
|
SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1),
|
|
DAG.getConstantFP(1.0, DL, VT));
|
|
return DAG.getNode(ISD::FMUL, DL, VT, N1, NewCFP);
|
|
}
|
|
|
|
// (fadd (fmul x, c), (fadd x, x)) -> (fmul x, c+2)
|
|
if (CFP01 && !CFP00 && N1.getOpcode() == ISD::FADD &&
|
|
N1.getOperand(0) == N1.getOperand(1) &&
|
|
N0.getOperand(0) == N1.getOperand(0)) {
|
|
SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N0.getOperand(1),
|
|
DAG.getConstantFP(2.0, DL, VT));
|
|
return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), NewCFP);
|
|
}
|
|
}
|
|
|
|
if (N1.getOpcode() == ISD::FMUL) {
|
|
bool CFP10 = DAG.isConstantFPBuildVectorOrConstantFP(N1.getOperand(0));
|
|
bool CFP11 = DAG.isConstantFPBuildVectorOrConstantFP(N1.getOperand(1));
|
|
|
|
// (fadd x, (fmul x, c)) -> (fmul x, c+1)
|
|
if (CFP11 && !CFP10 && N1.getOperand(0) == N0) {
|
|
SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1),
|
|
DAG.getConstantFP(1.0, DL, VT));
|
|
return DAG.getNode(ISD::FMUL, DL, VT, N0, NewCFP);
|
|
}
|
|
|
|
// (fadd (fadd x, x), (fmul x, c)) -> (fmul x, c+2)
|
|
if (CFP11 && !CFP10 && N0.getOpcode() == ISD::FADD &&
|
|
N0.getOperand(0) == N0.getOperand(1) &&
|
|
N1.getOperand(0) == N0.getOperand(0)) {
|
|
SDValue NewCFP = DAG.getNode(ISD::FADD, DL, VT, N1.getOperand(1),
|
|
DAG.getConstantFP(2.0, DL, VT));
|
|
return DAG.getNode(ISD::FMUL, DL, VT, N1.getOperand(0), NewCFP);
|
|
}
|
|
}
|
|
|
|
if (N0.getOpcode() == ISD::FADD) {
|
|
bool CFP00 = DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(0));
|
|
// (fadd (fadd x, x), x) -> (fmul x, 3.0)
|
|
if (!CFP00 && N0.getOperand(0) == N0.getOperand(1) &&
|
|
(N0.getOperand(0) == N1)) {
|
|
return DAG.getNode(ISD::FMUL, DL, VT, N1,
|
|
DAG.getConstantFP(3.0, DL, VT));
|
|
}
|
|
}
|
|
|
|
if (N1.getOpcode() == ISD::FADD) {
|
|
bool CFP10 = DAG.isConstantFPBuildVectorOrConstantFP(N1.getOperand(0));
|
|
// (fadd x, (fadd x, x)) -> (fmul x, 3.0)
|
|
if (!CFP10 && N1.getOperand(0) == N1.getOperand(1) &&
|
|
N1.getOperand(0) == N0) {
|
|
return DAG.getNode(ISD::FMUL, DL, VT, N0,
|
|
DAG.getConstantFP(3.0, DL, VT));
|
|
}
|
|
}
|
|
|
|
// (fadd (fadd x, x), (fadd x, x)) -> (fmul x, 4.0)
|
|
if (N0.getOpcode() == ISD::FADD && N1.getOpcode() == ISD::FADD &&
|
|
N0.getOperand(0) == N0.getOperand(1) &&
|
|
N1.getOperand(0) == N1.getOperand(1) &&
|
|
N0.getOperand(0) == N1.getOperand(0)) {
|
|
return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0),
|
|
DAG.getConstantFP(4.0, DL, VT));
|
|
}
|
|
}
|
|
} // enable-unsafe-fp-math
|
|
|
|
// FADD -> FMA combines:
|
|
if (SDValue Fused = visitFADDForFMACombine(N)) {
|
|
AddToWorklist(Fused.getNode());
|
|
return Fused;
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitSTRICT_FADD(SDNode *N) {
|
|
SDValue Chain = N->getOperand(0);
|
|
SDValue N0 = N->getOperand(1);
|
|
SDValue N1 = N->getOperand(2);
|
|
EVT VT = N->getValueType(0);
|
|
EVT ChainVT = N->getValueType(1);
|
|
SDLoc DL(N);
|
|
SelectionDAG::FlagInserter FlagsInserter(DAG, N);
|
|
|
|
// fold (strict_fadd A, (fneg B)) -> (strict_fsub A, B)
|
|
if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::STRICT_FSUB, VT))
|
|
if (SDValue NegN1 = TLI.getCheaperNegatedExpression(
|
|
N1, DAG, LegalOperations, ForCodeSize)) {
|
|
return DAG.getNode(ISD::STRICT_FSUB, DL, DAG.getVTList(VT, ChainVT),
|
|
{Chain, N0, NegN1});
|
|
}
|
|
|
|
// fold (strict_fadd (fneg A), B) -> (strict_fsub B, A)
|
|
if (!LegalOperations || TLI.isOperationLegalOrCustom(ISD::STRICT_FSUB, VT))
|
|
if (SDValue NegN0 = TLI.getCheaperNegatedExpression(
|
|
N0, DAG, LegalOperations, ForCodeSize)) {
|
|
return DAG.getNode(ISD::STRICT_FSUB, DL, DAG.getVTList(VT, ChainVT),
|
|
{Chain, N1, NegN0});
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitFSUB(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true);
|
|
ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true);
|
|
EVT VT = N->getValueType(0);
|
|
SDLoc DL(N);
|
|
const TargetOptions &Options = DAG.getTarget().Options;
|
|
const SDNodeFlags Flags = N->getFlags();
|
|
SelectionDAG::FlagInserter FlagsInserter(DAG, N);
|
|
|
|
if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags))
|
|
return R;
|
|
|
|
// fold vector ops
|
|
if (VT.isVector())
|
|
if (SDValue FoldedVOp = SimplifyVBinOp(N))
|
|
return FoldedVOp;
|
|
|
|
// fold (fsub c1, c2) -> c1-c2
|
|
if (N0CFP && N1CFP)
|
|
return DAG.getNode(ISD::FSUB, DL, VT, N0, N1);
|
|
|
|
if (SDValue NewSel = foldBinOpIntoSelect(N))
|
|
return NewSel;
|
|
|
|
// (fsub A, 0) -> A
|
|
if (N1CFP && N1CFP->isZero()) {
|
|
if (!N1CFP->isNegative() || Options.NoSignedZerosFPMath ||
|
|
Flags.hasNoSignedZeros()) {
|
|
return N0;
|
|
}
|
|
}
|
|
|
|
if (N0 == N1) {
|
|
// (fsub x, x) -> 0.0
|
|
if (Options.NoNaNsFPMath || Flags.hasNoNaNs())
|
|
return DAG.getConstantFP(0.0f, DL, VT);
|
|
}
|
|
|
|
// (fsub -0.0, N1) -> -N1
|
|
if (N0CFP && N0CFP->isZero()) {
|
|
if (N0CFP->isNegative() ||
|
|
(Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros())) {
|
|
// We cannot replace an FSUB(+-0.0,X) with FNEG(X) when denormals are
|
|
// flushed to zero, unless all users treat denorms as zero (DAZ).
|
|
// FIXME: This transform will change the sign of a NaN and the behavior
|
|
// of a signaling NaN. It is only valid when a NoNaN flag is present.
|
|
DenormalMode DenormMode = DAG.getDenormalMode(VT);
|
|
if (DenormMode == DenormalMode::getIEEE()) {
|
|
if (SDValue NegN1 =
|
|
TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize))
|
|
return NegN1;
|
|
if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
|
|
return DAG.getNode(ISD::FNEG, DL, VT, N1);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (((Options.UnsafeFPMath && Options.NoSignedZerosFPMath) ||
|
|
(Flags.hasAllowReassociation() && Flags.hasNoSignedZeros())) &&
|
|
N1.getOpcode() == ISD::FADD) {
|
|
// X - (X + Y) -> -Y
|
|
if (N0 == N1->getOperand(0))
|
|
return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(1));
|
|
// X - (Y + X) -> -Y
|
|
if (N0 == N1->getOperand(1))
|
|
return DAG.getNode(ISD::FNEG, DL, VT, N1->getOperand(0));
|
|
}
|
|
|
|
// fold (fsub A, (fneg B)) -> (fadd A, B)
|
|
if (SDValue NegN1 =
|
|
TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize))
|
|
return DAG.getNode(ISD::FADD, DL, VT, N0, NegN1);
|
|
|
|
// FSUB -> FMA combines:
|
|
if (SDValue Fused = visitFSUBForFMACombine(N)) {
|
|
AddToWorklist(Fused.getNode());
|
|
return Fused;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitFMUL(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, true);
|
|
ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1, true);
|
|
EVT VT = N->getValueType(0);
|
|
SDLoc DL(N);
|
|
const TargetOptions &Options = DAG.getTarget().Options;
|
|
const SDNodeFlags Flags = N->getFlags();
|
|
SelectionDAG::FlagInserter FlagsInserter(DAG, N);
|
|
|
|
if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags))
|
|
return R;
|
|
|
|
// fold vector ops
|
|
if (VT.isVector()) {
|
|
// This just handles C1 * C2 for vectors. Other vector folds are below.
|
|
if (SDValue FoldedVOp = SimplifyVBinOp(N))
|
|
return FoldedVOp;
|
|
}
|
|
|
|
// fold (fmul c1, c2) -> c1*c2
|
|
if (N0CFP && N1CFP)
|
|
return DAG.getNode(ISD::FMUL, DL, VT, N0, N1);
|
|
|
|
// canonicalize constant to RHS
|
|
if (DAG.isConstantFPBuildVectorOrConstantFP(N0) &&
|
|
!DAG.isConstantFPBuildVectorOrConstantFP(N1))
|
|
return DAG.getNode(ISD::FMUL, DL, VT, N1, N0);
|
|
|
|
if (SDValue NewSel = foldBinOpIntoSelect(N))
|
|
return NewSel;
|
|
|
|
if (Options.UnsafeFPMath || Flags.hasAllowReassociation()) {
|
|
// fmul (fmul X, C1), C2 -> fmul X, C1 * C2
|
|
if (DAG.isConstantFPBuildVectorOrConstantFP(N1) &&
|
|
N0.getOpcode() == ISD::FMUL) {
|
|
SDValue N00 = N0.getOperand(0);
|
|
SDValue N01 = N0.getOperand(1);
|
|
// Avoid an infinite loop by making sure that N00 is not a constant
|
|
// (the inner multiply has not been constant folded yet).
|
|
if (DAG.isConstantFPBuildVectorOrConstantFP(N01) &&
|
|
!DAG.isConstantFPBuildVectorOrConstantFP(N00)) {
|
|
SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, N01, N1);
|
|
return DAG.getNode(ISD::FMUL, DL, VT, N00, MulConsts);
|
|
}
|
|
}
|
|
|
|
// Match a special-case: we convert X * 2.0 into fadd.
|
|
// fmul (fadd X, X), C -> fmul X, 2.0 * C
|
|
if (N0.getOpcode() == ISD::FADD && N0.hasOneUse() &&
|
|
N0.getOperand(0) == N0.getOperand(1)) {
|
|
const SDValue Two = DAG.getConstantFP(2.0, DL, VT);
|
|
SDValue MulConsts = DAG.getNode(ISD::FMUL, DL, VT, Two, N1);
|
|
return DAG.getNode(ISD::FMUL, DL, VT, N0.getOperand(0), MulConsts);
|
|
}
|
|
}
|
|
|
|
// fold (fmul X, 2.0) -> (fadd X, X)
|
|
if (N1CFP && N1CFP->isExactlyValue(+2.0))
|
|
return DAG.getNode(ISD::FADD, DL, VT, N0, N0);
|
|
|
|
// fold (fmul X, -1.0) -> (fneg X)
|
|
if (N1CFP && N1CFP->isExactlyValue(-1.0))
|
|
if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
|
|
return DAG.getNode(ISD::FNEG, DL, VT, N0);
|
|
|
|
// -N0 * -N1 --> N0 * N1
|
|
TargetLowering::NegatibleCost CostN0 =
|
|
TargetLowering::NegatibleCost::Expensive;
|
|
TargetLowering::NegatibleCost CostN1 =
|
|
TargetLowering::NegatibleCost::Expensive;
|
|
SDValue NegN0 =
|
|
TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0);
|
|
SDValue NegN1 =
|
|
TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1);
|
|
if (NegN0 && NegN1 &&
|
|
(CostN0 == TargetLowering::NegatibleCost::Cheaper ||
|
|
CostN1 == TargetLowering::NegatibleCost::Cheaper))
|
|
return DAG.getNode(ISD::FMUL, DL, VT, NegN0, NegN1);
|
|
|
|
// fold (fmul X, (select (fcmp X > 0.0), -1.0, 1.0)) -> (fneg (fabs X))
|
|
// fold (fmul X, (select (fcmp X > 0.0), 1.0, -1.0)) -> (fabs X)
|
|
if (Flags.hasNoNaNs() && Flags.hasNoSignedZeros() &&
|
|
(N0.getOpcode() == ISD::SELECT || N1.getOpcode() == ISD::SELECT) &&
|
|
TLI.isOperationLegal(ISD::FABS, VT)) {
|
|
SDValue Select = N0, X = N1;
|
|
if (Select.getOpcode() != ISD::SELECT)
|
|
std::swap(Select, X);
|
|
|
|
SDValue Cond = Select.getOperand(0);
|
|
auto TrueOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(1));
|
|
auto FalseOpnd = dyn_cast<ConstantFPSDNode>(Select.getOperand(2));
|
|
|
|
if (TrueOpnd && FalseOpnd &&
|
|
Cond.getOpcode() == ISD::SETCC && Cond.getOperand(0) == X &&
|
|
isa<ConstantFPSDNode>(Cond.getOperand(1)) &&
|
|
cast<ConstantFPSDNode>(Cond.getOperand(1))->isExactlyValue(0.0)) {
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
|
|
switch (CC) {
|
|
default: break;
|
|
case ISD::SETOLT:
|
|
case ISD::SETULT:
|
|
case ISD::SETOLE:
|
|
case ISD::SETULE:
|
|
case ISD::SETLT:
|
|
case ISD::SETLE:
|
|
std::swap(TrueOpnd, FalseOpnd);
|
|
LLVM_FALLTHROUGH;
|
|
case ISD::SETOGT:
|
|
case ISD::SETUGT:
|
|
case ISD::SETOGE:
|
|
case ISD::SETUGE:
|
|
case ISD::SETGT:
|
|
case ISD::SETGE:
|
|
if (TrueOpnd->isExactlyValue(-1.0) && FalseOpnd->isExactlyValue(1.0) &&
|
|
TLI.isOperationLegal(ISD::FNEG, VT))
|
|
return DAG.getNode(ISD::FNEG, DL, VT,
|
|
DAG.getNode(ISD::FABS, DL, VT, X));
|
|
if (TrueOpnd->isExactlyValue(1.0) && FalseOpnd->isExactlyValue(-1.0))
|
|
return DAG.getNode(ISD::FABS, DL, VT, X);
|
|
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// FMUL -> FMA combines:
|
|
if (SDValue Fused = visitFMULForFMADistributiveCombine(N)) {
|
|
AddToWorklist(Fused.getNode());
|
|
return Fused;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitFMA(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
SDValue N2 = N->getOperand(2);
|
|
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
|
|
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
|
|
EVT VT = N->getValueType(0);
|
|
SDLoc DL(N);
|
|
const TargetOptions &Options = DAG.getTarget().Options;
|
|
// FMA nodes have flags that propagate to the created nodes.
|
|
SelectionDAG::FlagInserter FlagsInserter(DAG, N);
|
|
|
|
bool UnsafeFPMath =
|
|
Options.UnsafeFPMath || N->getFlags().hasAllowReassociation();
|
|
|
|
// Constant fold FMA.
|
|
if (isa<ConstantFPSDNode>(N0) &&
|
|
isa<ConstantFPSDNode>(N1) &&
|
|
isa<ConstantFPSDNode>(N2)) {
|
|
return DAG.getNode(ISD::FMA, DL, VT, N0, N1, N2);
|
|
}
|
|
|
|
// (-N0 * -N1) + N2 --> (N0 * N1) + N2
|
|
TargetLowering::NegatibleCost CostN0 =
|
|
TargetLowering::NegatibleCost::Expensive;
|
|
TargetLowering::NegatibleCost CostN1 =
|
|
TargetLowering::NegatibleCost::Expensive;
|
|
SDValue NegN0 =
|
|
TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0);
|
|
SDValue NegN1 =
|
|
TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1);
|
|
if (NegN0 && NegN1 &&
|
|
(CostN0 == TargetLowering::NegatibleCost::Cheaper ||
|
|
CostN1 == TargetLowering::NegatibleCost::Cheaper))
|
|
return DAG.getNode(ISD::FMA, DL, VT, NegN0, NegN1, N2);
|
|
|
|
if (UnsafeFPMath) {
|
|
if (N0CFP && N0CFP->isZero())
|
|
return N2;
|
|
if (N1CFP && N1CFP->isZero())
|
|
return N2;
|
|
}
|
|
|
|
if (N0CFP && N0CFP->isExactlyValue(1.0))
|
|
return DAG.getNode(ISD::FADD, SDLoc(N), VT, N1, N2);
|
|
if (N1CFP && N1CFP->isExactlyValue(1.0))
|
|
return DAG.getNode(ISD::FADD, SDLoc(N), VT, N0, N2);
|
|
|
|
// Canonicalize (fma c, x, y) -> (fma x, c, y)
|
|
if (DAG.isConstantFPBuildVectorOrConstantFP(N0) &&
|
|
!DAG.isConstantFPBuildVectorOrConstantFP(N1))
|
|
return DAG.getNode(ISD::FMA, SDLoc(N), VT, N1, N0, N2);
|
|
|
|
if (UnsafeFPMath) {
|
|
// (fma x, c1, (fmul x, c2)) -> (fmul x, c1+c2)
|
|
if (N2.getOpcode() == ISD::FMUL && N0 == N2.getOperand(0) &&
|
|
DAG.isConstantFPBuildVectorOrConstantFP(N1) &&
|
|
DAG.isConstantFPBuildVectorOrConstantFP(N2.getOperand(1))) {
|
|
return DAG.getNode(ISD::FMUL, DL, VT, N0,
|
|
DAG.getNode(ISD::FADD, DL, VT, N1, N2.getOperand(1)));
|
|
}
|
|
|
|
// (fma (fmul x, c1), c2, y) -> (fma x, c1*c2, y)
|
|
if (N0.getOpcode() == ISD::FMUL &&
|
|
DAG.isConstantFPBuildVectorOrConstantFP(N1) &&
|
|
DAG.isConstantFPBuildVectorOrConstantFP(N0.getOperand(1))) {
|
|
return DAG.getNode(ISD::FMA, DL, VT, N0.getOperand(0),
|
|
DAG.getNode(ISD::FMUL, DL, VT, N1, N0.getOperand(1)),
|
|
N2);
|
|
}
|
|
}
|
|
|
|
// (fma x, -1, y) -> (fadd (fneg x), y)
|
|
if (N1CFP) {
|
|
if (N1CFP->isExactlyValue(1.0))
|
|
return DAG.getNode(ISD::FADD, DL, VT, N0, N2);
|
|
|
|
if (N1CFP->isExactlyValue(-1.0) &&
|
|
(!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))) {
|
|
SDValue RHSNeg = DAG.getNode(ISD::FNEG, DL, VT, N0);
|
|
AddToWorklist(RHSNeg.getNode());
|
|
return DAG.getNode(ISD::FADD, DL, VT, N2, RHSNeg);
|
|
}
|
|
|
|
// fma (fneg x), K, y -> fma x -K, y
|
|
if (N0.getOpcode() == ISD::FNEG &&
|
|
(TLI.isOperationLegal(ISD::ConstantFP, VT) ||
|
|
(N1.hasOneUse() && !TLI.isFPImmLegal(N1CFP->getValueAPF(), VT,
|
|
ForCodeSize)))) {
|
|
return DAG.getNode(ISD::FMA, DL, VT, N0.getOperand(0),
|
|
DAG.getNode(ISD::FNEG, DL, VT, N1), N2);
|
|
}
|
|
}
|
|
|
|
if (UnsafeFPMath) {
|
|
// (fma x, c, x) -> (fmul x, (c+1))
|
|
if (N1CFP && N0 == N2) {
|
|
return DAG.getNode(
|
|
ISD::FMUL, DL, VT, N0,
|
|
DAG.getNode(ISD::FADD, DL, VT, N1, DAG.getConstantFP(1.0, DL, VT)));
|
|
}
|
|
|
|
// (fma x, c, (fneg x)) -> (fmul x, (c-1))
|
|
if (N1CFP && N2.getOpcode() == ISD::FNEG && N2.getOperand(0) == N0) {
|
|
return DAG.getNode(
|
|
ISD::FMUL, DL, VT, N0,
|
|
DAG.getNode(ISD::FADD, DL, VT, N1, DAG.getConstantFP(-1.0, DL, VT)));
|
|
}
|
|
}
|
|
|
|
// fold ((fma (fneg X), Y, (fneg Z)) -> fneg (fma X, Y, Z))
|
|
// fold ((fma X, (fneg Y), (fneg Z)) -> fneg (fma X, Y, Z))
|
|
if (!TLI.isFNegFree(VT))
|
|
if (SDValue Neg = TLI.getCheaperNegatedExpression(
|
|
SDValue(N, 0), DAG, LegalOperations, ForCodeSize))
|
|
return DAG.getNode(ISD::FNEG, DL, VT, Neg);
|
|
return SDValue();
|
|
}
|
|
|
|
// Combine multiple FDIVs with the same divisor into multiple FMULs by the
|
|
// reciprocal.
|
|
// E.g., (a / D; b / D;) -> (recip = 1.0 / D; a * recip; b * recip)
|
|
// Notice that this is not always beneficial. One reason is different targets
|
|
// may have different costs for FDIV and FMUL, so sometimes the cost of two
|
|
// FDIVs may be lower than the cost of one FDIV and two FMULs. Another reason
|
|
// is the critical path is increased from "one FDIV" to "one FDIV + one FMUL".
|
|
SDValue DAGCombiner::combineRepeatedFPDivisors(SDNode *N) {
|
|
// TODO: Limit this transform based on optsize/minsize - it always creates at
|
|
// least 1 extra instruction. But the perf win may be substantial enough
|
|
// that only minsize should restrict this.
|
|
bool UnsafeMath = DAG.getTarget().Options.UnsafeFPMath;
|
|
const SDNodeFlags Flags = N->getFlags();
|
|
if (LegalDAG || (!UnsafeMath && !Flags.hasAllowReciprocal()))
|
|
return SDValue();
|
|
|
|
// Skip if current node is a reciprocal/fneg-reciprocal.
|
|
SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
|
|
ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0, /* AllowUndefs */ true);
|
|
if (N0CFP && (N0CFP->isExactlyValue(1.0) || N0CFP->isExactlyValue(-1.0)))
|
|
return SDValue();
|
|
|
|
// Exit early if the target does not want this transform or if there can't
|
|
// possibly be enough uses of the divisor to make the transform worthwhile.
|
|
unsigned MinUses = TLI.combineRepeatedFPDivisors();
|
|
|
|
// For splat vectors, scale the number of uses by the splat factor. If we can
|
|
// convert the division into a scalar op, that will likely be much faster.
|
|
unsigned NumElts = 1;
|
|
EVT VT = N->getValueType(0);
|
|
if (VT.isVector() && DAG.isSplatValue(N1))
|
|
NumElts = VT.getVectorNumElements();
|
|
|
|
if (!MinUses || (N1->use_size() * NumElts) < MinUses)
|
|
return SDValue();
|
|
|
|
// Find all FDIV users of the same divisor.
|
|
// Use a set because duplicates may be present in the user list.
|
|
SetVector<SDNode *> Users;
|
|
for (auto *U : N1->uses()) {
|
|
if (U->getOpcode() == ISD::FDIV && U->getOperand(1) == N1) {
|
|
// Skip X/sqrt(X) that has not been simplified to sqrt(X) yet.
|
|
if (U->getOperand(1).getOpcode() == ISD::FSQRT &&
|
|
U->getOperand(0) == U->getOperand(1).getOperand(0) &&
|
|
U->getFlags().hasAllowReassociation() &&
|
|
U->getFlags().hasNoSignedZeros())
|
|
continue;
|
|
|
|
// This division is eligible for optimization only if global unsafe math
|
|
// is enabled or if this division allows reciprocal formation.
|
|
if (UnsafeMath || U->getFlags().hasAllowReciprocal())
|
|
Users.insert(U);
|
|
}
|
|
}
|
|
|
|
// Now that we have the actual number of divisor uses, make sure it meets
|
|
// the minimum threshold specified by the target.
|
|
if ((Users.size() * NumElts) < MinUses)
|
|
return SDValue();
|
|
|
|
SDLoc DL(N);
|
|
SDValue FPOne = DAG.getConstantFP(1.0, DL, VT);
|
|
SDValue Reciprocal = DAG.getNode(ISD::FDIV, DL, VT, FPOne, N1, Flags);
|
|
|
|
// Dividend / Divisor -> Dividend * Reciprocal
|
|
for (auto *U : Users) {
|
|
SDValue Dividend = U->getOperand(0);
|
|
if (Dividend != FPOne) {
|
|
SDValue NewNode = DAG.getNode(ISD::FMUL, SDLoc(U), VT, Dividend,
|
|
Reciprocal, Flags);
|
|
CombineTo(U, NewNode);
|
|
} else if (U != Reciprocal.getNode()) {
|
|
// In the absence of fast-math-flags, this user node is always the
|
|
// same node as Reciprocal, but with FMF they may be different nodes.
|
|
CombineTo(U, Reciprocal);
|
|
}
|
|
}
|
|
return SDValue(N, 0); // N was replaced.
|
|
}
|
|
|
|
SDValue DAGCombiner::visitFDIV(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
|
|
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
|
|
EVT VT = N->getValueType(0);
|
|
SDLoc DL(N);
|
|
const TargetOptions &Options = DAG.getTarget().Options;
|
|
SDNodeFlags Flags = N->getFlags();
|
|
SelectionDAG::FlagInserter FlagsInserter(DAG, N);
|
|
|
|
if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags))
|
|
return R;
|
|
|
|
// fold vector ops
|
|
if (VT.isVector())
|
|
if (SDValue FoldedVOp = SimplifyVBinOp(N))
|
|
return FoldedVOp;
|
|
|
|
// fold (fdiv c1, c2) -> c1/c2
|
|
if (N0CFP && N1CFP)
|
|
return DAG.getNode(ISD::FDIV, SDLoc(N), VT, N0, N1);
|
|
|
|
if (SDValue NewSel = foldBinOpIntoSelect(N))
|
|
return NewSel;
|
|
|
|
if (SDValue V = combineRepeatedFPDivisors(N))
|
|
return V;
|
|
|
|
if (Options.UnsafeFPMath || Flags.hasAllowReciprocal()) {
|
|
// fold (fdiv X, c2) -> fmul X, 1/c2 if losing precision is acceptable.
|
|
if (N1CFP) {
|
|
// Compute the reciprocal 1.0 / c2.
|
|
const APFloat &N1APF = N1CFP->getValueAPF();
|
|
APFloat Recip(N1APF.getSemantics(), 1); // 1.0
|
|
APFloat::opStatus st = Recip.divide(N1APF, APFloat::rmNearestTiesToEven);
|
|
// Only do the transform if the reciprocal is a legal fp immediate that
|
|
// isn't too nasty (eg NaN, denormal, ...).
|
|
if ((st == APFloat::opOK || st == APFloat::opInexact) && // Not too nasty
|
|
(!LegalOperations ||
|
|
// FIXME: custom lowering of ConstantFP might fail (see e.g. ARM
|
|
// backend)... we should handle this gracefully after Legalize.
|
|
// TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT) ||
|
|
TLI.isOperationLegal(ISD::ConstantFP, VT) ||
|
|
TLI.isFPImmLegal(Recip, VT, ForCodeSize)))
|
|
return DAG.getNode(ISD::FMUL, DL, VT, N0,
|
|
DAG.getConstantFP(Recip, DL, VT));
|
|
}
|
|
|
|
// If this FDIV is part of a reciprocal square root, it may be folded
|
|
// into a target-specific square root estimate instruction.
|
|
if (N1.getOpcode() == ISD::FSQRT) {
|
|
if (SDValue RV = buildRsqrtEstimate(N1.getOperand(0), Flags))
|
|
return DAG.getNode(ISD::FMUL, DL, VT, N0, RV);
|
|
} else if (N1.getOpcode() == ISD::FP_EXTEND &&
|
|
N1.getOperand(0).getOpcode() == ISD::FSQRT) {
|
|
if (SDValue RV =
|
|
buildRsqrtEstimate(N1.getOperand(0).getOperand(0), Flags)) {
|
|
RV = DAG.getNode(ISD::FP_EXTEND, SDLoc(N1), VT, RV);
|
|
AddToWorklist(RV.getNode());
|
|
return DAG.getNode(ISD::FMUL, DL, VT, N0, RV);
|
|
}
|
|
} else if (N1.getOpcode() == ISD::FP_ROUND &&
|
|
N1.getOperand(0).getOpcode() == ISD::FSQRT) {
|
|
if (SDValue RV =
|
|
buildRsqrtEstimate(N1.getOperand(0).getOperand(0), Flags)) {
|
|
RV = DAG.getNode(ISD::FP_ROUND, SDLoc(N1), VT, RV, N1.getOperand(1));
|
|
AddToWorklist(RV.getNode());
|
|
return DAG.getNode(ISD::FMUL, DL, VT, N0, RV);
|
|
}
|
|
} else if (N1.getOpcode() == ISD::FMUL) {
|
|
// Look through an FMUL. Even though this won't remove the FDIV directly,
|
|
// it's still worthwhile to get rid of the FSQRT if possible.
|
|
SDValue Sqrt, Y;
|
|
if (N1.getOperand(0).getOpcode() == ISD::FSQRT) {
|
|
Sqrt = N1.getOperand(0);
|
|
Y = N1.getOperand(1);
|
|
} else if (N1.getOperand(1).getOpcode() == ISD::FSQRT) {
|
|
Sqrt = N1.getOperand(1);
|
|
Y = N1.getOperand(0);
|
|
}
|
|
if (Sqrt.getNode()) {
|
|
// If the other multiply operand is known positive, pull it into the
|
|
// sqrt. That will eliminate the division if we convert to an estimate.
|
|
if (Flags.hasAllowReassociation() && N1.hasOneUse() &&
|
|
N1->getFlags().hasAllowReassociation() && Sqrt.hasOneUse()) {
|
|
SDValue A;
|
|
if (Y.getOpcode() == ISD::FABS && Y.hasOneUse())
|
|
A = Y.getOperand(0);
|
|
else if (Y == Sqrt.getOperand(0))
|
|
A = Y;
|
|
if (A) {
|
|
// X / (fabs(A) * sqrt(Z)) --> X / sqrt(A*A*Z) --> X * rsqrt(A*A*Z)
|
|
// X / (A * sqrt(A)) --> X / sqrt(A*A*A) --> X * rsqrt(A*A*A)
|
|
SDValue AA = DAG.getNode(ISD::FMUL, DL, VT, A, A);
|
|
SDValue AAZ =
|
|
DAG.getNode(ISD::FMUL, DL, VT, AA, Sqrt.getOperand(0));
|
|
if (SDValue Rsqrt = buildRsqrtEstimate(AAZ, Flags))
|
|
return DAG.getNode(ISD::FMUL, DL, VT, N0, Rsqrt);
|
|
|
|
// Estimate creation failed. Clean up speculatively created nodes.
|
|
recursivelyDeleteUnusedNodes(AAZ.getNode());
|
|
}
|
|
}
|
|
|
|
// We found a FSQRT, so try to make this fold:
|
|
// X / (Y * sqrt(Z)) -> X * (rsqrt(Z) / Y)
|
|
if (SDValue Rsqrt = buildRsqrtEstimate(Sqrt.getOperand(0), Flags)) {
|
|
SDValue Div = DAG.getNode(ISD::FDIV, SDLoc(N1), VT, Rsqrt, Y);
|
|
AddToWorklist(Div.getNode());
|
|
return DAG.getNode(ISD::FMUL, DL, VT, N0, Div);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Fold into a reciprocal estimate and multiply instead of a real divide.
|
|
if (Options.NoInfsFPMath || Flags.hasNoInfs())
|
|
if (SDValue RV = BuildDivEstimate(N0, N1, Flags))
|
|
return RV;
|
|
}
|
|
|
|
// Fold X/Sqrt(X) -> Sqrt(X)
|
|
if ((Options.NoSignedZerosFPMath || Flags.hasNoSignedZeros()) &&
|
|
(Options.UnsafeFPMath || Flags.hasAllowReassociation()))
|
|
if (N1.getOpcode() == ISD::FSQRT && N0 == N1.getOperand(0))
|
|
return N1;
|
|
|
|
// (fdiv (fneg X), (fneg Y)) -> (fdiv X, Y)
|
|
TargetLowering::NegatibleCost CostN0 =
|
|
TargetLowering::NegatibleCost::Expensive;
|
|
TargetLowering::NegatibleCost CostN1 =
|
|
TargetLowering::NegatibleCost::Expensive;
|
|
SDValue NegN0 =
|
|
TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize, CostN0);
|
|
SDValue NegN1 =
|
|
TLI.getNegatedExpression(N1, DAG, LegalOperations, ForCodeSize, CostN1);
|
|
if (NegN0 && NegN1 &&
|
|
(CostN0 == TargetLowering::NegatibleCost::Cheaper ||
|
|
CostN1 == TargetLowering::NegatibleCost::Cheaper))
|
|
return DAG.getNode(ISD::FDIV, SDLoc(N), VT, NegN0, NegN1);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitFREM(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
|
|
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1);
|
|
EVT VT = N->getValueType(0);
|
|
SDNodeFlags Flags = N->getFlags();
|
|
SelectionDAG::FlagInserter FlagsInserter(DAG, N);
|
|
|
|
if (SDValue R = DAG.simplifyFPBinop(N->getOpcode(), N0, N1, Flags))
|
|
return R;
|
|
|
|
// fold (frem c1, c2) -> fmod(c1,c2)
|
|
if (N0CFP && N1CFP)
|
|
return DAG.getNode(ISD::FREM, SDLoc(N), VT, N0, N1);
|
|
|
|
if (SDValue NewSel = foldBinOpIntoSelect(N))
|
|
return NewSel;
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitFSQRT(SDNode *N) {
|
|
SDNodeFlags Flags = N->getFlags();
|
|
const TargetOptions &Options = DAG.getTarget().Options;
|
|
|
|
// Require 'ninf' flag since sqrt(+Inf) = +Inf, but the estimation goes as:
|
|
// sqrt(+Inf) == rsqrt(+Inf) * +Inf = 0 * +Inf = NaN
|
|
if (!Flags.hasApproximateFuncs() ||
|
|
(!Options.NoInfsFPMath && !Flags.hasNoInfs()))
|
|
return SDValue();
|
|
|
|
SDValue N0 = N->getOperand(0);
|
|
if (TLI.isFsqrtCheap(N0, DAG))
|
|
return SDValue();
|
|
|
|
// FSQRT nodes have flags that propagate to the created nodes.
|
|
// TODO: If this is N0/sqrt(N0), and we reach this node before trying to
|
|
// transform the fdiv, we may produce a sub-optimal estimate sequence
|
|
// because the reciprocal calculation may not have to filter out a
|
|
// 0.0 input.
|
|
return buildSqrtEstimate(N0, Flags);
|
|
}
|
|
|
|
/// copysign(x, fp_extend(y)) -> copysign(x, y)
|
|
/// copysign(x, fp_round(y)) -> copysign(x, y)
|
|
static inline bool CanCombineFCOPYSIGN_EXTEND_ROUND(SDNode *N) {
|
|
SDValue N1 = N->getOperand(1);
|
|
if ((N1.getOpcode() == ISD::FP_EXTEND ||
|
|
N1.getOpcode() == ISD::FP_ROUND)) {
|
|
EVT N1VT = N1->getValueType(0);
|
|
EVT N1Op0VT = N1->getOperand(0).getValueType();
|
|
|
|
// Always fold no-op FP casts.
|
|
if (N1VT == N1Op0VT)
|
|
return true;
|
|
|
|
// Do not optimize out type conversion of f128 type yet.
|
|
// For some targets like x86_64, configuration is changed to keep one f128
|
|
// value in one SSE register, but instruction selection cannot handle
|
|
// FCOPYSIGN on SSE registers yet.
|
|
if (N1Op0VT == MVT::f128)
|
|
return false;
|
|
|
|
// Avoid mismatched vector operand types, for better instruction selection.
|
|
if (N1Op0VT.isVector())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
SDValue DAGCombiner::visitFCOPYSIGN(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
bool N0CFP = DAG.isConstantFPBuildVectorOrConstantFP(N0);
|
|
bool N1CFP = DAG.isConstantFPBuildVectorOrConstantFP(N1);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
if (N0CFP && N1CFP) // Constant fold
|
|
return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1);
|
|
|
|
if (ConstantFPSDNode *N1C = isConstOrConstSplatFP(N->getOperand(1))) {
|
|
const APFloat &V = N1C->getValueAPF();
|
|
// copysign(x, c1) -> fabs(x) iff ispos(c1)
|
|
// copysign(x, c1) -> fneg(fabs(x)) iff isneg(c1)
|
|
if (!V.isNegative()) {
|
|
if (!LegalOperations || TLI.isOperationLegal(ISD::FABS, VT))
|
|
return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
|
|
} else {
|
|
if (!LegalOperations || TLI.isOperationLegal(ISD::FNEG, VT))
|
|
return DAG.getNode(ISD::FNEG, SDLoc(N), VT,
|
|
DAG.getNode(ISD::FABS, SDLoc(N0), VT, N0));
|
|
}
|
|
}
|
|
|
|
// copysign(fabs(x), y) -> copysign(x, y)
|
|
// copysign(fneg(x), y) -> copysign(x, y)
|
|
// copysign(copysign(x,z), y) -> copysign(x, y)
|
|
if (N0.getOpcode() == ISD::FABS || N0.getOpcode() == ISD::FNEG ||
|
|
N0.getOpcode() == ISD::FCOPYSIGN)
|
|
return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0.getOperand(0), N1);
|
|
|
|
// copysign(x, abs(y)) -> abs(x)
|
|
if (N1.getOpcode() == ISD::FABS)
|
|
return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
|
|
|
|
// copysign(x, copysign(y,z)) -> copysign(x, z)
|
|
if (N1.getOpcode() == ISD::FCOPYSIGN)
|
|
return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(1));
|
|
|
|
// copysign(x, fp_extend(y)) -> copysign(x, y)
|
|
// copysign(x, fp_round(y)) -> copysign(x, y)
|
|
if (CanCombineFCOPYSIGN_EXTEND_ROUND(N))
|
|
return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT, N0, N1.getOperand(0));
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitFPOW(SDNode *N) {
|
|
ConstantFPSDNode *ExponentC = isConstOrConstSplatFP(N->getOperand(1));
|
|
if (!ExponentC)
|
|
return SDValue();
|
|
SelectionDAG::FlagInserter FlagsInserter(DAG, N);
|
|
|
|
// Try to convert x ** (1/3) into cube root.
|
|
// TODO: Handle the various flavors of long double.
|
|
// TODO: Since we're approximating, we don't need an exact 1/3 exponent.
|
|
// Some range near 1/3 should be fine.
|
|
EVT VT = N->getValueType(0);
|
|
if ((VT == MVT::f32 && ExponentC->getValueAPF().isExactlyValue(1.0f/3.0f)) ||
|
|
(VT == MVT::f64 && ExponentC->getValueAPF().isExactlyValue(1.0/3.0))) {
|
|
// pow(-0.0, 1/3) = +0.0; cbrt(-0.0) = -0.0.
|
|
// pow(-inf, 1/3) = +inf; cbrt(-inf) = -inf.
|
|
// pow(-val, 1/3) = nan; cbrt(-val) = -num.
|
|
// For regular numbers, rounding may cause the results to differ.
|
|
// Therefore, we require { nsz ninf nnan afn } for this transform.
|
|
// TODO: We could select out the special cases if we don't have nsz/ninf.
|
|
SDNodeFlags Flags = N->getFlags();
|
|
if (!Flags.hasNoSignedZeros() || !Flags.hasNoInfs() || !Flags.hasNoNaNs() ||
|
|
!Flags.hasApproximateFuncs())
|
|
return SDValue();
|
|
|
|
// Do not create a cbrt() libcall if the target does not have it, and do not
|
|
// turn a pow that has lowering support into a cbrt() libcall.
|
|
if (!DAG.getLibInfo().has(LibFunc_cbrt) ||
|
|
(!DAG.getTargetLoweringInfo().isOperationExpand(ISD::FPOW, VT) &&
|
|
DAG.getTargetLoweringInfo().isOperationExpand(ISD::FCBRT, VT)))
|
|
return SDValue();
|
|
|
|
return DAG.getNode(ISD::FCBRT, SDLoc(N), VT, N->getOperand(0));
|
|
}
|
|
|
|
// Try to convert x ** (1/4) and x ** (3/4) into square roots.
|
|
// x ** (1/2) is canonicalized to sqrt, so we do not bother with that case.
|
|
// TODO: This could be extended (using a target hook) to handle smaller
|
|
// power-of-2 fractional exponents.
|
|
bool ExponentIs025 = ExponentC->getValueAPF().isExactlyValue(0.25);
|
|
bool ExponentIs075 = ExponentC->getValueAPF().isExactlyValue(0.75);
|
|
if (ExponentIs025 || ExponentIs075) {
|
|
// pow(-0.0, 0.25) = +0.0; sqrt(sqrt(-0.0)) = -0.0.
|
|
// pow(-inf, 0.25) = +inf; sqrt(sqrt(-inf)) = NaN.
|
|
// pow(-0.0, 0.75) = +0.0; sqrt(-0.0) * sqrt(sqrt(-0.0)) = +0.0.
|
|
// pow(-inf, 0.75) = +inf; sqrt(-inf) * sqrt(sqrt(-inf)) = NaN.
|
|
// For regular numbers, rounding may cause the results to differ.
|
|
// Therefore, we require { nsz ninf afn } for this transform.
|
|
// TODO: We could select out the special cases if we don't have nsz/ninf.
|
|
SDNodeFlags Flags = N->getFlags();
|
|
|
|
// We only need no signed zeros for the 0.25 case.
|
|
if ((!Flags.hasNoSignedZeros() && ExponentIs025) || !Flags.hasNoInfs() ||
|
|
!Flags.hasApproximateFuncs())
|
|
return SDValue();
|
|
|
|
// Don't double the number of libcalls. We are trying to inline fast code.
|
|
if (!DAG.getTargetLoweringInfo().isOperationLegalOrCustom(ISD::FSQRT, VT))
|
|
return SDValue();
|
|
|
|
// Assume that libcalls are the smallest code.
|
|
// TODO: This restriction should probably be lifted for vectors.
|
|
if (ForCodeSize)
|
|
return SDValue();
|
|
|
|
// pow(X, 0.25) --> sqrt(sqrt(X))
|
|
SDLoc DL(N);
|
|
SDValue Sqrt = DAG.getNode(ISD::FSQRT, DL, VT, N->getOperand(0));
|
|
SDValue SqrtSqrt = DAG.getNode(ISD::FSQRT, DL, VT, Sqrt);
|
|
if (ExponentIs025)
|
|
return SqrtSqrt;
|
|
// pow(X, 0.75) --> sqrt(X) * sqrt(sqrt(X))
|
|
return DAG.getNode(ISD::FMUL, DL, VT, Sqrt, SqrtSqrt);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue foldFPToIntToFP(SDNode *N, SelectionDAG &DAG,
|
|
const TargetLowering &TLI) {
|
|
// This optimization is guarded by a function attribute because it may produce
|
|
// unexpected results. Ie, programs may be relying on the platform-specific
|
|
// undefined behavior when the float-to-int conversion overflows.
|
|
const Function &F = DAG.getMachineFunction().getFunction();
|
|
Attribute StrictOverflow = F.getFnAttribute("strict-float-cast-overflow");
|
|
if (StrictOverflow.getValueAsString().equals("false"))
|
|
return SDValue();
|
|
|
|
// We only do this if the target has legal ftrunc. Otherwise, we'd likely be
|
|
// replacing casts with a libcall. We also must be allowed to ignore -0.0
|
|
// because FTRUNC will return -0.0 for (-1.0, -0.0), but using integer
|
|
// conversions would return +0.0.
|
|
// FIXME: We should be able to use node-level FMF here.
|
|
// TODO: If strict math, should we use FABS (+ range check for signed cast)?
|
|
EVT VT = N->getValueType(0);
|
|
if (!TLI.isOperationLegal(ISD::FTRUNC, VT) ||
|
|
!DAG.getTarget().Options.NoSignedZerosFPMath)
|
|
return SDValue();
|
|
|
|
// fptosi/fptoui round towards zero, so converting from FP to integer and
|
|
// back is the same as an 'ftrunc': [us]itofp (fpto[us]i X) --> ftrunc X
|
|
SDValue N0 = N->getOperand(0);
|
|
if (N->getOpcode() == ISD::SINT_TO_FP && N0.getOpcode() == ISD::FP_TO_SINT &&
|
|
N0.getOperand(0).getValueType() == VT)
|
|
return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0));
|
|
|
|
if (N->getOpcode() == ISD::UINT_TO_FP && N0.getOpcode() == ISD::FP_TO_UINT &&
|
|
N0.getOperand(0).getValueType() == VT)
|
|
return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0.getOperand(0));
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitSINT_TO_FP(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
EVT OpVT = N0.getValueType();
|
|
|
|
// [us]itofp(undef) = 0, because the result value is bounded.
|
|
if (N0.isUndef())
|
|
return DAG.getConstantFP(0.0, SDLoc(N), VT);
|
|
|
|
// fold (sint_to_fp c1) -> c1fp
|
|
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
|
|
// ...but only if the target supports immediate floating-point values
|
|
(!LegalOperations ||
|
|
TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT)))
|
|
return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
|
|
|
|
// If the input is a legal type, and SINT_TO_FP is not legal on this target,
|
|
// but UINT_TO_FP is legal on this target, try to convert.
|
|
if (!hasOperation(ISD::SINT_TO_FP, OpVT) &&
|
|
hasOperation(ISD::UINT_TO_FP, OpVT)) {
|
|
// If the sign bit is known to be zero, we can change this to UINT_TO_FP.
|
|
if (DAG.SignBitIsZero(N0))
|
|
return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
|
|
}
|
|
|
|
// The next optimizations are desirable only if SELECT_CC can be lowered.
|
|
// fold (sint_to_fp (setcc x, y, cc)) -> (select (setcc x, y, cc), -1.0, 0.0)
|
|
if (N0.getOpcode() == ISD::SETCC && N0.getValueType() == MVT::i1 &&
|
|
!VT.isVector() &&
|
|
(!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) {
|
|
SDLoc DL(N);
|
|
return DAG.getSelect(DL, VT, N0, DAG.getConstantFP(-1.0, DL, VT),
|
|
DAG.getConstantFP(0.0, DL, VT));
|
|
}
|
|
|
|
// fold (sint_to_fp (zext (setcc x, y, cc))) ->
|
|
// (select (setcc x, y, cc), 1.0, 0.0)
|
|
if (N0.getOpcode() == ISD::ZERO_EXTEND &&
|
|
N0.getOperand(0).getOpcode() == ISD::SETCC && !VT.isVector() &&
|
|
(!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) {
|
|
SDLoc DL(N);
|
|
return DAG.getSelect(DL, VT, N0.getOperand(0),
|
|
DAG.getConstantFP(1.0, DL, VT),
|
|
DAG.getConstantFP(0.0, DL, VT));
|
|
}
|
|
|
|
if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI))
|
|
return FTrunc;
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitUINT_TO_FP(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
EVT OpVT = N0.getValueType();
|
|
|
|
// [us]itofp(undef) = 0, because the result value is bounded.
|
|
if (N0.isUndef())
|
|
return DAG.getConstantFP(0.0, SDLoc(N), VT);
|
|
|
|
// fold (uint_to_fp c1) -> c1fp
|
|
if (DAG.isConstantIntBuildVectorOrConstantInt(N0) &&
|
|
// ...but only if the target supports immediate floating-point values
|
|
(!LegalOperations ||
|
|
TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT)))
|
|
return DAG.getNode(ISD::UINT_TO_FP, SDLoc(N), VT, N0);
|
|
|
|
// If the input is a legal type, and UINT_TO_FP is not legal on this target,
|
|
// but SINT_TO_FP is legal on this target, try to convert.
|
|
if (!hasOperation(ISD::UINT_TO_FP, OpVT) &&
|
|
hasOperation(ISD::SINT_TO_FP, OpVT)) {
|
|
// If the sign bit is known to be zero, we can change this to SINT_TO_FP.
|
|
if (DAG.SignBitIsZero(N0))
|
|
return DAG.getNode(ISD::SINT_TO_FP, SDLoc(N), VT, N0);
|
|
}
|
|
|
|
// fold (uint_to_fp (setcc x, y, cc)) -> (select (setcc x, y, cc), 1.0, 0.0)
|
|
if (N0.getOpcode() == ISD::SETCC && !VT.isVector() &&
|
|
(!LegalOperations || TLI.isOperationLegalOrCustom(ISD::ConstantFP, VT))) {
|
|
SDLoc DL(N);
|
|
return DAG.getSelect(DL, VT, N0, DAG.getConstantFP(1.0, DL, VT),
|
|
DAG.getConstantFP(0.0, DL, VT));
|
|
}
|
|
|
|
if (SDValue FTrunc = foldFPToIntToFP(N, DAG, TLI))
|
|
return FTrunc;
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// Fold (fp_to_{s/u}int ({s/u}int_to_fpx)) -> zext x, sext x, trunc x, or x
|
|
static SDValue FoldIntToFPToInt(SDNode *N, SelectionDAG &DAG) {
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
if (N0.getOpcode() != ISD::UINT_TO_FP && N0.getOpcode() != ISD::SINT_TO_FP)
|
|
return SDValue();
|
|
|
|
SDValue Src = N0.getOperand(0);
|
|
EVT SrcVT = Src.getValueType();
|
|
bool IsInputSigned = N0.getOpcode() == ISD::SINT_TO_FP;
|
|
bool IsOutputSigned = N->getOpcode() == ISD::FP_TO_SINT;
|
|
|
|
// We can safely assume the conversion won't overflow the output range,
|
|
// because (for example) (uint8_t)18293.f is undefined behavior.
|
|
|
|
// Since we can assume the conversion won't overflow, our decision as to
|
|
// whether the input will fit in the float should depend on the minimum
|
|
// of the input range and output range.
|
|
|
|
// This means this is also safe for a signed input and unsigned output, since
|
|
// a negative input would lead to undefined behavior.
|
|
unsigned InputSize = (int)SrcVT.getScalarSizeInBits() - IsInputSigned;
|
|
unsigned OutputSize = (int)VT.getScalarSizeInBits() - IsOutputSigned;
|
|
unsigned ActualSize = std::min(InputSize, OutputSize);
|
|
const fltSemantics &sem = DAG.EVTToAPFloatSemantics(N0.getValueType());
|
|
|
|
// We can only fold away the float conversion if the input range can be
|
|
// represented exactly in the float range.
|
|
if (APFloat::semanticsPrecision(sem) >= ActualSize) {
|
|
if (VT.getScalarSizeInBits() > SrcVT.getScalarSizeInBits()) {
|
|
unsigned ExtOp = IsInputSigned && IsOutputSigned ? ISD::SIGN_EXTEND
|
|
: ISD::ZERO_EXTEND;
|
|
return DAG.getNode(ExtOp, SDLoc(N), VT, Src);
|
|
}
|
|
if (VT.getScalarSizeInBits() < SrcVT.getScalarSizeInBits())
|
|
return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, Src);
|
|
return DAG.getBitcast(VT, Src);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitFP_TO_SINT(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// fold (fp_to_sint undef) -> undef
|
|
if (N0.isUndef())
|
|
return DAG.getUNDEF(VT);
|
|
|
|
// fold (fp_to_sint c1fp) -> c1
|
|
if (DAG.isConstantFPBuildVectorOrConstantFP(N0))
|
|
return DAG.getNode(ISD::FP_TO_SINT, SDLoc(N), VT, N0);
|
|
|
|
return FoldIntToFPToInt(N, DAG);
|
|
}
|
|
|
|
SDValue DAGCombiner::visitFP_TO_UINT(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// fold (fp_to_uint undef) -> undef
|
|
if (N0.isUndef())
|
|
return DAG.getUNDEF(VT);
|
|
|
|
// fold (fp_to_uint c1fp) -> c1
|
|
if (DAG.isConstantFPBuildVectorOrConstantFP(N0))
|
|
return DAG.getNode(ISD::FP_TO_UINT, SDLoc(N), VT, N0);
|
|
|
|
return FoldIntToFPToInt(N, DAG);
|
|
}
|
|
|
|
SDValue DAGCombiner::visitFP_ROUND(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
ConstantFPSDNode *N0CFP = dyn_cast<ConstantFPSDNode>(N0);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// fold (fp_round c1fp) -> c1fp
|
|
if (N0CFP)
|
|
return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT, N0, N1);
|
|
|
|
// fold (fp_round (fp_extend x)) -> x
|
|
if (N0.getOpcode() == ISD::FP_EXTEND && VT == N0.getOperand(0).getValueType())
|
|
return N0.getOperand(0);
|
|
|
|
// fold (fp_round (fp_round x)) -> (fp_round x)
|
|
if (N0.getOpcode() == ISD::FP_ROUND) {
|
|
const bool NIsTrunc = N->getConstantOperandVal(1) == 1;
|
|
const bool N0IsTrunc = N0.getConstantOperandVal(1) == 1;
|
|
|
|
// Skip this folding if it results in an fp_round from f80 to f16.
|
|
//
|
|
// f80 to f16 always generates an expensive (and as yet, unimplemented)
|
|
// libcall to __truncxfhf2 instead of selecting native f16 conversion
|
|
// instructions from f32 or f64. Moreover, the first (value-preserving)
|
|
// fp_round from f80 to either f32 or f64 may become a NOP in platforms like
|
|
// x86.
|
|
if (N0.getOperand(0).getValueType() == MVT::f80 && VT == MVT::f16)
|
|
return SDValue();
|
|
|
|
// If the first fp_round isn't a value preserving truncation, it might
|
|
// introduce a tie in the second fp_round, that wouldn't occur in the
|
|
// single-step fp_round we want to fold to.
|
|
// In other words, double rounding isn't the same as rounding.
|
|
// Also, this is a value preserving truncation iff both fp_round's are.
|
|
if (DAG.getTarget().Options.UnsafeFPMath || N0IsTrunc) {
|
|
SDLoc DL(N);
|
|
return DAG.getNode(ISD::FP_ROUND, DL, VT, N0.getOperand(0),
|
|
DAG.getIntPtrConstant(NIsTrunc && N0IsTrunc, DL));
|
|
}
|
|
}
|
|
|
|
// fold (fp_round (copysign X, Y)) -> (copysign (fp_round X), Y)
|
|
if (N0.getOpcode() == ISD::FCOPYSIGN && N0.getNode()->hasOneUse()) {
|
|
SDValue Tmp = DAG.getNode(ISD::FP_ROUND, SDLoc(N0), VT,
|
|
N0.getOperand(0), N1);
|
|
AddToWorklist(Tmp.getNode());
|
|
return DAG.getNode(ISD::FCOPYSIGN, SDLoc(N), VT,
|
|
Tmp, N0.getOperand(1));
|
|
}
|
|
|
|
if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
|
|
return NewVSel;
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitFP_EXTEND(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// If this is fp_round(fpextend), don't fold it, allow ourselves to be folded.
|
|
if (N->hasOneUse() &&
|
|
N->use_begin()->getOpcode() == ISD::FP_ROUND)
|
|
return SDValue();
|
|
|
|
// fold (fp_extend c1fp) -> c1fp
|
|
if (DAG.isConstantFPBuildVectorOrConstantFP(N0))
|
|
return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, N0);
|
|
|
|
// fold (fp_extend (fp16_to_fp op)) -> (fp16_to_fp op)
|
|
if (N0.getOpcode() == ISD::FP16_TO_FP &&
|
|
TLI.getOperationAction(ISD::FP16_TO_FP, VT) == TargetLowering::Legal)
|
|
return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), VT, N0.getOperand(0));
|
|
|
|
// Turn fp_extend(fp_round(X, 1)) -> x since the fp_round doesn't affect the
|
|
// value of X.
|
|
if (N0.getOpcode() == ISD::FP_ROUND
|
|
&& N0.getConstantOperandVal(1) == 1) {
|
|
SDValue In = N0.getOperand(0);
|
|
if (In.getValueType() == VT) return In;
|
|
if (VT.bitsLT(In.getValueType()))
|
|
return DAG.getNode(ISD::FP_ROUND, SDLoc(N), VT,
|
|
In, N0.getOperand(1));
|
|
return DAG.getNode(ISD::FP_EXTEND, SDLoc(N), VT, In);
|
|
}
|
|
|
|
// fold (fpext (load x)) -> (fpext (fptrunc (extload x)))
|
|
if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
|
|
TLI.isLoadExtLegal(ISD::EXTLOAD, VT, N0.getValueType())) {
|
|
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
|
|
SDValue ExtLoad = DAG.getExtLoad(ISD::EXTLOAD, SDLoc(N), VT,
|
|
LN0->getChain(),
|
|
LN0->getBasePtr(), N0.getValueType(),
|
|
LN0->getMemOperand());
|
|
CombineTo(N, ExtLoad);
|
|
CombineTo(N0.getNode(),
|
|
DAG.getNode(ISD::FP_ROUND, SDLoc(N0),
|
|
N0.getValueType(), ExtLoad,
|
|
DAG.getIntPtrConstant(1, SDLoc(N0))),
|
|
ExtLoad.getValue(1));
|
|
return SDValue(N, 0); // Return N so it doesn't get rechecked!
|
|
}
|
|
|
|
if (SDValue NewVSel = matchVSelectOpSizesWithSetCC(N))
|
|
return NewVSel;
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitFCEIL(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// fold (fceil c1) -> fceil(c1)
|
|
if (DAG.isConstantFPBuildVectorOrConstantFP(N0))
|
|
return DAG.getNode(ISD::FCEIL, SDLoc(N), VT, N0);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitFTRUNC(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// fold (ftrunc c1) -> ftrunc(c1)
|
|
if (DAG.isConstantFPBuildVectorOrConstantFP(N0))
|
|
return DAG.getNode(ISD::FTRUNC, SDLoc(N), VT, N0);
|
|
|
|
// fold ftrunc (known rounded int x) -> x
|
|
// ftrunc is a part of fptosi/fptoui expansion on some targets, so this is
|
|
// likely to be generated to extract integer from a rounded floating value.
|
|
switch (N0.getOpcode()) {
|
|
default: break;
|
|
case ISD::FRINT:
|
|
case ISD::FTRUNC:
|
|
case ISD::FNEARBYINT:
|
|
case ISD::FFLOOR:
|
|
case ISD::FCEIL:
|
|
return N0;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitFFLOOR(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// fold (ffloor c1) -> ffloor(c1)
|
|
if (DAG.isConstantFPBuildVectorOrConstantFP(N0))
|
|
return DAG.getNode(ISD::FFLOOR, SDLoc(N), VT, N0);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitFNEG(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
SelectionDAG::FlagInserter FlagsInserter(DAG, N);
|
|
|
|
// Constant fold FNEG.
|
|
if (DAG.isConstantFPBuildVectorOrConstantFP(N0))
|
|
return DAG.getNode(ISD::FNEG, SDLoc(N), VT, N0);
|
|
|
|
if (SDValue NegN0 =
|
|
TLI.getNegatedExpression(N0, DAG, LegalOperations, ForCodeSize))
|
|
return NegN0;
|
|
|
|
// -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
|
|
// FIXME: This is duplicated in getNegatibleCost, but getNegatibleCost doesn't
|
|
// know it was called from a context with a nsz flag if the input fsub does
|
|
// not.
|
|
if (N0.getOpcode() == ISD::FSUB &&
|
|
(DAG.getTarget().Options.NoSignedZerosFPMath ||
|
|
N->getFlags().hasNoSignedZeros()) && N0.hasOneUse()) {
|
|
return DAG.getNode(ISD::FSUB, SDLoc(N), VT, N0.getOperand(1),
|
|
N0.getOperand(0));
|
|
}
|
|
|
|
if (SDValue Cast = foldSignChangeInBitcast(N))
|
|
return Cast;
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue visitFMinMax(SelectionDAG &DAG, SDNode *N,
|
|
APFloat (*Op)(const APFloat &, const APFloat &)) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
EVT VT = N->getValueType(0);
|
|
const ConstantFPSDNode *N0CFP = isConstOrConstSplatFP(N0);
|
|
const ConstantFPSDNode *N1CFP = isConstOrConstSplatFP(N1);
|
|
const SDNodeFlags Flags = N->getFlags();
|
|
unsigned Opc = N->getOpcode();
|
|
bool PropagatesNaN = Opc == ISD::FMINIMUM || Opc == ISD::FMAXIMUM;
|
|
bool IsMin = Opc == ISD::FMINNUM || Opc == ISD::FMINIMUM;
|
|
SelectionDAG::FlagInserter FlagsInserter(DAG, N);
|
|
|
|
if (N0CFP && N1CFP) {
|
|
const APFloat &C0 = N0CFP->getValueAPF();
|
|
const APFloat &C1 = N1CFP->getValueAPF();
|
|
return DAG.getConstantFP(Op(C0, C1), SDLoc(N), VT);
|
|
}
|
|
|
|
// Canonicalize to constant on RHS.
|
|
if (DAG.isConstantFPBuildVectorOrConstantFP(N0) &&
|
|
!DAG.isConstantFPBuildVectorOrConstantFP(N1))
|
|
return DAG.getNode(N->getOpcode(), SDLoc(N), VT, N1, N0);
|
|
|
|
if (N1CFP) {
|
|
const APFloat &AF = N1CFP->getValueAPF();
|
|
|
|
// minnum(X, nan) -> X
|
|
// maxnum(X, nan) -> X
|
|
// minimum(X, nan) -> nan
|
|
// maximum(X, nan) -> nan
|
|
if (AF.isNaN())
|
|
return PropagatesNaN ? N->getOperand(1) : N->getOperand(0);
|
|
|
|
// In the following folds, inf can be replaced with the largest finite
|
|
// float, if the ninf flag is set.
|
|
if (AF.isInfinity() || (Flags.hasNoInfs() && AF.isLargest())) {
|
|
// minnum(X, -inf) -> -inf
|
|
// maxnum(X, +inf) -> +inf
|
|
// minimum(X, -inf) -> -inf if nnan
|
|
// maximum(X, +inf) -> +inf if nnan
|
|
if (IsMin == AF.isNegative() && (!PropagatesNaN || Flags.hasNoNaNs()))
|
|
return N->getOperand(1);
|
|
|
|
// minnum(X, +inf) -> X if nnan
|
|
// maxnum(X, -inf) -> X if nnan
|
|
// minimum(X, +inf) -> X
|
|
// maximum(X, -inf) -> X
|
|
if (IsMin != AF.isNegative() && (PropagatesNaN || Flags.hasNoNaNs()))
|
|
return N->getOperand(0);
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitFMINNUM(SDNode *N) {
|
|
return visitFMinMax(DAG, N, minnum);
|
|
}
|
|
|
|
SDValue DAGCombiner::visitFMAXNUM(SDNode *N) {
|
|
return visitFMinMax(DAG, N, maxnum);
|
|
}
|
|
|
|
SDValue DAGCombiner::visitFMINIMUM(SDNode *N) {
|
|
return visitFMinMax(DAG, N, minimum);
|
|
}
|
|
|
|
SDValue DAGCombiner::visitFMAXIMUM(SDNode *N) {
|
|
return visitFMinMax(DAG, N, maximum);
|
|
}
|
|
|
|
SDValue DAGCombiner::visitFABS(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// fold (fabs c1) -> fabs(c1)
|
|
if (DAG.isConstantFPBuildVectorOrConstantFP(N0))
|
|
return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0);
|
|
|
|
// fold (fabs (fabs x)) -> (fabs x)
|
|
if (N0.getOpcode() == ISD::FABS)
|
|
return N->getOperand(0);
|
|
|
|
// fold (fabs (fneg x)) -> (fabs x)
|
|
// fold (fabs (fcopysign x, y)) -> (fabs x)
|
|
if (N0.getOpcode() == ISD::FNEG || N0.getOpcode() == ISD::FCOPYSIGN)
|
|
return DAG.getNode(ISD::FABS, SDLoc(N), VT, N0.getOperand(0));
|
|
|
|
if (SDValue Cast = foldSignChangeInBitcast(N))
|
|
return Cast;
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitBRCOND(SDNode *N) {
|
|
SDValue Chain = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
SDValue N2 = N->getOperand(2);
|
|
|
|
// BRCOND(FREEZE(cond)) is equivalent to BRCOND(cond) (both are
|
|
// nondeterministic jumps).
|
|
if (N1->getOpcode() == ISD::FREEZE && N1.hasOneUse()) {
|
|
return DAG.getNode(ISD::BRCOND, SDLoc(N), MVT::Other, Chain,
|
|
N1->getOperand(0), N2);
|
|
}
|
|
|
|
// If N is a constant we could fold this into a fallthrough or unconditional
|
|
// branch. However that doesn't happen very often in normal code, because
|
|
// Instcombine/SimplifyCFG should have handled the available opportunities.
|
|
// If we did this folding here, it would be necessary to update the
|
|
// MachineBasicBlock CFG, which is awkward.
|
|
|
|
// fold a brcond with a setcc condition into a BR_CC node if BR_CC is legal
|
|
// on the target.
|
|
if (N1.getOpcode() == ISD::SETCC &&
|
|
TLI.isOperationLegalOrCustom(ISD::BR_CC,
|
|
N1.getOperand(0).getValueType())) {
|
|
return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
|
|
Chain, N1.getOperand(2),
|
|
N1.getOperand(0), N1.getOperand(1), N2);
|
|
}
|
|
|
|
if (N1.hasOneUse()) {
|
|
// rebuildSetCC calls visitXor which may change the Chain when there is a
|
|
// STRICT_FSETCC/STRICT_FSETCCS involved. Use a handle to track changes.
|
|
HandleSDNode ChainHandle(Chain);
|
|
if (SDValue NewN1 = rebuildSetCC(N1))
|
|
return DAG.getNode(ISD::BRCOND, SDLoc(N), MVT::Other,
|
|
ChainHandle.getValue(), NewN1, N2);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::rebuildSetCC(SDValue N) {
|
|
if (N.getOpcode() == ISD::SRL ||
|
|
(N.getOpcode() == ISD::TRUNCATE &&
|
|
(N.getOperand(0).hasOneUse() &&
|
|
N.getOperand(0).getOpcode() == ISD::SRL))) {
|
|
// Look pass the truncate.
|
|
if (N.getOpcode() == ISD::TRUNCATE)
|
|
N = N.getOperand(0);
|
|
|
|
// Match this pattern so that we can generate simpler code:
|
|
//
|
|
// %a = ...
|
|
// %b = and i32 %a, 2
|
|
// %c = srl i32 %b, 1
|
|
// brcond i32 %c ...
|
|
//
|
|
// into
|
|
//
|
|
// %a = ...
|
|
// %b = and i32 %a, 2
|
|
// %c = setcc eq %b, 0
|
|
// brcond %c ...
|
|
//
|
|
// This applies only when the AND constant value has one bit set and the
|
|
// SRL constant is equal to the log2 of the AND constant. The back-end is
|
|
// smart enough to convert the result into a TEST/JMP sequence.
|
|
SDValue Op0 = N.getOperand(0);
|
|
SDValue Op1 = N.getOperand(1);
|
|
|
|
if (Op0.getOpcode() == ISD::AND && Op1.getOpcode() == ISD::Constant) {
|
|
SDValue AndOp1 = Op0.getOperand(1);
|
|
|
|
if (AndOp1.getOpcode() == ISD::Constant) {
|
|
const APInt &AndConst = cast<ConstantSDNode>(AndOp1)->getAPIntValue();
|
|
|
|
if (AndConst.isPowerOf2() &&
|
|
cast<ConstantSDNode>(Op1)->getAPIntValue() == AndConst.logBase2()) {
|
|
SDLoc DL(N);
|
|
return DAG.getSetCC(DL, getSetCCResultType(Op0.getValueType()),
|
|
Op0, DAG.getConstant(0, DL, Op0.getValueType()),
|
|
ISD::SETNE);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Transform (brcond (xor x, y)) -> (brcond (setcc, x, y, ne))
|
|
// Transform (brcond (xor (xor x, y), -1)) -> (brcond (setcc, x, y, eq))
|
|
if (N.getOpcode() == ISD::XOR) {
|
|
// Because we may call this on a speculatively constructed
|
|
// SimplifiedSetCC Node, we need to simplify this node first.
|
|
// Ideally this should be folded into SimplifySetCC and not
|
|
// here. For now, grab a handle to N so we don't lose it from
|
|
// replacements interal to the visit.
|
|
HandleSDNode XORHandle(N);
|
|
while (N.getOpcode() == ISD::XOR) {
|
|
SDValue Tmp = visitXOR(N.getNode());
|
|
// No simplification done.
|
|
if (!Tmp.getNode())
|
|
break;
|
|
// Returning N is form in-visit replacement that may invalidated
|
|
// N. Grab value from Handle.
|
|
if (Tmp.getNode() == N.getNode())
|
|
N = XORHandle.getValue();
|
|
else // Node simplified. Try simplifying again.
|
|
N = Tmp;
|
|
}
|
|
|
|
if (N.getOpcode() != ISD::XOR)
|
|
return N;
|
|
|
|
SDValue Op0 = N->getOperand(0);
|
|
SDValue Op1 = N->getOperand(1);
|
|
|
|
if (Op0.getOpcode() != ISD::SETCC && Op1.getOpcode() != ISD::SETCC) {
|
|
bool Equal = false;
|
|
// (brcond (xor (xor x, y), -1)) -> (brcond (setcc x, y, eq))
|
|
if (isBitwiseNot(N) && Op0.hasOneUse() && Op0.getOpcode() == ISD::XOR &&
|
|
Op0.getValueType() == MVT::i1) {
|
|
N = Op0;
|
|
Op0 = N->getOperand(0);
|
|
Op1 = N->getOperand(1);
|
|
Equal = true;
|
|
}
|
|
|
|
EVT SetCCVT = N.getValueType();
|
|
if (LegalTypes)
|
|
SetCCVT = getSetCCResultType(SetCCVT);
|
|
// Replace the uses of XOR with SETCC
|
|
return DAG.getSetCC(SDLoc(N), SetCCVT, Op0, Op1,
|
|
Equal ? ISD::SETEQ : ISD::SETNE);
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// Operand List for BR_CC: Chain, CondCC, CondLHS, CondRHS, DestBB.
|
|
//
|
|
SDValue DAGCombiner::visitBR_CC(SDNode *N) {
|
|
CondCodeSDNode *CC = cast<CondCodeSDNode>(N->getOperand(1));
|
|
SDValue CondLHS = N->getOperand(2), CondRHS = N->getOperand(3);
|
|
|
|
// If N is a constant we could fold this into a fallthrough or unconditional
|
|
// branch. However that doesn't happen very often in normal code, because
|
|
// Instcombine/SimplifyCFG should have handled the available opportunities.
|
|
// If we did this folding here, it would be necessary to update the
|
|
// MachineBasicBlock CFG, which is awkward.
|
|
|
|
// Use SimplifySetCC to simplify SETCC's.
|
|
SDValue Simp = SimplifySetCC(getSetCCResultType(CondLHS.getValueType()),
|
|
CondLHS, CondRHS, CC->get(), SDLoc(N),
|
|
false);
|
|
if (Simp.getNode()) AddToWorklist(Simp.getNode());
|
|
|
|
// fold to a simpler setcc
|
|
if (Simp.getNode() && Simp.getOpcode() == ISD::SETCC)
|
|
return DAG.getNode(ISD::BR_CC, SDLoc(N), MVT::Other,
|
|
N->getOperand(0), Simp.getOperand(2),
|
|
Simp.getOperand(0), Simp.getOperand(1),
|
|
N->getOperand(4));
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static bool getCombineLoadStoreParts(SDNode *N, unsigned Inc, unsigned Dec,
|
|
bool &IsLoad, bool &IsMasked, SDValue &Ptr,
|
|
const TargetLowering &TLI) {
|
|
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
|
|
if (LD->isIndexed())
|
|
return false;
|
|
EVT VT = LD->getMemoryVT();
|
|
if (!TLI.isIndexedLoadLegal(Inc, VT) && !TLI.isIndexedLoadLegal(Dec, VT))
|
|
return false;
|
|
Ptr = LD->getBasePtr();
|
|
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
|
|
if (ST->isIndexed())
|
|
return false;
|
|
EVT VT = ST->getMemoryVT();
|
|
if (!TLI.isIndexedStoreLegal(Inc, VT) && !TLI.isIndexedStoreLegal(Dec, VT))
|
|
return false;
|
|
Ptr = ST->getBasePtr();
|
|
IsLoad = false;
|
|
} else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(N)) {
|
|
if (LD->isIndexed())
|
|
return false;
|
|
EVT VT = LD->getMemoryVT();
|
|
if (!TLI.isIndexedMaskedLoadLegal(Inc, VT) &&
|
|
!TLI.isIndexedMaskedLoadLegal(Dec, VT))
|
|
return false;
|
|
Ptr = LD->getBasePtr();
|
|
IsMasked = true;
|
|
} else if (MaskedStoreSDNode *ST = dyn_cast<MaskedStoreSDNode>(N)) {
|
|
if (ST->isIndexed())
|
|
return false;
|
|
EVT VT = ST->getMemoryVT();
|
|
if (!TLI.isIndexedMaskedStoreLegal(Inc, VT) &&
|
|
!TLI.isIndexedMaskedStoreLegal(Dec, VT))
|
|
return false;
|
|
Ptr = ST->getBasePtr();
|
|
IsLoad = false;
|
|
IsMasked = true;
|
|
} else {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Try turning a load/store into a pre-indexed load/store when the base
|
|
/// pointer is an add or subtract and it has other uses besides the load/store.
|
|
/// After the transformation, the new indexed load/store has effectively folded
|
|
/// the add/subtract in and all of its other uses are redirected to the
|
|
/// new load/store.
|
|
bool DAGCombiner::CombineToPreIndexedLoadStore(SDNode *N) {
|
|
if (Level < AfterLegalizeDAG)
|
|
return false;
|
|
|
|
bool IsLoad = true;
|
|
bool IsMasked = false;
|
|
SDValue Ptr;
|
|
if (!getCombineLoadStoreParts(N, ISD::PRE_INC, ISD::PRE_DEC, IsLoad, IsMasked,
|
|
Ptr, TLI))
|
|
return false;
|
|
|
|
// If the pointer is not an add/sub, or if it doesn't have multiple uses, bail
|
|
// out. There is no reason to make this a preinc/predec.
|
|
if ((Ptr.getOpcode() != ISD::ADD && Ptr.getOpcode() != ISD::SUB) ||
|
|
Ptr.getNode()->hasOneUse())
|
|
return false;
|
|
|
|
// Ask the target to do addressing mode selection.
|
|
SDValue BasePtr;
|
|
SDValue Offset;
|
|
ISD::MemIndexedMode AM = ISD::UNINDEXED;
|
|
if (!TLI.getPreIndexedAddressParts(N, BasePtr, Offset, AM, DAG))
|
|
return false;
|
|
|
|
// Backends without true r+i pre-indexed forms may need to pass a
|
|
// constant base with a variable offset so that constant coercion
|
|
// will work with the patterns in canonical form.
|
|
bool Swapped = false;
|
|
if (isa<ConstantSDNode>(BasePtr)) {
|
|
std::swap(BasePtr, Offset);
|
|
Swapped = true;
|
|
}
|
|
|
|
// Don't create a indexed load / store with zero offset.
|
|
if (isNullConstant(Offset))
|
|
return false;
|
|
|
|
// Try turning it into a pre-indexed load / store except when:
|
|
// 1) The new base ptr is a frame index.
|
|
// 2) If N is a store and the new base ptr is either the same as or is a
|
|
// predecessor of the value being stored.
|
|
// 3) Another use of old base ptr is a predecessor of N. If ptr is folded
|
|
// that would create a cycle.
|
|
// 4) All uses are load / store ops that use it as old base ptr.
|
|
|
|
// Check #1. Preinc'ing a frame index would require copying the stack pointer
|
|
// (plus the implicit offset) to a register to preinc anyway.
|
|
if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
|
|
return false;
|
|
|
|
// Check #2.
|
|
if (!IsLoad) {
|
|
SDValue Val = IsMasked ? cast<MaskedStoreSDNode>(N)->getValue()
|
|
: cast<StoreSDNode>(N)->getValue();
|
|
|
|
// Would require a copy.
|
|
if (Val == BasePtr)
|
|
return false;
|
|
|
|
// Would create a cycle.
|
|
if (Val == Ptr || Ptr->isPredecessorOf(Val.getNode()))
|
|
return false;
|
|
}
|
|
|
|
// Caches for hasPredecessorHelper.
|
|
SmallPtrSet<const SDNode *, 32> Visited;
|
|
SmallVector<const SDNode *, 16> Worklist;
|
|
Worklist.push_back(N);
|
|
|
|
// If the offset is a constant, there may be other adds of constants that
|
|
// can be folded with this one. We should do this to avoid having to keep
|
|
// a copy of the original base pointer.
|
|
SmallVector<SDNode *, 16> OtherUses;
|
|
if (isa<ConstantSDNode>(Offset))
|
|
for (SDNode::use_iterator UI = BasePtr.getNode()->use_begin(),
|
|
UE = BasePtr.getNode()->use_end();
|
|
UI != UE; ++UI) {
|
|
SDUse &Use = UI.getUse();
|
|
// Skip the use that is Ptr and uses of other results from BasePtr's
|
|
// node (important for nodes that return multiple results).
|
|
if (Use.getUser() == Ptr.getNode() || Use != BasePtr)
|
|
continue;
|
|
|
|
if (SDNode::hasPredecessorHelper(Use.getUser(), Visited, Worklist))
|
|
continue;
|
|
|
|
if (Use.getUser()->getOpcode() != ISD::ADD &&
|
|
Use.getUser()->getOpcode() != ISD::SUB) {
|
|
OtherUses.clear();
|
|
break;
|
|
}
|
|
|
|
SDValue Op1 = Use.getUser()->getOperand((UI.getOperandNo() + 1) & 1);
|
|
if (!isa<ConstantSDNode>(Op1)) {
|
|
OtherUses.clear();
|
|
break;
|
|
}
|
|
|
|
// FIXME: In some cases, we can be smarter about this.
|
|
if (Op1.getValueType() != Offset.getValueType()) {
|
|
OtherUses.clear();
|
|
break;
|
|
}
|
|
|
|
OtherUses.push_back(Use.getUser());
|
|
}
|
|
|
|
if (Swapped)
|
|
std::swap(BasePtr, Offset);
|
|
|
|
// Now check for #3 and #4.
|
|
bool RealUse = false;
|
|
|
|
for (SDNode *Use : Ptr.getNode()->uses()) {
|
|
if (Use == N)
|
|
continue;
|
|
if (SDNode::hasPredecessorHelper(Use, Visited, Worklist))
|
|
return false;
|
|
|
|
// If Ptr may be folded in addressing mode of other use, then it's
|
|
// not profitable to do this transformation.
|
|
if (!canFoldInAddressingMode(Ptr.getNode(), Use, DAG, TLI))
|
|
RealUse = true;
|
|
}
|
|
|
|
if (!RealUse)
|
|
return false;
|
|
|
|
SDValue Result;
|
|
if (!IsMasked) {
|
|
if (IsLoad)
|
|
Result = DAG.getIndexedLoad(SDValue(N, 0), SDLoc(N), BasePtr, Offset, AM);
|
|
else
|
|
Result =
|
|
DAG.getIndexedStore(SDValue(N, 0), SDLoc(N), BasePtr, Offset, AM);
|
|
} else {
|
|
if (IsLoad)
|
|
Result = DAG.getIndexedMaskedLoad(SDValue(N, 0), SDLoc(N), BasePtr,
|
|
Offset, AM);
|
|
else
|
|
Result = DAG.getIndexedMaskedStore(SDValue(N, 0), SDLoc(N), BasePtr,
|
|
Offset, AM);
|
|
}
|
|
++PreIndexedNodes;
|
|
++NodesCombined;
|
|
LLVM_DEBUG(dbgs() << "\nReplacing.4 "; N->dump(&DAG); dbgs() << "\nWith: ";
|
|
Result.getNode()->dump(&DAG); dbgs() << '\n');
|
|
WorklistRemover DeadNodes(*this);
|
|
if (IsLoad) {
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
|
|
} else {
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
|
|
}
|
|
|
|
// Finally, since the node is now dead, remove it from the graph.
|
|
deleteAndRecombine(N);
|
|
|
|
if (Swapped)
|
|
std::swap(BasePtr, Offset);
|
|
|
|
// Replace other uses of BasePtr that can be updated to use Ptr
|
|
for (unsigned i = 0, e = OtherUses.size(); i != e; ++i) {
|
|
unsigned OffsetIdx = 1;
|
|
if (OtherUses[i]->getOperand(OffsetIdx).getNode() == BasePtr.getNode())
|
|
OffsetIdx = 0;
|
|
assert(OtherUses[i]->getOperand(!OffsetIdx).getNode() ==
|
|
BasePtr.getNode() && "Expected BasePtr operand");
|
|
|
|
// We need to replace ptr0 in the following expression:
|
|
// x0 * offset0 + y0 * ptr0 = t0
|
|
// knowing that
|
|
// x1 * offset1 + y1 * ptr0 = t1 (the indexed load/store)
|
|
//
|
|
// where x0, x1, y0 and y1 in {-1, 1} are given by the types of the
|
|
// indexed load/store and the expression that needs to be re-written.
|
|
//
|
|
// Therefore, we have:
|
|
// t0 = (x0 * offset0 - x1 * y0 * y1 *offset1) + (y0 * y1) * t1
|
|
|
|
auto *CN = cast<ConstantSDNode>(OtherUses[i]->getOperand(OffsetIdx));
|
|
const APInt &Offset0 = CN->getAPIntValue();
|
|
const APInt &Offset1 = cast<ConstantSDNode>(Offset)->getAPIntValue();
|
|
int X0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 1) ? -1 : 1;
|
|
int Y0 = (OtherUses[i]->getOpcode() == ISD::SUB && OffsetIdx == 0) ? -1 : 1;
|
|
int X1 = (AM == ISD::PRE_DEC && !Swapped) ? -1 : 1;
|
|
int Y1 = (AM == ISD::PRE_DEC && Swapped) ? -1 : 1;
|
|
|
|
unsigned Opcode = (Y0 * Y1 < 0) ? ISD::SUB : ISD::ADD;
|
|
|
|
APInt CNV = Offset0;
|
|
if (X0 < 0) CNV = -CNV;
|
|
if (X1 * Y0 * Y1 < 0) CNV = CNV + Offset1;
|
|
else CNV = CNV - Offset1;
|
|
|
|
SDLoc DL(OtherUses[i]);
|
|
|
|
// We can now generate the new expression.
|
|
SDValue NewOp1 = DAG.getConstant(CNV, DL, CN->getValueType(0));
|
|
SDValue NewOp2 = Result.getValue(IsLoad ? 1 : 0);
|
|
|
|
SDValue NewUse = DAG.getNode(Opcode,
|
|
DL,
|
|
OtherUses[i]->getValueType(0), NewOp1, NewOp2);
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(OtherUses[i], 0), NewUse);
|
|
deleteAndRecombine(OtherUses[i]);
|
|
}
|
|
|
|
// Replace the uses of Ptr with uses of the updated base value.
|
|
DAG.ReplaceAllUsesOfValueWith(Ptr, Result.getValue(IsLoad ? 1 : 0));
|
|
deleteAndRecombine(Ptr.getNode());
|
|
AddToWorklist(Result.getNode());
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool shouldCombineToPostInc(SDNode *N, SDValue Ptr, SDNode *PtrUse,
|
|
SDValue &BasePtr, SDValue &Offset,
|
|
ISD::MemIndexedMode &AM,
|
|
SelectionDAG &DAG,
|
|
const TargetLowering &TLI) {
|
|
if (PtrUse == N ||
|
|
(PtrUse->getOpcode() != ISD::ADD && PtrUse->getOpcode() != ISD::SUB))
|
|
return false;
|
|
|
|
if (!TLI.getPostIndexedAddressParts(N, PtrUse, BasePtr, Offset, AM, DAG))
|
|
return false;
|
|
|
|
// Don't create a indexed load / store with zero offset.
|
|
if (isNullConstant(Offset))
|
|
return false;
|
|
|
|
if (isa<FrameIndexSDNode>(BasePtr) || isa<RegisterSDNode>(BasePtr))
|
|
return false;
|
|
|
|
SmallPtrSet<const SDNode *, 32> Visited;
|
|
for (SDNode *Use : BasePtr.getNode()->uses()) {
|
|
if (Use == Ptr.getNode())
|
|
continue;
|
|
|
|
// No if there's a later user which could perform the index instead.
|
|
if (isa<MemSDNode>(Use)) {
|
|
bool IsLoad = true;
|
|
bool IsMasked = false;
|
|
SDValue OtherPtr;
|
|
if (getCombineLoadStoreParts(Use, ISD::POST_INC, ISD::POST_DEC, IsLoad,
|
|
IsMasked, OtherPtr, TLI)) {
|
|
SmallVector<const SDNode *, 2> Worklist;
|
|
Worklist.push_back(Use);
|
|
if (SDNode::hasPredecessorHelper(N, Visited, Worklist))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// If all the uses are load / store addresses, then don't do the
|
|
// transformation.
|
|
if (Use->getOpcode() == ISD::ADD || Use->getOpcode() == ISD::SUB) {
|
|
for (SDNode *UseUse : Use->uses())
|
|
if (canFoldInAddressingMode(Use, UseUse, DAG, TLI))
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static SDNode *getPostIndexedLoadStoreOp(SDNode *N, bool &IsLoad,
|
|
bool &IsMasked, SDValue &Ptr,
|
|
SDValue &BasePtr, SDValue &Offset,
|
|
ISD::MemIndexedMode &AM,
|
|
SelectionDAG &DAG,
|
|
const TargetLowering &TLI) {
|
|
if (!getCombineLoadStoreParts(N, ISD::POST_INC, ISD::POST_DEC, IsLoad,
|
|
IsMasked, Ptr, TLI) ||
|
|
Ptr.getNode()->hasOneUse())
|
|
return nullptr;
|
|
|
|
// Try turning it into a post-indexed load / store except when
|
|
// 1) All uses are load / store ops that use it as base ptr (and
|
|
// it may be folded as addressing mmode).
|
|
// 2) Op must be independent of N, i.e. Op is neither a predecessor
|
|
// nor a successor of N. Otherwise, if Op is folded that would
|
|
// create a cycle.
|
|
for (SDNode *Op : Ptr->uses()) {
|
|
// Check for #1.
|
|
if (!shouldCombineToPostInc(N, Ptr, Op, BasePtr, Offset, AM, DAG, TLI))
|
|
continue;
|
|
|
|
// Check for #2.
|
|
SmallPtrSet<const SDNode *, 32> Visited;
|
|
SmallVector<const SDNode *, 8> Worklist;
|
|
// Ptr is predecessor to both N and Op.
|
|
Visited.insert(Ptr.getNode());
|
|
Worklist.push_back(N);
|
|
Worklist.push_back(Op);
|
|
if (!SDNode::hasPredecessorHelper(N, Visited, Worklist) &&
|
|
!SDNode::hasPredecessorHelper(Op, Visited, Worklist))
|
|
return Op;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/// Try to combine a load/store with a add/sub of the base pointer node into a
|
|
/// post-indexed load/store. The transformation folded the add/subtract into the
|
|
/// new indexed load/store effectively and all of its uses are redirected to the
|
|
/// new load/store.
|
|
bool DAGCombiner::CombineToPostIndexedLoadStore(SDNode *N) {
|
|
if (Level < AfterLegalizeDAG)
|
|
return false;
|
|
|
|
bool IsLoad = true;
|
|
bool IsMasked = false;
|
|
SDValue Ptr;
|
|
SDValue BasePtr;
|
|
SDValue Offset;
|
|
ISD::MemIndexedMode AM = ISD::UNINDEXED;
|
|
SDNode *Op = getPostIndexedLoadStoreOp(N, IsLoad, IsMasked, Ptr, BasePtr,
|
|
Offset, AM, DAG, TLI);
|
|
if (!Op)
|
|
return false;
|
|
|
|
SDValue Result;
|
|
if (!IsMasked)
|
|
Result = IsLoad ? DAG.getIndexedLoad(SDValue(N, 0), SDLoc(N), BasePtr,
|
|
Offset, AM)
|
|
: DAG.getIndexedStore(SDValue(N, 0), SDLoc(N),
|
|
BasePtr, Offset, AM);
|
|
else
|
|
Result = IsLoad ? DAG.getIndexedMaskedLoad(SDValue(N, 0), SDLoc(N),
|
|
BasePtr, Offset, AM)
|
|
: DAG.getIndexedMaskedStore(SDValue(N, 0), SDLoc(N),
|
|
BasePtr, Offset, AM);
|
|
++PostIndexedNodes;
|
|
++NodesCombined;
|
|
LLVM_DEBUG(dbgs() << "\nReplacing.5 "; N->dump(&DAG);
|
|
dbgs() << "\nWith: "; Result.getNode()->dump(&DAG);
|
|
dbgs() << '\n');
|
|
WorklistRemover DeadNodes(*this);
|
|
if (IsLoad) {
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(0));
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Result.getValue(2));
|
|
} else {
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Result.getValue(1));
|
|
}
|
|
|
|
// Finally, since the node is now dead, remove it from the graph.
|
|
deleteAndRecombine(N);
|
|
|
|
// Replace the uses of Use with uses of the updated base value.
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(Op, 0),
|
|
Result.getValue(IsLoad ? 1 : 0));
|
|
deleteAndRecombine(Op);
|
|
return true;
|
|
}
|
|
|
|
/// Return the base-pointer arithmetic from an indexed \p LD.
|
|
SDValue DAGCombiner::SplitIndexingFromLoad(LoadSDNode *LD) {
|
|
ISD::MemIndexedMode AM = LD->getAddressingMode();
|
|
assert(AM != ISD::UNINDEXED);
|
|
SDValue BP = LD->getOperand(1);
|
|
SDValue Inc = LD->getOperand(2);
|
|
|
|
// Some backends use TargetConstants for load offsets, but don't expect
|
|
// TargetConstants in general ADD nodes. We can convert these constants into
|
|
// regular Constants (if the constant is not opaque).
|
|
assert((Inc.getOpcode() != ISD::TargetConstant ||
|
|
!cast<ConstantSDNode>(Inc)->isOpaque()) &&
|
|
"Cannot split out indexing using opaque target constants");
|
|
if (Inc.getOpcode() == ISD::TargetConstant) {
|
|
ConstantSDNode *ConstInc = cast<ConstantSDNode>(Inc);
|
|
Inc = DAG.getConstant(*ConstInc->getConstantIntValue(), SDLoc(Inc),
|
|
ConstInc->getValueType(0));
|
|
}
|
|
|
|
unsigned Opc =
|
|
(AM == ISD::PRE_INC || AM == ISD::POST_INC ? ISD::ADD : ISD::SUB);
|
|
return DAG.getNode(Opc, SDLoc(LD), BP.getSimpleValueType(), BP, Inc);
|
|
}
|
|
|
|
static inline ElementCount numVectorEltsOrZero(EVT T) {
|
|
return T.isVector() ? T.getVectorElementCount() : ElementCount::getFixed(0);
|
|
}
|
|
|
|
bool DAGCombiner::getTruncatedStoreValue(StoreSDNode *ST, SDValue &Val) {
|
|
Val = ST->getValue();
|
|
EVT STType = Val.getValueType();
|
|
EVT STMemType = ST->getMemoryVT();
|
|
if (STType == STMemType)
|
|
return true;
|
|
if (isTypeLegal(STMemType))
|
|
return false; // fail.
|
|
if (STType.isFloatingPoint() && STMemType.isFloatingPoint() &&
|
|
TLI.isOperationLegal(ISD::FTRUNC, STMemType)) {
|
|
Val = DAG.getNode(ISD::FTRUNC, SDLoc(ST), STMemType, Val);
|
|
return true;
|
|
}
|
|
if (numVectorEltsOrZero(STType) == numVectorEltsOrZero(STMemType) &&
|
|
STType.isInteger() && STMemType.isInteger()) {
|
|
Val = DAG.getNode(ISD::TRUNCATE, SDLoc(ST), STMemType, Val);
|
|
return true;
|
|
}
|
|
if (STType.getSizeInBits() == STMemType.getSizeInBits()) {
|
|
Val = DAG.getBitcast(STMemType, Val);
|
|
return true;
|
|
}
|
|
return false; // fail.
|
|
}
|
|
|
|
bool DAGCombiner::extendLoadedValueToExtension(LoadSDNode *LD, SDValue &Val) {
|
|
EVT LDMemType = LD->getMemoryVT();
|
|
EVT LDType = LD->getValueType(0);
|
|
assert(Val.getValueType() == LDMemType &&
|
|
"Attempting to extend value of non-matching type");
|
|
if (LDType == LDMemType)
|
|
return true;
|
|
if (LDMemType.isInteger() && LDType.isInteger()) {
|
|
switch (LD->getExtensionType()) {
|
|
case ISD::NON_EXTLOAD:
|
|
Val = DAG.getBitcast(LDType, Val);
|
|
return true;
|
|
case ISD::EXTLOAD:
|
|
Val = DAG.getNode(ISD::ANY_EXTEND, SDLoc(LD), LDType, Val);
|
|
return true;
|
|
case ISD::SEXTLOAD:
|
|
Val = DAG.getNode(ISD::SIGN_EXTEND, SDLoc(LD), LDType, Val);
|
|
return true;
|
|
case ISD::ZEXTLOAD:
|
|
Val = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(LD), LDType, Val);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
SDValue DAGCombiner::ForwardStoreValueToDirectLoad(LoadSDNode *LD) {
|
|
if (OptLevel == CodeGenOpt::None || !LD->isSimple())
|
|
return SDValue();
|
|
SDValue Chain = LD->getOperand(0);
|
|
StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain.getNode());
|
|
// TODO: Relax this restriction for unordered atomics (see D66309)
|
|
if (!ST || !ST->isSimple())
|
|
return SDValue();
|
|
|
|
EVT LDType = LD->getValueType(0);
|
|
EVT LDMemType = LD->getMemoryVT();
|
|
EVT STMemType = ST->getMemoryVT();
|
|
EVT STType = ST->getValue().getValueType();
|
|
|
|
// There are two cases to consider here:
|
|
// 1. The store is fixed width and the load is scalable. In this case we
|
|
// don't know at compile time if the store completely envelops the load
|
|
// so we abandon the optimisation.
|
|
// 2. The store is scalable and the load is fixed width. We could
|
|
// potentially support a limited number of cases here, but there has been
|
|
// no cost-benefit analysis to prove it's worth it.
|
|
bool LdStScalable = LDMemType.isScalableVector();
|
|
if (LdStScalable != STMemType.isScalableVector())
|
|
return SDValue();
|
|
|
|
// If we are dealing with scalable vectors on a big endian platform the
|
|
// calculation of offsets below becomes trickier, since we do not know at
|
|
// compile time the absolute size of the vector. Until we've done more
|
|
// analysis on big-endian platforms it seems better to bail out for now.
|
|
if (LdStScalable && DAG.getDataLayout().isBigEndian())
|
|
return SDValue();
|
|
|
|
BaseIndexOffset BasePtrLD = BaseIndexOffset::match(LD, DAG);
|
|
BaseIndexOffset BasePtrST = BaseIndexOffset::match(ST, DAG);
|
|
int64_t Offset;
|
|
if (!BasePtrST.equalBaseIndex(BasePtrLD, DAG, Offset))
|
|
return SDValue();
|
|
|
|
// Normalize for Endianness. After this Offset=0 will denote that the least
|
|
// significant bit in the loaded value maps to the least significant bit in
|
|
// the stored value). With Offset=n (for n > 0) the loaded value starts at the
|
|
// n:th least significant byte of the stored value.
|
|
if (DAG.getDataLayout().isBigEndian())
|
|
Offset = ((int64_t)STMemType.getStoreSizeInBits().getFixedSize() -
|
|
(int64_t)LDMemType.getStoreSizeInBits().getFixedSize()) /
|
|
8 -
|
|
Offset;
|
|
|
|
// Check that the stored value cover all bits that are loaded.
|
|
bool STCoversLD;
|
|
|
|
TypeSize LdMemSize = LDMemType.getSizeInBits();
|
|
TypeSize StMemSize = STMemType.getSizeInBits();
|
|
if (LdStScalable)
|
|
STCoversLD = (Offset == 0) && LdMemSize == StMemSize;
|
|
else
|
|
STCoversLD = (Offset >= 0) && (Offset * 8 + LdMemSize.getFixedSize() <=
|
|
StMemSize.getFixedSize());
|
|
|
|
auto ReplaceLd = [&](LoadSDNode *LD, SDValue Val, SDValue Chain) -> SDValue {
|
|
if (LD->isIndexed()) {
|
|
// Cannot handle opaque target constants and we must respect the user's
|
|
// request not to split indexes from loads.
|
|
if (!canSplitIdx(LD))
|
|
return SDValue();
|
|
SDValue Idx = SplitIndexingFromLoad(LD);
|
|
SDValue Ops[] = {Val, Idx, Chain};
|
|
return CombineTo(LD, Ops, 3);
|
|
}
|
|
return CombineTo(LD, Val, Chain);
|
|
};
|
|
|
|
if (!STCoversLD)
|
|
return SDValue();
|
|
|
|
// Memory as copy space (potentially masked).
|
|
if (Offset == 0 && LDType == STType && STMemType == LDMemType) {
|
|
// Simple case: Direct non-truncating forwarding
|
|
if (LDType.getSizeInBits() == LdMemSize)
|
|
return ReplaceLd(LD, ST->getValue(), Chain);
|
|
// Can we model the truncate and extension with an and mask?
|
|
if (STType.isInteger() && LDMemType.isInteger() && !STType.isVector() &&
|
|
!LDMemType.isVector() && LD->getExtensionType() != ISD::SEXTLOAD) {
|
|
// Mask to size of LDMemType
|
|
auto Mask =
|
|
DAG.getConstant(APInt::getLowBitsSet(STType.getFixedSizeInBits(),
|
|
StMemSize.getFixedSize()),
|
|
SDLoc(ST), STType);
|
|
auto Val = DAG.getNode(ISD::AND, SDLoc(LD), LDType, ST->getValue(), Mask);
|
|
return ReplaceLd(LD, Val, Chain);
|
|
}
|
|
}
|
|
|
|
// TODO: Deal with nonzero offset.
|
|
if (LD->getBasePtr().isUndef() || Offset != 0)
|
|
return SDValue();
|
|
// Model necessary truncations / extenstions.
|
|
SDValue Val;
|
|
// Truncate Value To Stored Memory Size.
|
|
do {
|
|
if (!getTruncatedStoreValue(ST, Val))
|
|
continue;
|
|
if (!isTypeLegal(LDMemType))
|
|
continue;
|
|
if (STMemType != LDMemType) {
|
|
// TODO: Support vectors? This requires extract_subvector/bitcast.
|
|
if (!STMemType.isVector() && !LDMemType.isVector() &&
|
|
STMemType.isInteger() && LDMemType.isInteger())
|
|
Val = DAG.getNode(ISD::TRUNCATE, SDLoc(LD), LDMemType, Val);
|
|
else
|
|
continue;
|
|
}
|
|
if (!extendLoadedValueToExtension(LD, Val))
|
|
continue;
|
|
return ReplaceLd(LD, Val, Chain);
|
|
} while (false);
|
|
|
|
// On failure, cleanup dead nodes we may have created.
|
|
if (Val->use_empty())
|
|
deleteAndRecombine(Val.getNode());
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitLOAD(SDNode *N) {
|
|
LoadSDNode *LD = cast<LoadSDNode>(N);
|
|
SDValue Chain = LD->getChain();
|
|
SDValue Ptr = LD->getBasePtr();
|
|
|
|
// If load is not volatile and there are no uses of the loaded value (and
|
|
// the updated indexed value in case of indexed loads), change uses of the
|
|
// chain value into uses of the chain input (i.e. delete the dead load).
|
|
// TODO: Allow this for unordered atomics (see D66309)
|
|
if (LD->isSimple()) {
|
|
if (N->getValueType(1) == MVT::Other) {
|
|
// Unindexed loads.
|
|
if (!N->hasAnyUseOfValue(0)) {
|
|
// It's not safe to use the two value CombineTo variant here. e.g.
|
|
// v1, chain2 = load chain1, loc
|
|
// v2, chain3 = load chain2, loc
|
|
// v3 = add v2, c
|
|
// Now we replace use of chain2 with chain1. This makes the second load
|
|
// isomorphic to the one we are deleting, and thus makes this load live.
|
|
LLVM_DEBUG(dbgs() << "\nReplacing.6 "; N->dump(&DAG);
|
|
dbgs() << "\nWith chain: "; Chain.getNode()->dump(&DAG);
|
|
dbgs() << "\n");
|
|
WorklistRemover DeadNodes(*this);
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
|
|
AddUsersToWorklist(Chain.getNode());
|
|
if (N->use_empty())
|
|
deleteAndRecombine(N);
|
|
|
|
return SDValue(N, 0); // Return N so it doesn't get rechecked!
|
|
}
|
|
} else {
|
|
// Indexed loads.
|
|
assert(N->getValueType(2) == MVT::Other && "Malformed indexed loads?");
|
|
|
|
// If this load has an opaque TargetConstant offset, then we cannot split
|
|
// the indexing into an add/sub directly (that TargetConstant may not be
|
|
// valid for a different type of node, and we cannot convert an opaque
|
|
// target constant into a regular constant).
|
|
bool CanSplitIdx = canSplitIdx(LD);
|
|
|
|
if (!N->hasAnyUseOfValue(0) && (CanSplitIdx || !N->hasAnyUseOfValue(1))) {
|
|
SDValue Undef = DAG.getUNDEF(N->getValueType(0));
|
|
SDValue Index;
|
|
if (N->hasAnyUseOfValue(1) && CanSplitIdx) {
|
|
Index = SplitIndexingFromLoad(LD);
|
|
// Try to fold the base pointer arithmetic into subsequent loads and
|
|
// stores.
|
|
AddUsersToWorklist(N);
|
|
} else
|
|
Index = DAG.getUNDEF(N->getValueType(1));
|
|
LLVM_DEBUG(dbgs() << "\nReplacing.7 "; N->dump(&DAG);
|
|
dbgs() << "\nWith: "; Undef.getNode()->dump(&DAG);
|
|
dbgs() << " and 2 other values\n");
|
|
WorklistRemover DeadNodes(*this);
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 0), Undef);
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Index);
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 2), Chain);
|
|
deleteAndRecombine(N);
|
|
return SDValue(N, 0); // Return N so it doesn't get rechecked!
|
|
}
|
|
}
|
|
}
|
|
|
|
// If this load is directly stored, replace the load value with the stored
|
|
// value.
|
|
if (auto V = ForwardStoreValueToDirectLoad(LD))
|
|
return V;
|
|
|
|
// Try to infer better alignment information than the load already has.
|
|
if (OptLevel != CodeGenOpt::None && LD->isUnindexed() && !LD->isAtomic()) {
|
|
if (MaybeAlign Alignment = DAG.InferPtrAlign(Ptr)) {
|
|
if (*Alignment > LD->getAlign() &&
|
|
isAligned(*Alignment, LD->getSrcValueOffset())) {
|
|
SDValue NewLoad = DAG.getExtLoad(
|
|
LD->getExtensionType(), SDLoc(N), LD->getValueType(0), Chain, Ptr,
|
|
LD->getPointerInfo(), LD->getMemoryVT(), *Alignment,
|
|
LD->getMemOperand()->getFlags(), LD->getAAInfo());
|
|
// NewLoad will always be N as we are only refining the alignment
|
|
assert(NewLoad.getNode() == N);
|
|
(void)NewLoad;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (LD->isUnindexed()) {
|
|
// Walk up chain skipping non-aliasing memory nodes.
|
|
SDValue BetterChain = FindBetterChain(LD, Chain);
|
|
|
|
// If there is a better chain.
|
|
if (Chain != BetterChain) {
|
|
SDValue ReplLoad;
|
|
|
|
// Replace the chain to void dependency.
|
|
if (LD->getExtensionType() == ISD::NON_EXTLOAD) {
|
|
ReplLoad = DAG.getLoad(N->getValueType(0), SDLoc(LD),
|
|
BetterChain, Ptr, LD->getMemOperand());
|
|
} else {
|
|
ReplLoad = DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD),
|
|
LD->getValueType(0),
|
|
BetterChain, Ptr, LD->getMemoryVT(),
|
|
LD->getMemOperand());
|
|
}
|
|
|
|
// Create token factor to keep old chain connected.
|
|
SDValue Token = DAG.getNode(ISD::TokenFactor, SDLoc(N),
|
|
MVT::Other, Chain, ReplLoad.getValue(1));
|
|
|
|
// Replace uses with load result and token factor
|
|
return CombineTo(N, ReplLoad.getValue(0), Token);
|
|
}
|
|
}
|
|
|
|
// Try transforming N to an indexed load.
|
|
if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
|
|
return SDValue(N, 0);
|
|
|
|
// Try to slice up N to more direct loads if the slices are mapped to
|
|
// different register banks or pairing can take place.
|
|
if (SliceUpLoad(N))
|
|
return SDValue(N, 0);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// Helper structure used to slice a load in smaller loads.
|
|
/// Basically a slice is obtained from the following sequence:
|
|
/// Origin = load Ty1, Base
|
|
/// Shift = srl Ty1 Origin, CstTy Amount
|
|
/// Inst = trunc Shift to Ty2
|
|
///
|
|
/// Then, it will be rewritten into:
|
|
/// Slice = load SliceTy, Base + SliceOffset
|
|
/// [Inst = zext Slice to Ty2], only if SliceTy <> Ty2
|
|
///
|
|
/// SliceTy is deduced from the number of bits that are actually used to
|
|
/// build Inst.
|
|
struct LoadedSlice {
|
|
/// Helper structure used to compute the cost of a slice.
|
|
struct Cost {
|
|
/// Are we optimizing for code size.
|
|
bool ForCodeSize = false;
|
|
|
|
/// Various cost.
|
|
unsigned Loads = 0;
|
|
unsigned Truncates = 0;
|
|
unsigned CrossRegisterBanksCopies = 0;
|
|
unsigned ZExts = 0;
|
|
unsigned Shift = 0;
|
|
|
|
explicit Cost(bool ForCodeSize) : ForCodeSize(ForCodeSize) {}
|
|
|
|
/// Get the cost of one isolated slice.
|
|
Cost(const LoadedSlice &LS, bool ForCodeSize)
|
|
: ForCodeSize(ForCodeSize), Loads(1) {
|
|
EVT TruncType = LS.Inst->getValueType(0);
|
|
EVT LoadedType = LS.getLoadedType();
|
|
if (TruncType != LoadedType &&
|
|
!LS.DAG->getTargetLoweringInfo().isZExtFree(LoadedType, TruncType))
|
|
ZExts = 1;
|
|
}
|
|
|
|
/// Account for slicing gain in the current cost.
|
|
/// Slicing provide a few gains like removing a shift or a
|
|
/// truncate. This method allows to grow the cost of the original
|
|
/// load with the gain from this slice.
|
|
void addSliceGain(const LoadedSlice &LS) {
|
|
// Each slice saves a truncate.
|
|
const TargetLowering &TLI = LS.DAG->getTargetLoweringInfo();
|
|
if (!TLI.isTruncateFree(LS.Inst->getOperand(0).getValueType(),
|
|
LS.Inst->getValueType(0)))
|
|
++Truncates;
|
|
// If there is a shift amount, this slice gets rid of it.
|
|
if (LS.Shift)
|
|
++Shift;
|
|
// If this slice can merge a cross register bank copy, account for it.
|
|
if (LS.canMergeExpensiveCrossRegisterBankCopy())
|
|
++CrossRegisterBanksCopies;
|
|
}
|
|
|
|
Cost &operator+=(const Cost &RHS) {
|
|
Loads += RHS.Loads;
|
|
Truncates += RHS.Truncates;
|
|
CrossRegisterBanksCopies += RHS.CrossRegisterBanksCopies;
|
|
ZExts += RHS.ZExts;
|
|
Shift += RHS.Shift;
|
|
return *this;
|
|
}
|
|
|
|
bool operator==(const Cost &RHS) const {
|
|
return Loads == RHS.Loads && Truncates == RHS.Truncates &&
|
|
CrossRegisterBanksCopies == RHS.CrossRegisterBanksCopies &&
|
|
ZExts == RHS.ZExts && Shift == RHS.Shift;
|
|
}
|
|
|
|
bool operator!=(const Cost &RHS) const { return !(*this == RHS); }
|
|
|
|
bool operator<(const Cost &RHS) const {
|
|
// Assume cross register banks copies are as expensive as loads.
|
|
// FIXME: Do we want some more target hooks?
|
|
unsigned ExpensiveOpsLHS = Loads + CrossRegisterBanksCopies;
|
|
unsigned ExpensiveOpsRHS = RHS.Loads + RHS.CrossRegisterBanksCopies;
|
|
// Unless we are optimizing for code size, consider the
|
|
// expensive operation first.
|
|
if (!ForCodeSize && ExpensiveOpsLHS != ExpensiveOpsRHS)
|
|
return ExpensiveOpsLHS < ExpensiveOpsRHS;
|
|
return (Truncates + ZExts + Shift + ExpensiveOpsLHS) <
|
|
(RHS.Truncates + RHS.ZExts + RHS.Shift + ExpensiveOpsRHS);
|
|
}
|
|
|
|
bool operator>(const Cost &RHS) const { return RHS < *this; }
|
|
|
|
bool operator<=(const Cost &RHS) const { return !(RHS < *this); }
|
|
|
|
bool operator>=(const Cost &RHS) const { return !(*this < RHS); }
|
|
};
|
|
|
|
// The last instruction that represent the slice. This should be a
|
|
// truncate instruction.
|
|
SDNode *Inst;
|
|
|
|
// The original load instruction.
|
|
LoadSDNode *Origin;
|
|
|
|
// The right shift amount in bits from the original load.
|
|
unsigned Shift;
|
|
|
|
// The DAG from which Origin came from.
|
|
// This is used to get some contextual information about legal types, etc.
|
|
SelectionDAG *DAG;
|
|
|
|
LoadedSlice(SDNode *Inst = nullptr, LoadSDNode *Origin = nullptr,
|
|
unsigned Shift = 0, SelectionDAG *DAG = nullptr)
|
|
: Inst(Inst), Origin(Origin), Shift(Shift), DAG(DAG) {}
|
|
|
|
/// Get the bits used in a chunk of bits \p BitWidth large.
|
|
/// \return Result is \p BitWidth and has used bits set to 1 and
|
|
/// not used bits set to 0.
|
|
APInt getUsedBits() const {
|
|
// Reproduce the trunc(lshr) sequence:
|
|
// - Start from the truncated value.
|
|
// - Zero extend to the desired bit width.
|
|
// - Shift left.
|
|
assert(Origin && "No original load to compare against.");
|
|
unsigned BitWidth = Origin->getValueSizeInBits(0);
|
|
assert(Inst && "This slice is not bound to an instruction");
|
|
assert(Inst->getValueSizeInBits(0) <= BitWidth &&
|
|
"Extracted slice is bigger than the whole type!");
|
|
APInt UsedBits(Inst->getValueSizeInBits(0), 0);
|
|
UsedBits.setAllBits();
|
|
UsedBits = UsedBits.zext(BitWidth);
|
|
UsedBits <<= Shift;
|
|
return UsedBits;
|
|
}
|
|
|
|
/// Get the size of the slice to be loaded in bytes.
|
|
unsigned getLoadedSize() const {
|
|
unsigned SliceSize = getUsedBits().countPopulation();
|
|
assert(!(SliceSize & 0x7) && "Size is not a multiple of a byte.");
|
|
return SliceSize / 8;
|
|
}
|
|
|
|
/// Get the type that will be loaded for this slice.
|
|
/// Note: This may not be the final type for the slice.
|
|
EVT getLoadedType() const {
|
|
assert(DAG && "Missing context");
|
|
LLVMContext &Ctxt = *DAG->getContext();
|
|
return EVT::getIntegerVT(Ctxt, getLoadedSize() * 8);
|
|
}
|
|
|
|
/// Get the alignment of the load used for this slice.
|
|
Align getAlign() const {
|
|
Align Alignment = Origin->getAlign();
|
|
uint64_t Offset = getOffsetFromBase();
|
|
if (Offset != 0)
|
|
Alignment = commonAlignment(Alignment, Alignment.value() + Offset);
|
|
return Alignment;
|
|
}
|
|
|
|
/// Check if this slice can be rewritten with legal operations.
|
|
bool isLegal() const {
|
|
// An invalid slice is not legal.
|
|
if (!Origin || !Inst || !DAG)
|
|
return false;
|
|
|
|
// Offsets are for indexed load only, we do not handle that.
|
|
if (!Origin->getOffset().isUndef())
|
|
return false;
|
|
|
|
const TargetLowering &TLI = DAG->getTargetLoweringInfo();
|
|
|
|
// Check that the type is legal.
|
|
EVT SliceType = getLoadedType();
|
|
if (!TLI.isTypeLegal(SliceType))
|
|
return false;
|
|
|
|
// Check that the load is legal for this type.
|
|
if (!TLI.isOperationLegal(ISD::LOAD, SliceType))
|
|
return false;
|
|
|
|
// Check that the offset can be computed.
|
|
// 1. Check its type.
|
|
EVT PtrType = Origin->getBasePtr().getValueType();
|
|
if (PtrType == MVT::Untyped || PtrType.isExtended())
|
|
return false;
|
|
|
|
// 2. Check that it fits in the immediate.
|
|
if (!TLI.isLegalAddImmediate(getOffsetFromBase()))
|
|
return false;
|
|
|
|
// 3. Check that the computation is legal.
|
|
if (!TLI.isOperationLegal(ISD::ADD, PtrType))
|
|
return false;
|
|
|
|
// Check that the zext is legal if it needs one.
|
|
EVT TruncateType = Inst->getValueType(0);
|
|
if (TruncateType != SliceType &&
|
|
!TLI.isOperationLegal(ISD::ZERO_EXTEND, TruncateType))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Get the offset in bytes of this slice in the original chunk of
|
|
/// bits.
|
|
/// \pre DAG != nullptr.
|
|
uint64_t getOffsetFromBase() const {
|
|
assert(DAG && "Missing context.");
|
|
bool IsBigEndian = DAG->getDataLayout().isBigEndian();
|
|
assert(!(Shift & 0x7) && "Shifts not aligned on Bytes are not supported.");
|
|
uint64_t Offset = Shift / 8;
|
|
unsigned TySizeInBytes = Origin->getValueSizeInBits(0) / 8;
|
|
assert(!(Origin->getValueSizeInBits(0) & 0x7) &&
|
|
"The size of the original loaded type is not a multiple of a"
|
|
" byte.");
|
|
// If Offset is bigger than TySizeInBytes, it means we are loading all
|
|
// zeros. This should have been optimized before in the process.
|
|
assert(TySizeInBytes > Offset &&
|
|
"Invalid shift amount for given loaded size");
|
|
if (IsBigEndian)
|
|
Offset = TySizeInBytes - Offset - getLoadedSize();
|
|
return Offset;
|
|
}
|
|
|
|
/// Generate the sequence of instructions to load the slice
|
|
/// represented by this object and redirect the uses of this slice to
|
|
/// this new sequence of instructions.
|
|
/// \pre this->Inst && this->Origin are valid Instructions and this
|
|
/// object passed the legal check: LoadedSlice::isLegal returned true.
|
|
/// \return The last instruction of the sequence used to load the slice.
|
|
SDValue loadSlice() const {
|
|
assert(Inst && Origin && "Unable to replace a non-existing slice.");
|
|
const SDValue &OldBaseAddr = Origin->getBasePtr();
|
|
SDValue BaseAddr = OldBaseAddr;
|
|
// Get the offset in that chunk of bytes w.r.t. the endianness.
|
|
int64_t Offset = static_cast<int64_t>(getOffsetFromBase());
|
|
assert(Offset >= 0 && "Offset too big to fit in int64_t!");
|
|
if (Offset) {
|
|
// BaseAddr = BaseAddr + Offset.
|
|
EVT ArithType = BaseAddr.getValueType();
|
|
SDLoc DL(Origin);
|
|
BaseAddr = DAG->getNode(ISD::ADD, DL, ArithType, BaseAddr,
|
|
DAG->getConstant(Offset, DL, ArithType));
|
|
}
|
|
|
|
// Create the type of the loaded slice according to its size.
|
|
EVT SliceType = getLoadedType();
|
|
|
|
// Create the load for the slice.
|
|
SDValue LastInst =
|
|
DAG->getLoad(SliceType, SDLoc(Origin), Origin->getChain(), BaseAddr,
|
|
Origin->getPointerInfo().getWithOffset(Offset), getAlign(),
|
|
Origin->getMemOperand()->getFlags());
|
|
// If the final type is not the same as the loaded type, this means that
|
|
// we have to pad with zero. Create a zero extend for that.
|
|
EVT FinalType = Inst->getValueType(0);
|
|
if (SliceType != FinalType)
|
|
LastInst =
|
|
DAG->getNode(ISD::ZERO_EXTEND, SDLoc(LastInst), FinalType, LastInst);
|
|
return LastInst;
|
|
}
|
|
|
|
/// Check if this slice can be merged with an expensive cross register
|
|
/// bank copy. E.g.,
|
|
/// i = load i32
|
|
/// f = bitcast i32 i to float
|
|
bool canMergeExpensiveCrossRegisterBankCopy() const {
|
|
if (!Inst || !Inst->hasOneUse())
|
|
return false;
|
|
SDNode *Use = *Inst->use_begin();
|
|
if (Use->getOpcode() != ISD::BITCAST)
|
|
return false;
|
|
assert(DAG && "Missing context");
|
|
const TargetLowering &TLI = DAG->getTargetLoweringInfo();
|
|
EVT ResVT = Use->getValueType(0);
|
|
const TargetRegisterClass *ResRC =
|
|
TLI.getRegClassFor(ResVT.getSimpleVT(), Use->isDivergent());
|
|
const TargetRegisterClass *ArgRC =
|
|
TLI.getRegClassFor(Use->getOperand(0).getValueType().getSimpleVT(),
|
|
Use->getOperand(0)->isDivergent());
|
|
if (ArgRC == ResRC || !TLI.isOperationLegal(ISD::LOAD, ResVT))
|
|
return false;
|
|
|
|
// At this point, we know that we perform a cross-register-bank copy.
|
|
// Check if it is expensive.
|
|
const TargetRegisterInfo *TRI = DAG->getSubtarget().getRegisterInfo();
|
|
// Assume bitcasts are cheap, unless both register classes do not
|
|
// explicitly share a common sub class.
|
|
if (!TRI || TRI->getCommonSubClass(ArgRC, ResRC))
|
|
return false;
|
|
|
|
// Check if it will be merged with the load.
|
|
// 1. Check the alignment constraint.
|
|
Align RequiredAlignment = DAG->getDataLayout().getABITypeAlign(
|
|
ResVT.getTypeForEVT(*DAG->getContext()));
|
|
|
|
if (RequiredAlignment > getAlign())
|
|
return false;
|
|
|
|
// 2. Check that the load is a legal operation for that type.
|
|
if (!TLI.isOperationLegal(ISD::LOAD, ResVT))
|
|
return false;
|
|
|
|
// 3. Check that we do not have a zext in the way.
|
|
if (Inst->getValueType(0) != getLoadedType())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// Check that all bits set in \p UsedBits form a dense region, i.e.,
|
|
/// \p UsedBits looks like 0..0 1..1 0..0.
|
|
static bool areUsedBitsDense(const APInt &UsedBits) {
|
|
// If all the bits are one, this is dense!
|
|
if (UsedBits.isAllOnesValue())
|
|
return true;
|
|
|
|
// Get rid of the unused bits on the right.
|
|
APInt NarrowedUsedBits = UsedBits.lshr(UsedBits.countTrailingZeros());
|
|
// Get rid of the unused bits on the left.
|
|
if (NarrowedUsedBits.countLeadingZeros())
|
|
NarrowedUsedBits = NarrowedUsedBits.trunc(NarrowedUsedBits.getActiveBits());
|
|
// Check that the chunk of bits is completely used.
|
|
return NarrowedUsedBits.isAllOnesValue();
|
|
}
|
|
|
|
/// Check whether or not \p First and \p Second are next to each other
|
|
/// in memory. This means that there is no hole between the bits loaded
|
|
/// by \p First and the bits loaded by \p Second.
|
|
static bool areSlicesNextToEachOther(const LoadedSlice &First,
|
|
const LoadedSlice &Second) {
|
|
assert(First.Origin == Second.Origin && First.Origin &&
|
|
"Unable to match different memory origins.");
|
|
APInt UsedBits = First.getUsedBits();
|
|
assert((UsedBits & Second.getUsedBits()) == 0 &&
|
|
"Slices are not supposed to overlap.");
|
|
UsedBits |= Second.getUsedBits();
|
|
return areUsedBitsDense(UsedBits);
|
|
}
|
|
|
|
/// Adjust the \p GlobalLSCost according to the target
|
|
/// paring capabilities and the layout of the slices.
|
|
/// \pre \p GlobalLSCost should account for at least as many loads as
|
|
/// there is in the slices in \p LoadedSlices.
|
|
static void adjustCostForPairing(SmallVectorImpl<LoadedSlice> &LoadedSlices,
|
|
LoadedSlice::Cost &GlobalLSCost) {
|
|
unsigned NumberOfSlices = LoadedSlices.size();
|
|
// If there is less than 2 elements, no pairing is possible.
|
|
if (NumberOfSlices < 2)
|
|
return;
|
|
|
|
// Sort the slices so that elements that are likely to be next to each
|
|
// other in memory are next to each other in the list.
|
|
llvm::sort(LoadedSlices, [](const LoadedSlice &LHS, const LoadedSlice &RHS) {
|
|
assert(LHS.Origin == RHS.Origin && "Different bases not implemented.");
|
|
return LHS.getOffsetFromBase() < RHS.getOffsetFromBase();
|
|
});
|
|
const TargetLowering &TLI = LoadedSlices[0].DAG->getTargetLoweringInfo();
|
|
// First (resp. Second) is the first (resp. Second) potentially candidate
|
|
// to be placed in a paired load.
|
|
const LoadedSlice *First = nullptr;
|
|
const LoadedSlice *Second = nullptr;
|
|
for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice,
|
|
// Set the beginning of the pair.
|
|
First = Second) {
|
|
Second = &LoadedSlices[CurrSlice];
|
|
|
|
// If First is NULL, it means we start a new pair.
|
|
// Get to the next slice.
|
|
if (!First)
|
|
continue;
|
|
|
|
EVT LoadedType = First->getLoadedType();
|
|
|
|
// If the types of the slices are different, we cannot pair them.
|
|
if (LoadedType != Second->getLoadedType())
|
|
continue;
|
|
|
|
// Check if the target supplies paired loads for this type.
|
|
Align RequiredAlignment;
|
|
if (!TLI.hasPairedLoad(LoadedType, RequiredAlignment)) {
|
|
// move to the next pair, this type is hopeless.
|
|
Second = nullptr;
|
|
continue;
|
|
}
|
|
// Check if we meet the alignment requirement.
|
|
if (First->getAlign() < RequiredAlignment)
|
|
continue;
|
|
|
|
// Check that both loads are next to each other in memory.
|
|
if (!areSlicesNextToEachOther(*First, *Second))
|
|
continue;
|
|
|
|
assert(GlobalLSCost.Loads > 0 && "We save more loads than we created!");
|
|
--GlobalLSCost.Loads;
|
|
// Move to the next pair.
|
|
Second = nullptr;
|
|
}
|
|
}
|
|
|
|
/// Check the profitability of all involved LoadedSlice.
|
|
/// Currently, it is considered profitable if there is exactly two
|
|
/// involved slices (1) which are (2) next to each other in memory, and
|
|
/// whose cost (\see LoadedSlice::Cost) is smaller than the original load (3).
|
|
///
|
|
/// Note: The order of the elements in \p LoadedSlices may be modified, but not
|
|
/// the elements themselves.
|
|
///
|
|
/// FIXME: When the cost model will be mature enough, we can relax
|
|
/// constraints (1) and (2).
|
|
static bool isSlicingProfitable(SmallVectorImpl<LoadedSlice> &LoadedSlices,
|
|
const APInt &UsedBits, bool ForCodeSize) {
|
|
unsigned NumberOfSlices = LoadedSlices.size();
|
|
if (StressLoadSlicing)
|
|
return NumberOfSlices > 1;
|
|
|
|
// Check (1).
|
|
if (NumberOfSlices != 2)
|
|
return false;
|
|
|
|
// Check (2).
|
|
if (!areUsedBitsDense(UsedBits))
|
|
return false;
|
|
|
|
// Check (3).
|
|
LoadedSlice::Cost OrigCost(ForCodeSize), GlobalSlicingCost(ForCodeSize);
|
|
// The original code has one big load.
|
|
OrigCost.Loads = 1;
|
|
for (unsigned CurrSlice = 0; CurrSlice < NumberOfSlices; ++CurrSlice) {
|
|
const LoadedSlice &LS = LoadedSlices[CurrSlice];
|
|
// Accumulate the cost of all the slices.
|
|
LoadedSlice::Cost SliceCost(LS, ForCodeSize);
|
|
GlobalSlicingCost += SliceCost;
|
|
|
|
// Account as cost in the original configuration the gain obtained
|
|
// with the current slices.
|
|
OrigCost.addSliceGain(LS);
|
|
}
|
|
|
|
// If the target supports paired load, adjust the cost accordingly.
|
|
adjustCostForPairing(LoadedSlices, GlobalSlicingCost);
|
|
return OrigCost > GlobalSlicingCost;
|
|
}
|
|
|
|
/// If the given load, \p LI, is used only by trunc or trunc(lshr)
|
|
/// operations, split it in the various pieces being extracted.
|
|
///
|
|
/// This sort of thing is introduced by SROA.
|
|
/// This slicing takes care not to insert overlapping loads.
|
|
/// \pre LI is a simple load (i.e., not an atomic or volatile load).
|
|
bool DAGCombiner::SliceUpLoad(SDNode *N) {
|
|
if (Level < AfterLegalizeDAG)
|
|
return false;
|
|
|
|
LoadSDNode *LD = cast<LoadSDNode>(N);
|
|
if (!LD->isSimple() || !ISD::isNormalLoad(LD) ||
|
|
!LD->getValueType(0).isInteger())
|
|
return false;
|
|
|
|
// The algorithm to split up a load of a scalable vector into individual
|
|
// elements currently requires knowing the length of the loaded type,
|
|
// so will need adjusting to work on scalable vectors.
|
|
if (LD->getValueType(0).isScalableVector())
|
|
return false;
|
|
|
|
// Keep track of already used bits to detect overlapping values.
|
|
// In that case, we will just abort the transformation.
|
|
APInt UsedBits(LD->getValueSizeInBits(0), 0);
|
|
|
|
SmallVector<LoadedSlice, 4> LoadedSlices;
|
|
|
|
// Check if this load is used as several smaller chunks of bits.
|
|
// Basically, look for uses in trunc or trunc(lshr) and record a new chain
|
|
// of computation for each trunc.
|
|
for (SDNode::use_iterator UI = LD->use_begin(), UIEnd = LD->use_end();
|
|
UI != UIEnd; ++UI) {
|
|
// Skip the uses of the chain.
|
|
if (UI.getUse().getResNo() != 0)
|
|
continue;
|
|
|
|
SDNode *User = *UI;
|
|
unsigned Shift = 0;
|
|
|
|
// Check if this is a trunc(lshr).
|
|
if (User->getOpcode() == ISD::SRL && User->hasOneUse() &&
|
|
isa<ConstantSDNode>(User->getOperand(1))) {
|
|
Shift = User->getConstantOperandVal(1);
|
|
User = *User->use_begin();
|
|
}
|
|
|
|
// At this point, User is a Truncate, iff we encountered, trunc or
|
|
// trunc(lshr).
|
|
if (User->getOpcode() != ISD::TRUNCATE)
|
|
return false;
|
|
|
|
// The width of the type must be a power of 2 and greater than 8-bits.
|
|
// Otherwise the load cannot be represented in LLVM IR.
|
|
// Moreover, if we shifted with a non-8-bits multiple, the slice
|
|
// will be across several bytes. We do not support that.
|
|
unsigned Width = User->getValueSizeInBits(0);
|
|
if (Width < 8 || !isPowerOf2_32(Width) || (Shift & 0x7))
|
|
return false;
|
|
|
|
// Build the slice for this chain of computations.
|
|
LoadedSlice LS(User, LD, Shift, &DAG);
|
|
APInt CurrentUsedBits = LS.getUsedBits();
|
|
|
|
// Check if this slice overlaps with another.
|
|
if ((CurrentUsedBits & UsedBits) != 0)
|
|
return false;
|
|
// Update the bits used globally.
|
|
UsedBits |= CurrentUsedBits;
|
|
|
|
// Check if the new slice would be legal.
|
|
if (!LS.isLegal())
|
|
return false;
|
|
|
|
// Record the slice.
|
|
LoadedSlices.push_back(LS);
|
|
}
|
|
|
|
// Abort slicing if it does not seem to be profitable.
|
|
if (!isSlicingProfitable(LoadedSlices, UsedBits, ForCodeSize))
|
|
return false;
|
|
|
|
++SlicedLoads;
|
|
|
|
// Rewrite each chain to use an independent load.
|
|
// By construction, each chain can be represented by a unique load.
|
|
|
|
// Prepare the argument for the new token factor for all the slices.
|
|
SmallVector<SDValue, 8> ArgChains;
|
|
for (const LoadedSlice &LS : LoadedSlices) {
|
|
SDValue SliceInst = LS.loadSlice();
|
|
CombineTo(LS.Inst, SliceInst, true);
|
|
if (SliceInst.getOpcode() != ISD::LOAD)
|
|
SliceInst = SliceInst.getOperand(0);
|
|
assert(SliceInst->getOpcode() == ISD::LOAD &&
|
|
"It takes more than a zext to get to the loaded slice!!");
|
|
ArgChains.push_back(SliceInst.getValue(1));
|
|
}
|
|
|
|
SDValue Chain = DAG.getNode(ISD::TokenFactor, SDLoc(LD), MVT::Other,
|
|
ArgChains);
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), Chain);
|
|
AddToWorklist(Chain.getNode());
|
|
return true;
|
|
}
|
|
|
|
/// Check to see if V is (and load (ptr), imm), where the load is having
|
|
/// specific bytes cleared out. If so, return the byte size being masked out
|
|
/// and the shift amount.
|
|
static std::pair<unsigned, unsigned>
|
|
CheckForMaskedLoad(SDValue V, SDValue Ptr, SDValue Chain) {
|
|
std::pair<unsigned, unsigned> Result(0, 0);
|
|
|
|
// Check for the structure we're looking for.
|
|
if (V->getOpcode() != ISD::AND ||
|
|
!isa<ConstantSDNode>(V->getOperand(1)) ||
|
|
!ISD::isNormalLoad(V->getOperand(0).getNode()))
|
|
return Result;
|
|
|
|
// Check the chain and pointer.
|
|
LoadSDNode *LD = cast<LoadSDNode>(V->getOperand(0));
|
|
if (LD->getBasePtr() != Ptr) return Result; // Not from same pointer.
|
|
|
|
// This only handles simple types.
|
|
if (V.getValueType() != MVT::i16 &&
|
|
V.getValueType() != MVT::i32 &&
|
|
V.getValueType() != MVT::i64)
|
|
return Result;
|
|
|
|
// Check the constant mask. Invert it so that the bits being masked out are
|
|
// 0 and the bits being kept are 1. Use getSExtValue so that leading bits
|
|
// follow the sign bit for uniformity.
|
|
uint64_t NotMask = ~cast<ConstantSDNode>(V->getOperand(1))->getSExtValue();
|
|
unsigned NotMaskLZ = countLeadingZeros(NotMask);
|
|
if (NotMaskLZ & 7) return Result; // Must be multiple of a byte.
|
|
unsigned NotMaskTZ = countTrailingZeros(NotMask);
|
|
if (NotMaskTZ & 7) return Result; // Must be multiple of a byte.
|
|
if (NotMaskLZ == 64) return Result; // All zero mask.
|
|
|
|
// See if we have a continuous run of bits. If so, we have 0*1+0*
|
|
if (countTrailingOnes(NotMask >> NotMaskTZ) + NotMaskTZ + NotMaskLZ != 64)
|
|
return Result;
|
|
|
|
// Adjust NotMaskLZ down to be from the actual size of the int instead of i64.
|
|
if (V.getValueType() != MVT::i64 && NotMaskLZ)
|
|
NotMaskLZ -= 64-V.getValueSizeInBits();
|
|
|
|
unsigned MaskedBytes = (V.getValueSizeInBits()-NotMaskLZ-NotMaskTZ)/8;
|
|
switch (MaskedBytes) {
|
|
case 1:
|
|
case 2:
|
|
case 4: break;
|
|
default: return Result; // All one mask, or 5-byte mask.
|
|
}
|
|
|
|
// Verify that the first bit starts at a multiple of mask so that the access
|
|
// is aligned the same as the access width.
|
|
if (NotMaskTZ && NotMaskTZ/8 % MaskedBytes) return Result;
|
|
|
|
// For narrowing to be valid, it must be the case that the load the
|
|
// immediately preceding memory operation before the store.
|
|
if (LD == Chain.getNode())
|
|
; // ok.
|
|
else if (Chain->getOpcode() == ISD::TokenFactor &&
|
|
SDValue(LD, 1).hasOneUse()) {
|
|
// LD has only 1 chain use so they are no indirect dependencies.
|
|
if (!LD->isOperandOf(Chain.getNode()))
|
|
return Result;
|
|
} else
|
|
return Result; // Fail.
|
|
|
|
Result.first = MaskedBytes;
|
|
Result.second = NotMaskTZ/8;
|
|
return Result;
|
|
}
|
|
|
|
/// Check to see if IVal is something that provides a value as specified by
|
|
/// MaskInfo. If so, replace the specified store with a narrower store of
|
|
/// truncated IVal.
|
|
static SDValue
|
|
ShrinkLoadReplaceStoreWithStore(const std::pair<unsigned, unsigned> &MaskInfo,
|
|
SDValue IVal, StoreSDNode *St,
|
|
DAGCombiner *DC) {
|
|
unsigned NumBytes = MaskInfo.first;
|
|
unsigned ByteShift = MaskInfo.second;
|
|
SelectionDAG &DAG = DC->getDAG();
|
|
|
|
// Check to see if IVal is all zeros in the part being masked in by the 'or'
|
|
// that uses this. If not, this is not a replacement.
|
|
APInt Mask = ~APInt::getBitsSet(IVal.getValueSizeInBits(),
|
|
ByteShift*8, (ByteShift+NumBytes)*8);
|
|
if (!DAG.MaskedValueIsZero(IVal, Mask)) return SDValue();
|
|
|
|
// Check that it is legal on the target to do this. It is legal if the new
|
|
// VT we're shrinking to (i8/i16/i32) is legal or we're still before type
|
|
// legalization (and the target doesn't explicitly think this is a bad idea).
|
|
MVT VT = MVT::getIntegerVT(NumBytes * 8);
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
if (!DC->isTypeLegal(VT))
|
|
return SDValue();
|
|
if (St->getMemOperand() &&
|
|
!TLI.allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
|
|
*St->getMemOperand()))
|
|
return SDValue();
|
|
|
|
// Okay, we can do this! Replace the 'St' store with a store of IVal that is
|
|
// shifted by ByteShift and truncated down to NumBytes.
|
|
if (ByteShift) {
|
|
SDLoc DL(IVal);
|
|
IVal = DAG.getNode(ISD::SRL, DL, IVal.getValueType(), IVal,
|
|
DAG.getConstant(ByteShift*8, DL,
|
|
DC->getShiftAmountTy(IVal.getValueType())));
|
|
}
|
|
|
|
// Figure out the offset for the store and the alignment of the access.
|
|
unsigned StOffset;
|
|
if (DAG.getDataLayout().isLittleEndian())
|
|
StOffset = ByteShift;
|
|
else
|
|
StOffset = IVal.getValueType().getStoreSize() - ByteShift - NumBytes;
|
|
|
|
SDValue Ptr = St->getBasePtr();
|
|
if (StOffset) {
|
|
SDLoc DL(IVal);
|
|
Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(StOffset), DL);
|
|
}
|
|
|
|
// Truncate down to the new size.
|
|
IVal = DAG.getNode(ISD::TRUNCATE, SDLoc(IVal), VT, IVal);
|
|
|
|
++OpsNarrowed;
|
|
return DAG
|
|
.getStore(St->getChain(), SDLoc(St), IVal, Ptr,
|
|
St->getPointerInfo().getWithOffset(StOffset),
|
|
St->getOriginalAlign());
|
|
}
|
|
|
|
/// Look for sequence of load / op / store where op is one of 'or', 'xor', and
|
|
/// 'and' of immediates. If 'op' is only touching some of the loaded bits, try
|
|
/// narrowing the load and store if it would end up being a win for performance
|
|
/// or code size.
|
|
SDValue DAGCombiner::ReduceLoadOpStoreWidth(SDNode *N) {
|
|
StoreSDNode *ST = cast<StoreSDNode>(N);
|
|
if (!ST->isSimple())
|
|
return SDValue();
|
|
|
|
SDValue Chain = ST->getChain();
|
|
SDValue Value = ST->getValue();
|
|
SDValue Ptr = ST->getBasePtr();
|
|
EVT VT = Value.getValueType();
|
|
|
|
if (ST->isTruncatingStore() || VT.isVector() || !Value.hasOneUse())
|
|
return SDValue();
|
|
|
|
unsigned Opc = Value.getOpcode();
|
|
|
|
// If this is "store (or X, Y), P" and X is "(and (load P), cst)", where cst
|
|
// is a byte mask indicating a consecutive number of bytes, check to see if
|
|
// Y is known to provide just those bytes. If so, we try to replace the
|
|
// load + replace + store sequence with a single (narrower) store, which makes
|
|
// the load dead.
|
|
if (Opc == ISD::OR && EnableShrinkLoadReplaceStoreWithStore) {
|
|
std::pair<unsigned, unsigned> MaskedLoad;
|
|
MaskedLoad = CheckForMaskedLoad(Value.getOperand(0), Ptr, Chain);
|
|
if (MaskedLoad.first)
|
|
if (SDValue NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
|
|
Value.getOperand(1), ST,this))
|
|
return NewST;
|
|
|
|
// Or is commutative, so try swapping X and Y.
|
|
MaskedLoad = CheckForMaskedLoad(Value.getOperand(1), Ptr, Chain);
|
|
if (MaskedLoad.first)
|
|
if (SDValue NewST = ShrinkLoadReplaceStoreWithStore(MaskedLoad,
|
|
Value.getOperand(0), ST,this))
|
|
return NewST;
|
|
}
|
|
|
|
if (!EnableReduceLoadOpStoreWidth)
|
|
return SDValue();
|
|
|
|
if ((Opc != ISD::OR && Opc != ISD::XOR && Opc != ISD::AND) ||
|
|
Value.getOperand(1).getOpcode() != ISD::Constant)
|
|
return SDValue();
|
|
|
|
SDValue N0 = Value.getOperand(0);
|
|
if (ISD::isNormalLoad(N0.getNode()) && N0.hasOneUse() &&
|
|
Chain == SDValue(N0.getNode(), 1)) {
|
|
LoadSDNode *LD = cast<LoadSDNode>(N0);
|
|
if (LD->getBasePtr() != Ptr ||
|
|
LD->getPointerInfo().getAddrSpace() !=
|
|
ST->getPointerInfo().getAddrSpace())
|
|
return SDValue();
|
|
|
|
// Find the type to narrow it the load / op / store to.
|
|
SDValue N1 = Value.getOperand(1);
|
|
unsigned BitWidth = N1.getValueSizeInBits();
|
|
APInt Imm = cast<ConstantSDNode>(N1)->getAPIntValue();
|
|
if (Opc == ISD::AND)
|
|
Imm ^= APInt::getAllOnesValue(BitWidth);
|
|
if (Imm == 0 || Imm.isAllOnesValue())
|
|
return SDValue();
|
|
unsigned ShAmt = Imm.countTrailingZeros();
|
|
unsigned MSB = BitWidth - Imm.countLeadingZeros() - 1;
|
|
unsigned NewBW = NextPowerOf2(MSB - ShAmt);
|
|
EVT NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
|
|
// The narrowing should be profitable, the load/store operation should be
|
|
// legal (or custom) and the store size should be equal to the NewVT width.
|
|
while (NewBW < BitWidth &&
|
|
(NewVT.getStoreSizeInBits() != NewBW ||
|
|
!TLI.isOperationLegalOrCustom(Opc, NewVT) ||
|
|
!TLI.isNarrowingProfitable(VT, NewVT))) {
|
|
NewBW = NextPowerOf2(NewBW);
|
|
NewVT = EVT::getIntegerVT(*DAG.getContext(), NewBW);
|
|
}
|
|
if (NewBW >= BitWidth)
|
|
return SDValue();
|
|
|
|
// If the lsb changed does not start at the type bitwidth boundary,
|
|
// start at the previous one.
|
|
if (ShAmt % NewBW)
|
|
ShAmt = (((ShAmt + NewBW - 1) / NewBW) * NewBW) - NewBW;
|
|
APInt Mask = APInt::getBitsSet(BitWidth, ShAmt,
|
|
std::min(BitWidth, ShAmt + NewBW));
|
|
if ((Imm & Mask) == Imm) {
|
|
APInt NewImm = (Imm & Mask).lshr(ShAmt).trunc(NewBW);
|
|
if (Opc == ISD::AND)
|
|
NewImm ^= APInt::getAllOnesValue(NewBW);
|
|
uint64_t PtrOff = ShAmt / 8;
|
|
// For big endian targets, we need to adjust the offset to the pointer to
|
|
// load the correct bytes.
|
|
if (DAG.getDataLayout().isBigEndian())
|
|
PtrOff = (BitWidth + 7 - NewBW) / 8 - PtrOff;
|
|
|
|
Align NewAlign = commonAlignment(LD->getAlign(), PtrOff);
|
|
Type *NewVTTy = NewVT.getTypeForEVT(*DAG.getContext());
|
|
if (NewAlign < DAG.getDataLayout().getABITypeAlign(NewVTTy))
|
|
return SDValue();
|
|
|
|
SDValue NewPtr =
|
|
DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(PtrOff), SDLoc(LD));
|
|
SDValue NewLD =
|
|
DAG.getLoad(NewVT, SDLoc(N0), LD->getChain(), NewPtr,
|
|
LD->getPointerInfo().getWithOffset(PtrOff), NewAlign,
|
|
LD->getMemOperand()->getFlags(), LD->getAAInfo());
|
|
SDValue NewVal = DAG.getNode(Opc, SDLoc(Value), NewVT, NewLD,
|
|
DAG.getConstant(NewImm, SDLoc(Value),
|
|
NewVT));
|
|
SDValue NewST =
|
|
DAG.getStore(Chain, SDLoc(N), NewVal, NewPtr,
|
|
ST->getPointerInfo().getWithOffset(PtrOff), NewAlign);
|
|
|
|
AddToWorklist(NewPtr.getNode());
|
|
AddToWorklist(NewLD.getNode());
|
|
AddToWorklist(NewVal.getNode());
|
|
WorklistRemover DeadNodes(*this);
|
|
DAG.ReplaceAllUsesOfValueWith(N0.getValue(1), NewLD.getValue(1));
|
|
++OpsNarrowed;
|
|
return NewST;
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// For a given floating point load / store pair, if the load value isn't used
|
|
/// by any other operations, then consider transforming the pair to integer
|
|
/// load / store operations if the target deems the transformation profitable.
|
|
SDValue DAGCombiner::TransformFPLoadStorePair(SDNode *N) {
|
|
StoreSDNode *ST = cast<StoreSDNode>(N);
|
|
SDValue Value = ST->getValue();
|
|
if (ISD::isNormalStore(ST) && ISD::isNormalLoad(Value.getNode()) &&
|
|
Value.hasOneUse()) {
|
|
LoadSDNode *LD = cast<LoadSDNode>(Value);
|
|
EVT VT = LD->getMemoryVT();
|
|
if (!VT.isFloatingPoint() ||
|
|
VT != ST->getMemoryVT() ||
|
|
LD->isNonTemporal() ||
|
|
ST->isNonTemporal() ||
|
|
LD->getPointerInfo().getAddrSpace() != 0 ||
|
|
ST->getPointerInfo().getAddrSpace() != 0)
|
|
return SDValue();
|
|
|
|
TypeSize VTSize = VT.getSizeInBits();
|
|
|
|
// We don't know the size of scalable types at compile time so we cannot
|
|
// create an integer of the equivalent size.
|
|
if (VTSize.isScalable())
|
|
return SDValue();
|
|
|
|
EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), VTSize.getFixedSize());
|
|
if (!TLI.isOperationLegal(ISD::LOAD, IntVT) ||
|
|
!TLI.isOperationLegal(ISD::STORE, IntVT) ||
|
|
!TLI.isDesirableToTransformToIntegerOp(ISD::LOAD, VT) ||
|
|
!TLI.isDesirableToTransformToIntegerOp(ISD::STORE, VT))
|
|
return SDValue();
|
|
|
|
Align LDAlign = LD->getAlign();
|
|
Align STAlign = ST->getAlign();
|
|
Type *IntVTTy = IntVT.getTypeForEVT(*DAG.getContext());
|
|
Align ABIAlign = DAG.getDataLayout().getABITypeAlign(IntVTTy);
|
|
if (LDAlign < ABIAlign || STAlign < ABIAlign)
|
|
return SDValue();
|
|
|
|
SDValue NewLD =
|
|
DAG.getLoad(IntVT, SDLoc(Value), LD->getChain(), LD->getBasePtr(),
|
|
LD->getPointerInfo(), LDAlign);
|
|
|
|
SDValue NewST =
|
|
DAG.getStore(ST->getChain(), SDLoc(N), NewLD, ST->getBasePtr(),
|
|
ST->getPointerInfo(), STAlign);
|
|
|
|
AddToWorklist(NewLD.getNode());
|
|
AddToWorklist(NewST.getNode());
|
|
WorklistRemover DeadNodes(*this);
|
|
DAG.ReplaceAllUsesOfValueWith(Value.getValue(1), NewLD.getValue(1));
|
|
++LdStFP2Int;
|
|
return NewST;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// This is a helper function for visitMUL to check the profitability
|
|
// of folding (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
|
|
// MulNode is the original multiply, AddNode is (add x, c1),
|
|
// and ConstNode is c2.
|
|
//
|
|
// If the (add x, c1) has multiple uses, we could increase
|
|
// the number of adds if we make this transformation.
|
|
// It would only be worth doing this if we can remove a
|
|
// multiply in the process. Check for that here.
|
|
// To illustrate:
|
|
// (A + c1) * c3
|
|
// (A + c2) * c3
|
|
// We're checking for cases where we have common "c3 * A" expressions.
|
|
bool DAGCombiner::isMulAddWithConstProfitable(SDNode *MulNode,
|
|
SDValue &AddNode,
|
|
SDValue &ConstNode) {
|
|
APInt Val;
|
|
|
|
// If the add only has one use, this would be OK to do.
|
|
if (AddNode.getNode()->hasOneUse())
|
|
return true;
|
|
|
|
// Walk all the users of the constant with which we're multiplying.
|
|
for (SDNode *Use : ConstNode->uses()) {
|
|
if (Use == MulNode) // This use is the one we're on right now. Skip it.
|
|
continue;
|
|
|
|
if (Use->getOpcode() == ISD::MUL) { // We have another multiply use.
|
|
SDNode *OtherOp;
|
|
SDNode *MulVar = AddNode.getOperand(0).getNode();
|
|
|
|
// OtherOp is what we're multiplying against the constant.
|
|
if (Use->getOperand(0) == ConstNode)
|
|
OtherOp = Use->getOperand(1).getNode();
|
|
else
|
|
OtherOp = Use->getOperand(0).getNode();
|
|
|
|
// Check to see if multiply is with the same operand of our "add".
|
|
//
|
|
// ConstNode = CONST
|
|
// Use = ConstNode * A <-- visiting Use. OtherOp is A.
|
|
// ...
|
|
// AddNode = (A + c1) <-- MulVar is A.
|
|
// = AddNode * ConstNode <-- current visiting instruction.
|
|
//
|
|
// If we make this transformation, we will have a common
|
|
// multiply (ConstNode * A) that we can save.
|
|
if (OtherOp == MulVar)
|
|
return true;
|
|
|
|
// Now check to see if a future expansion will give us a common
|
|
// multiply.
|
|
//
|
|
// ConstNode = CONST
|
|
// AddNode = (A + c1)
|
|
// ... = AddNode * ConstNode <-- current visiting instruction.
|
|
// ...
|
|
// OtherOp = (A + c2)
|
|
// Use = OtherOp * ConstNode <-- visiting Use.
|
|
//
|
|
// If we make this transformation, we will have a common
|
|
// multiply (CONST * A) after we also do the same transformation
|
|
// to the "t2" instruction.
|
|
if (OtherOp->getOpcode() == ISD::ADD &&
|
|
DAG.isConstantIntBuildVectorOrConstantInt(OtherOp->getOperand(1)) &&
|
|
OtherOp->getOperand(0).getNode() == MulVar)
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Didn't find a case where this would be profitable.
|
|
return false;
|
|
}
|
|
|
|
SDValue DAGCombiner::getMergeStoreChains(SmallVectorImpl<MemOpLink> &StoreNodes,
|
|
unsigned NumStores) {
|
|
SmallVector<SDValue, 8> Chains;
|
|
SmallPtrSet<const SDNode *, 8> Visited;
|
|
SDLoc StoreDL(StoreNodes[0].MemNode);
|
|
|
|
for (unsigned i = 0; i < NumStores; ++i) {
|
|
Visited.insert(StoreNodes[i].MemNode);
|
|
}
|
|
|
|
// don't include nodes that are children or repeated nodes.
|
|
for (unsigned i = 0; i < NumStores; ++i) {
|
|
if (Visited.insert(StoreNodes[i].MemNode->getChain().getNode()).second)
|
|
Chains.push_back(StoreNodes[i].MemNode->getChain());
|
|
}
|
|
|
|
assert(Chains.size() > 0 && "Chain should have generated a chain");
|
|
return DAG.getTokenFactor(StoreDL, Chains);
|
|
}
|
|
|
|
bool DAGCombiner::mergeStoresOfConstantsOrVecElts(
|
|
SmallVectorImpl<MemOpLink> &StoreNodes, EVT MemVT, unsigned NumStores,
|
|
bool IsConstantSrc, bool UseVector, bool UseTrunc) {
|
|
// Make sure we have something to merge.
|
|
if (NumStores < 2)
|
|
return false;
|
|
|
|
assert((!UseTrunc || !UseVector) &&
|
|
"This optimization cannot emit a vector truncating store");
|
|
|
|
// The latest Node in the DAG.
|
|
SDLoc DL(StoreNodes[0].MemNode);
|
|
|
|
TypeSize ElementSizeBits = MemVT.getStoreSizeInBits();
|
|
unsigned SizeInBits = NumStores * ElementSizeBits;
|
|
unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1;
|
|
|
|
EVT StoreTy;
|
|
if (UseVector) {
|
|
unsigned Elts = NumStores * NumMemElts;
|
|
// Get the type for the merged vector store.
|
|
StoreTy = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts);
|
|
} else
|
|
StoreTy = EVT::getIntegerVT(*DAG.getContext(), SizeInBits);
|
|
|
|
SDValue StoredVal;
|
|
if (UseVector) {
|
|
if (IsConstantSrc) {
|
|
SmallVector<SDValue, 8> BuildVector;
|
|
for (unsigned I = 0; I != NumStores; ++I) {
|
|
StoreSDNode *St = cast<StoreSDNode>(StoreNodes[I].MemNode);
|
|
SDValue Val = St->getValue();
|
|
// If constant is of the wrong type, convert it now.
|
|
if (MemVT != Val.getValueType()) {
|
|
Val = peekThroughBitcasts(Val);
|
|
// Deal with constants of wrong size.
|
|
if (ElementSizeBits != Val.getValueSizeInBits()) {
|
|
EVT IntMemVT =
|
|
EVT::getIntegerVT(*DAG.getContext(), MemVT.getSizeInBits());
|
|
if (isa<ConstantFPSDNode>(Val)) {
|
|
// Not clear how to truncate FP values.
|
|
return false;
|
|
} else if (auto *C = dyn_cast<ConstantSDNode>(Val))
|
|
Val = DAG.getConstant(C->getAPIntValue()
|
|
.zextOrTrunc(Val.getValueSizeInBits())
|
|
.zextOrTrunc(ElementSizeBits),
|
|
SDLoc(C), IntMemVT);
|
|
}
|
|
// Make sure correctly size type is the correct type.
|
|
Val = DAG.getBitcast(MemVT, Val);
|
|
}
|
|
BuildVector.push_back(Val);
|
|
}
|
|
StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS
|
|
: ISD::BUILD_VECTOR,
|
|
DL, StoreTy, BuildVector);
|
|
} else {
|
|
SmallVector<SDValue, 8> Ops;
|
|
for (unsigned i = 0; i < NumStores; ++i) {
|
|
StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
|
|
SDValue Val = peekThroughBitcasts(St->getValue());
|
|
// All operands of BUILD_VECTOR / CONCAT_VECTOR must be of
|
|
// type MemVT. If the underlying value is not the correct
|
|
// type, but it is an extraction of an appropriate vector we
|
|
// can recast Val to be of the correct type. This may require
|
|
// converting between EXTRACT_VECTOR_ELT and
|
|
// EXTRACT_SUBVECTOR.
|
|
if ((MemVT != Val.getValueType()) &&
|
|
(Val.getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
|
|
Val.getOpcode() == ISD::EXTRACT_SUBVECTOR)) {
|
|
EVT MemVTScalarTy = MemVT.getScalarType();
|
|
// We may need to add a bitcast here to get types to line up.
|
|
if (MemVTScalarTy != Val.getValueType().getScalarType()) {
|
|
Val = DAG.getBitcast(MemVT, Val);
|
|
} else {
|
|
unsigned OpC = MemVT.isVector() ? ISD::EXTRACT_SUBVECTOR
|
|
: ISD::EXTRACT_VECTOR_ELT;
|
|
SDValue Vec = Val.getOperand(0);
|
|
SDValue Idx = Val.getOperand(1);
|
|
Val = DAG.getNode(OpC, SDLoc(Val), MemVT, Vec, Idx);
|
|
}
|
|
}
|
|
Ops.push_back(Val);
|
|
}
|
|
|
|
// Build the extracted vector elements back into a vector.
|
|
StoredVal = DAG.getNode(MemVT.isVector() ? ISD::CONCAT_VECTORS
|
|
: ISD::BUILD_VECTOR,
|
|
DL, StoreTy, Ops);
|
|
}
|
|
} else {
|
|
// We should always use a vector store when merging extracted vector
|
|
// elements, so this path implies a store of constants.
|
|
assert(IsConstantSrc && "Merged vector elements should use vector store");
|
|
|
|
APInt StoreInt(SizeInBits, 0);
|
|
|
|
// Construct a single integer constant which is made of the smaller
|
|
// constant inputs.
|
|
bool IsLE = DAG.getDataLayout().isLittleEndian();
|
|
for (unsigned i = 0; i < NumStores; ++i) {
|
|
unsigned Idx = IsLE ? (NumStores - 1 - i) : i;
|
|
StoreSDNode *St = cast<StoreSDNode>(StoreNodes[Idx].MemNode);
|
|
|
|
SDValue Val = St->getValue();
|
|
Val = peekThroughBitcasts(Val);
|
|
StoreInt <<= ElementSizeBits;
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) {
|
|
StoreInt |= C->getAPIntValue()
|
|
.zextOrTrunc(ElementSizeBits)
|
|
.zextOrTrunc(SizeInBits);
|
|
} else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Val)) {
|
|
StoreInt |= C->getValueAPF()
|
|
.bitcastToAPInt()
|
|
.zextOrTrunc(ElementSizeBits)
|
|
.zextOrTrunc(SizeInBits);
|
|
// If fp truncation is necessary give up for now.
|
|
if (MemVT.getSizeInBits() != ElementSizeBits)
|
|
return false;
|
|
} else {
|
|
llvm_unreachable("Invalid constant element type");
|
|
}
|
|
}
|
|
|
|
// Create the new Load and Store operations.
|
|
StoredVal = DAG.getConstant(StoreInt, DL, StoreTy);
|
|
}
|
|
|
|
LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
|
|
SDValue NewChain = getMergeStoreChains(StoreNodes, NumStores);
|
|
|
|
// make sure we use trunc store if it's necessary to be legal.
|
|
SDValue NewStore;
|
|
if (!UseTrunc) {
|
|
NewStore =
|
|
DAG.getStore(NewChain, DL, StoredVal, FirstInChain->getBasePtr(),
|
|
FirstInChain->getPointerInfo(), FirstInChain->getAlign());
|
|
} else { // Must be realized as a trunc store
|
|
EVT LegalizedStoredValTy =
|
|
TLI.getTypeToTransformTo(*DAG.getContext(), StoredVal.getValueType());
|
|
unsigned LegalizedStoreSize = LegalizedStoredValTy.getSizeInBits();
|
|
ConstantSDNode *C = cast<ConstantSDNode>(StoredVal);
|
|
SDValue ExtendedStoreVal =
|
|
DAG.getConstant(C->getAPIntValue().zextOrTrunc(LegalizedStoreSize), DL,
|
|
LegalizedStoredValTy);
|
|
NewStore = DAG.getTruncStore(
|
|
NewChain, DL, ExtendedStoreVal, FirstInChain->getBasePtr(),
|
|
FirstInChain->getPointerInfo(), StoredVal.getValueType() /*TVT*/,
|
|
FirstInChain->getAlign(), FirstInChain->getMemOperand()->getFlags());
|
|
}
|
|
|
|
// Replace all merged stores with the new store.
|
|
for (unsigned i = 0; i < NumStores; ++i)
|
|
CombineTo(StoreNodes[i].MemNode, NewStore);
|
|
|
|
AddToWorklist(NewChain.getNode());
|
|
return true;
|
|
}
|
|
|
|
void DAGCombiner::getStoreMergeCandidates(
|
|
StoreSDNode *St, SmallVectorImpl<MemOpLink> &StoreNodes,
|
|
SDNode *&RootNode) {
|
|
// This holds the base pointer, index, and the offset in bytes from the base
|
|
// pointer. We must have a base and an offset. Do not handle stores to undef
|
|
// base pointers.
|
|
BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG);
|
|
if (!BasePtr.getBase().getNode() || BasePtr.getBase().isUndef())
|
|
return;
|
|
|
|
SDValue Val = peekThroughBitcasts(St->getValue());
|
|
StoreSource StoreSrc = getStoreSource(Val);
|
|
assert(StoreSrc != StoreSource::Unknown && "Expected known source for store");
|
|
|
|
// Match on loadbaseptr if relevant.
|
|
EVT MemVT = St->getMemoryVT();
|
|
BaseIndexOffset LBasePtr;
|
|
EVT LoadVT;
|
|
if (StoreSrc == StoreSource::Load) {
|
|
auto *Ld = cast<LoadSDNode>(Val);
|
|
LBasePtr = BaseIndexOffset::match(Ld, DAG);
|
|
LoadVT = Ld->getMemoryVT();
|
|
// Load and store should be the same type.
|
|
if (MemVT != LoadVT)
|
|
return;
|
|
// Loads must only have one use.
|
|
if (!Ld->hasNUsesOfValue(1, 0))
|
|
return;
|
|
// The memory operands must not be volatile/indexed/atomic.
|
|
// TODO: May be able to relax for unordered atomics (see D66309)
|
|
if (!Ld->isSimple() || Ld->isIndexed())
|
|
return;
|
|
}
|
|
auto CandidateMatch = [&](StoreSDNode *Other, BaseIndexOffset &Ptr,
|
|
int64_t &Offset) -> bool {
|
|
// The memory operands must not be volatile/indexed/atomic.
|
|
// TODO: May be able to relax for unordered atomics (see D66309)
|
|
if (!Other->isSimple() || Other->isIndexed())
|
|
return false;
|
|
// Don't mix temporal stores with non-temporal stores.
|
|
if (St->isNonTemporal() != Other->isNonTemporal())
|
|
return false;
|
|
SDValue OtherBC = peekThroughBitcasts(Other->getValue());
|
|
// Allow merging constants of different types as integers.
|
|
bool NoTypeMatch = (MemVT.isInteger()) ? !MemVT.bitsEq(Other->getMemoryVT())
|
|
: Other->getMemoryVT() != MemVT;
|
|
switch (StoreSrc) {
|
|
case StoreSource::Load: {
|
|
if (NoTypeMatch)
|
|
return false;
|
|
// The Load's Base Ptr must also match.
|
|
auto *OtherLd = dyn_cast<LoadSDNode>(OtherBC);
|
|
if (!OtherLd)
|
|
return false;
|
|
BaseIndexOffset LPtr = BaseIndexOffset::match(OtherLd, DAG);
|
|
if (LoadVT != OtherLd->getMemoryVT())
|
|
return false;
|
|
// Loads must only have one use.
|
|
if (!OtherLd->hasNUsesOfValue(1, 0))
|
|
return false;
|
|
// The memory operands must not be volatile/indexed/atomic.
|
|
// TODO: May be able to relax for unordered atomics (see D66309)
|
|
if (!OtherLd->isSimple() || OtherLd->isIndexed())
|
|
return false;
|
|
// Don't mix temporal loads with non-temporal loads.
|
|
if (cast<LoadSDNode>(Val)->isNonTemporal() != OtherLd->isNonTemporal())
|
|
return false;
|
|
if (!(LBasePtr.equalBaseIndex(LPtr, DAG)))
|
|
return false;
|
|
break;
|
|
}
|
|
case StoreSource::Constant:
|
|
if (NoTypeMatch)
|
|
return false;
|
|
if (!isIntOrFPConstant(OtherBC))
|
|
return false;
|
|
break;
|
|
case StoreSource::Extract:
|
|
// Do not merge truncated stores here.
|
|
if (Other->isTruncatingStore())
|
|
return false;
|
|
if (!MemVT.bitsEq(OtherBC.getValueType()))
|
|
return false;
|
|
if (OtherBC.getOpcode() != ISD::EXTRACT_VECTOR_ELT &&
|
|
OtherBC.getOpcode() != ISD::EXTRACT_SUBVECTOR)
|
|
return false;
|
|
break;
|
|
default:
|
|
llvm_unreachable("Unhandled store source for merging");
|
|
}
|
|
Ptr = BaseIndexOffset::match(Other, DAG);
|
|
return (BasePtr.equalBaseIndex(Ptr, DAG, Offset));
|
|
};
|
|
|
|
// Check if the pair of StoreNode and the RootNode already bail out many
|
|
// times which is over the limit in dependence check.
|
|
auto OverLimitInDependenceCheck = [&](SDNode *StoreNode,
|
|
SDNode *RootNode) -> bool {
|
|
auto RootCount = StoreRootCountMap.find(StoreNode);
|
|
return RootCount != StoreRootCountMap.end() &&
|
|
RootCount->second.first == RootNode &&
|
|
RootCount->second.second > StoreMergeDependenceLimit;
|
|
};
|
|
|
|
auto TryToAddCandidate = [&](SDNode::use_iterator UseIter) {
|
|
// This must be a chain use.
|
|
if (UseIter.getOperandNo() != 0)
|
|
return;
|
|
if (auto *OtherStore = dyn_cast<StoreSDNode>(*UseIter)) {
|
|
BaseIndexOffset Ptr;
|
|
int64_t PtrDiff;
|
|
if (CandidateMatch(OtherStore, Ptr, PtrDiff) &&
|
|
!OverLimitInDependenceCheck(OtherStore, RootNode))
|
|
StoreNodes.push_back(MemOpLink(OtherStore, PtrDiff));
|
|
}
|
|
};
|
|
|
|
// We looking for a root node which is an ancestor to all mergable
|
|
// stores. We search up through a load, to our root and then down
|
|
// through all children. For instance we will find Store{1,2,3} if
|
|
// St is Store1, Store2. or Store3 where the root is not a load
|
|
// which always true for nonvolatile ops. TODO: Expand
|
|
// the search to find all valid candidates through multiple layers of loads.
|
|
//
|
|
// Root
|
|
// |-------|-------|
|
|
// Load Load Store3
|
|
// | |
|
|
// Store1 Store2
|
|
//
|
|
// FIXME: We should be able to climb and
|
|
// descend TokenFactors to find candidates as well.
|
|
|
|
RootNode = St->getChain().getNode();
|
|
|
|
unsigned NumNodesExplored = 0;
|
|
const unsigned MaxSearchNodes = 1024;
|
|
if (auto *Ldn = dyn_cast<LoadSDNode>(RootNode)) {
|
|
RootNode = Ldn->getChain().getNode();
|
|
for (auto I = RootNode->use_begin(), E = RootNode->use_end();
|
|
I != E && NumNodesExplored < MaxSearchNodes; ++I, ++NumNodesExplored) {
|
|
if (I.getOperandNo() == 0 && isa<LoadSDNode>(*I)) { // walk down chain
|
|
for (auto I2 = (*I)->use_begin(), E2 = (*I)->use_end(); I2 != E2; ++I2)
|
|
TryToAddCandidate(I2);
|
|
}
|
|
}
|
|
} else {
|
|
for (auto I = RootNode->use_begin(), E = RootNode->use_end();
|
|
I != E && NumNodesExplored < MaxSearchNodes; ++I, ++NumNodesExplored)
|
|
TryToAddCandidate(I);
|
|
}
|
|
}
|
|
|
|
// We need to check that merging these stores does not cause a loop in
|
|
// the DAG. Any store candidate may depend on another candidate
|
|
// indirectly through its operand (we already consider dependencies
|
|
// through the chain). Check in parallel by searching up from
|
|
// non-chain operands of candidates.
|
|
bool DAGCombiner::checkMergeStoreCandidatesForDependencies(
|
|
SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumStores,
|
|
SDNode *RootNode) {
|
|
// FIXME: We should be able to truncate a full search of
|
|
// predecessors by doing a BFS and keeping tabs the originating
|
|
// stores from which worklist nodes come from in a similar way to
|
|
// TokenFactor simplfication.
|
|
|
|
SmallPtrSet<const SDNode *, 32> Visited;
|
|
SmallVector<const SDNode *, 8> Worklist;
|
|
|
|
// RootNode is a predecessor to all candidates so we need not search
|
|
// past it. Add RootNode (peeking through TokenFactors). Do not count
|
|
// these towards size check.
|
|
|
|
Worklist.push_back(RootNode);
|
|
while (!Worklist.empty()) {
|
|
auto N = Worklist.pop_back_val();
|
|
if (!Visited.insert(N).second)
|
|
continue; // Already present in Visited.
|
|
if (N->getOpcode() == ISD::TokenFactor) {
|
|
for (SDValue Op : N->ops())
|
|
Worklist.push_back(Op.getNode());
|
|
}
|
|
}
|
|
|
|
// Don't count pruning nodes towards max.
|
|
unsigned int Max = 1024 + Visited.size();
|
|
// Search Ops of store candidates.
|
|
for (unsigned i = 0; i < NumStores; ++i) {
|
|
SDNode *N = StoreNodes[i].MemNode;
|
|
// Of the 4 Store Operands:
|
|
// * Chain (Op 0) -> We have already considered these
|
|
// in candidate selection and can be
|
|
// safely ignored
|
|
// * Value (Op 1) -> Cycles may happen (e.g. through load chains)
|
|
// * Address (Op 2) -> Merged addresses may only vary by a fixed constant,
|
|
// but aren't necessarily fromt the same base node, so
|
|
// cycles possible (e.g. via indexed store).
|
|
// * (Op 3) -> Represents the pre or post-indexing offset (or undef for
|
|
// non-indexed stores). Not constant on all targets (e.g. ARM)
|
|
// and so can participate in a cycle.
|
|
for (unsigned j = 1; j < N->getNumOperands(); ++j)
|
|
Worklist.push_back(N->getOperand(j).getNode());
|
|
}
|
|
// Search through DAG. We can stop early if we find a store node.
|
|
for (unsigned i = 0; i < NumStores; ++i)
|
|
if (SDNode::hasPredecessorHelper(StoreNodes[i].MemNode, Visited, Worklist,
|
|
Max)) {
|
|
// If the searching bail out, record the StoreNode and RootNode in the
|
|
// StoreRootCountMap. If we have seen the pair many times over a limit,
|
|
// we won't add the StoreNode into StoreNodes set again.
|
|
if (Visited.size() >= Max) {
|
|
auto &RootCount = StoreRootCountMap[StoreNodes[i].MemNode];
|
|
if (RootCount.first == RootNode)
|
|
RootCount.second++;
|
|
else
|
|
RootCount = {RootNode, 1};
|
|
}
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
unsigned
|
|
DAGCombiner::getConsecutiveStores(SmallVectorImpl<MemOpLink> &StoreNodes,
|
|
int64_t ElementSizeBytes) const {
|
|
while (true) {
|
|
// Find a store past the width of the first store.
|
|
size_t StartIdx = 0;
|
|
while ((StartIdx + 1 < StoreNodes.size()) &&
|
|
StoreNodes[StartIdx].OffsetFromBase + ElementSizeBytes !=
|
|
StoreNodes[StartIdx + 1].OffsetFromBase)
|
|
++StartIdx;
|
|
|
|
// Bail if we don't have enough candidates to merge.
|
|
if (StartIdx + 1 >= StoreNodes.size())
|
|
return 0;
|
|
|
|
// Trim stores that overlapped with the first store.
|
|
if (StartIdx)
|
|
StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + StartIdx);
|
|
|
|
// Scan the memory operations on the chain and find the first
|
|
// non-consecutive store memory address.
|
|
unsigned NumConsecutiveStores = 1;
|
|
int64_t StartAddress = StoreNodes[0].OffsetFromBase;
|
|
// Check that the addresses are consecutive starting from the second
|
|
// element in the list of stores.
|
|
for (unsigned i = 1, e = StoreNodes.size(); i < e; ++i) {
|
|
int64_t CurrAddress = StoreNodes[i].OffsetFromBase;
|
|
if (CurrAddress - StartAddress != (ElementSizeBytes * i))
|
|
break;
|
|
NumConsecutiveStores = i + 1;
|
|
}
|
|
if (NumConsecutiveStores > 1)
|
|
return NumConsecutiveStores;
|
|
|
|
// There are no consecutive stores at the start of the list.
|
|
// Remove the first store and try again.
|
|
StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + 1);
|
|
}
|
|
}
|
|
|
|
bool DAGCombiner::tryStoreMergeOfConstants(
|
|
SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumConsecutiveStores,
|
|
EVT MemVT, SDNode *RootNode, bool AllowVectors) {
|
|
LLVMContext &Context = *DAG.getContext();
|
|
const DataLayout &DL = DAG.getDataLayout();
|
|
int64_t ElementSizeBytes = MemVT.getStoreSize();
|
|
unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1;
|
|
bool MadeChange = false;
|
|
|
|
// Store the constants into memory as one consecutive store.
|
|
while (NumConsecutiveStores >= 2) {
|
|
LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
|
|
unsigned FirstStoreAS = FirstInChain->getAddressSpace();
|
|
unsigned FirstStoreAlign = FirstInChain->getAlignment();
|
|
unsigned LastLegalType = 1;
|
|
unsigned LastLegalVectorType = 1;
|
|
bool LastIntegerTrunc = false;
|
|
bool NonZero = false;
|
|
unsigned FirstZeroAfterNonZero = NumConsecutiveStores;
|
|
for (unsigned i = 0; i < NumConsecutiveStores; ++i) {
|
|
StoreSDNode *ST = cast<StoreSDNode>(StoreNodes[i].MemNode);
|
|
SDValue StoredVal = ST->getValue();
|
|
bool IsElementZero = false;
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(StoredVal))
|
|
IsElementZero = C->isNullValue();
|
|
else if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(StoredVal))
|
|
IsElementZero = C->getConstantFPValue()->isNullValue();
|
|
if (IsElementZero) {
|
|
if (NonZero && FirstZeroAfterNonZero == NumConsecutiveStores)
|
|
FirstZeroAfterNonZero = i;
|
|
}
|
|
NonZero |= !IsElementZero;
|
|
|
|
// Find a legal type for the constant store.
|
|
unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8;
|
|
EVT StoreTy = EVT::getIntegerVT(Context, SizeInBits);
|
|
bool IsFast = false;
|
|
|
|
// Break early when size is too large to be legal.
|
|
if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits)
|
|
break;
|
|
|
|
if (TLI.isTypeLegal(StoreTy) &&
|
|
TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) &&
|
|
TLI.allowsMemoryAccess(Context, DL, StoreTy,
|
|
*FirstInChain->getMemOperand(), &IsFast) &&
|
|
IsFast) {
|
|
LastIntegerTrunc = false;
|
|
LastLegalType = i + 1;
|
|
// Or check whether a truncstore is legal.
|
|
} else if (TLI.getTypeAction(Context, StoreTy) ==
|
|
TargetLowering::TypePromoteInteger) {
|
|
EVT LegalizedStoredValTy =
|
|
TLI.getTypeToTransformTo(Context, StoredVal.getValueType());
|
|
if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) &&
|
|
TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, DAG) &&
|
|
TLI.allowsMemoryAccess(Context, DL, StoreTy,
|
|
*FirstInChain->getMemOperand(), &IsFast) &&
|
|
IsFast) {
|
|
LastIntegerTrunc = true;
|
|
LastLegalType = i + 1;
|
|
}
|
|
}
|
|
|
|
// We only use vectors if the constant is known to be zero or the
|
|
// target allows it and the function is not marked with the
|
|
// noimplicitfloat attribute.
|
|
if ((!NonZero ||
|
|
TLI.storeOfVectorConstantIsCheap(MemVT, i + 1, FirstStoreAS)) &&
|
|
AllowVectors) {
|
|
// Find a legal type for the vector store.
|
|
unsigned Elts = (i + 1) * NumMemElts;
|
|
EVT Ty = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts);
|
|
if (TLI.isTypeLegal(Ty) && TLI.isTypeLegal(MemVT) &&
|
|
TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG) &&
|
|
TLI.allowsMemoryAccess(Context, DL, Ty,
|
|
*FirstInChain->getMemOperand(), &IsFast) &&
|
|
IsFast)
|
|
LastLegalVectorType = i + 1;
|
|
}
|
|
}
|
|
|
|
bool UseVector = (LastLegalVectorType > LastLegalType) && AllowVectors;
|
|
unsigned NumElem = (UseVector) ? LastLegalVectorType : LastLegalType;
|
|
bool UseTrunc = LastIntegerTrunc && !UseVector;
|
|
|
|
// Check if we found a legal integer type that creates a meaningful
|
|
// merge.
|
|
if (NumElem < 2) {
|
|
// We know that candidate stores are in order and of correct
|
|
// shape. While there is no mergeable sequence from the
|
|
// beginning one may start later in the sequence. The only
|
|
// reason a merge of size N could have failed where another of
|
|
// the same size would not have, is if the alignment has
|
|
// improved or we've dropped a non-zero value. Drop as many
|
|
// candidates as we can here.
|
|
unsigned NumSkip = 1;
|
|
while ((NumSkip < NumConsecutiveStores) &&
|
|
(NumSkip < FirstZeroAfterNonZero) &&
|
|
(StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign))
|
|
NumSkip++;
|
|
|
|
StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip);
|
|
NumConsecutiveStores -= NumSkip;
|
|
continue;
|
|
}
|
|
|
|
// Check that we can merge these candidates without causing a cycle.
|
|
if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem,
|
|
RootNode)) {
|
|
StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
|
|
NumConsecutiveStores -= NumElem;
|
|
continue;
|
|
}
|
|
|
|
MadeChange |= mergeStoresOfConstantsOrVecElts(StoreNodes, MemVT, NumElem,
|
|
/*IsConstantSrc*/ true,
|
|
UseVector, UseTrunc);
|
|
|
|
// Remove merged stores for next iteration.
|
|
StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
|
|
NumConsecutiveStores -= NumElem;
|
|
}
|
|
return MadeChange;
|
|
}
|
|
|
|
bool DAGCombiner::tryStoreMergeOfExtracts(
|
|
SmallVectorImpl<MemOpLink> &StoreNodes, unsigned NumConsecutiveStores,
|
|
EVT MemVT, SDNode *RootNode) {
|
|
LLVMContext &Context = *DAG.getContext();
|
|
const DataLayout &DL = DAG.getDataLayout();
|
|
unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1;
|
|
bool MadeChange = false;
|
|
|
|
// Loop on Consecutive Stores on success.
|
|
while (NumConsecutiveStores >= 2) {
|
|
LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
|
|
unsigned FirstStoreAS = FirstInChain->getAddressSpace();
|
|
unsigned FirstStoreAlign = FirstInChain->getAlignment();
|
|
unsigned NumStoresToMerge = 1;
|
|
for (unsigned i = 0; i < NumConsecutiveStores; ++i) {
|
|
// Find a legal type for the vector store.
|
|
unsigned Elts = (i + 1) * NumMemElts;
|
|
EVT Ty = EVT::getVectorVT(*DAG.getContext(), MemVT.getScalarType(), Elts);
|
|
bool IsFast = false;
|
|
|
|
// Break early when size is too large to be legal.
|
|
if (Ty.getSizeInBits() > MaximumLegalStoreInBits)
|
|
break;
|
|
|
|
if (TLI.isTypeLegal(Ty) && TLI.canMergeStoresTo(FirstStoreAS, Ty, DAG) &&
|
|
TLI.allowsMemoryAccess(Context, DL, Ty,
|
|
*FirstInChain->getMemOperand(), &IsFast) &&
|
|
IsFast)
|
|
NumStoresToMerge = i + 1;
|
|
}
|
|
|
|
// Check if we found a legal integer type creating a meaningful
|
|
// merge.
|
|
if (NumStoresToMerge < 2) {
|
|
// We know that candidate stores are in order and of correct
|
|
// shape. While there is no mergeable sequence from the
|
|
// beginning one may start later in the sequence. The only
|
|
// reason a merge of size N could have failed where another of
|
|
// the same size would not have, is if the alignment has
|
|
// improved. Drop as many candidates as we can here.
|
|
unsigned NumSkip = 1;
|
|
while ((NumSkip < NumConsecutiveStores) &&
|
|
(StoreNodes[NumSkip].MemNode->getAlignment() <= FirstStoreAlign))
|
|
NumSkip++;
|
|
|
|
StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip);
|
|
NumConsecutiveStores -= NumSkip;
|
|
continue;
|
|
}
|
|
|
|
// Check that we can merge these candidates without causing a cycle.
|
|
if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumStoresToMerge,
|
|
RootNode)) {
|
|
StoreNodes.erase(StoreNodes.begin(),
|
|
StoreNodes.begin() + NumStoresToMerge);
|
|
NumConsecutiveStores -= NumStoresToMerge;
|
|
continue;
|
|
}
|
|
|
|
MadeChange |= mergeStoresOfConstantsOrVecElts(
|
|
StoreNodes, MemVT, NumStoresToMerge, /*IsConstantSrc*/ false,
|
|
/*UseVector*/ true, /*UseTrunc*/ false);
|
|
|
|
StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumStoresToMerge);
|
|
NumConsecutiveStores -= NumStoresToMerge;
|
|
}
|
|
return MadeChange;
|
|
}
|
|
|
|
bool DAGCombiner::tryStoreMergeOfLoads(SmallVectorImpl<MemOpLink> &StoreNodes,
|
|
unsigned NumConsecutiveStores, EVT MemVT,
|
|
SDNode *RootNode, bool AllowVectors,
|
|
bool IsNonTemporalStore,
|
|
bool IsNonTemporalLoad) {
|
|
LLVMContext &Context = *DAG.getContext();
|
|
const DataLayout &DL = DAG.getDataLayout();
|
|
int64_t ElementSizeBytes = MemVT.getStoreSize();
|
|
unsigned NumMemElts = MemVT.isVector() ? MemVT.getVectorNumElements() : 1;
|
|
bool MadeChange = false;
|
|
|
|
// Look for load nodes which are used by the stored values.
|
|
SmallVector<MemOpLink, 8> LoadNodes;
|
|
|
|
// Find acceptable loads. Loads need to have the same chain (token factor),
|
|
// must not be zext, volatile, indexed, and they must be consecutive.
|
|
BaseIndexOffset LdBasePtr;
|
|
|
|
for (unsigned i = 0; i < NumConsecutiveStores; ++i) {
|
|
StoreSDNode *St = cast<StoreSDNode>(StoreNodes[i].MemNode);
|
|
SDValue Val = peekThroughBitcasts(St->getValue());
|
|
LoadSDNode *Ld = cast<LoadSDNode>(Val);
|
|
|
|
BaseIndexOffset LdPtr = BaseIndexOffset::match(Ld, DAG);
|
|
// If this is not the first ptr that we check.
|
|
int64_t LdOffset = 0;
|
|
if (LdBasePtr.getBase().getNode()) {
|
|
// The base ptr must be the same.
|
|
if (!LdBasePtr.equalBaseIndex(LdPtr, DAG, LdOffset))
|
|
break;
|
|
} else {
|
|
// Check that all other base pointers are the same as this one.
|
|
LdBasePtr = LdPtr;
|
|
}
|
|
|
|
// We found a potential memory operand to merge.
|
|
LoadNodes.push_back(MemOpLink(Ld, LdOffset));
|
|
}
|
|
|
|
while (NumConsecutiveStores >= 2 && LoadNodes.size() >= 2) {
|
|
Align RequiredAlignment;
|
|
bool NeedRotate = false;
|
|
if (LoadNodes.size() == 2) {
|
|
// If we have load/store pair instructions and we only have two values,
|
|
// don't bother merging.
|
|
if (TLI.hasPairedLoad(MemVT, RequiredAlignment) &&
|
|
StoreNodes[0].MemNode->getAlign() >= RequiredAlignment) {
|
|
StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + 2);
|
|
LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + 2);
|
|
break;
|
|
}
|
|
// If the loads are reversed, see if we can rotate the halves into place.
|
|
int64_t Offset0 = LoadNodes[0].OffsetFromBase;
|
|
int64_t Offset1 = LoadNodes[1].OffsetFromBase;
|
|
EVT PairVT = EVT::getIntegerVT(Context, ElementSizeBytes * 8 * 2);
|
|
if (Offset0 - Offset1 == ElementSizeBytes &&
|
|
(hasOperation(ISD::ROTL, PairVT) ||
|
|
hasOperation(ISD::ROTR, PairVT))) {
|
|
std::swap(LoadNodes[0], LoadNodes[1]);
|
|
NeedRotate = true;
|
|
}
|
|
}
|
|
LSBaseSDNode *FirstInChain = StoreNodes[0].MemNode;
|
|
unsigned FirstStoreAS = FirstInChain->getAddressSpace();
|
|
Align FirstStoreAlign = FirstInChain->getAlign();
|
|
LoadSDNode *FirstLoad = cast<LoadSDNode>(LoadNodes[0].MemNode);
|
|
|
|
// Scan the memory operations on the chain and find the first
|
|
// non-consecutive load memory address. These variables hold the index in
|
|
// the store node array.
|
|
|
|
unsigned LastConsecutiveLoad = 1;
|
|
|
|
// This variable refers to the size and not index in the array.
|
|
unsigned LastLegalVectorType = 1;
|
|
unsigned LastLegalIntegerType = 1;
|
|
bool isDereferenceable = true;
|
|
bool DoIntegerTruncate = false;
|
|
int64_t StartAddress = LoadNodes[0].OffsetFromBase;
|
|
SDValue LoadChain = FirstLoad->getChain();
|
|
for (unsigned i = 1; i < LoadNodes.size(); ++i) {
|
|
// All loads must share the same chain.
|
|
if (LoadNodes[i].MemNode->getChain() != LoadChain)
|
|
break;
|
|
|
|
int64_t CurrAddress = LoadNodes[i].OffsetFromBase;
|
|
if (CurrAddress - StartAddress != (ElementSizeBytes * i))
|
|
break;
|
|
LastConsecutiveLoad = i;
|
|
|
|
if (isDereferenceable && !LoadNodes[i].MemNode->isDereferenceable())
|
|
isDereferenceable = false;
|
|
|
|
// Find a legal type for the vector store.
|
|
unsigned Elts = (i + 1) * NumMemElts;
|
|
EVT StoreTy = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts);
|
|
|
|
// Break early when size is too large to be legal.
|
|
if (StoreTy.getSizeInBits() > MaximumLegalStoreInBits)
|
|
break;
|
|
|
|
bool IsFastSt = false;
|
|
bool IsFastLd = false;
|
|
if (TLI.isTypeLegal(StoreTy) &&
|
|
TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) &&
|
|
TLI.allowsMemoryAccess(Context, DL, StoreTy,
|
|
*FirstInChain->getMemOperand(), &IsFastSt) &&
|
|
IsFastSt &&
|
|
TLI.allowsMemoryAccess(Context, DL, StoreTy,
|
|
*FirstLoad->getMemOperand(), &IsFastLd) &&
|
|
IsFastLd) {
|
|
LastLegalVectorType = i + 1;
|
|
}
|
|
|
|
// Find a legal type for the integer store.
|
|
unsigned SizeInBits = (i + 1) * ElementSizeBytes * 8;
|
|
StoreTy = EVT::getIntegerVT(Context, SizeInBits);
|
|
if (TLI.isTypeLegal(StoreTy) &&
|
|
TLI.canMergeStoresTo(FirstStoreAS, StoreTy, DAG) &&
|
|
TLI.allowsMemoryAccess(Context, DL, StoreTy,
|
|
*FirstInChain->getMemOperand(), &IsFastSt) &&
|
|
IsFastSt &&
|
|
TLI.allowsMemoryAccess(Context, DL, StoreTy,
|
|
*FirstLoad->getMemOperand(), &IsFastLd) &&
|
|
IsFastLd) {
|
|
LastLegalIntegerType = i + 1;
|
|
DoIntegerTruncate = false;
|
|
// Or check whether a truncstore and extload is legal.
|
|
} else if (TLI.getTypeAction(Context, StoreTy) ==
|
|
TargetLowering::TypePromoteInteger) {
|
|
EVT LegalizedStoredValTy = TLI.getTypeToTransformTo(Context, StoreTy);
|
|
if (TLI.isTruncStoreLegal(LegalizedStoredValTy, StoreTy) &&
|
|
TLI.canMergeStoresTo(FirstStoreAS, LegalizedStoredValTy, DAG) &&
|
|
TLI.isLoadExtLegal(ISD::ZEXTLOAD, LegalizedStoredValTy, StoreTy) &&
|
|
TLI.isLoadExtLegal(ISD::SEXTLOAD, LegalizedStoredValTy, StoreTy) &&
|
|
TLI.isLoadExtLegal(ISD::EXTLOAD, LegalizedStoredValTy, StoreTy) &&
|
|
TLI.allowsMemoryAccess(Context, DL, StoreTy,
|
|
*FirstInChain->getMemOperand(), &IsFastSt) &&
|
|
IsFastSt &&
|
|
TLI.allowsMemoryAccess(Context, DL, StoreTy,
|
|
*FirstLoad->getMemOperand(), &IsFastLd) &&
|
|
IsFastLd) {
|
|
LastLegalIntegerType = i + 1;
|
|
DoIntegerTruncate = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Only use vector types if the vector type is larger than the integer
|
|
// type. If they are the same, use integers.
|
|
bool UseVectorTy =
|
|
LastLegalVectorType > LastLegalIntegerType && AllowVectors;
|
|
unsigned LastLegalType =
|
|
std::max(LastLegalVectorType, LastLegalIntegerType);
|
|
|
|
// We add +1 here because the LastXXX variables refer to location while
|
|
// the NumElem refers to array/index size.
|
|
unsigned NumElem = std::min(NumConsecutiveStores, LastConsecutiveLoad + 1);
|
|
NumElem = std::min(LastLegalType, NumElem);
|
|
Align FirstLoadAlign = FirstLoad->getAlign();
|
|
|
|
if (NumElem < 2) {
|
|
// We know that candidate stores are in order and of correct
|
|
// shape. While there is no mergeable sequence from the
|
|
// beginning one may start later in the sequence. The only
|
|
// reason a merge of size N could have failed where another of
|
|
// the same size would not have is if the alignment or either
|
|
// the load or store has improved. Drop as many candidates as we
|
|
// can here.
|
|
unsigned NumSkip = 1;
|
|
while ((NumSkip < LoadNodes.size()) &&
|
|
(LoadNodes[NumSkip].MemNode->getAlign() <= FirstLoadAlign) &&
|
|
(StoreNodes[NumSkip].MemNode->getAlign() <= FirstStoreAlign))
|
|
NumSkip++;
|
|
StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumSkip);
|
|
LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumSkip);
|
|
NumConsecutiveStores -= NumSkip;
|
|
continue;
|
|
}
|
|
|
|
// Check that we can merge these candidates without causing a cycle.
|
|
if (!checkMergeStoreCandidatesForDependencies(StoreNodes, NumElem,
|
|
RootNode)) {
|
|
StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
|
|
LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem);
|
|
NumConsecutiveStores -= NumElem;
|
|
continue;
|
|
}
|
|
|
|
// Find if it is better to use vectors or integers to load and store
|
|
// to memory.
|
|
EVT JointMemOpVT;
|
|
if (UseVectorTy) {
|
|
// Find a legal type for the vector store.
|
|
unsigned Elts = NumElem * NumMemElts;
|
|
JointMemOpVT = EVT::getVectorVT(Context, MemVT.getScalarType(), Elts);
|
|
} else {
|
|
unsigned SizeInBits = NumElem * ElementSizeBytes * 8;
|
|
JointMemOpVT = EVT::getIntegerVT(Context, SizeInBits);
|
|
}
|
|
|
|
SDLoc LoadDL(LoadNodes[0].MemNode);
|
|
SDLoc StoreDL(StoreNodes[0].MemNode);
|
|
|
|
// The merged loads are required to have the same incoming chain, so
|
|
// using the first's chain is acceptable.
|
|
|
|
SDValue NewStoreChain = getMergeStoreChains(StoreNodes, NumElem);
|
|
AddToWorklist(NewStoreChain.getNode());
|
|
|
|
MachineMemOperand::Flags LdMMOFlags =
|
|
isDereferenceable ? MachineMemOperand::MODereferenceable
|
|
: MachineMemOperand::MONone;
|
|
if (IsNonTemporalLoad)
|
|
LdMMOFlags |= MachineMemOperand::MONonTemporal;
|
|
|
|
MachineMemOperand::Flags StMMOFlags = IsNonTemporalStore
|
|
? MachineMemOperand::MONonTemporal
|
|
: MachineMemOperand::MONone;
|
|
|
|
SDValue NewLoad, NewStore;
|
|
if (UseVectorTy || !DoIntegerTruncate) {
|
|
NewLoad = DAG.getLoad(
|
|
JointMemOpVT, LoadDL, FirstLoad->getChain(), FirstLoad->getBasePtr(),
|
|
FirstLoad->getPointerInfo(), FirstLoadAlign, LdMMOFlags);
|
|
SDValue StoreOp = NewLoad;
|
|
if (NeedRotate) {
|
|
unsigned LoadWidth = ElementSizeBytes * 8 * 2;
|
|
assert(JointMemOpVT == EVT::getIntegerVT(Context, LoadWidth) &&
|
|
"Unexpected type for rotate-able load pair");
|
|
SDValue RotAmt =
|
|
DAG.getShiftAmountConstant(LoadWidth / 2, JointMemOpVT, LoadDL);
|
|
// Target can convert to the identical ROTR if it does not have ROTL.
|
|
StoreOp = DAG.getNode(ISD::ROTL, LoadDL, JointMemOpVT, NewLoad, RotAmt);
|
|
}
|
|
NewStore = DAG.getStore(
|
|
NewStoreChain, StoreDL, StoreOp, FirstInChain->getBasePtr(),
|
|
FirstInChain->getPointerInfo(), FirstStoreAlign, StMMOFlags);
|
|
} else { // This must be the truncstore/extload case
|
|
EVT ExtendedTy =
|
|
TLI.getTypeToTransformTo(*DAG.getContext(), JointMemOpVT);
|
|
NewLoad = DAG.getExtLoad(ISD::EXTLOAD, LoadDL, ExtendedTy,
|
|
FirstLoad->getChain(), FirstLoad->getBasePtr(),
|
|
FirstLoad->getPointerInfo(), JointMemOpVT,
|
|
FirstLoadAlign, LdMMOFlags);
|
|
NewStore = DAG.getTruncStore(
|
|
NewStoreChain, StoreDL, NewLoad, FirstInChain->getBasePtr(),
|
|
FirstInChain->getPointerInfo(), JointMemOpVT,
|
|
FirstInChain->getAlign(), FirstInChain->getMemOperand()->getFlags());
|
|
}
|
|
|
|
// Transfer chain users from old loads to the new load.
|
|
for (unsigned i = 0; i < NumElem; ++i) {
|
|
LoadSDNode *Ld = cast<LoadSDNode>(LoadNodes[i].MemNode);
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(Ld, 1),
|
|
SDValue(NewLoad.getNode(), 1));
|
|
}
|
|
|
|
// Replace all stores with the new store. Recursively remove corresponding
|
|
// values if they are no longer used.
|
|
for (unsigned i = 0; i < NumElem; ++i) {
|
|
SDValue Val = StoreNodes[i].MemNode->getOperand(1);
|
|
CombineTo(StoreNodes[i].MemNode, NewStore);
|
|
if (Val.getNode()->use_empty())
|
|
recursivelyDeleteUnusedNodes(Val.getNode());
|
|
}
|
|
|
|
MadeChange = true;
|
|
StoreNodes.erase(StoreNodes.begin(), StoreNodes.begin() + NumElem);
|
|
LoadNodes.erase(LoadNodes.begin(), LoadNodes.begin() + NumElem);
|
|
NumConsecutiveStores -= NumElem;
|
|
}
|
|
return MadeChange;
|
|
}
|
|
|
|
bool DAGCombiner::mergeConsecutiveStores(StoreSDNode *St) {
|
|
if (OptLevel == CodeGenOpt::None || !EnableStoreMerging)
|
|
return false;
|
|
|
|
// TODO: Extend this function to merge stores of scalable vectors.
|
|
// (i.e. two <vscale x 8 x i8> stores can be merged to one <vscale x 16 x i8>
|
|
// store since we know <vscale x 16 x i8> is exactly twice as large as
|
|
// <vscale x 8 x i8>). Until then, bail out for scalable vectors.
|
|
EVT MemVT = St->getMemoryVT();
|
|
if (MemVT.isScalableVector())
|
|
return false;
|
|
if (!MemVT.isSimple() || MemVT.getSizeInBits() * 2 > MaximumLegalStoreInBits)
|
|
return false;
|
|
|
|
// This function cannot currently deal with non-byte-sized memory sizes.
|
|
int64_t ElementSizeBytes = MemVT.getStoreSize();
|
|
if (ElementSizeBytes * 8 != (int64_t)MemVT.getSizeInBits())
|
|
return false;
|
|
|
|
// Do not bother looking at stored values that are not constants, loads, or
|
|
// extracted vector elements.
|
|
SDValue StoredVal = peekThroughBitcasts(St->getValue());
|
|
const StoreSource StoreSrc = getStoreSource(StoredVal);
|
|
if (StoreSrc == StoreSource::Unknown)
|
|
return false;
|
|
|
|
SmallVector<MemOpLink, 8> StoreNodes;
|
|
SDNode *RootNode;
|
|
// Find potential store merge candidates by searching through chain sub-DAG
|
|
getStoreMergeCandidates(St, StoreNodes, RootNode);
|
|
|
|
// Check if there is anything to merge.
|
|
if (StoreNodes.size() < 2)
|
|
return false;
|
|
|
|
// Sort the memory operands according to their distance from the
|
|
// base pointer.
|
|
llvm::sort(StoreNodes, [](MemOpLink LHS, MemOpLink RHS) {
|
|
return LHS.OffsetFromBase < RHS.OffsetFromBase;
|
|
});
|
|
|
|
bool AllowVectors = !DAG.getMachineFunction().getFunction().hasFnAttribute(
|
|
Attribute::NoImplicitFloat);
|
|
bool IsNonTemporalStore = St->isNonTemporal();
|
|
bool IsNonTemporalLoad = StoreSrc == StoreSource::Load &&
|
|
cast<LoadSDNode>(StoredVal)->isNonTemporal();
|
|
|
|
// Store Merge attempts to merge the lowest stores. This generally
|
|
// works out as if successful, as the remaining stores are checked
|
|
// after the first collection of stores is merged. However, in the
|
|
// case that a non-mergeable store is found first, e.g., {p[-2],
|
|
// p[0], p[1], p[2], p[3]}, we would fail and miss the subsequent
|
|
// mergeable cases. To prevent this, we prune such stores from the
|
|
// front of StoreNodes here.
|
|
bool MadeChange = false;
|
|
while (StoreNodes.size() > 1) {
|
|
unsigned NumConsecutiveStores =
|
|
getConsecutiveStores(StoreNodes, ElementSizeBytes);
|
|
// There are no more stores in the list to examine.
|
|
if (NumConsecutiveStores == 0)
|
|
return MadeChange;
|
|
|
|
// We have at least 2 consecutive stores. Try to merge them.
|
|
assert(NumConsecutiveStores >= 2 && "Expected at least 2 stores");
|
|
switch (StoreSrc) {
|
|
case StoreSource::Constant:
|
|
MadeChange |= tryStoreMergeOfConstants(StoreNodes, NumConsecutiveStores,
|
|
MemVT, RootNode, AllowVectors);
|
|
break;
|
|
|
|
case StoreSource::Extract:
|
|
MadeChange |= tryStoreMergeOfExtracts(StoreNodes, NumConsecutiveStores,
|
|
MemVT, RootNode);
|
|
break;
|
|
|
|
case StoreSource::Load:
|
|
MadeChange |= tryStoreMergeOfLoads(StoreNodes, NumConsecutiveStores,
|
|
MemVT, RootNode, AllowVectors,
|
|
IsNonTemporalStore, IsNonTemporalLoad);
|
|
break;
|
|
|
|
default:
|
|
llvm_unreachable("Unhandled store source type");
|
|
}
|
|
}
|
|
return MadeChange;
|
|
}
|
|
|
|
SDValue DAGCombiner::replaceStoreChain(StoreSDNode *ST, SDValue BetterChain) {
|
|
SDLoc SL(ST);
|
|
SDValue ReplStore;
|
|
|
|
// Replace the chain to avoid dependency.
|
|
if (ST->isTruncatingStore()) {
|
|
ReplStore = DAG.getTruncStore(BetterChain, SL, ST->getValue(),
|
|
ST->getBasePtr(), ST->getMemoryVT(),
|
|
ST->getMemOperand());
|
|
} else {
|
|
ReplStore = DAG.getStore(BetterChain, SL, ST->getValue(), ST->getBasePtr(),
|
|
ST->getMemOperand());
|
|
}
|
|
|
|
// Create token to keep both nodes around.
|
|
SDValue Token = DAG.getNode(ISD::TokenFactor, SL,
|
|
MVT::Other, ST->getChain(), ReplStore);
|
|
|
|
// Make sure the new and old chains are cleaned up.
|
|
AddToWorklist(Token.getNode());
|
|
|
|
// Don't add users to work list.
|
|
return CombineTo(ST, Token, false);
|
|
}
|
|
|
|
SDValue DAGCombiner::replaceStoreOfFPConstant(StoreSDNode *ST) {
|
|
SDValue Value = ST->getValue();
|
|
if (Value.getOpcode() == ISD::TargetConstantFP)
|
|
return SDValue();
|
|
|
|
if (!ISD::isNormalStore(ST))
|
|
return SDValue();
|
|
|
|
SDLoc DL(ST);
|
|
|
|
SDValue Chain = ST->getChain();
|
|
SDValue Ptr = ST->getBasePtr();
|
|
|
|
const ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Value);
|
|
|
|
// NOTE: If the original store is volatile, this transform must not increase
|
|
// the number of stores. For example, on x86-32 an f64 can be stored in one
|
|
// processor operation but an i64 (which is not legal) requires two. So the
|
|
// transform should not be done in this case.
|
|
|
|
SDValue Tmp;
|
|
switch (CFP->getSimpleValueType(0).SimpleTy) {
|
|
default:
|
|
llvm_unreachable("Unknown FP type");
|
|
case MVT::f16: // We don't do this for these yet.
|
|
case MVT::f80:
|
|
case MVT::f128:
|
|
case MVT::ppcf128:
|
|
return SDValue();
|
|
case MVT::f32:
|
|
if ((isTypeLegal(MVT::i32) && !LegalOperations && ST->isSimple()) ||
|
|
TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
|
|
;
|
|
Tmp = DAG.getConstant((uint32_t)CFP->getValueAPF().
|
|
bitcastToAPInt().getZExtValue(), SDLoc(CFP),
|
|
MVT::i32);
|
|
return DAG.getStore(Chain, DL, Tmp, Ptr, ST->getMemOperand());
|
|
}
|
|
|
|
return SDValue();
|
|
case MVT::f64:
|
|
if ((TLI.isTypeLegal(MVT::i64) && !LegalOperations &&
|
|
ST->isSimple()) ||
|
|
TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i64)) {
|
|
;
|
|
Tmp = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
|
|
getZExtValue(), SDLoc(CFP), MVT::i64);
|
|
return DAG.getStore(Chain, DL, Tmp,
|
|
Ptr, ST->getMemOperand());
|
|
}
|
|
|
|
if (ST->isSimple() &&
|
|
TLI.isOperationLegalOrCustom(ISD::STORE, MVT::i32)) {
|
|
// Many FP stores are not made apparent until after legalize, e.g. for
|
|
// argument passing. Since this is so common, custom legalize the
|
|
// 64-bit integer store into two 32-bit stores.
|
|
uint64_t Val = CFP->getValueAPF().bitcastToAPInt().getZExtValue();
|
|
SDValue Lo = DAG.getConstant(Val & 0xFFFFFFFF, SDLoc(CFP), MVT::i32);
|
|
SDValue Hi = DAG.getConstant(Val >> 32, SDLoc(CFP), MVT::i32);
|
|
if (DAG.getDataLayout().isBigEndian())
|
|
std::swap(Lo, Hi);
|
|
|
|
MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
|
|
AAMDNodes AAInfo = ST->getAAInfo();
|
|
|
|
SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(),
|
|
ST->getOriginalAlign(), MMOFlags, AAInfo);
|
|
Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(4), DL);
|
|
SDValue St1 = DAG.getStore(Chain, DL, Hi, Ptr,
|
|
ST->getPointerInfo().getWithOffset(4),
|
|
ST->getOriginalAlign(), MMOFlags, AAInfo);
|
|
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
|
|
St0, St1);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
}
|
|
|
|
SDValue DAGCombiner::visitSTORE(SDNode *N) {
|
|
StoreSDNode *ST = cast<StoreSDNode>(N);
|
|
SDValue Chain = ST->getChain();
|
|
SDValue Value = ST->getValue();
|
|
SDValue Ptr = ST->getBasePtr();
|
|
|
|
// If this is a store of a bit convert, store the input value if the
|
|
// resultant store does not need a higher alignment than the original.
|
|
if (Value.getOpcode() == ISD::BITCAST && !ST->isTruncatingStore() &&
|
|
ST->isUnindexed()) {
|
|
EVT SVT = Value.getOperand(0).getValueType();
|
|
// If the store is volatile, we only want to change the store type if the
|
|
// resulting store is legal. Otherwise we might increase the number of
|
|
// memory accesses. We don't care if the original type was legal or not
|
|
// as we assume software couldn't rely on the number of accesses of an
|
|
// illegal type.
|
|
// TODO: May be able to relax for unordered atomics (see D66309)
|
|
if (((!LegalOperations && ST->isSimple()) ||
|
|
TLI.isOperationLegal(ISD::STORE, SVT)) &&
|
|
TLI.isStoreBitCastBeneficial(Value.getValueType(), SVT,
|
|
DAG, *ST->getMemOperand())) {
|
|
return DAG.getStore(Chain, SDLoc(N), Value.getOperand(0), Ptr,
|
|
ST->getMemOperand());
|
|
}
|
|
}
|
|
|
|
// Turn 'store undef, Ptr' -> nothing.
|
|
if (Value.isUndef() && ST->isUnindexed())
|
|
return Chain;
|
|
|
|
// Try to infer better alignment information than the store already has.
|
|
if (OptLevel != CodeGenOpt::None && ST->isUnindexed() && !ST->isAtomic()) {
|
|
if (MaybeAlign Alignment = DAG.InferPtrAlign(Ptr)) {
|
|
if (*Alignment > ST->getAlign() &&
|
|
isAligned(*Alignment, ST->getSrcValueOffset())) {
|
|
SDValue NewStore =
|
|
DAG.getTruncStore(Chain, SDLoc(N), Value, Ptr, ST->getPointerInfo(),
|
|
ST->getMemoryVT(), *Alignment,
|
|
ST->getMemOperand()->getFlags(), ST->getAAInfo());
|
|
// NewStore will always be N as we are only refining the alignment
|
|
assert(NewStore.getNode() == N);
|
|
(void)NewStore;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Try transforming a pair floating point load / store ops to integer
|
|
// load / store ops.
|
|
if (SDValue NewST = TransformFPLoadStorePair(N))
|
|
return NewST;
|
|
|
|
// Try transforming several stores into STORE (BSWAP).
|
|
if (SDValue Store = mergeTruncStores(ST))
|
|
return Store;
|
|
|
|
if (ST->isUnindexed()) {
|
|
// Walk up chain skipping non-aliasing memory nodes, on this store and any
|
|
// adjacent stores.
|
|
if (findBetterNeighborChains(ST)) {
|
|
// replaceStoreChain uses CombineTo, which handled all of the worklist
|
|
// manipulation. Return the original node to not do anything else.
|
|
return SDValue(ST, 0);
|
|
}
|
|
Chain = ST->getChain();
|
|
}
|
|
|
|
// FIXME: is there such a thing as a truncating indexed store?
|
|
if (ST->isTruncatingStore() && ST->isUnindexed() &&
|
|
Value.getValueType().isInteger() &&
|
|
(!isa<ConstantSDNode>(Value) ||
|
|
!cast<ConstantSDNode>(Value)->isOpaque())) {
|
|
APInt TruncDemandedBits =
|
|
APInt::getLowBitsSet(Value.getScalarValueSizeInBits(),
|
|
ST->getMemoryVT().getScalarSizeInBits());
|
|
|
|
// See if we can simplify the input to this truncstore with knowledge that
|
|
// only the low bits are being used. For example:
|
|
// "truncstore (or (shl x, 8), y), i8" -> "truncstore y, i8"
|
|
AddToWorklist(Value.getNode());
|
|
if (SDValue Shorter = DAG.GetDemandedBits(Value, TruncDemandedBits))
|
|
return DAG.getTruncStore(Chain, SDLoc(N), Shorter, Ptr, ST->getMemoryVT(),
|
|
ST->getMemOperand());
|
|
|
|
// Otherwise, see if we can simplify the operation with
|
|
// SimplifyDemandedBits, which only works if the value has a single use.
|
|
if (SimplifyDemandedBits(Value, TruncDemandedBits)) {
|
|
// Re-visit the store if anything changed and the store hasn't been merged
|
|
// with another node (N is deleted) SimplifyDemandedBits will add Value's
|
|
// node back to the worklist if necessary, but we also need to re-visit
|
|
// the Store node itself.
|
|
if (N->getOpcode() != ISD::DELETED_NODE)
|
|
AddToWorklist(N);
|
|
return SDValue(N, 0);
|
|
}
|
|
}
|
|
|
|
// If this is a load followed by a store to the same location, then the store
|
|
// is dead/noop.
|
|
// TODO: Can relax for unordered atomics (see D66309)
|
|
if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Value)) {
|
|
if (Ld->getBasePtr() == Ptr && ST->getMemoryVT() == Ld->getMemoryVT() &&
|
|
ST->isUnindexed() && ST->isSimple() &&
|
|
Ld->getAddressSpace() == ST->getAddressSpace() &&
|
|
// There can't be any side effects between the load and store, such as
|
|
// a call or store.
|
|
Chain.reachesChainWithoutSideEffects(SDValue(Ld, 1))) {
|
|
// The store is dead, remove it.
|
|
return Chain;
|
|
}
|
|
}
|
|
|
|
// TODO: Can relax for unordered atomics (see D66309)
|
|
if (StoreSDNode *ST1 = dyn_cast<StoreSDNode>(Chain)) {
|
|
if (ST->isUnindexed() && ST->isSimple() &&
|
|
ST1->isUnindexed() && ST1->isSimple()) {
|
|
if (ST1->getBasePtr() == Ptr && ST1->getValue() == Value &&
|
|
ST->getMemoryVT() == ST1->getMemoryVT() &&
|
|
ST->getAddressSpace() == ST1->getAddressSpace()) {
|
|
// If this is a store followed by a store with the same value to the
|
|
// same location, then the store is dead/noop.
|
|
return Chain;
|
|
}
|
|
|
|
if (OptLevel != CodeGenOpt::None && ST1->hasOneUse() &&
|
|
!ST1->getBasePtr().isUndef() &&
|
|
// BaseIndexOffset and the code below requires knowing the size
|
|
// of a vector, so bail out if MemoryVT is scalable.
|
|
!ST->getMemoryVT().isScalableVector() &&
|
|
!ST1->getMemoryVT().isScalableVector() &&
|
|
ST->getAddressSpace() == ST1->getAddressSpace()) {
|
|
const BaseIndexOffset STBase = BaseIndexOffset::match(ST, DAG);
|
|
const BaseIndexOffset ChainBase = BaseIndexOffset::match(ST1, DAG);
|
|
unsigned STBitSize = ST->getMemoryVT().getFixedSizeInBits();
|
|
unsigned ChainBitSize = ST1->getMemoryVT().getFixedSizeInBits();
|
|
// If this is a store who's preceding store to a subset of the current
|
|
// location and no one other node is chained to that store we can
|
|
// effectively drop the store. Do not remove stores to undef as they may
|
|
// be used as data sinks.
|
|
if (STBase.contains(DAG, STBitSize, ChainBase, ChainBitSize)) {
|
|
CombineTo(ST1, ST1->getChain());
|
|
return SDValue();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If this is an FP_ROUND or TRUNC followed by a store, fold this into a
|
|
// truncating store. We can do this even if this is already a truncstore.
|
|
if ((Value.getOpcode() == ISD::FP_ROUND ||
|
|
Value.getOpcode() == ISD::TRUNCATE) &&
|
|
Value.getNode()->hasOneUse() && ST->isUnindexed() &&
|
|
TLI.canCombineTruncStore(Value.getOperand(0).getValueType(),
|
|
ST->getMemoryVT(), LegalOperations)) {
|
|
return DAG.getTruncStore(Chain, SDLoc(N), Value.getOperand(0),
|
|
Ptr, ST->getMemoryVT(), ST->getMemOperand());
|
|
}
|
|
|
|
// Always perform this optimization before types are legal. If the target
|
|
// prefers, also try this after legalization to catch stores that were created
|
|
// by intrinsics or other nodes.
|
|
if (!LegalTypes || (TLI.mergeStoresAfterLegalization(ST->getMemoryVT()))) {
|
|
while (true) {
|
|
// There can be multiple store sequences on the same chain.
|
|
// Keep trying to merge store sequences until we are unable to do so
|
|
// or until we merge the last store on the chain.
|
|
bool Changed = mergeConsecutiveStores(ST);
|
|
if (!Changed) break;
|
|
// Return N as merge only uses CombineTo and no worklist clean
|
|
// up is necessary.
|
|
if (N->getOpcode() == ISD::DELETED_NODE || !isa<StoreSDNode>(N))
|
|
return SDValue(N, 0);
|
|
}
|
|
}
|
|
|
|
// Try transforming N to an indexed store.
|
|
if (CombineToPreIndexedLoadStore(N) || CombineToPostIndexedLoadStore(N))
|
|
return SDValue(N, 0);
|
|
|
|
// Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
|
|
//
|
|
// Make sure to do this only after attempting to merge stores in order to
|
|
// avoid changing the types of some subset of stores due to visit order,
|
|
// preventing their merging.
|
|
if (isa<ConstantFPSDNode>(ST->getValue())) {
|
|
if (SDValue NewSt = replaceStoreOfFPConstant(ST))
|
|
return NewSt;
|
|
}
|
|
|
|
if (SDValue NewSt = splitMergedValStore(ST))
|
|
return NewSt;
|
|
|
|
return ReduceLoadOpStoreWidth(N);
|
|
}
|
|
|
|
SDValue DAGCombiner::visitLIFETIME_END(SDNode *N) {
|
|
const auto *LifetimeEnd = cast<LifetimeSDNode>(N);
|
|
if (!LifetimeEnd->hasOffset())
|
|
return SDValue();
|
|
|
|
const BaseIndexOffset LifetimeEndBase(N->getOperand(1), SDValue(),
|
|
LifetimeEnd->getOffset(), false);
|
|
|
|
// We walk up the chains to find stores.
|
|
SmallVector<SDValue, 8> Chains = {N->getOperand(0)};
|
|
while (!Chains.empty()) {
|
|
SDValue Chain = Chains.pop_back_val();
|
|
if (!Chain.hasOneUse())
|
|
continue;
|
|
switch (Chain.getOpcode()) {
|
|
case ISD::TokenFactor:
|
|
for (unsigned Nops = Chain.getNumOperands(); Nops;)
|
|
Chains.push_back(Chain.getOperand(--Nops));
|
|
break;
|
|
case ISD::LIFETIME_START:
|
|
case ISD::LIFETIME_END:
|
|
// We can forward past any lifetime start/end that can be proven not to
|
|
// alias the node.
|
|
if (!isAlias(Chain.getNode(), N))
|
|
Chains.push_back(Chain.getOperand(0));
|
|
break;
|
|
case ISD::STORE: {
|
|
StoreSDNode *ST = dyn_cast<StoreSDNode>(Chain);
|
|
// TODO: Can relax for unordered atomics (see D66309)
|
|
if (!ST->isSimple() || ST->isIndexed())
|
|
continue;
|
|
const TypeSize StoreSize = ST->getMemoryVT().getStoreSize();
|
|
// The bounds of a scalable store are not known until runtime, so this
|
|
// store cannot be elided.
|
|
if (StoreSize.isScalable())
|
|
continue;
|
|
const BaseIndexOffset StoreBase = BaseIndexOffset::match(ST, DAG);
|
|
// If we store purely within object bounds just before its lifetime ends,
|
|
// we can remove the store.
|
|
if (LifetimeEndBase.contains(DAG, LifetimeEnd->getSize() * 8, StoreBase,
|
|
StoreSize.getFixedSize() * 8)) {
|
|
LLVM_DEBUG(dbgs() << "\nRemoving store:"; StoreBase.dump();
|
|
dbgs() << "\nwithin LIFETIME_END of : ";
|
|
LifetimeEndBase.dump(); dbgs() << "\n");
|
|
CombineTo(ST, ST->getChain());
|
|
return SDValue(N, 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
/// For the instruction sequence of store below, F and I values
|
|
/// are bundled together as an i64 value before being stored into memory.
|
|
/// Sometimes it is more efficent to generate separate stores for F and I,
|
|
/// which can remove the bitwise instructions or sink them to colder places.
|
|
///
|
|
/// (store (or (zext (bitcast F to i32) to i64),
|
|
/// (shl (zext I to i64), 32)), addr) -->
|
|
/// (store F, addr) and (store I, addr+4)
|
|
///
|
|
/// Similarly, splitting for other merged store can also be beneficial, like:
|
|
/// For pair of {i32, i32}, i64 store --> two i32 stores.
|
|
/// For pair of {i32, i16}, i64 store --> two i32 stores.
|
|
/// For pair of {i16, i16}, i32 store --> two i16 stores.
|
|
/// For pair of {i16, i8}, i32 store --> two i16 stores.
|
|
/// For pair of {i8, i8}, i16 store --> two i8 stores.
|
|
///
|
|
/// We allow each target to determine specifically which kind of splitting is
|
|
/// supported.
|
|
///
|
|
/// The store patterns are commonly seen from the simple code snippet below
|
|
/// if only std::make_pair(...) is sroa transformed before inlined into hoo.
|
|
/// void goo(const std::pair<int, float> &);
|
|
/// hoo() {
|
|
/// ...
|
|
/// goo(std::make_pair(tmp, ftmp));
|
|
/// ...
|
|
/// }
|
|
///
|
|
SDValue DAGCombiner::splitMergedValStore(StoreSDNode *ST) {
|
|
if (OptLevel == CodeGenOpt::None)
|
|
return SDValue();
|
|
|
|
// Can't change the number of memory accesses for a volatile store or break
|
|
// atomicity for an atomic one.
|
|
if (!ST->isSimple())
|
|
return SDValue();
|
|
|
|
SDValue Val = ST->getValue();
|
|
SDLoc DL(ST);
|
|
|
|
// Match OR operand.
|
|
if (!Val.getValueType().isScalarInteger() || Val.getOpcode() != ISD::OR)
|
|
return SDValue();
|
|
|
|
// Match SHL operand and get Lower and Higher parts of Val.
|
|
SDValue Op1 = Val.getOperand(0);
|
|
SDValue Op2 = Val.getOperand(1);
|
|
SDValue Lo, Hi;
|
|
if (Op1.getOpcode() != ISD::SHL) {
|
|
std::swap(Op1, Op2);
|
|
if (Op1.getOpcode() != ISD::SHL)
|
|
return SDValue();
|
|
}
|
|
Lo = Op2;
|
|
Hi = Op1.getOperand(0);
|
|
if (!Op1.hasOneUse())
|
|
return SDValue();
|
|
|
|
// Match shift amount to HalfValBitSize.
|
|
unsigned HalfValBitSize = Val.getValueSizeInBits() / 2;
|
|
ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op1.getOperand(1));
|
|
if (!ShAmt || ShAmt->getAPIntValue() != HalfValBitSize)
|
|
return SDValue();
|
|
|
|
// Lo and Hi are zero-extended from int with size less equal than 32
|
|
// to i64.
|
|
if (Lo.getOpcode() != ISD::ZERO_EXTEND || !Lo.hasOneUse() ||
|
|
!Lo.getOperand(0).getValueType().isScalarInteger() ||
|
|
Lo.getOperand(0).getValueSizeInBits() > HalfValBitSize ||
|
|
Hi.getOpcode() != ISD::ZERO_EXTEND || !Hi.hasOneUse() ||
|
|
!Hi.getOperand(0).getValueType().isScalarInteger() ||
|
|
Hi.getOperand(0).getValueSizeInBits() > HalfValBitSize)
|
|
return SDValue();
|
|
|
|
// Use the EVT of low and high parts before bitcast as the input
|
|
// of target query.
|
|
EVT LowTy = (Lo.getOperand(0).getOpcode() == ISD::BITCAST)
|
|
? Lo.getOperand(0).getValueType()
|
|
: Lo.getValueType();
|
|
EVT HighTy = (Hi.getOperand(0).getOpcode() == ISD::BITCAST)
|
|
? Hi.getOperand(0).getValueType()
|
|
: Hi.getValueType();
|
|
if (!TLI.isMultiStoresCheaperThanBitsMerge(LowTy, HighTy))
|
|
return SDValue();
|
|
|
|
// Start to split store.
|
|
MachineMemOperand::Flags MMOFlags = ST->getMemOperand()->getFlags();
|
|
AAMDNodes AAInfo = ST->getAAInfo();
|
|
|
|
// Change the sizes of Lo and Hi's value types to HalfValBitSize.
|
|
EVT VT = EVT::getIntegerVT(*DAG.getContext(), HalfValBitSize);
|
|
Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Lo.getOperand(0));
|
|
Hi = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, Hi.getOperand(0));
|
|
|
|
SDValue Chain = ST->getChain();
|
|
SDValue Ptr = ST->getBasePtr();
|
|
// Lower value store.
|
|
SDValue St0 = DAG.getStore(Chain, DL, Lo, Ptr, ST->getPointerInfo(),
|
|
ST->getOriginalAlign(), MMOFlags, AAInfo);
|
|
Ptr = DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(HalfValBitSize / 8), DL);
|
|
// Higher value store.
|
|
SDValue St1 = DAG.getStore(
|
|
St0, DL, Hi, Ptr, ST->getPointerInfo().getWithOffset(HalfValBitSize / 8),
|
|
ST->getOriginalAlign(), MMOFlags, AAInfo);
|
|
return St1;
|
|
}
|
|
|
|
/// Convert a disguised subvector insertion into a shuffle:
|
|
SDValue DAGCombiner::combineInsertEltToShuffle(SDNode *N, unsigned InsIndex) {
|
|
assert(N->getOpcode() == ISD::INSERT_VECTOR_ELT &&
|
|
"Expected extract_vector_elt");
|
|
SDValue InsertVal = N->getOperand(1);
|
|
SDValue Vec = N->getOperand(0);
|
|
|
|
// (insert_vector_elt (vector_shuffle X, Y), (extract_vector_elt X, N),
|
|
// InsIndex)
|
|
// --> (vector_shuffle X, Y) and variations where shuffle operands may be
|
|
// CONCAT_VECTORS.
|
|
if (Vec.getOpcode() == ISD::VECTOR_SHUFFLE && Vec.hasOneUse() &&
|
|
InsertVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
|
|
isa<ConstantSDNode>(InsertVal.getOperand(1))) {
|
|
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Vec.getNode());
|
|
ArrayRef<int> Mask = SVN->getMask();
|
|
|
|
SDValue X = Vec.getOperand(0);
|
|
SDValue Y = Vec.getOperand(1);
|
|
|
|
// Vec's operand 0 is using indices from 0 to N-1 and
|
|
// operand 1 from N to 2N - 1, where N is the number of
|
|
// elements in the vectors.
|
|
SDValue InsertVal0 = InsertVal.getOperand(0);
|
|
int ElementOffset = -1;
|
|
|
|
// We explore the inputs of the shuffle in order to see if we find the
|
|
// source of the extract_vector_elt. If so, we can use it to modify the
|
|
// shuffle rather than perform an insert_vector_elt.
|
|
SmallVector<std::pair<int, SDValue>, 8> ArgWorkList;
|
|
ArgWorkList.emplace_back(Mask.size(), Y);
|
|
ArgWorkList.emplace_back(0, X);
|
|
|
|
while (!ArgWorkList.empty()) {
|
|
int ArgOffset;
|
|
SDValue ArgVal;
|
|
std::tie(ArgOffset, ArgVal) = ArgWorkList.pop_back_val();
|
|
|
|
if (ArgVal == InsertVal0) {
|
|
ElementOffset = ArgOffset;
|
|
break;
|
|
}
|
|
|
|
// Peek through concat_vector.
|
|
if (ArgVal.getOpcode() == ISD::CONCAT_VECTORS) {
|
|
int CurrentArgOffset =
|
|
ArgOffset + ArgVal.getValueType().getVectorNumElements();
|
|
int Step = ArgVal.getOperand(0).getValueType().getVectorNumElements();
|
|
for (SDValue Op : reverse(ArgVal->ops())) {
|
|
CurrentArgOffset -= Step;
|
|
ArgWorkList.emplace_back(CurrentArgOffset, Op);
|
|
}
|
|
|
|
// Make sure we went through all the elements and did not screw up index
|
|
// computation.
|
|
assert(CurrentArgOffset == ArgOffset);
|
|
}
|
|
}
|
|
|
|
if (ElementOffset != -1) {
|
|
SmallVector<int, 16> NewMask(Mask.begin(), Mask.end());
|
|
|
|
auto *ExtrIndex = cast<ConstantSDNode>(InsertVal.getOperand(1));
|
|
NewMask[InsIndex] = ElementOffset + ExtrIndex->getZExtValue();
|
|
assert(NewMask[InsIndex] <
|
|
(int)(2 * Vec.getValueType().getVectorNumElements()) &&
|
|
NewMask[InsIndex] >= 0 && "NewMask[InsIndex] is out of bound");
|
|
|
|
SDValue LegalShuffle =
|
|
TLI.buildLegalVectorShuffle(Vec.getValueType(), SDLoc(N), X,
|
|
Y, NewMask, DAG);
|
|
if (LegalShuffle)
|
|
return LegalShuffle;
|
|
}
|
|
}
|
|
|
|
// insert_vector_elt V, (bitcast X from vector type), IdxC -->
|
|
// bitcast(shuffle (bitcast V), (extended X), Mask)
|
|
// Note: We do not use an insert_subvector node because that requires a
|
|
// legal subvector type.
|
|
if (InsertVal.getOpcode() != ISD::BITCAST || !InsertVal.hasOneUse() ||
|
|
!InsertVal.getOperand(0).getValueType().isVector())
|
|
return SDValue();
|
|
|
|
SDValue SubVec = InsertVal.getOperand(0);
|
|
SDValue DestVec = N->getOperand(0);
|
|
EVT SubVecVT = SubVec.getValueType();
|
|
EVT VT = DestVec.getValueType();
|
|
unsigned NumSrcElts = SubVecVT.getVectorNumElements();
|
|
// If the source only has a single vector element, the cost of creating adding
|
|
// it to a vector is likely to exceed the cost of a insert_vector_elt.
|
|
if (NumSrcElts == 1)
|
|
return SDValue();
|
|
unsigned ExtendRatio = VT.getSizeInBits() / SubVecVT.getSizeInBits();
|
|
unsigned NumMaskVals = ExtendRatio * NumSrcElts;
|
|
|
|
// Step 1: Create a shuffle mask that implements this insert operation. The
|
|
// vector that we are inserting into will be operand 0 of the shuffle, so
|
|
// those elements are just 'i'. The inserted subvector is in the first
|
|
// positions of operand 1 of the shuffle. Example:
|
|
// insert v4i32 V, (v2i16 X), 2 --> shuffle v8i16 V', X', {0,1,2,3,8,9,6,7}
|
|
SmallVector<int, 16> Mask(NumMaskVals);
|
|
for (unsigned i = 0; i != NumMaskVals; ++i) {
|
|
if (i / NumSrcElts == InsIndex)
|
|
Mask[i] = (i % NumSrcElts) + NumMaskVals;
|
|
else
|
|
Mask[i] = i;
|
|
}
|
|
|
|
// Bail out if the target can not handle the shuffle we want to create.
|
|
EVT SubVecEltVT = SubVecVT.getVectorElementType();
|
|
EVT ShufVT = EVT::getVectorVT(*DAG.getContext(), SubVecEltVT, NumMaskVals);
|
|
if (!TLI.isShuffleMaskLegal(Mask, ShufVT))
|
|
return SDValue();
|
|
|
|
// Step 2: Create a wide vector from the inserted source vector by appending
|
|
// undefined elements. This is the same size as our destination vector.
|
|
SDLoc DL(N);
|
|
SmallVector<SDValue, 8> ConcatOps(ExtendRatio, DAG.getUNDEF(SubVecVT));
|
|
ConcatOps[0] = SubVec;
|
|
SDValue PaddedSubV = DAG.getNode(ISD::CONCAT_VECTORS, DL, ShufVT, ConcatOps);
|
|
|
|
// Step 3: Shuffle in the padded subvector.
|
|
SDValue DestVecBC = DAG.getBitcast(ShufVT, DestVec);
|
|
SDValue Shuf = DAG.getVectorShuffle(ShufVT, DL, DestVecBC, PaddedSubV, Mask);
|
|
AddToWorklist(PaddedSubV.getNode());
|
|
AddToWorklist(DestVecBC.getNode());
|
|
AddToWorklist(Shuf.getNode());
|
|
return DAG.getBitcast(VT, Shuf);
|
|
}
|
|
|
|
SDValue DAGCombiner::visitINSERT_VECTOR_ELT(SDNode *N) {
|
|
SDValue InVec = N->getOperand(0);
|
|
SDValue InVal = N->getOperand(1);
|
|
SDValue EltNo = N->getOperand(2);
|
|
SDLoc DL(N);
|
|
|
|
EVT VT = InVec.getValueType();
|
|
auto *IndexC = dyn_cast<ConstantSDNode>(EltNo);
|
|
|
|
// Insert into out-of-bounds element is undefined.
|
|
if (IndexC && VT.isFixedLengthVector() &&
|
|
IndexC->getZExtValue() >= VT.getVectorNumElements())
|
|
return DAG.getUNDEF(VT);
|
|
|
|
// Remove redundant insertions:
|
|
// (insert_vector_elt x (extract_vector_elt x idx) idx) -> x
|
|
if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
|
|
InVec == InVal.getOperand(0) && EltNo == InVal.getOperand(1))
|
|
return InVec;
|
|
|
|
if (!IndexC) {
|
|
// If this is variable insert to undef vector, it might be better to splat:
|
|
// inselt undef, InVal, EltNo --> build_vector < InVal, InVal, ... >
|
|
if (InVec.isUndef() && TLI.shouldSplatInsEltVarIndex(VT)) {
|
|
if (VT.isScalableVector())
|
|
return DAG.getSplatVector(VT, DL, InVal);
|
|
else {
|
|
SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), InVal);
|
|
return DAG.getBuildVector(VT, DL, Ops);
|
|
}
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
if (VT.isScalableVector())
|
|
return SDValue();
|
|
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
|
|
// We must know which element is being inserted for folds below here.
|
|
unsigned Elt = IndexC->getZExtValue();
|
|
if (SDValue Shuf = combineInsertEltToShuffle(N, Elt))
|
|
return Shuf;
|
|
|
|
// Canonicalize insert_vector_elt dag nodes.
|
|
// Example:
|
|
// (insert_vector_elt (insert_vector_elt A, Idx0), Idx1)
|
|
// -> (insert_vector_elt (insert_vector_elt A, Idx1), Idx0)
|
|
//
|
|
// Do this only if the child insert_vector node has one use; also
|
|
// do this only if indices are both constants and Idx1 < Idx0.
|
|
if (InVec.getOpcode() == ISD::INSERT_VECTOR_ELT && InVec.hasOneUse()
|
|
&& isa<ConstantSDNode>(InVec.getOperand(2))) {
|
|
unsigned OtherElt = InVec.getConstantOperandVal(2);
|
|
if (Elt < OtherElt) {
|
|
// Swap nodes.
|
|
SDValue NewOp = DAG.getNode(ISD::INSERT_VECTOR_ELT, DL, VT,
|
|
InVec.getOperand(0), InVal, EltNo);
|
|
AddToWorklist(NewOp.getNode());
|
|
return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(InVec.getNode()),
|
|
VT, NewOp, InVec.getOperand(1), InVec.getOperand(2));
|
|
}
|
|
}
|
|
|
|
// If we can't generate a legal BUILD_VECTOR, exit
|
|
if (LegalOperations && !TLI.isOperationLegal(ISD::BUILD_VECTOR, VT))
|
|
return SDValue();
|
|
|
|
// Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
|
|
// be converted to a BUILD_VECTOR). Fill in the Ops vector with the
|
|
// vector elements.
|
|
SmallVector<SDValue, 8> Ops;
|
|
// Do not combine these two vectors if the output vector will not replace
|
|
// the input vector.
|
|
if (InVec.getOpcode() == ISD::BUILD_VECTOR && InVec.hasOneUse()) {
|
|
Ops.append(InVec.getNode()->op_begin(),
|
|
InVec.getNode()->op_end());
|
|
} else if (InVec.isUndef()) {
|
|
Ops.append(NumElts, DAG.getUNDEF(InVal.getValueType()));
|
|
} else {
|
|
return SDValue();
|
|
}
|
|
assert(Ops.size() == NumElts && "Unexpected vector size");
|
|
|
|
// Insert the element
|
|
if (Elt < Ops.size()) {
|
|
// All the operands of BUILD_VECTOR must have the same type;
|
|
// we enforce that here.
|
|
EVT OpVT = Ops[0].getValueType();
|
|
Ops[Elt] = OpVT.isInteger() ? DAG.getAnyExtOrTrunc(InVal, DL, OpVT) : InVal;
|
|
}
|
|
|
|
// Return the new vector
|
|
return DAG.getBuildVector(VT, DL, Ops);
|
|
}
|
|
|
|
SDValue DAGCombiner::scalarizeExtractedVectorLoad(SDNode *EVE, EVT InVecVT,
|
|
SDValue EltNo,
|
|
LoadSDNode *OriginalLoad) {
|
|
assert(OriginalLoad->isSimple());
|
|
|
|
EVT ResultVT = EVE->getValueType(0);
|
|
EVT VecEltVT = InVecVT.getVectorElementType();
|
|
|
|
// If the vector element type is not a multiple of a byte then we are unable
|
|
// to correctly compute an address to load only the extracted element as a
|
|
// scalar.
|
|
if (!VecEltVT.isByteSized())
|
|
return SDValue();
|
|
|
|
Align Alignment = OriginalLoad->getAlign();
|
|
Align NewAlign = DAG.getDataLayout().getABITypeAlign(
|
|
VecEltVT.getTypeForEVT(*DAG.getContext()));
|
|
|
|
if (NewAlign > Alignment ||
|
|
!TLI.isOperationLegalOrCustom(ISD::LOAD, VecEltVT))
|
|
return SDValue();
|
|
|
|
ISD::LoadExtType ExtTy = ResultVT.bitsGT(VecEltVT) ?
|
|
ISD::NON_EXTLOAD : ISD::EXTLOAD;
|
|
if (!TLI.shouldReduceLoadWidth(OriginalLoad, ExtTy, VecEltVT))
|
|
return SDValue();
|
|
|
|
Alignment = NewAlign;
|
|
|
|
MachinePointerInfo MPI;
|
|
SDLoc DL(EVE);
|
|
if (auto *ConstEltNo = dyn_cast<ConstantSDNode>(EltNo)) {
|
|
int Elt = ConstEltNo->getZExtValue();
|
|
unsigned PtrOff = VecEltVT.getSizeInBits() * Elt / 8;
|
|
MPI = OriginalLoad->getPointerInfo().getWithOffset(PtrOff);
|
|
} else {
|
|
// Discard the pointer info except the address space because the memory
|
|
// operand can't represent this new access since the offset is variable.
|
|
MPI = MachinePointerInfo(OriginalLoad->getPointerInfo().getAddrSpace());
|
|
}
|
|
SDValue NewPtr = TLI.getVectorElementPointer(DAG, OriginalLoad->getBasePtr(),
|
|
InVecVT, EltNo);
|
|
|
|
// The replacement we need to do here is a little tricky: we need to
|
|
// replace an extractelement of a load with a load.
|
|
// Use ReplaceAllUsesOfValuesWith to do the replacement.
|
|
// Note that this replacement assumes that the extractvalue is the only
|
|
// use of the load; that's okay because we don't want to perform this
|
|
// transformation in other cases anyway.
|
|
SDValue Load;
|
|
SDValue Chain;
|
|
if (ResultVT.bitsGT(VecEltVT)) {
|
|
// If the result type of vextract is wider than the load, then issue an
|
|
// extending load instead.
|
|
ISD::LoadExtType ExtType = TLI.isLoadExtLegal(ISD::ZEXTLOAD, ResultVT,
|
|
VecEltVT)
|
|
? ISD::ZEXTLOAD
|
|
: ISD::EXTLOAD;
|
|
Load = DAG.getExtLoad(ExtType, SDLoc(EVE), ResultVT,
|
|
OriginalLoad->getChain(), NewPtr, MPI, VecEltVT,
|
|
Alignment, OriginalLoad->getMemOperand()->getFlags(),
|
|
OriginalLoad->getAAInfo());
|
|
Chain = Load.getValue(1);
|
|
} else {
|
|
Load = DAG.getLoad(
|
|
VecEltVT, SDLoc(EVE), OriginalLoad->getChain(), NewPtr, MPI, Alignment,
|
|
OriginalLoad->getMemOperand()->getFlags(), OriginalLoad->getAAInfo());
|
|
Chain = Load.getValue(1);
|
|
if (ResultVT.bitsLT(VecEltVT))
|
|
Load = DAG.getNode(ISD::TRUNCATE, SDLoc(EVE), ResultVT, Load);
|
|
else
|
|
Load = DAG.getBitcast(ResultVT, Load);
|
|
}
|
|
WorklistRemover DeadNodes(*this);
|
|
SDValue From[] = { SDValue(EVE, 0), SDValue(OriginalLoad, 1) };
|
|
SDValue To[] = { Load, Chain };
|
|
DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
|
|
// Make sure to revisit this node to clean it up; it will usually be dead.
|
|
AddToWorklist(EVE);
|
|
// Since we're explicitly calling ReplaceAllUses, add the new node to the
|
|
// worklist explicitly as well.
|
|
AddToWorklistWithUsers(Load.getNode());
|
|
++OpsNarrowed;
|
|
return SDValue(EVE, 0);
|
|
}
|
|
|
|
/// Transform a vector binary operation into a scalar binary operation by moving
|
|
/// the math/logic after an extract element of a vector.
|
|
static SDValue scalarizeExtractedBinop(SDNode *ExtElt, SelectionDAG &DAG,
|
|
bool LegalOperations) {
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
SDValue Vec = ExtElt->getOperand(0);
|
|
SDValue Index = ExtElt->getOperand(1);
|
|
auto *IndexC = dyn_cast<ConstantSDNode>(Index);
|
|
if (!IndexC || !TLI.isBinOp(Vec.getOpcode()) || !Vec.hasOneUse() ||
|
|
Vec.getNode()->getNumValues() != 1)
|
|
return SDValue();
|
|
|
|
// Targets may want to avoid this to prevent an expensive register transfer.
|
|
if (!TLI.shouldScalarizeBinop(Vec))
|
|
return SDValue();
|
|
|
|
// Extracting an element of a vector constant is constant-folded, so this
|
|
// transform is just replacing a vector op with a scalar op while moving the
|
|
// extract.
|
|
SDValue Op0 = Vec.getOperand(0);
|
|
SDValue Op1 = Vec.getOperand(1);
|
|
if (isAnyConstantBuildVector(Op0, true) ||
|
|
isAnyConstantBuildVector(Op1, true)) {
|
|
// extractelt (binop X, C), IndexC --> binop (extractelt X, IndexC), C'
|
|
// extractelt (binop C, X), IndexC --> binop C', (extractelt X, IndexC)
|
|
SDLoc DL(ExtElt);
|
|
EVT VT = ExtElt->getValueType(0);
|
|
SDValue Ext0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op0, Index);
|
|
SDValue Ext1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, Op1, Index);
|
|
return DAG.getNode(Vec.getOpcode(), DL, VT, Ext0, Ext1);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitEXTRACT_VECTOR_ELT(SDNode *N) {
|
|
SDValue VecOp = N->getOperand(0);
|
|
SDValue Index = N->getOperand(1);
|
|
EVT ScalarVT = N->getValueType(0);
|
|
EVT VecVT = VecOp.getValueType();
|
|
if (VecOp.isUndef())
|
|
return DAG.getUNDEF(ScalarVT);
|
|
|
|
// extract_vector_elt (insert_vector_elt vec, val, idx), idx) -> val
|
|
//
|
|
// This only really matters if the index is non-constant since other combines
|
|
// on the constant elements already work.
|
|
SDLoc DL(N);
|
|
if (VecOp.getOpcode() == ISD::INSERT_VECTOR_ELT &&
|
|
Index == VecOp.getOperand(2)) {
|
|
SDValue Elt = VecOp.getOperand(1);
|
|
return VecVT.isInteger() ? DAG.getAnyExtOrTrunc(Elt, DL, ScalarVT) : Elt;
|
|
}
|
|
|
|
// (vextract (scalar_to_vector val, 0) -> val
|
|
if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR) {
|
|
// Only 0'th element of SCALAR_TO_VECTOR is defined.
|
|
if (DAG.isKnownNeverZero(Index))
|
|
return DAG.getUNDEF(ScalarVT);
|
|
|
|
// Check if the result type doesn't match the inserted element type. A
|
|
// SCALAR_TO_VECTOR may truncate the inserted element and the
|
|
// EXTRACT_VECTOR_ELT may widen the extracted vector.
|
|
SDValue InOp = VecOp.getOperand(0);
|
|
if (InOp.getValueType() != ScalarVT) {
|
|
assert(InOp.getValueType().isInteger() && ScalarVT.isInteger());
|
|
return DAG.getSExtOrTrunc(InOp, DL, ScalarVT);
|
|
}
|
|
return InOp;
|
|
}
|
|
|
|
// extract_vector_elt of out-of-bounds element -> UNDEF
|
|
auto *IndexC = dyn_cast<ConstantSDNode>(Index);
|
|
if (IndexC && VecVT.isFixedLengthVector() &&
|
|
IndexC->getAPIntValue().uge(VecVT.getVectorNumElements()))
|
|
return DAG.getUNDEF(ScalarVT);
|
|
|
|
// extract_vector_elt (build_vector x, y), 1 -> y
|
|
if (((IndexC && VecOp.getOpcode() == ISD::BUILD_VECTOR) ||
|
|
VecOp.getOpcode() == ISD::SPLAT_VECTOR) &&
|
|
TLI.isTypeLegal(VecVT) &&
|
|
(VecOp.hasOneUse() || TLI.aggressivelyPreferBuildVectorSources(VecVT))) {
|
|
assert((VecOp.getOpcode() != ISD::BUILD_VECTOR ||
|
|
VecVT.isFixedLengthVector()) &&
|
|
"BUILD_VECTOR used for scalable vectors");
|
|
unsigned IndexVal =
|
|
VecOp.getOpcode() == ISD::BUILD_VECTOR ? IndexC->getZExtValue() : 0;
|
|
SDValue Elt = VecOp.getOperand(IndexVal);
|
|
EVT InEltVT = Elt.getValueType();
|
|
|
|
// Sometimes build_vector's scalar input types do not match result type.
|
|
if (ScalarVT == InEltVT)
|
|
return Elt;
|
|
|
|
// TODO: It may be useful to truncate if free if the build_vector implicitly
|
|
// converts.
|
|
}
|
|
|
|
if (VecVT.isScalableVector())
|
|
return SDValue();
|
|
|
|
// All the code from this point onwards assumes fixed width vectors, but it's
|
|
// possible that some of the combinations could be made to work for scalable
|
|
// vectors too.
|
|
unsigned NumElts = VecVT.getVectorNumElements();
|
|
unsigned VecEltBitWidth = VecVT.getScalarSizeInBits();
|
|
|
|
// TODO: These transforms should not require the 'hasOneUse' restriction, but
|
|
// there are regressions on multiple targets without it. We can end up with a
|
|
// mess of scalar and vector code if we reduce only part of the DAG to scalar.
|
|
if (IndexC && VecOp.getOpcode() == ISD::BITCAST && VecVT.isInteger() &&
|
|
VecOp.hasOneUse()) {
|
|
// The vector index of the LSBs of the source depend on the endian-ness.
|
|
bool IsLE = DAG.getDataLayout().isLittleEndian();
|
|
unsigned ExtractIndex = IndexC->getZExtValue();
|
|
// extract_elt (v2i32 (bitcast i64:x)), BCTruncElt -> i32 (trunc i64:x)
|
|
unsigned BCTruncElt = IsLE ? 0 : NumElts - 1;
|
|
SDValue BCSrc = VecOp.getOperand(0);
|
|
if (ExtractIndex == BCTruncElt && BCSrc.getValueType().isScalarInteger())
|
|
return DAG.getNode(ISD::TRUNCATE, DL, ScalarVT, BCSrc);
|
|
|
|
if (LegalTypes && BCSrc.getValueType().isInteger() &&
|
|
BCSrc.getOpcode() == ISD::SCALAR_TO_VECTOR) {
|
|
// ext_elt (bitcast (scalar_to_vec i64 X to v2i64) to v4i32), TruncElt -->
|
|
// trunc i64 X to i32
|
|
SDValue X = BCSrc.getOperand(0);
|
|
assert(X.getValueType().isScalarInteger() && ScalarVT.isScalarInteger() &&
|
|
"Extract element and scalar to vector can't change element type "
|
|
"from FP to integer.");
|
|
unsigned XBitWidth = X.getValueSizeInBits();
|
|
BCTruncElt = IsLE ? 0 : XBitWidth / VecEltBitWidth - 1;
|
|
|
|
// An extract element return value type can be wider than its vector
|
|
// operand element type. In that case, the high bits are undefined, so
|
|
// it's possible that we may need to extend rather than truncate.
|
|
if (ExtractIndex == BCTruncElt && XBitWidth > VecEltBitWidth) {
|
|
assert(XBitWidth % VecEltBitWidth == 0 &&
|
|
"Scalar bitwidth must be a multiple of vector element bitwidth");
|
|
return DAG.getAnyExtOrTrunc(X, DL, ScalarVT);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (SDValue BO = scalarizeExtractedBinop(N, DAG, LegalOperations))
|
|
return BO;
|
|
|
|
// Transform: (EXTRACT_VECTOR_ELT( VECTOR_SHUFFLE )) -> EXTRACT_VECTOR_ELT.
|
|
// We only perform this optimization before the op legalization phase because
|
|
// we may introduce new vector instructions which are not backed by TD
|
|
// patterns. For example on AVX, extracting elements from a wide vector
|
|
// without using extract_subvector. However, if we can find an underlying
|
|
// scalar value, then we can always use that.
|
|
if (IndexC && VecOp.getOpcode() == ISD::VECTOR_SHUFFLE) {
|
|
auto *Shuf = cast<ShuffleVectorSDNode>(VecOp);
|
|
// Find the new index to extract from.
|
|
int OrigElt = Shuf->getMaskElt(IndexC->getZExtValue());
|
|
|
|
// Extracting an undef index is undef.
|
|
if (OrigElt == -1)
|
|
return DAG.getUNDEF(ScalarVT);
|
|
|
|
// Select the right vector half to extract from.
|
|
SDValue SVInVec;
|
|
if (OrigElt < (int)NumElts) {
|
|
SVInVec = VecOp.getOperand(0);
|
|
} else {
|
|
SVInVec = VecOp.getOperand(1);
|
|
OrigElt -= NumElts;
|
|
}
|
|
|
|
if (SVInVec.getOpcode() == ISD::BUILD_VECTOR) {
|
|
SDValue InOp = SVInVec.getOperand(OrigElt);
|
|
if (InOp.getValueType() != ScalarVT) {
|
|
assert(InOp.getValueType().isInteger() && ScalarVT.isInteger());
|
|
InOp = DAG.getSExtOrTrunc(InOp, DL, ScalarVT);
|
|
}
|
|
|
|
return InOp;
|
|
}
|
|
|
|
// FIXME: We should handle recursing on other vector shuffles and
|
|
// scalar_to_vector here as well.
|
|
|
|
if (!LegalOperations ||
|
|
// FIXME: Should really be just isOperationLegalOrCustom.
|
|
TLI.isOperationLegal(ISD::EXTRACT_VECTOR_ELT, VecVT) ||
|
|
TLI.isOperationExpand(ISD::VECTOR_SHUFFLE, VecVT)) {
|
|
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT, SVInVec,
|
|
DAG.getVectorIdxConstant(OrigElt, DL));
|
|
}
|
|
}
|
|
|
|
// If only EXTRACT_VECTOR_ELT nodes use the source vector we can
|
|
// simplify it based on the (valid) extraction indices.
|
|
if (llvm::all_of(VecOp->uses(), [&](SDNode *Use) {
|
|
return Use->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
|
|
Use->getOperand(0) == VecOp &&
|
|
isa<ConstantSDNode>(Use->getOperand(1));
|
|
})) {
|
|
APInt DemandedElts = APInt::getNullValue(NumElts);
|
|
for (SDNode *Use : VecOp->uses()) {
|
|
auto *CstElt = cast<ConstantSDNode>(Use->getOperand(1));
|
|
if (CstElt->getAPIntValue().ult(NumElts))
|
|
DemandedElts.setBit(CstElt->getZExtValue());
|
|
}
|
|
if (SimplifyDemandedVectorElts(VecOp, DemandedElts, true)) {
|
|
// We simplified the vector operand of this extract element. If this
|
|
// extract is not dead, visit it again so it is folded properly.
|
|
if (N->getOpcode() != ISD::DELETED_NODE)
|
|
AddToWorklist(N);
|
|
return SDValue(N, 0);
|
|
}
|
|
APInt DemandedBits = APInt::getAllOnesValue(VecEltBitWidth);
|
|
if (SimplifyDemandedBits(VecOp, DemandedBits, DemandedElts, true)) {
|
|
// We simplified the vector operand of this extract element. If this
|
|
// extract is not dead, visit it again so it is folded properly.
|
|
if (N->getOpcode() != ISD::DELETED_NODE)
|
|
AddToWorklist(N);
|
|
return SDValue(N, 0);
|
|
}
|
|
}
|
|
|
|
// Everything under here is trying to match an extract of a loaded value.
|
|
// If the result of load has to be truncated, then it's not necessarily
|
|
// profitable.
|
|
bool BCNumEltsChanged = false;
|
|
EVT ExtVT = VecVT.getVectorElementType();
|
|
EVT LVT = ExtVT;
|
|
if (ScalarVT.bitsLT(LVT) && !TLI.isTruncateFree(LVT, ScalarVT))
|
|
return SDValue();
|
|
|
|
if (VecOp.getOpcode() == ISD::BITCAST) {
|
|
// Don't duplicate a load with other uses.
|
|
if (!VecOp.hasOneUse())
|
|
return SDValue();
|
|
|
|
EVT BCVT = VecOp.getOperand(0).getValueType();
|
|
if (!BCVT.isVector() || ExtVT.bitsGT(BCVT.getVectorElementType()))
|
|
return SDValue();
|
|
if (NumElts != BCVT.getVectorNumElements())
|
|
BCNumEltsChanged = true;
|
|
VecOp = VecOp.getOperand(0);
|
|
ExtVT = BCVT.getVectorElementType();
|
|
}
|
|
|
|
// extract (vector load $addr), i --> load $addr + i * size
|
|
if (!LegalOperations && !IndexC && VecOp.hasOneUse() &&
|
|
ISD::isNormalLoad(VecOp.getNode()) &&
|
|
!Index->hasPredecessor(VecOp.getNode())) {
|
|
auto *VecLoad = dyn_cast<LoadSDNode>(VecOp);
|
|
if (VecLoad && VecLoad->isSimple())
|
|
return scalarizeExtractedVectorLoad(N, VecVT, Index, VecLoad);
|
|
}
|
|
|
|
// Perform only after legalization to ensure build_vector / vector_shuffle
|
|
// optimizations have already been done.
|
|
if (!LegalOperations || !IndexC)
|
|
return SDValue();
|
|
|
|
// (vextract (v4f32 load $addr), c) -> (f32 load $addr+c*size)
|
|
// (vextract (v4f32 s2v (f32 load $addr)), c) -> (f32 load $addr+c*size)
|
|
// (vextract (v4f32 shuffle (load $addr), <1,u,u,u>), 0) -> (f32 load $addr)
|
|
int Elt = IndexC->getZExtValue();
|
|
LoadSDNode *LN0 = nullptr;
|
|
if (ISD::isNormalLoad(VecOp.getNode())) {
|
|
LN0 = cast<LoadSDNode>(VecOp);
|
|
} else if (VecOp.getOpcode() == ISD::SCALAR_TO_VECTOR &&
|
|
VecOp.getOperand(0).getValueType() == ExtVT &&
|
|
ISD::isNormalLoad(VecOp.getOperand(0).getNode())) {
|
|
// Don't duplicate a load with other uses.
|
|
if (!VecOp.hasOneUse())
|
|
return SDValue();
|
|
|
|
LN0 = cast<LoadSDNode>(VecOp.getOperand(0));
|
|
}
|
|
if (auto *Shuf = dyn_cast<ShuffleVectorSDNode>(VecOp)) {
|
|
// (vextract (vector_shuffle (load $addr), v2, <1, u, u, u>), 1)
|
|
// =>
|
|
// (load $addr+1*size)
|
|
|
|
// Don't duplicate a load with other uses.
|
|
if (!VecOp.hasOneUse())
|
|
return SDValue();
|
|
|
|
// If the bit convert changed the number of elements, it is unsafe
|
|
// to examine the mask.
|
|
if (BCNumEltsChanged)
|
|
return SDValue();
|
|
|
|
// Select the input vector, guarding against out of range extract vector.
|
|
int Idx = (Elt > (int)NumElts) ? -1 : Shuf->getMaskElt(Elt);
|
|
VecOp = (Idx < (int)NumElts) ? VecOp.getOperand(0) : VecOp.getOperand(1);
|
|
|
|
if (VecOp.getOpcode() == ISD::BITCAST) {
|
|
// Don't duplicate a load with other uses.
|
|
if (!VecOp.hasOneUse())
|
|
return SDValue();
|
|
|
|
VecOp = VecOp.getOperand(0);
|
|
}
|
|
if (ISD::isNormalLoad(VecOp.getNode())) {
|
|
LN0 = cast<LoadSDNode>(VecOp);
|
|
Elt = (Idx < (int)NumElts) ? Idx : Idx - (int)NumElts;
|
|
Index = DAG.getConstant(Elt, DL, Index.getValueType());
|
|
}
|
|
} else if (VecOp.getOpcode() == ISD::CONCAT_VECTORS && !BCNumEltsChanged &&
|
|
VecVT.getVectorElementType() == ScalarVT &&
|
|
(!LegalTypes ||
|
|
TLI.isTypeLegal(
|
|
VecOp.getOperand(0).getValueType().getVectorElementType()))) {
|
|
// extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 0
|
|
// -> extract_vector_elt a, 0
|
|
// extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 1
|
|
// -> extract_vector_elt a, 1
|
|
// extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 2
|
|
// -> extract_vector_elt b, 0
|
|
// extract_vector_elt (concat_vectors v2i16:a, v2i16:b), 3
|
|
// -> extract_vector_elt b, 1
|
|
SDLoc SL(N);
|
|
EVT ConcatVT = VecOp.getOperand(0).getValueType();
|
|
unsigned ConcatNumElts = ConcatVT.getVectorNumElements();
|
|
SDValue NewIdx = DAG.getConstant(Elt % ConcatNumElts, SL,
|
|
Index.getValueType());
|
|
|
|
SDValue ConcatOp = VecOp.getOperand(Elt / ConcatNumElts);
|
|
SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL,
|
|
ConcatVT.getVectorElementType(),
|
|
ConcatOp, NewIdx);
|
|
return DAG.getNode(ISD::BITCAST, SL, ScalarVT, Elt);
|
|
}
|
|
|
|
// Make sure we found a non-volatile load and the extractelement is
|
|
// the only use.
|
|
if (!LN0 || !LN0->hasNUsesOfValue(1,0) || !LN0->isSimple())
|
|
return SDValue();
|
|
|
|
// If Idx was -1 above, Elt is going to be -1, so just return undef.
|
|
if (Elt == -1)
|
|
return DAG.getUNDEF(LVT);
|
|
|
|
return scalarizeExtractedVectorLoad(N, VecVT, Index, LN0);
|
|
}
|
|
|
|
// Simplify (build_vec (ext )) to (bitcast (build_vec ))
|
|
SDValue DAGCombiner::reduceBuildVecExtToExtBuildVec(SDNode *N) {
|
|
// We perform this optimization post type-legalization because
|
|
// the type-legalizer often scalarizes integer-promoted vectors.
|
|
// Performing this optimization before may create bit-casts which
|
|
// will be type-legalized to complex code sequences.
|
|
// We perform this optimization only before the operation legalizer because we
|
|
// may introduce illegal operations.
|
|
if (Level != AfterLegalizeVectorOps && Level != AfterLegalizeTypes)
|
|
return SDValue();
|
|
|
|
unsigned NumInScalars = N->getNumOperands();
|
|
SDLoc DL(N);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// Check to see if this is a BUILD_VECTOR of a bunch of values
|
|
// which come from any_extend or zero_extend nodes. If so, we can create
|
|
// a new BUILD_VECTOR using bit-casts which may enable other BUILD_VECTOR
|
|
// optimizations. We do not handle sign-extend because we can't fill the sign
|
|
// using shuffles.
|
|
EVT SourceType = MVT::Other;
|
|
bool AllAnyExt = true;
|
|
|
|
for (unsigned i = 0; i != NumInScalars; ++i) {
|
|
SDValue In = N->getOperand(i);
|
|
// Ignore undef inputs.
|
|
if (In.isUndef()) continue;
|
|
|
|
bool AnyExt = In.getOpcode() == ISD::ANY_EXTEND;
|
|
bool ZeroExt = In.getOpcode() == ISD::ZERO_EXTEND;
|
|
|
|
// Abort if the element is not an extension.
|
|
if (!ZeroExt && !AnyExt) {
|
|
SourceType = MVT::Other;
|
|
break;
|
|
}
|
|
|
|
// The input is a ZeroExt or AnyExt. Check the original type.
|
|
EVT InTy = In.getOperand(0).getValueType();
|
|
|
|
// Check that all of the widened source types are the same.
|
|
if (SourceType == MVT::Other)
|
|
// First time.
|
|
SourceType = InTy;
|
|
else if (InTy != SourceType) {
|
|
// Multiple income types. Abort.
|
|
SourceType = MVT::Other;
|
|
break;
|
|
}
|
|
|
|
// Check if all of the extends are ANY_EXTENDs.
|
|
AllAnyExt &= AnyExt;
|
|
}
|
|
|
|
// In order to have valid types, all of the inputs must be extended from the
|
|
// same source type and all of the inputs must be any or zero extend.
|
|
// Scalar sizes must be a power of two.
|
|
EVT OutScalarTy = VT.getScalarType();
|
|
bool ValidTypes = SourceType != MVT::Other &&
|
|
isPowerOf2_32(OutScalarTy.getSizeInBits()) &&
|
|
isPowerOf2_32(SourceType.getSizeInBits());
|
|
|
|
// Create a new simpler BUILD_VECTOR sequence which other optimizations can
|
|
// turn into a single shuffle instruction.
|
|
if (!ValidTypes)
|
|
return SDValue();
|
|
|
|
// If we already have a splat buildvector, then don't fold it if it means
|
|
// introducing zeros.
|
|
if (!AllAnyExt && DAG.isSplatValue(SDValue(N, 0), /*AllowUndefs*/ true))
|
|
return SDValue();
|
|
|
|
bool isLE = DAG.getDataLayout().isLittleEndian();
|
|
unsigned ElemRatio = OutScalarTy.getSizeInBits()/SourceType.getSizeInBits();
|
|
assert(ElemRatio > 1 && "Invalid element size ratio");
|
|
SDValue Filler = AllAnyExt ? DAG.getUNDEF(SourceType):
|
|
DAG.getConstant(0, DL, SourceType);
|
|
|
|
unsigned NewBVElems = ElemRatio * VT.getVectorNumElements();
|
|
SmallVector<SDValue, 8> Ops(NewBVElems, Filler);
|
|
|
|
// Populate the new build_vector
|
|
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
|
|
SDValue Cast = N->getOperand(i);
|
|
assert((Cast.getOpcode() == ISD::ANY_EXTEND ||
|
|
Cast.getOpcode() == ISD::ZERO_EXTEND ||
|
|
Cast.isUndef()) && "Invalid cast opcode");
|
|
SDValue In;
|
|
if (Cast.isUndef())
|
|
In = DAG.getUNDEF(SourceType);
|
|
else
|
|
In = Cast->getOperand(0);
|
|
unsigned Index = isLE ? (i * ElemRatio) :
|
|
(i * ElemRatio + (ElemRatio - 1));
|
|
|
|
assert(Index < Ops.size() && "Invalid index");
|
|
Ops[Index] = In;
|
|
}
|
|
|
|
// The type of the new BUILD_VECTOR node.
|
|
EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SourceType, NewBVElems);
|
|
assert(VecVT.getSizeInBits() == VT.getSizeInBits() &&
|
|
"Invalid vector size");
|
|
// Check if the new vector type is legal.
|
|
if (!isTypeLegal(VecVT) ||
|
|
(!TLI.isOperationLegal(ISD::BUILD_VECTOR, VecVT) &&
|
|
TLI.isOperationLegal(ISD::BUILD_VECTOR, VT)))
|
|
return SDValue();
|
|
|
|
// Make the new BUILD_VECTOR.
|
|
SDValue BV = DAG.getBuildVector(VecVT, DL, Ops);
|
|
|
|
// The new BUILD_VECTOR node has the potential to be further optimized.
|
|
AddToWorklist(BV.getNode());
|
|
// Bitcast to the desired type.
|
|
return DAG.getBitcast(VT, BV);
|
|
}
|
|
|
|
// Simplify (build_vec (trunc $1)
|
|
// (trunc (srl $1 half-width))
|
|
// (trunc (srl $1 (2 * half-width))) …)
|
|
// to (bitcast $1)
|
|
SDValue DAGCombiner::reduceBuildVecTruncToBitCast(SDNode *N) {
|
|
assert(N->getOpcode() == ISD::BUILD_VECTOR && "Expected build vector");
|
|
|
|
// Only for little endian
|
|
if (!DAG.getDataLayout().isLittleEndian())
|
|
return SDValue();
|
|
|
|
SDLoc DL(N);
|
|
EVT VT = N->getValueType(0);
|
|
EVT OutScalarTy = VT.getScalarType();
|
|
uint64_t ScalarTypeBitsize = OutScalarTy.getSizeInBits();
|
|
|
|
// Only for power of two types to be sure that bitcast works well
|
|
if (!isPowerOf2_64(ScalarTypeBitsize))
|
|
return SDValue();
|
|
|
|
unsigned NumInScalars = N->getNumOperands();
|
|
|
|
// Look through bitcasts
|
|
auto PeekThroughBitcast = [](SDValue Op) {
|
|
if (Op.getOpcode() == ISD::BITCAST)
|
|
return Op.getOperand(0);
|
|
return Op;
|
|
};
|
|
|
|
// The source value where all the parts are extracted.
|
|
SDValue Src;
|
|
for (unsigned i = 0; i != NumInScalars; ++i) {
|
|
SDValue In = PeekThroughBitcast(N->getOperand(i));
|
|
// Ignore undef inputs.
|
|
if (In.isUndef()) continue;
|
|
|
|
if (In.getOpcode() != ISD::TRUNCATE)
|
|
return SDValue();
|
|
|
|
In = PeekThroughBitcast(In.getOperand(0));
|
|
|
|
if (In.getOpcode() != ISD::SRL) {
|
|
// For now only build_vec without shuffling, handle shifts here in the
|
|
// future.
|
|
if (i != 0)
|
|
return SDValue();
|
|
|
|
Src = In;
|
|
} else {
|
|
// In is SRL
|
|
SDValue part = PeekThroughBitcast(In.getOperand(0));
|
|
|
|
if (!Src) {
|
|
Src = part;
|
|
} else if (Src != part) {
|
|
// Vector parts do not stem from the same variable
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue ShiftAmtVal = In.getOperand(1);
|
|
if (!isa<ConstantSDNode>(ShiftAmtVal))
|
|
return SDValue();
|
|
|
|
uint64_t ShiftAmt = In.getNode()->getConstantOperandVal(1);
|
|
|
|
// The extracted value is not extracted at the right position
|
|
if (ShiftAmt != i * ScalarTypeBitsize)
|
|
return SDValue();
|
|
}
|
|
}
|
|
|
|
// Only cast if the size is the same
|
|
if (Src.getValueType().getSizeInBits() != VT.getSizeInBits())
|
|
return SDValue();
|
|
|
|
return DAG.getBitcast(VT, Src);
|
|
}
|
|
|
|
SDValue DAGCombiner::createBuildVecShuffle(const SDLoc &DL, SDNode *N,
|
|
ArrayRef<int> VectorMask,
|
|
SDValue VecIn1, SDValue VecIn2,
|
|
unsigned LeftIdx, bool DidSplitVec) {
|
|
SDValue ZeroIdx = DAG.getVectorIdxConstant(0, DL);
|
|
|
|
EVT VT = N->getValueType(0);
|
|
EVT InVT1 = VecIn1.getValueType();
|
|
EVT InVT2 = VecIn2.getNode() ? VecIn2.getValueType() : InVT1;
|
|
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
unsigned ShuffleNumElems = NumElems;
|
|
|
|
// If we artificially split a vector in two already, then the offsets in the
|
|
// operands will all be based off of VecIn1, even those in VecIn2.
|
|
unsigned Vec2Offset = DidSplitVec ? 0 : InVT1.getVectorNumElements();
|
|
|
|
uint64_t VTSize = VT.getFixedSizeInBits();
|
|
uint64_t InVT1Size = InVT1.getFixedSizeInBits();
|
|
uint64_t InVT2Size = InVT2.getFixedSizeInBits();
|
|
|
|
assert(InVT2Size <= InVT1Size &&
|
|
"Inputs must be sorted to be in non-increasing vector size order.");
|
|
|
|
// We can't generate a shuffle node with mismatched input and output types.
|
|
// Try to make the types match the type of the output.
|
|
if (InVT1 != VT || InVT2 != VT) {
|
|
if ((VTSize % InVT1Size == 0) && InVT1 == InVT2) {
|
|
// If the output vector length is a multiple of both input lengths,
|
|
// we can concatenate them and pad the rest with undefs.
|
|
unsigned NumConcats = VTSize / InVT1Size;
|
|
assert(NumConcats >= 2 && "Concat needs at least two inputs!");
|
|
SmallVector<SDValue, 2> ConcatOps(NumConcats, DAG.getUNDEF(InVT1));
|
|
ConcatOps[0] = VecIn1;
|
|
ConcatOps[1] = VecIn2 ? VecIn2 : DAG.getUNDEF(InVT1);
|
|
VecIn1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps);
|
|
VecIn2 = SDValue();
|
|
} else if (InVT1Size == VTSize * 2) {
|
|
if (!TLI.isExtractSubvectorCheap(VT, InVT1, NumElems))
|
|
return SDValue();
|
|
|
|
if (!VecIn2.getNode()) {
|
|
// If we only have one input vector, and it's twice the size of the
|
|
// output, split it in two.
|
|
VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1,
|
|
DAG.getVectorIdxConstant(NumElems, DL));
|
|
VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, VecIn1, ZeroIdx);
|
|
// Since we now have shorter input vectors, adjust the offset of the
|
|
// second vector's start.
|
|
Vec2Offset = NumElems;
|
|
} else {
|
|
assert(InVT2Size <= InVT1Size &&
|
|
"Second input is not going to be larger than the first one.");
|
|
|
|
// VecIn1 is wider than the output, and we have another, possibly
|
|
// smaller input. Pad the smaller input with undefs, shuffle at the
|
|
// input vector width, and extract the output.
|
|
// The shuffle type is different than VT, so check legality again.
|
|
if (LegalOperations &&
|
|
!TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, InVT1))
|
|
return SDValue();
|
|
|
|
// Legalizing INSERT_SUBVECTOR is tricky - you basically have to
|
|
// lower it back into a BUILD_VECTOR. So if the inserted type is
|
|
// illegal, don't even try.
|
|
if (InVT1 != InVT2) {
|
|
if (!TLI.isTypeLegal(InVT2))
|
|
return SDValue();
|
|
VecIn2 = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, InVT1,
|
|
DAG.getUNDEF(InVT1), VecIn2, ZeroIdx);
|
|
}
|
|
ShuffleNumElems = NumElems * 2;
|
|
}
|
|
} else if (InVT2Size * 2 == VTSize && InVT1Size == VTSize) {
|
|
SmallVector<SDValue, 2> ConcatOps(2, DAG.getUNDEF(InVT2));
|
|
ConcatOps[0] = VecIn2;
|
|
VecIn2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps);
|
|
} else {
|
|
// TODO: Support cases where the length mismatch isn't exactly by a
|
|
// factor of 2.
|
|
// TODO: Move this check upwards, so that if we have bad type
|
|
// mismatches, we don't create any DAG nodes.
|
|
return SDValue();
|
|
}
|
|
}
|
|
|
|
// Initialize mask to undef.
|
|
SmallVector<int, 8> Mask(ShuffleNumElems, -1);
|
|
|
|
// Only need to run up to the number of elements actually used, not the
|
|
// total number of elements in the shuffle - if we are shuffling a wider
|
|
// vector, the high lanes should be set to undef.
|
|
for (unsigned i = 0; i != NumElems; ++i) {
|
|
if (VectorMask[i] <= 0)
|
|
continue;
|
|
|
|
unsigned ExtIndex = N->getOperand(i).getConstantOperandVal(1);
|
|
if (VectorMask[i] == (int)LeftIdx) {
|
|
Mask[i] = ExtIndex;
|
|
} else if (VectorMask[i] == (int)LeftIdx + 1) {
|
|
Mask[i] = Vec2Offset + ExtIndex;
|
|
}
|
|
}
|
|
|
|
// The type the input vectors may have changed above.
|
|
InVT1 = VecIn1.getValueType();
|
|
|
|
// If we already have a VecIn2, it should have the same type as VecIn1.
|
|
// If we don't, get an undef/zero vector of the appropriate type.
|
|
VecIn2 = VecIn2.getNode() ? VecIn2 : DAG.getUNDEF(InVT1);
|
|
assert(InVT1 == VecIn2.getValueType() && "Unexpected second input type.");
|
|
|
|
SDValue Shuffle = DAG.getVectorShuffle(InVT1, DL, VecIn1, VecIn2, Mask);
|
|
if (ShuffleNumElems > NumElems)
|
|
Shuffle = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Shuffle, ZeroIdx);
|
|
|
|
return Shuffle;
|
|
}
|
|
|
|
static SDValue reduceBuildVecToShuffleWithZero(SDNode *BV, SelectionDAG &DAG) {
|
|
assert(BV->getOpcode() == ISD::BUILD_VECTOR && "Expected build vector");
|
|
|
|
// First, determine where the build vector is not undef.
|
|
// TODO: We could extend this to handle zero elements as well as undefs.
|
|
int NumBVOps = BV->getNumOperands();
|
|
int ZextElt = -1;
|
|
for (int i = 0; i != NumBVOps; ++i) {
|
|
SDValue Op = BV->getOperand(i);
|
|
if (Op.isUndef())
|
|
continue;
|
|
if (ZextElt == -1)
|
|
ZextElt = i;
|
|
else
|
|
return SDValue();
|
|
}
|
|
// Bail out if there's no non-undef element.
|
|
if (ZextElt == -1)
|
|
return SDValue();
|
|
|
|
// The build vector contains some number of undef elements and exactly
|
|
// one other element. That other element must be a zero-extended scalar
|
|
// extracted from a vector at a constant index to turn this into a shuffle.
|
|
// Also, require that the build vector does not implicitly truncate/extend
|
|
// its elements.
|
|
// TODO: This could be enhanced to allow ANY_EXTEND as well as ZERO_EXTEND.
|
|
EVT VT = BV->getValueType(0);
|
|
SDValue Zext = BV->getOperand(ZextElt);
|
|
if (Zext.getOpcode() != ISD::ZERO_EXTEND || !Zext.hasOneUse() ||
|
|
Zext.getOperand(0).getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
|
|
!isa<ConstantSDNode>(Zext.getOperand(0).getOperand(1)) ||
|
|
Zext.getValueSizeInBits() != VT.getScalarSizeInBits())
|
|
return SDValue();
|
|
|
|
// The zero-extend must be a multiple of the source size, and we must be
|
|
// building a vector of the same size as the source of the extract element.
|
|
SDValue Extract = Zext.getOperand(0);
|
|
unsigned DestSize = Zext.getValueSizeInBits();
|
|
unsigned SrcSize = Extract.getValueSizeInBits();
|
|
if (DestSize % SrcSize != 0 ||
|
|
Extract.getOperand(0).getValueSizeInBits() != VT.getSizeInBits())
|
|
return SDValue();
|
|
|
|
// Create a shuffle mask that will combine the extracted element with zeros
|
|
// and undefs.
|
|
int ZextRatio = DestSize / SrcSize;
|
|
int NumMaskElts = NumBVOps * ZextRatio;
|
|
SmallVector<int, 32> ShufMask(NumMaskElts, -1);
|
|
for (int i = 0; i != NumMaskElts; ++i) {
|
|
if (i / ZextRatio == ZextElt) {
|
|
// The low bits of the (potentially translated) extracted element map to
|
|
// the source vector. The high bits map to zero. We will use a zero vector
|
|
// as the 2nd source operand of the shuffle, so use the 1st element of
|
|
// that vector (mask value is number-of-elements) for the high bits.
|
|
if (i % ZextRatio == 0)
|
|
ShufMask[i] = Extract.getConstantOperandVal(1);
|
|
else
|
|
ShufMask[i] = NumMaskElts;
|
|
}
|
|
|
|
// Undef elements of the build vector remain undef because we initialize
|
|
// the shuffle mask with -1.
|
|
}
|
|
|
|
// buildvec undef, ..., (zext (extractelt V, IndexC)), undef... -->
|
|
// bitcast (shuffle V, ZeroVec, VectorMask)
|
|
SDLoc DL(BV);
|
|
EVT VecVT = Extract.getOperand(0).getValueType();
|
|
SDValue ZeroVec = DAG.getConstant(0, DL, VecVT);
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
SDValue Shuf = TLI.buildLegalVectorShuffle(VecVT, DL, Extract.getOperand(0),
|
|
ZeroVec, ShufMask, DAG);
|
|
if (!Shuf)
|
|
return SDValue();
|
|
return DAG.getBitcast(VT, Shuf);
|
|
}
|
|
|
|
// FIXME: promote to STLExtras.
|
|
template <typename R, typename T>
|
|
static auto getFirstIndexOf(R &&Range, const T &Val) {
|
|
auto I = find(Range, Val);
|
|
if (I == Range.end())
|
|
return static_cast<decltype(std::distance(Range.begin(), I))>(-1);
|
|
return std::distance(Range.begin(), I);
|
|
}
|
|
|
|
// Check to see if this is a BUILD_VECTOR of a bunch of EXTRACT_VECTOR_ELT
|
|
// operations. If the types of the vectors we're extracting from allow it,
|
|
// turn this into a vector_shuffle node.
|
|
SDValue DAGCombiner::reduceBuildVecToShuffle(SDNode *N) {
|
|
SDLoc DL(N);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// Only type-legal BUILD_VECTOR nodes are converted to shuffle nodes.
|
|
if (!isTypeLegal(VT))
|
|
return SDValue();
|
|
|
|
if (SDValue V = reduceBuildVecToShuffleWithZero(N, DAG))
|
|
return V;
|
|
|
|
// May only combine to shuffle after legalize if shuffle is legal.
|
|
if (LegalOperations && !TLI.isOperationLegal(ISD::VECTOR_SHUFFLE, VT))
|
|
return SDValue();
|
|
|
|
bool UsesZeroVector = false;
|
|
unsigned NumElems = N->getNumOperands();
|
|
|
|
// Record, for each element of the newly built vector, which input vector
|
|
// that element comes from. -1 stands for undef, 0 for the zero vector,
|
|
// and positive values for the input vectors.
|
|
// VectorMask maps each element to its vector number, and VecIn maps vector
|
|
// numbers to their initial SDValues.
|
|
|
|
SmallVector<int, 8> VectorMask(NumElems, -1);
|
|
SmallVector<SDValue, 8> VecIn;
|
|
VecIn.push_back(SDValue());
|
|
|
|
for (unsigned i = 0; i != NumElems; ++i) {
|
|
SDValue Op = N->getOperand(i);
|
|
|
|
if (Op.isUndef())
|
|
continue;
|
|
|
|
// See if we can use a blend with a zero vector.
|
|
// TODO: Should we generalize this to a blend with an arbitrary constant
|
|
// vector?
|
|
if (isNullConstant(Op) || isNullFPConstant(Op)) {
|
|
UsesZeroVector = true;
|
|
VectorMask[i] = 0;
|
|
continue;
|
|
}
|
|
|
|
// Not an undef or zero. If the input is something other than an
|
|
// EXTRACT_VECTOR_ELT with an in-range constant index, bail out.
|
|
if (Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
|
|
!isa<ConstantSDNode>(Op.getOperand(1)))
|
|
return SDValue();
|
|
SDValue ExtractedFromVec = Op.getOperand(0);
|
|
|
|
if (ExtractedFromVec.getValueType().isScalableVector())
|
|
return SDValue();
|
|
|
|
const APInt &ExtractIdx = Op.getConstantOperandAPInt(1);
|
|
if (ExtractIdx.uge(ExtractedFromVec.getValueType().getVectorNumElements()))
|
|
return SDValue();
|
|
|
|
// All inputs must have the same element type as the output.
|
|
if (VT.getVectorElementType() !=
|
|
ExtractedFromVec.getValueType().getVectorElementType())
|
|
return SDValue();
|
|
|
|
// Have we seen this input vector before?
|
|
// The vectors are expected to be tiny (usually 1 or 2 elements), so using
|
|
// a map back from SDValues to numbers isn't worth it.
|
|
int Idx = getFirstIndexOf(VecIn, ExtractedFromVec);
|
|
if (Idx == -1) { // A new source vector?
|
|
Idx = VecIn.size();
|
|
VecIn.push_back(ExtractedFromVec);
|
|
}
|
|
|
|
VectorMask[i] = Idx;
|
|
}
|
|
|
|
// If we didn't find at least one input vector, bail out.
|
|
if (VecIn.size() < 2)
|
|
return SDValue();
|
|
|
|
// If all the Operands of BUILD_VECTOR extract from same
|
|
// vector, then split the vector efficiently based on the maximum
|
|
// vector access index and adjust the VectorMask and
|
|
// VecIn accordingly.
|
|
bool DidSplitVec = false;
|
|
if (VecIn.size() == 2) {
|
|
unsigned MaxIndex = 0;
|
|
unsigned NearestPow2 = 0;
|
|
SDValue Vec = VecIn.back();
|
|
EVT InVT = Vec.getValueType();
|
|
SmallVector<unsigned, 8> IndexVec(NumElems, 0);
|
|
|
|
for (unsigned i = 0; i < NumElems; i++) {
|
|
if (VectorMask[i] <= 0)
|
|
continue;
|
|
unsigned Index = N->getOperand(i).getConstantOperandVal(1);
|
|
IndexVec[i] = Index;
|
|
MaxIndex = std::max(MaxIndex, Index);
|
|
}
|
|
|
|
NearestPow2 = PowerOf2Ceil(MaxIndex);
|
|
if (InVT.isSimple() && NearestPow2 > 2 && MaxIndex < NearestPow2 &&
|
|
NumElems * 2 < NearestPow2) {
|
|
unsigned SplitSize = NearestPow2 / 2;
|
|
EVT SplitVT = EVT::getVectorVT(*DAG.getContext(),
|
|
InVT.getVectorElementType(), SplitSize);
|
|
if (TLI.isTypeLegal(SplitVT) &&
|
|
SplitSize + SplitVT.getVectorNumElements() <=
|
|
InVT.getVectorNumElements()) {
|
|
SDValue VecIn2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec,
|
|
DAG.getVectorIdxConstant(SplitSize, DL));
|
|
SDValue VecIn1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, Vec,
|
|
DAG.getVectorIdxConstant(0, DL));
|
|
VecIn.pop_back();
|
|
VecIn.push_back(VecIn1);
|
|
VecIn.push_back(VecIn2);
|
|
DidSplitVec = true;
|
|
|
|
for (unsigned i = 0; i < NumElems; i++) {
|
|
if (VectorMask[i] <= 0)
|
|
continue;
|
|
VectorMask[i] = (IndexVec[i] < SplitSize) ? 1 : 2;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Sort input vectors by decreasing vector element count,
|
|
// while preserving the relative order of equally-sized vectors.
|
|
// Note that we keep the first "implicit zero vector as-is.
|
|
SmallVector<SDValue, 8> SortedVecIn(VecIn);
|
|
llvm::stable_sort(MutableArrayRef<SDValue>(SortedVecIn).drop_front(),
|
|
[](const SDValue &a, const SDValue &b) {
|
|
return a.getValueType().getVectorNumElements() >
|
|
b.getValueType().getVectorNumElements();
|
|
});
|
|
|
|
// We now also need to rebuild the VectorMask, because it referenced element
|
|
// order in VecIn, and we just sorted them.
|
|
for (int &SourceVectorIndex : VectorMask) {
|
|
if (SourceVectorIndex <= 0)
|
|
continue;
|
|
unsigned Idx = getFirstIndexOf(SortedVecIn, VecIn[SourceVectorIndex]);
|
|
assert(Idx > 0 && Idx < SortedVecIn.size() &&
|
|
VecIn[SourceVectorIndex] == SortedVecIn[Idx] && "Remapping failure");
|
|
SourceVectorIndex = Idx;
|
|
}
|
|
|
|
VecIn = std::move(SortedVecIn);
|
|
|
|
// TODO: Should this fire if some of the input vectors has illegal type (like
|
|
// it does now), or should we let legalization run its course first?
|
|
|
|
// Shuffle phase:
|
|
// Take pairs of vectors, and shuffle them so that the result has elements
|
|
// from these vectors in the correct places.
|
|
// For example, given:
|
|
// t10: i32 = extract_vector_elt t1, Constant:i64<0>
|
|
// t11: i32 = extract_vector_elt t2, Constant:i64<0>
|
|
// t12: i32 = extract_vector_elt t3, Constant:i64<0>
|
|
// t13: i32 = extract_vector_elt t1, Constant:i64<1>
|
|
// t14: v4i32 = BUILD_VECTOR t10, t11, t12, t13
|
|
// We will generate:
|
|
// t20: v4i32 = vector_shuffle<0,4,u,1> t1, t2
|
|
// t21: v4i32 = vector_shuffle<u,u,0,u> t3, undef
|
|
SmallVector<SDValue, 4> Shuffles;
|
|
for (unsigned In = 0, Len = (VecIn.size() / 2); In < Len; ++In) {
|
|
unsigned LeftIdx = 2 * In + 1;
|
|
SDValue VecLeft = VecIn[LeftIdx];
|
|
SDValue VecRight =
|
|
(LeftIdx + 1) < VecIn.size() ? VecIn[LeftIdx + 1] : SDValue();
|
|
|
|
if (SDValue Shuffle = createBuildVecShuffle(DL, N, VectorMask, VecLeft,
|
|
VecRight, LeftIdx, DidSplitVec))
|
|
Shuffles.push_back(Shuffle);
|
|
else
|
|
return SDValue();
|
|
}
|
|
|
|
// If we need the zero vector as an "ingredient" in the blend tree, add it
|
|
// to the list of shuffles.
|
|
if (UsesZeroVector)
|
|
Shuffles.push_back(VT.isInteger() ? DAG.getConstant(0, DL, VT)
|
|
: DAG.getConstantFP(0.0, DL, VT));
|
|
|
|
// If we only have one shuffle, we're done.
|
|
if (Shuffles.size() == 1)
|
|
return Shuffles[0];
|
|
|
|
// Update the vector mask to point to the post-shuffle vectors.
|
|
for (int &Vec : VectorMask)
|
|
if (Vec == 0)
|
|
Vec = Shuffles.size() - 1;
|
|
else
|
|
Vec = (Vec - 1) / 2;
|
|
|
|
// More than one shuffle. Generate a binary tree of blends, e.g. if from
|
|
// the previous step we got the set of shuffles t10, t11, t12, t13, we will
|
|
// generate:
|
|
// t10: v8i32 = vector_shuffle<0,8,u,u,u,u,u,u> t1, t2
|
|
// t11: v8i32 = vector_shuffle<u,u,0,8,u,u,u,u> t3, t4
|
|
// t12: v8i32 = vector_shuffle<u,u,u,u,0,8,u,u> t5, t6
|
|
// t13: v8i32 = vector_shuffle<u,u,u,u,u,u,0,8> t7, t8
|
|
// t20: v8i32 = vector_shuffle<0,1,10,11,u,u,u,u> t10, t11
|
|
// t21: v8i32 = vector_shuffle<u,u,u,u,4,5,14,15> t12, t13
|
|
// t30: v8i32 = vector_shuffle<0,1,2,3,12,13,14,15> t20, t21
|
|
|
|
// Make sure the initial size of the shuffle list is even.
|
|
if (Shuffles.size() % 2)
|
|
Shuffles.push_back(DAG.getUNDEF(VT));
|
|
|
|
for (unsigned CurSize = Shuffles.size(); CurSize > 1; CurSize /= 2) {
|
|
if (CurSize % 2) {
|
|
Shuffles[CurSize] = DAG.getUNDEF(VT);
|
|
CurSize++;
|
|
}
|
|
for (unsigned In = 0, Len = CurSize / 2; In < Len; ++In) {
|
|
int Left = 2 * In;
|
|
int Right = 2 * In + 1;
|
|
SmallVector<int, 8> Mask(NumElems, -1);
|
|
for (unsigned i = 0; i != NumElems; ++i) {
|
|
if (VectorMask[i] == Left) {
|
|
Mask[i] = i;
|
|
VectorMask[i] = In;
|
|
} else if (VectorMask[i] == Right) {
|
|
Mask[i] = i + NumElems;
|
|
VectorMask[i] = In;
|
|
}
|
|
}
|
|
|
|
Shuffles[In] =
|
|
DAG.getVectorShuffle(VT, DL, Shuffles[Left], Shuffles[Right], Mask);
|
|
}
|
|
}
|
|
return Shuffles[0];
|
|
}
|
|
|
|
// Try to turn a build vector of zero extends of extract vector elts into a
|
|
// a vector zero extend and possibly an extract subvector.
|
|
// TODO: Support sign extend?
|
|
// TODO: Allow undef elements?
|
|
SDValue DAGCombiner::convertBuildVecZextToZext(SDNode *N) {
|
|
if (LegalOperations)
|
|
return SDValue();
|
|
|
|
EVT VT = N->getValueType(0);
|
|
|
|
bool FoundZeroExtend = false;
|
|
SDValue Op0 = N->getOperand(0);
|
|
auto checkElem = [&](SDValue Op) -> int64_t {
|
|
unsigned Opc = Op.getOpcode();
|
|
FoundZeroExtend |= (Opc == ISD::ZERO_EXTEND);
|
|
if ((Opc == ISD::ZERO_EXTEND || Opc == ISD::ANY_EXTEND) &&
|
|
Op.getOperand(0).getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
|
|
Op0.getOperand(0).getOperand(0) == Op.getOperand(0).getOperand(0))
|
|
if (auto *C = dyn_cast<ConstantSDNode>(Op.getOperand(0).getOperand(1)))
|
|
return C->getZExtValue();
|
|
return -1;
|
|
};
|
|
|
|
// Make sure the first element matches
|
|
// (zext (extract_vector_elt X, C))
|
|
int64_t Offset = checkElem(Op0);
|
|
if (Offset < 0)
|
|
return SDValue();
|
|
|
|
unsigned NumElems = N->getNumOperands();
|
|
SDValue In = Op0.getOperand(0).getOperand(0);
|
|
EVT InSVT = In.getValueType().getScalarType();
|
|
EVT InVT = EVT::getVectorVT(*DAG.getContext(), InSVT, NumElems);
|
|
|
|
// Don't create an illegal input type after type legalization.
|
|
if (LegalTypes && !TLI.isTypeLegal(InVT))
|
|
return SDValue();
|
|
|
|
// Ensure all the elements come from the same vector and are adjacent.
|
|
for (unsigned i = 1; i != NumElems; ++i) {
|
|
if ((Offset + i) != checkElem(N->getOperand(i)))
|
|
return SDValue();
|
|
}
|
|
|
|
SDLoc DL(N);
|
|
In = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, InVT, In,
|
|
Op0.getOperand(0).getOperand(1));
|
|
return DAG.getNode(FoundZeroExtend ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, DL,
|
|
VT, In);
|
|
}
|
|
|
|
SDValue DAGCombiner::visitBUILD_VECTOR(SDNode *N) {
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// A vector built entirely of undefs is undef.
|
|
if (ISD::allOperandsUndef(N))
|
|
return DAG.getUNDEF(VT);
|
|
|
|
// If this is a splat of a bitcast from another vector, change to a
|
|
// concat_vector.
|
|
// For example:
|
|
// (build_vector (i64 (bitcast (v2i32 X))), (i64 (bitcast (v2i32 X)))) ->
|
|
// (v2i64 (bitcast (concat_vectors (v2i32 X), (v2i32 X))))
|
|
//
|
|
// If X is a build_vector itself, the concat can become a larger build_vector.
|
|
// TODO: Maybe this is useful for non-splat too?
|
|
if (!LegalOperations) {
|
|
if (SDValue Splat = cast<BuildVectorSDNode>(N)->getSplatValue()) {
|
|
Splat = peekThroughBitcasts(Splat);
|
|
EVT SrcVT = Splat.getValueType();
|
|
if (SrcVT.isVector()) {
|
|
unsigned NumElts = N->getNumOperands() * SrcVT.getVectorNumElements();
|
|
EVT NewVT = EVT::getVectorVT(*DAG.getContext(),
|
|
SrcVT.getVectorElementType(), NumElts);
|
|
if (!LegalTypes || TLI.isTypeLegal(NewVT)) {
|
|
SmallVector<SDValue, 8> Ops(N->getNumOperands(), Splat);
|
|
SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N),
|
|
NewVT, Ops);
|
|
return DAG.getBitcast(VT, Concat);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check if we can express BUILD VECTOR via subvector extract.
|
|
if (!LegalTypes && (N->getNumOperands() > 1)) {
|
|
SDValue Op0 = N->getOperand(0);
|
|
auto checkElem = [&](SDValue Op) -> uint64_t {
|
|
if ((Op.getOpcode() == ISD::EXTRACT_VECTOR_ELT) &&
|
|
(Op0.getOperand(0) == Op.getOperand(0)))
|
|
if (auto CNode = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
|
|
return CNode->getZExtValue();
|
|
return -1;
|
|
};
|
|
|
|
int Offset = checkElem(Op0);
|
|
for (unsigned i = 0; i < N->getNumOperands(); ++i) {
|
|
if (Offset + i != checkElem(N->getOperand(i))) {
|
|
Offset = -1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if ((Offset == 0) &&
|
|
(Op0.getOperand(0).getValueType() == N->getValueType(0)))
|
|
return Op0.getOperand(0);
|
|
if ((Offset != -1) &&
|
|
((Offset % N->getValueType(0).getVectorNumElements()) ==
|
|
0)) // IDX must be multiple of output size.
|
|
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), N->getValueType(0),
|
|
Op0.getOperand(0), Op0.getOperand(1));
|
|
}
|
|
|
|
if (SDValue V = convertBuildVecZextToZext(N))
|
|
return V;
|
|
|
|
if (SDValue V = reduceBuildVecExtToExtBuildVec(N))
|
|
return V;
|
|
|
|
if (SDValue V = reduceBuildVecTruncToBitCast(N))
|
|
return V;
|
|
|
|
if (SDValue V = reduceBuildVecToShuffle(N))
|
|
return V;
|
|
|
|
// A splat of a single element is a SPLAT_VECTOR if supported on the target.
|
|
// Do this late as some of the above may replace the splat.
|
|
if (TLI.getOperationAction(ISD::SPLAT_VECTOR, VT) != TargetLowering::Expand)
|
|
if (SDValue V = cast<BuildVectorSDNode>(N)->getSplatValue()) {
|
|
assert(!V.isUndef() && "Splat of undef should have been handled earlier");
|
|
return DAG.getNode(ISD::SPLAT_VECTOR, SDLoc(N), VT, V);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue combineConcatVectorOfScalars(SDNode *N, SelectionDAG &DAG) {
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
EVT OpVT = N->getOperand(0).getValueType();
|
|
|
|
// If the operands are legal vectors, leave them alone.
|
|
if (TLI.isTypeLegal(OpVT))
|
|
return SDValue();
|
|
|
|
SDLoc DL(N);
|
|
EVT VT = N->getValueType(0);
|
|
SmallVector<SDValue, 8> Ops;
|
|
|
|
EVT SVT = EVT::getIntegerVT(*DAG.getContext(), OpVT.getSizeInBits());
|
|
SDValue ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT);
|
|
|
|
// Keep track of what we encounter.
|
|
bool AnyInteger = false;
|
|
bool AnyFP = false;
|
|
for (const SDValue &Op : N->ops()) {
|
|
if (ISD::BITCAST == Op.getOpcode() &&
|
|
!Op.getOperand(0).getValueType().isVector())
|
|
Ops.push_back(Op.getOperand(0));
|
|
else if (ISD::UNDEF == Op.getOpcode())
|
|
Ops.push_back(ScalarUndef);
|
|
else
|
|
return SDValue();
|
|
|
|
// Note whether we encounter an integer or floating point scalar.
|
|
// If it's neither, bail out, it could be something weird like x86mmx.
|
|
EVT LastOpVT = Ops.back().getValueType();
|
|
if (LastOpVT.isFloatingPoint())
|
|
AnyFP = true;
|
|
else if (LastOpVT.isInteger())
|
|
AnyInteger = true;
|
|
else
|
|
return SDValue();
|
|
}
|
|
|
|
// If any of the operands is a floating point scalar bitcast to a vector,
|
|
// use floating point types throughout, and bitcast everything.
|
|
// Replace UNDEFs by another scalar UNDEF node, of the final desired type.
|
|
if (AnyFP) {
|
|
SVT = EVT::getFloatingPointVT(OpVT.getSizeInBits());
|
|
ScalarUndef = DAG.getNode(ISD::UNDEF, DL, SVT);
|
|
if (AnyInteger) {
|
|
for (SDValue &Op : Ops) {
|
|
if (Op.getValueType() == SVT)
|
|
continue;
|
|
if (Op.isUndef())
|
|
Op = ScalarUndef;
|
|
else
|
|
Op = DAG.getBitcast(SVT, Op);
|
|
}
|
|
}
|
|
}
|
|
|
|
EVT VecVT = EVT::getVectorVT(*DAG.getContext(), SVT,
|
|
VT.getSizeInBits() / SVT.getSizeInBits());
|
|
return DAG.getBitcast(VT, DAG.getBuildVector(VecVT, DL, Ops));
|
|
}
|
|
|
|
// Check to see if this is a CONCAT_VECTORS of a bunch of EXTRACT_SUBVECTOR
|
|
// operations. If so, and if the EXTRACT_SUBVECTOR vector inputs come from at
|
|
// most two distinct vectors the same size as the result, attempt to turn this
|
|
// into a legal shuffle.
|
|
static SDValue combineConcatVectorOfExtracts(SDNode *N, SelectionDAG &DAG) {
|
|
EVT VT = N->getValueType(0);
|
|
EVT OpVT = N->getOperand(0).getValueType();
|
|
|
|
// We currently can't generate an appropriate shuffle for a scalable vector.
|
|
if (VT.isScalableVector())
|
|
return SDValue();
|
|
|
|
int NumElts = VT.getVectorNumElements();
|
|
int NumOpElts = OpVT.getVectorNumElements();
|
|
|
|
SDValue SV0 = DAG.getUNDEF(VT), SV1 = DAG.getUNDEF(VT);
|
|
SmallVector<int, 8> Mask;
|
|
|
|
for (SDValue Op : N->ops()) {
|
|
Op = peekThroughBitcasts(Op);
|
|
|
|
// UNDEF nodes convert to UNDEF shuffle mask values.
|
|
if (Op.isUndef()) {
|
|
Mask.append((unsigned)NumOpElts, -1);
|
|
continue;
|
|
}
|
|
|
|
if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR)
|
|
return SDValue();
|
|
|
|
// What vector are we extracting the subvector from and at what index?
|
|
SDValue ExtVec = Op.getOperand(0);
|
|
int ExtIdx = Op.getConstantOperandVal(1);
|
|
|
|
// We want the EVT of the original extraction to correctly scale the
|
|
// extraction index.
|
|
EVT ExtVT = ExtVec.getValueType();
|
|
ExtVec = peekThroughBitcasts(ExtVec);
|
|
|
|
// UNDEF nodes convert to UNDEF shuffle mask values.
|
|
if (ExtVec.isUndef()) {
|
|
Mask.append((unsigned)NumOpElts, -1);
|
|
continue;
|
|
}
|
|
|
|
// Ensure that we are extracting a subvector from a vector the same
|
|
// size as the result.
|
|
if (ExtVT.getSizeInBits() != VT.getSizeInBits())
|
|
return SDValue();
|
|
|
|
// Scale the subvector index to account for any bitcast.
|
|
int NumExtElts = ExtVT.getVectorNumElements();
|
|
if (0 == (NumExtElts % NumElts))
|
|
ExtIdx /= (NumExtElts / NumElts);
|
|
else if (0 == (NumElts % NumExtElts))
|
|
ExtIdx *= (NumElts / NumExtElts);
|
|
else
|
|
return SDValue();
|
|
|
|
// At most we can reference 2 inputs in the final shuffle.
|
|
if (SV0.isUndef() || SV0 == ExtVec) {
|
|
SV0 = ExtVec;
|
|
for (int i = 0; i != NumOpElts; ++i)
|
|
Mask.push_back(i + ExtIdx);
|
|
} else if (SV1.isUndef() || SV1 == ExtVec) {
|
|
SV1 = ExtVec;
|
|
for (int i = 0; i != NumOpElts; ++i)
|
|
Mask.push_back(i + ExtIdx + NumElts);
|
|
} else {
|
|
return SDValue();
|
|
}
|
|
}
|
|
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
return TLI.buildLegalVectorShuffle(VT, SDLoc(N), DAG.getBitcast(VT, SV0),
|
|
DAG.getBitcast(VT, SV1), Mask, DAG);
|
|
}
|
|
|
|
static SDValue combineConcatVectorOfCasts(SDNode *N, SelectionDAG &DAG) {
|
|
unsigned CastOpcode = N->getOperand(0).getOpcode();
|
|
switch (CastOpcode) {
|
|
case ISD::SINT_TO_FP:
|
|
case ISD::UINT_TO_FP:
|
|
case ISD::FP_TO_SINT:
|
|
case ISD::FP_TO_UINT:
|
|
// TODO: Allow more opcodes?
|
|
// case ISD::BITCAST:
|
|
// case ISD::TRUNCATE:
|
|
// case ISD::ZERO_EXTEND:
|
|
// case ISD::SIGN_EXTEND:
|
|
// case ISD::FP_EXTEND:
|
|
break;
|
|
default:
|
|
return SDValue();
|
|
}
|
|
|
|
EVT SrcVT = N->getOperand(0).getOperand(0).getValueType();
|
|
if (!SrcVT.isVector())
|
|
return SDValue();
|
|
|
|
// All operands of the concat must be the same kind of cast from the same
|
|
// source type.
|
|
SmallVector<SDValue, 4> SrcOps;
|
|
for (SDValue Op : N->ops()) {
|
|
if (Op.getOpcode() != CastOpcode || !Op.hasOneUse() ||
|
|
Op.getOperand(0).getValueType() != SrcVT)
|
|
return SDValue();
|
|
SrcOps.push_back(Op.getOperand(0));
|
|
}
|
|
|
|
// The wider cast must be supported by the target. This is unusual because
|
|
// the operation support type parameter depends on the opcode. In addition,
|
|
// check the other type in the cast to make sure this is really legal.
|
|
EVT VT = N->getValueType(0);
|
|
EVT SrcEltVT = SrcVT.getVectorElementType();
|
|
ElementCount NumElts = SrcVT.getVectorElementCount() * N->getNumOperands();
|
|
EVT ConcatSrcVT = EVT::getVectorVT(*DAG.getContext(), SrcEltVT, NumElts);
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
switch (CastOpcode) {
|
|
case ISD::SINT_TO_FP:
|
|
case ISD::UINT_TO_FP:
|
|
if (!TLI.isOperationLegalOrCustom(CastOpcode, ConcatSrcVT) ||
|
|
!TLI.isTypeLegal(VT))
|
|
return SDValue();
|
|
break;
|
|
case ISD::FP_TO_SINT:
|
|
case ISD::FP_TO_UINT:
|
|
if (!TLI.isOperationLegalOrCustom(CastOpcode, VT) ||
|
|
!TLI.isTypeLegal(ConcatSrcVT))
|
|
return SDValue();
|
|
break;
|
|
default:
|
|
llvm_unreachable("Unexpected cast opcode");
|
|
}
|
|
|
|
// concat (cast X), (cast Y)... -> cast (concat X, Y...)
|
|
SDLoc DL(N);
|
|
SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, DL, ConcatSrcVT, SrcOps);
|
|
return DAG.getNode(CastOpcode, DL, VT, NewConcat);
|
|
}
|
|
|
|
SDValue DAGCombiner::visitCONCAT_VECTORS(SDNode *N) {
|
|
// If we only have one input vector, we don't need to do any concatenation.
|
|
if (N->getNumOperands() == 1)
|
|
return N->getOperand(0);
|
|
|
|
// Check if all of the operands are undefs.
|
|
EVT VT = N->getValueType(0);
|
|
if (ISD::allOperandsUndef(N))
|
|
return DAG.getUNDEF(VT);
|
|
|
|
// Optimize concat_vectors where all but the first of the vectors are undef.
|
|
if (all_of(drop_begin(N->ops()),
|
|
[](const SDValue &Op) { return Op.isUndef(); })) {
|
|
SDValue In = N->getOperand(0);
|
|
assert(In.getValueType().isVector() && "Must concat vectors");
|
|
|
|
// If the input is a concat_vectors, just make a larger concat by padding
|
|
// with smaller undefs.
|
|
if (In.getOpcode() == ISD::CONCAT_VECTORS && In.hasOneUse()) {
|
|
unsigned NumOps = N->getNumOperands() * In.getNumOperands();
|
|
SmallVector<SDValue, 4> Ops(In->op_begin(), In->op_end());
|
|
Ops.resize(NumOps, DAG.getUNDEF(Ops[0].getValueType()));
|
|
return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops);
|
|
}
|
|
|
|
SDValue Scalar = peekThroughOneUseBitcasts(In);
|
|
|
|
// concat_vectors(scalar_to_vector(scalar), undef) ->
|
|
// scalar_to_vector(scalar)
|
|
if (!LegalOperations && Scalar.getOpcode() == ISD::SCALAR_TO_VECTOR &&
|
|
Scalar.hasOneUse()) {
|
|
EVT SVT = Scalar.getValueType().getVectorElementType();
|
|
if (SVT == Scalar.getOperand(0).getValueType())
|
|
Scalar = Scalar.getOperand(0);
|
|
}
|
|
|
|
// concat_vectors(scalar, undef) -> scalar_to_vector(scalar)
|
|
if (!Scalar.getValueType().isVector()) {
|
|
// If the bitcast type isn't legal, it might be a trunc of a legal type;
|
|
// look through the trunc so we can still do the transform:
|
|
// concat_vectors(trunc(scalar), undef) -> scalar_to_vector(scalar)
|
|
if (Scalar->getOpcode() == ISD::TRUNCATE &&
|
|
!TLI.isTypeLegal(Scalar.getValueType()) &&
|
|
TLI.isTypeLegal(Scalar->getOperand(0).getValueType()))
|
|
Scalar = Scalar->getOperand(0);
|
|
|
|
EVT SclTy = Scalar.getValueType();
|
|
|
|
if (!SclTy.isFloatingPoint() && !SclTy.isInteger())
|
|
return SDValue();
|
|
|
|
// Bail out if the vector size is not a multiple of the scalar size.
|
|
if (VT.getSizeInBits() % SclTy.getSizeInBits())
|
|
return SDValue();
|
|
|
|
unsigned VNTNumElms = VT.getSizeInBits() / SclTy.getSizeInBits();
|
|
if (VNTNumElms < 2)
|
|
return SDValue();
|
|
|
|
EVT NVT = EVT::getVectorVT(*DAG.getContext(), SclTy, VNTNumElms);
|
|
if (!TLI.isTypeLegal(NVT) || !TLI.isTypeLegal(Scalar.getValueType()))
|
|
return SDValue();
|
|
|
|
SDValue Res = DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), NVT, Scalar);
|
|
return DAG.getBitcast(VT, Res);
|
|
}
|
|
}
|
|
|
|
// Fold any combination of BUILD_VECTOR or UNDEF nodes into one BUILD_VECTOR.
|
|
// We have already tested above for an UNDEF only concatenation.
|
|
// fold (concat_vectors (BUILD_VECTOR A, B, ...), (BUILD_VECTOR C, D, ...))
|
|
// -> (BUILD_VECTOR A, B, ..., C, D, ...)
|
|
auto IsBuildVectorOrUndef = [](const SDValue &Op) {
|
|
return ISD::UNDEF == Op.getOpcode() || ISD::BUILD_VECTOR == Op.getOpcode();
|
|
};
|
|
if (llvm::all_of(N->ops(), IsBuildVectorOrUndef)) {
|
|
SmallVector<SDValue, 8> Opnds;
|
|
EVT SVT = VT.getScalarType();
|
|
|
|
EVT MinVT = SVT;
|
|
if (!SVT.isFloatingPoint()) {
|
|
// If BUILD_VECTOR are from built from integer, they may have different
|
|
// operand types. Get the smallest type and truncate all operands to it.
|
|
bool FoundMinVT = false;
|
|
for (const SDValue &Op : N->ops())
|
|
if (ISD::BUILD_VECTOR == Op.getOpcode()) {
|
|
EVT OpSVT = Op.getOperand(0).getValueType();
|
|
MinVT = (!FoundMinVT || OpSVT.bitsLE(MinVT)) ? OpSVT : MinVT;
|
|
FoundMinVT = true;
|
|
}
|
|
assert(FoundMinVT && "Concat vector type mismatch");
|
|
}
|
|
|
|
for (const SDValue &Op : N->ops()) {
|
|
EVT OpVT = Op.getValueType();
|
|
unsigned NumElts = OpVT.getVectorNumElements();
|
|
|
|
if (ISD::UNDEF == Op.getOpcode())
|
|
Opnds.append(NumElts, DAG.getUNDEF(MinVT));
|
|
|
|
if (ISD::BUILD_VECTOR == Op.getOpcode()) {
|
|
if (SVT.isFloatingPoint()) {
|
|
assert(SVT == OpVT.getScalarType() && "Concat vector type mismatch");
|
|
Opnds.append(Op->op_begin(), Op->op_begin() + NumElts);
|
|
} else {
|
|
for (unsigned i = 0; i != NumElts; ++i)
|
|
Opnds.push_back(
|
|
DAG.getNode(ISD::TRUNCATE, SDLoc(N), MinVT, Op.getOperand(i)));
|
|
}
|
|
}
|
|
}
|
|
|
|
assert(VT.getVectorNumElements() == Opnds.size() &&
|
|
"Concat vector type mismatch");
|
|
return DAG.getBuildVector(VT, SDLoc(N), Opnds);
|
|
}
|
|
|
|
// Fold CONCAT_VECTORS of only bitcast scalars (or undef) to BUILD_VECTOR.
|
|
if (SDValue V = combineConcatVectorOfScalars(N, DAG))
|
|
return V;
|
|
|
|
// Fold CONCAT_VECTORS of EXTRACT_SUBVECTOR (or undef) to VECTOR_SHUFFLE.
|
|
if (Level < AfterLegalizeVectorOps && TLI.isTypeLegal(VT))
|
|
if (SDValue V = combineConcatVectorOfExtracts(N, DAG))
|
|
return V;
|
|
|
|
if (SDValue V = combineConcatVectorOfCasts(N, DAG))
|
|
return V;
|
|
|
|
// Type legalization of vectors and DAG canonicalization of SHUFFLE_VECTOR
|
|
// nodes often generate nop CONCAT_VECTOR nodes. Scan the CONCAT_VECTOR
|
|
// operands and look for a CONCAT operations that place the incoming vectors
|
|
// at the exact same location.
|
|
//
|
|
// For scalable vectors, EXTRACT_SUBVECTOR indexes are implicitly scaled.
|
|
SDValue SingleSource = SDValue();
|
|
unsigned PartNumElem =
|
|
N->getOperand(0).getValueType().getVectorMinNumElements();
|
|
|
|
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
|
|
SDValue Op = N->getOperand(i);
|
|
|
|
if (Op.isUndef())
|
|
continue;
|
|
|
|
// Check if this is the identity extract:
|
|
if (Op.getOpcode() != ISD::EXTRACT_SUBVECTOR)
|
|
return SDValue();
|
|
|
|
// Find the single incoming vector for the extract_subvector.
|
|
if (SingleSource.getNode()) {
|
|
if (Op.getOperand(0) != SingleSource)
|
|
return SDValue();
|
|
} else {
|
|
SingleSource = Op.getOperand(0);
|
|
|
|
// Check the source type is the same as the type of the result.
|
|
// If not, this concat may extend the vector, so we can not
|
|
// optimize it away.
|
|
if (SingleSource.getValueType() != N->getValueType(0))
|
|
return SDValue();
|
|
}
|
|
|
|
// Check that we are reading from the identity index.
|
|
unsigned IdentityIndex = i * PartNumElem;
|
|
if (Op.getConstantOperandAPInt(1) != IdentityIndex)
|
|
return SDValue();
|
|
}
|
|
|
|
if (SingleSource.getNode())
|
|
return SingleSource;
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// Helper that peeks through INSERT_SUBVECTOR/CONCAT_VECTORS to find
|
|
// if the subvector can be sourced for free.
|
|
static SDValue getSubVectorSrc(SDValue V, SDValue Index, EVT SubVT) {
|
|
if (V.getOpcode() == ISD::INSERT_SUBVECTOR &&
|
|
V.getOperand(1).getValueType() == SubVT && V.getOperand(2) == Index) {
|
|
return V.getOperand(1);
|
|
}
|
|
auto *IndexC = dyn_cast<ConstantSDNode>(Index);
|
|
if (IndexC && V.getOpcode() == ISD::CONCAT_VECTORS &&
|
|
V.getOperand(0).getValueType() == SubVT &&
|
|
(IndexC->getZExtValue() % SubVT.getVectorMinNumElements()) == 0) {
|
|
uint64_t SubIdx = IndexC->getZExtValue() / SubVT.getVectorMinNumElements();
|
|
return V.getOperand(SubIdx);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue narrowInsertExtractVectorBinOp(SDNode *Extract,
|
|
SelectionDAG &DAG,
|
|
bool LegalOperations) {
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
SDValue BinOp = Extract->getOperand(0);
|
|
unsigned BinOpcode = BinOp.getOpcode();
|
|
if (!TLI.isBinOp(BinOpcode) || BinOp.getNode()->getNumValues() != 1)
|
|
return SDValue();
|
|
|
|
EVT VecVT = BinOp.getValueType();
|
|
SDValue Bop0 = BinOp.getOperand(0), Bop1 = BinOp.getOperand(1);
|
|
if (VecVT != Bop0.getValueType() || VecVT != Bop1.getValueType())
|
|
return SDValue();
|
|
|
|
SDValue Index = Extract->getOperand(1);
|
|
EVT SubVT = Extract->getValueType(0);
|
|
if (!TLI.isOperationLegalOrCustom(BinOpcode, SubVT, LegalOperations))
|
|
return SDValue();
|
|
|
|
SDValue Sub0 = getSubVectorSrc(Bop0, Index, SubVT);
|
|
SDValue Sub1 = getSubVectorSrc(Bop1, Index, SubVT);
|
|
|
|
// TODO: We could handle the case where only 1 operand is being inserted by
|
|
// creating an extract of the other operand, but that requires checking
|
|
// number of uses and/or costs.
|
|
if (!Sub0 || !Sub1)
|
|
return SDValue();
|
|
|
|
// We are inserting both operands of the wide binop only to extract back
|
|
// to the narrow vector size. Eliminate all of the insert/extract:
|
|
// ext (binop (ins ?, X, Index), (ins ?, Y, Index)), Index --> binop X, Y
|
|
return DAG.getNode(BinOpcode, SDLoc(Extract), SubVT, Sub0, Sub1,
|
|
BinOp->getFlags());
|
|
}
|
|
|
|
/// If we are extracting a subvector produced by a wide binary operator try
|
|
/// to use a narrow binary operator and/or avoid concatenation and extraction.
|
|
static SDValue narrowExtractedVectorBinOp(SDNode *Extract, SelectionDAG &DAG,
|
|
bool LegalOperations) {
|
|
// TODO: Refactor with the caller (visitEXTRACT_SUBVECTOR), so we can share
|
|
// some of these bailouts with other transforms.
|
|
|
|
if (SDValue V = narrowInsertExtractVectorBinOp(Extract, DAG, LegalOperations))
|
|
return V;
|
|
|
|
// The extract index must be a constant, so we can map it to a concat operand.
|
|
auto *ExtractIndexC = dyn_cast<ConstantSDNode>(Extract->getOperand(1));
|
|
if (!ExtractIndexC)
|
|
return SDValue();
|
|
|
|
// We are looking for an optionally bitcasted wide vector binary operator
|
|
// feeding an extract subvector.
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
SDValue BinOp = peekThroughBitcasts(Extract->getOperand(0));
|
|
unsigned BOpcode = BinOp.getOpcode();
|
|
if (!TLI.isBinOp(BOpcode) || BinOp.getNode()->getNumValues() != 1)
|
|
return SDValue();
|
|
|
|
// Exclude the fake form of fneg (fsub -0.0, x) because that is likely to be
|
|
// reduced to the unary fneg when it is visited, and we probably want to deal
|
|
// with fneg in a target-specific way.
|
|
if (BOpcode == ISD::FSUB) {
|
|
auto *C = isConstOrConstSplatFP(BinOp.getOperand(0), /*AllowUndefs*/ true);
|
|
if (C && C->getValueAPF().isNegZero())
|
|
return SDValue();
|
|
}
|
|
|
|
// The binop must be a vector type, so we can extract some fraction of it.
|
|
EVT WideBVT = BinOp.getValueType();
|
|
// The optimisations below currently assume we are dealing with fixed length
|
|
// vectors. It is possible to add support for scalable vectors, but at the
|
|
// moment we've done no analysis to prove whether they are profitable or not.
|
|
if (!WideBVT.isFixedLengthVector())
|
|
return SDValue();
|
|
|
|
EVT VT = Extract->getValueType(0);
|
|
unsigned ExtractIndex = ExtractIndexC->getZExtValue();
|
|
assert(ExtractIndex % VT.getVectorNumElements() == 0 &&
|
|
"Extract index is not a multiple of the vector length.");
|
|
|
|
// Bail out if this is not a proper multiple width extraction.
|
|
unsigned WideWidth = WideBVT.getSizeInBits();
|
|
unsigned NarrowWidth = VT.getSizeInBits();
|
|
if (WideWidth % NarrowWidth != 0)
|
|
return SDValue();
|
|
|
|
// Bail out if we are extracting a fraction of a single operation. This can
|
|
// occur because we potentially looked through a bitcast of the binop.
|
|
unsigned NarrowingRatio = WideWidth / NarrowWidth;
|
|
unsigned WideNumElts = WideBVT.getVectorNumElements();
|
|
if (WideNumElts % NarrowingRatio != 0)
|
|
return SDValue();
|
|
|
|
// Bail out if the target does not support a narrower version of the binop.
|
|
EVT NarrowBVT = EVT::getVectorVT(*DAG.getContext(), WideBVT.getScalarType(),
|
|
WideNumElts / NarrowingRatio);
|
|
if (!TLI.isOperationLegalOrCustomOrPromote(BOpcode, NarrowBVT))
|
|
return SDValue();
|
|
|
|
// If extraction is cheap, we don't need to look at the binop operands
|
|
// for concat ops. The narrow binop alone makes this transform profitable.
|
|
// We can't just reuse the original extract index operand because we may have
|
|
// bitcasted.
|
|
unsigned ConcatOpNum = ExtractIndex / VT.getVectorNumElements();
|
|
unsigned ExtBOIdx = ConcatOpNum * NarrowBVT.getVectorNumElements();
|
|
if (TLI.isExtractSubvectorCheap(NarrowBVT, WideBVT, ExtBOIdx) &&
|
|
BinOp.hasOneUse() && Extract->getOperand(0)->hasOneUse()) {
|
|
// extract (binop B0, B1), N --> binop (extract B0, N), (extract B1, N)
|
|
SDLoc DL(Extract);
|
|
SDValue NewExtIndex = DAG.getVectorIdxConstant(ExtBOIdx, DL);
|
|
SDValue X = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
|
|
BinOp.getOperand(0), NewExtIndex);
|
|
SDValue Y = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
|
|
BinOp.getOperand(1), NewExtIndex);
|
|
SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y,
|
|
BinOp.getNode()->getFlags());
|
|
return DAG.getBitcast(VT, NarrowBinOp);
|
|
}
|
|
|
|
// Only handle the case where we are doubling and then halving. A larger ratio
|
|
// may require more than two narrow binops to replace the wide binop.
|
|
if (NarrowingRatio != 2)
|
|
return SDValue();
|
|
|
|
// TODO: The motivating case for this transform is an x86 AVX1 target. That
|
|
// target has temptingly almost legal versions of bitwise logic ops in 256-bit
|
|
// flavors, but no other 256-bit integer support. This could be extended to
|
|
// handle any binop, but that may require fixing/adding other folds to avoid
|
|
// codegen regressions.
|
|
if (BOpcode != ISD::AND && BOpcode != ISD::OR && BOpcode != ISD::XOR)
|
|
return SDValue();
|
|
|
|
// We need at least one concatenation operation of a binop operand to make
|
|
// this transform worthwhile. The concat must double the input vector sizes.
|
|
auto GetSubVector = [ConcatOpNum](SDValue V) -> SDValue {
|
|
if (V.getOpcode() == ISD::CONCAT_VECTORS && V.getNumOperands() == 2)
|
|
return V.getOperand(ConcatOpNum);
|
|
return SDValue();
|
|
};
|
|
SDValue SubVecL = GetSubVector(peekThroughBitcasts(BinOp.getOperand(0)));
|
|
SDValue SubVecR = GetSubVector(peekThroughBitcasts(BinOp.getOperand(1)));
|
|
|
|
if (SubVecL || SubVecR) {
|
|
// If a binop operand was not the result of a concat, we must extract a
|
|
// half-sized operand for our new narrow binop:
|
|
// extract (binop (concat X1, X2), (concat Y1, Y2)), N --> binop XN, YN
|
|
// extract (binop (concat X1, X2), Y), N --> binop XN, (extract Y, IndexC)
|
|
// extract (binop X, (concat Y1, Y2)), N --> binop (extract X, IndexC), YN
|
|
SDLoc DL(Extract);
|
|
SDValue IndexC = DAG.getVectorIdxConstant(ExtBOIdx, DL);
|
|
SDValue X = SubVecL ? DAG.getBitcast(NarrowBVT, SubVecL)
|
|
: DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
|
|
BinOp.getOperand(0), IndexC);
|
|
|
|
SDValue Y = SubVecR ? DAG.getBitcast(NarrowBVT, SubVecR)
|
|
: DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NarrowBVT,
|
|
BinOp.getOperand(1), IndexC);
|
|
|
|
SDValue NarrowBinOp = DAG.getNode(BOpcode, DL, NarrowBVT, X, Y);
|
|
return DAG.getBitcast(VT, NarrowBinOp);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// If we are extracting a subvector from a wide vector load, convert to a
|
|
/// narrow load to eliminate the extraction:
|
|
/// (extract_subvector (load wide vector)) --> (load narrow vector)
|
|
static SDValue narrowExtractedVectorLoad(SDNode *Extract, SelectionDAG &DAG) {
|
|
// TODO: Add support for big-endian. The offset calculation must be adjusted.
|
|
if (DAG.getDataLayout().isBigEndian())
|
|
return SDValue();
|
|
|
|
auto *Ld = dyn_cast<LoadSDNode>(Extract->getOperand(0));
|
|
auto *ExtIdx = dyn_cast<ConstantSDNode>(Extract->getOperand(1));
|
|
if (!Ld || Ld->getExtensionType() || !Ld->isSimple() ||
|
|
!ExtIdx)
|
|
return SDValue();
|
|
|
|
// Allow targets to opt-out.
|
|
EVT VT = Extract->getValueType(0);
|
|
|
|
// We can only create byte sized loads.
|
|
if (!VT.isByteSized())
|
|
return SDValue();
|
|
|
|
unsigned Index = ExtIdx->getZExtValue();
|
|
unsigned NumElts = VT.getVectorMinNumElements();
|
|
|
|
// The definition of EXTRACT_SUBVECTOR states that the index must be a
|
|
// multiple of the minimum number of elements in the result type.
|
|
assert(Index % NumElts == 0 && "The extract subvector index is not a "
|
|
"multiple of the result's element count");
|
|
|
|
// It's fine to use TypeSize here as we know the offset will not be negative.
|
|
TypeSize Offset = VT.getStoreSize() * (Index / NumElts);
|
|
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
if (!TLI.shouldReduceLoadWidth(Ld, Ld->getExtensionType(), VT))
|
|
return SDValue();
|
|
|
|
// The narrow load will be offset from the base address of the old load if
|
|
// we are extracting from something besides index 0 (little-endian).
|
|
SDLoc DL(Extract);
|
|
|
|
// TODO: Use "BaseIndexOffset" to make this more effective.
|
|
SDValue NewAddr = DAG.getMemBasePlusOffset(Ld->getBasePtr(), Offset, DL);
|
|
|
|
uint64_t StoreSize = MemoryLocation::getSizeOrUnknown(VT.getStoreSize());
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineMemOperand *MMO;
|
|
if (Offset.isScalable()) {
|
|
MachinePointerInfo MPI =
|
|
MachinePointerInfo(Ld->getPointerInfo().getAddrSpace());
|
|
MMO = MF.getMachineMemOperand(Ld->getMemOperand(), MPI, StoreSize);
|
|
} else
|
|
MMO = MF.getMachineMemOperand(Ld->getMemOperand(), Offset.getFixedSize(),
|
|
StoreSize);
|
|
|
|
SDValue NewLd = DAG.getLoad(VT, DL, Ld->getChain(), NewAddr, MMO);
|
|
DAG.makeEquivalentMemoryOrdering(Ld, NewLd);
|
|
return NewLd;
|
|
}
|
|
|
|
SDValue DAGCombiner::visitEXTRACT_SUBVECTOR(SDNode *N) {
|
|
EVT NVT = N->getValueType(0);
|
|
SDValue V = N->getOperand(0);
|
|
uint64_t ExtIdx = N->getConstantOperandVal(1);
|
|
|
|
// Extract from UNDEF is UNDEF.
|
|
if (V.isUndef())
|
|
return DAG.getUNDEF(NVT);
|
|
|
|
if (TLI.isOperationLegalOrCustomOrPromote(ISD::LOAD, NVT))
|
|
if (SDValue NarrowLoad = narrowExtractedVectorLoad(N, DAG))
|
|
return NarrowLoad;
|
|
|
|
// Combine an extract of an extract into a single extract_subvector.
|
|
// ext (ext X, C), 0 --> ext X, C
|
|
if (ExtIdx == 0 && V.getOpcode() == ISD::EXTRACT_SUBVECTOR && V.hasOneUse()) {
|
|
if (TLI.isExtractSubvectorCheap(NVT, V.getOperand(0).getValueType(),
|
|
V.getConstantOperandVal(1)) &&
|
|
TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NVT)) {
|
|
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT, V.getOperand(0),
|
|
V.getOperand(1));
|
|
}
|
|
}
|
|
|
|
// Try to move vector bitcast after extract_subv by scaling extraction index:
|
|
// extract_subv (bitcast X), Index --> bitcast (extract_subv X, Index')
|
|
if (V.getOpcode() == ISD::BITCAST &&
|
|
V.getOperand(0).getValueType().isVector() &&
|
|
(!LegalOperations || TLI.isOperationLegal(ISD::BITCAST, NVT))) {
|
|
SDValue SrcOp = V.getOperand(0);
|
|
EVT SrcVT = SrcOp.getValueType();
|
|
unsigned SrcNumElts = SrcVT.getVectorMinNumElements();
|
|
unsigned DestNumElts = V.getValueType().getVectorMinNumElements();
|
|
if ((SrcNumElts % DestNumElts) == 0) {
|
|
unsigned SrcDestRatio = SrcNumElts / DestNumElts;
|
|
ElementCount NewExtEC = NVT.getVectorElementCount() * SrcDestRatio;
|
|
EVT NewExtVT = EVT::getVectorVT(*DAG.getContext(), SrcVT.getScalarType(),
|
|
NewExtEC);
|
|
if (TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NewExtVT)) {
|
|
SDLoc DL(N);
|
|
SDValue NewIndex = DAG.getVectorIdxConstant(ExtIdx * SrcDestRatio, DL);
|
|
SDValue NewExtract = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewExtVT,
|
|
V.getOperand(0), NewIndex);
|
|
return DAG.getBitcast(NVT, NewExtract);
|
|
}
|
|
}
|
|
if ((DestNumElts % SrcNumElts) == 0) {
|
|
unsigned DestSrcRatio = DestNumElts / SrcNumElts;
|
|
if (NVT.getVectorElementCount().isKnownMultipleOf(DestSrcRatio)) {
|
|
ElementCount NewExtEC =
|
|
NVT.getVectorElementCount().divideCoefficientBy(DestSrcRatio);
|
|
EVT ScalarVT = SrcVT.getScalarType();
|
|
if ((ExtIdx % DestSrcRatio) == 0) {
|
|
SDLoc DL(N);
|
|
unsigned IndexValScaled = ExtIdx / DestSrcRatio;
|
|
EVT NewExtVT =
|
|
EVT::getVectorVT(*DAG.getContext(), ScalarVT, NewExtEC);
|
|
if (TLI.isOperationLegalOrCustom(ISD::EXTRACT_SUBVECTOR, NewExtVT)) {
|
|
SDValue NewIndex = DAG.getVectorIdxConstant(IndexValScaled, DL);
|
|
SDValue NewExtract =
|
|
DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NewExtVT,
|
|
V.getOperand(0), NewIndex);
|
|
return DAG.getBitcast(NVT, NewExtract);
|
|
}
|
|
if (NewExtEC.isScalar() &&
|
|
TLI.isOperationLegalOrCustom(ISD::EXTRACT_VECTOR_ELT, ScalarVT)) {
|
|
SDValue NewIndex = DAG.getVectorIdxConstant(IndexValScaled, DL);
|
|
SDValue NewExtract =
|
|
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ScalarVT,
|
|
V.getOperand(0), NewIndex);
|
|
return DAG.getBitcast(NVT, NewExtract);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (V.getOpcode() == ISD::CONCAT_VECTORS) {
|
|
unsigned ExtNumElts = NVT.getVectorMinNumElements();
|
|
EVT ConcatSrcVT = V.getOperand(0).getValueType();
|
|
assert(ConcatSrcVT.getVectorElementType() == NVT.getVectorElementType() &&
|
|
"Concat and extract subvector do not change element type");
|
|
assert((ExtIdx % ExtNumElts) == 0 &&
|
|
"Extract index is not a multiple of the input vector length.");
|
|
|
|
unsigned ConcatSrcNumElts = ConcatSrcVT.getVectorMinNumElements();
|
|
unsigned ConcatOpIdx = ExtIdx / ConcatSrcNumElts;
|
|
|
|
// If the concatenated source types match this extract, it's a direct
|
|
// simplification:
|
|
// extract_subvec (concat V1, V2, ...), i --> Vi
|
|
if (ConcatSrcNumElts == ExtNumElts)
|
|
return V.getOperand(ConcatOpIdx);
|
|
|
|
// If the concatenated source vectors are a multiple length of this extract,
|
|
// then extract a fraction of one of those source vectors directly from a
|
|
// concat operand. Example:
|
|
// v2i8 extract_subvec (v16i8 concat (v8i8 X), (v8i8 Y), 14 -->
|
|
// v2i8 extract_subvec v8i8 Y, 6
|
|
if (NVT.isFixedLengthVector() && ConcatSrcNumElts % ExtNumElts == 0) {
|
|
SDLoc DL(N);
|
|
unsigned NewExtIdx = ExtIdx - ConcatOpIdx * ConcatSrcNumElts;
|
|
assert(NewExtIdx + ExtNumElts <= ConcatSrcNumElts &&
|
|
"Trying to extract from >1 concat operand?");
|
|
assert(NewExtIdx % ExtNumElts == 0 &&
|
|
"Extract index is not a multiple of the input vector length.");
|
|
SDValue NewIndexC = DAG.getVectorIdxConstant(NewExtIdx, DL);
|
|
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, NVT,
|
|
V.getOperand(ConcatOpIdx), NewIndexC);
|
|
}
|
|
}
|
|
|
|
V = peekThroughBitcasts(V);
|
|
|
|
// If the input is a build vector. Try to make a smaller build vector.
|
|
if (V.getOpcode() == ISD::BUILD_VECTOR) {
|
|
EVT InVT = V.getValueType();
|
|
unsigned ExtractSize = NVT.getSizeInBits();
|
|
unsigned EltSize = InVT.getScalarSizeInBits();
|
|
// Only do this if we won't split any elements.
|
|
if (ExtractSize % EltSize == 0) {
|
|
unsigned NumElems = ExtractSize / EltSize;
|
|
EVT EltVT = InVT.getVectorElementType();
|
|
EVT ExtractVT =
|
|
NumElems == 1 ? EltVT
|
|
: EVT::getVectorVT(*DAG.getContext(), EltVT, NumElems);
|
|
if ((Level < AfterLegalizeDAG ||
|
|
(NumElems == 1 ||
|
|
TLI.isOperationLegal(ISD::BUILD_VECTOR, ExtractVT))) &&
|
|
(!LegalTypes || TLI.isTypeLegal(ExtractVT))) {
|
|
unsigned IdxVal = (ExtIdx * NVT.getScalarSizeInBits()) / EltSize;
|
|
|
|
if (NumElems == 1) {
|
|
SDValue Src = V->getOperand(IdxVal);
|
|
if (EltVT != Src.getValueType())
|
|
Src = DAG.getNode(ISD::TRUNCATE, SDLoc(N), InVT, Src);
|
|
return DAG.getBitcast(NVT, Src);
|
|
}
|
|
|
|
// Extract the pieces from the original build_vector.
|
|
SDValue BuildVec = DAG.getBuildVector(ExtractVT, SDLoc(N),
|
|
V->ops().slice(IdxVal, NumElems));
|
|
return DAG.getBitcast(NVT, BuildVec);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (V.getOpcode() == ISD::INSERT_SUBVECTOR) {
|
|
// Handle only simple case where vector being inserted and vector
|
|
// being extracted are of same size.
|
|
EVT SmallVT = V.getOperand(1).getValueType();
|
|
if (!NVT.bitsEq(SmallVT))
|
|
return SDValue();
|
|
|
|
// Combine:
|
|
// (extract_subvec (insert_subvec V1, V2, InsIdx), ExtIdx)
|
|
// Into:
|
|
// indices are equal or bit offsets are equal => V1
|
|
// otherwise => (extract_subvec V1, ExtIdx)
|
|
uint64_t InsIdx = V.getConstantOperandVal(2);
|
|
if (InsIdx * SmallVT.getScalarSizeInBits() ==
|
|
ExtIdx * NVT.getScalarSizeInBits()) {
|
|
if (LegalOperations && !TLI.isOperationLegal(ISD::BITCAST, NVT))
|
|
return SDValue();
|
|
|
|
return DAG.getBitcast(NVT, V.getOperand(1));
|
|
}
|
|
return DAG.getNode(
|
|
ISD::EXTRACT_SUBVECTOR, SDLoc(N), NVT,
|
|
DAG.getBitcast(N->getOperand(0).getValueType(), V.getOperand(0)),
|
|
N->getOperand(1));
|
|
}
|
|
|
|
if (SDValue NarrowBOp = narrowExtractedVectorBinOp(N, DAG, LegalOperations))
|
|
return NarrowBOp;
|
|
|
|
if (SimplifyDemandedVectorElts(SDValue(N, 0)))
|
|
return SDValue(N, 0);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// Try to convert a wide shuffle of concatenated vectors into 2 narrow shuffles
|
|
/// followed by concatenation. Narrow vector ops may have better performance
|
|
/// than wide ops, and this can unlock further narrowing of other vector ops.
|
|
/// Targets can invert this transform later if it is not profitable.
|
|
static SDValue foldShuffleOfConcatUndefs(ShuffleVectorSDNode *Shuf,
|
|
SelectionDAG &DAG) {
|
|
SDValue N0 = Shuf->getOperand(0), N1 = Shuf->getOperand(1);
|
|
if (N0.getOpcode() != ISD::CONCAT_VECTORS || N0.getNumOperands() != 2 ||
|
|
N1.getOpcode() != ISD::CONCAT_VECTORS || N1.getNumOperands() != 2 ||
|
|
!N0.getOperand(1).isUndef() || !N1.getOperand(1).isUndef())
|
|
return SDValue();
|
|
|
|
// Split the wide shuffle mask into halves. Any mask element that is accessing
|
|
// operand 1 is offset down to account for narrowing of the vectors.
|
|
ArrayRef<int> Mask = Shuf->getMask();
|
|
EVT VT = Shuf->getValueType(0);
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
unsigned HalfNumElts = NumElts / 2;
|
|
SmallVector<int, 16> Mask0(HalfNumElts, -1);
|
|
SmallVector<int, 16> Mask1(HalfNumElts, -1);
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
if (Mask[i] == -1)
|
|
continue;
|
|
// If we reference the upper (undef) subvector then the element is undef.
|
|
if ((Mask[i] % NumElts) >= HalfNumElts)
|
|
continue;
|
|
int M = Mask[i] < (int)NumElts ? Mask[i] : Mask[i] - (int)HalfNumElts;
|
|
if (i < HalfNumElts)
|
|
Mask0[i] = M;
|
|
else
|
|
Mask1[i - HalfNumElts] = M;
|
|
}
|
|
|
|
// Ask the target if this is a valid transform.
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
EVT HalfVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
|
|
HalfNumElts);
|
|
if (!TLI.isShuffleMaskLegal(Mask0, HalfVT) ||
|
|
!TLI.isShuffleMaskLegal(Mask1, HalfVT))
|
|
return SDValue();
|
|
|
|
// shuffle (concat X, undef), (concat Y, undef), Mask -->
|
|
// concat (shuffle X, Y, Mask0), (shuffle X, Y, Mask1)
|
|
SDValue X = N0.getOperand(0), Y = N1.getOperand(0);
|
|
SDLoc DL(Shuf);
|
|
SDValue Shuf0 = DAG.getVectorShuffle(HalfVT, DL, X, Y, Mask0);
|
|
SDValue Shuf1 = DAG.getVectorShuffle(HalfVT, DL, X, Y, Mask1);
|
|
return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Shuf0, Shuf1);
|
|
}
|
|
|
|
// Tries to turn a shuffle of two CONCAT_VECTORS into a single concat,
|
|
// or turn a shuffle of a single concat into simpler shuffle then concat.
|
|
static SDValue partitionShuffleOfConcats(SDNode *N, SelectionDAG &DAG) {
|
|
EVT VT = N->getValueType(0);
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
|
|
ArrayRef<int> Mask = SVN->getMask();
|
|
|
|
SmallVector<SDValue, 4> Ops;
|
|
EVT ConcatVT = N0.getOperand(0).getValueType();
|
|
unsigned NumElemsPerConcat = ConcatVT.getVectorNumElements();
|
|
unsigned NumConcats = NumElts / NumElemsPerConcat;
|
|
|
|
auto IsUndefMaskElt = [](int i) { return i == -1; };
|
|
|
|
// Special case: shuffle(concat(A,B)) can be more efficiently represented
|
|
// as concat(shuffle(A,B),UNDEF) if the shuffle doesn't set any of the high
|
|
// half vector elements.
|
|
if (NumElemsPerConcat * 2 == NumElts && N1.isUndef() &&
|
|
llvm::all_of(Mask.slice(NumElemsPerConcat, NumElemsPerConcat),
|
|
IsUndefMaskElt)) {
|
|
N0 = DAG.getVectorShuffle(ConcatVT, SDLoc(N), N0.getOperand(0),
|
|
N0.getOperand(1),
|
|
Mask.slice(0, NumElemsPerConcat));
|
|
N1 = DAG.getUNDEF(ConcatVT);
|
|
return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, N0, N1);
|
|
}
|
|
|
|
// Look at every vector that's inserted. We're looking for exact
|
|
// subvector-sized copies from a concatenated vector
|
|
for (unsigned I = 0; I != NumConcats; ++I) {
|
|
unsigned Begin = I * NumElemsPerConcat;
|
|
ArrayRef<int> SubMask = Mask.slice(Begin, NumElemsPerConcat);
|
|
|
|
// Make sure we're dealing with a copy.
|
|
if (llvm::all_of(SubMask, IsUndefMaskElt)) {
|
|
Ops.push_back(DAG.getUNDEF(ConcatVT));
|
|
continue;
|
|
}
|
|
|
|
int OpIdx = -1;
|
|
for (int i = 0; i != (int)NumElemsPerConcat; ++i) {
|
|
if (IsUndefMaskElt(SubMask[i]))
|
|
continue;
|
|
if ((SubMask[i] % (int)NumElemsPerConcat) != i)
|
|
return SDValue();
|
|
int EltOpIdx = SubMask[i] / NumElemsPerConcat;
|
|
if (0 <= OpIdx && EltOpIdx != OpIdx)
|
|
return SDValue();
|
|
OpIdx = EltOpIdx;
|
|
}
|
|
assert(0 <= OpIdx && "Unknown concat_vectors op");
|
|
|
|
if (OpIdx < (int)N0.getNumOperands())
|
|
Ops.push_back(N0.getOperand(OpIdx));
|
|
else
|
|
Ops.push_back(N1.getOperand(OpIdx - N0.getNumOperands()));
|
|
}
|
|
|
|
return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops);
|
|
}
|
|
|
|
// Attempt to combine a shuffle of 2 inputs of 'scalar sources' -
|
|
// BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR.
|
|
//
|
|
// SHUFFLE(BUILD_VECTOR(), BUILD_VECTOR()) -> BUILD_VECTOR() is always
|
|
// a simplification in some sense, but it isn't appropriate in general: some
|
|
// BUILD_VECTORs are substantially cheaper than others. The general case
|
|
// of a BUILD_VECTOR requires inserting each element individually (or
|
|
// performing the equivalent in a temporary stack variable). A BUILD_VECTOR of
|
|
// all constants is a single constant pool load. A BUILD_VECTOR where each
|
|
// element is identical is a splat. A BUILD_VECTOR where most of the operands
|
|
// are undef lowers to a small number of element insertions.
|
|
//
|
|
// To deal with this, we currently use a bunch of mostly arbitrary heuristics.
|
|
// We don't fold shuffles where one side is a non-zero constant, and we don't
|
|
// fold shuffles if the resulting (non-splat) BUILD_VECTOR would have duplicate
|
|
// non-constant operands. This seems to work out reasonably well in practice.
|
|
static SDValue combineShuffleOfScalars(ShuffleVectorSDNode *SVN,
|
|
SelectionDAG &DAG,
|
|
const TargetLowering &TLI) {
|
|
EVT VT = SVN->getValueType(0);
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
SDValue N0 = SVN->getOperand(0);
|
|
SDValue N1 = SVN->getOperand(1);
|
|
|
|
if (!N0->hasOneUse())
|
|
return SDValue();
|
|
|
|
// If only one of N1,N2 is constant, bail out if it is not ALL_ZEROS as
|
|
// discussed above.
|
|
if (!N1.isUndef()) {
|
|
if (!N1->hasOneUse())
|
|
return SDValue();
|
|
|
|
bool N0AnyConst = isAnyConstantBuildVector(N0);
|
|
bool N1AnyConst = isAnyConstantBuildVector(N1);
|
|
if (N0AnyConst && !N1AnyConst && !ISD::isBuildVectorAllZeros(N0.getNode()))
|
|
return SDValue();
|
|
if (!N0AnyConst && N1AnyConst && !ISD::isBuildVectorAllZeros(N1.getNode()))
|
|
return SDValue();
|
|
}
|
|
|
|
// If both inputs are splats of the same value then we can safely merge this
|
|
// to a single BUILD_VECTOR with undef elements based on the shuffle mask.
|
|
bool IsSplat = false;
|
|
auto *BV0 = dyn_cast<BuildVectorSDNode>(N0);
|
|
auto *BV1 = dyn_cast<BuildVectorSDNode>(N1);
|
|
if (BV0 && BV1)
|
|
if (SDValue Splat0 = BV0->getSplatValue())
|
|
IsSplat = (Splat0 == BV1->getSplatValue());
|
|
|
|
SmallVector<SDValue, 8> Ops;
|
|
SmallSet<SDValue, 16> DuplicateOps;
|
|
for (int M : SVN->getMask()) {
|
|
SDValue Op = DAG.getUNDEF(VT.getScalarType());
|
|
if (M >= 0) {
|
|
int Idx = M < (int)NumElts ? M : M - NumElts;
|
|
SDValue &S = (M < (int)NumElts ? N0 : N1);
|
|
if (S.getOpcode() == ISD::BUILD_VECTOR) {
|
|
Op = S.getOperand(Idx);
|
|
} else if (S.getOpcode() == ISD::SCALAR_TO_VECTOR) {
|
|
SDValue Op0 = S.getOperand(0);
|
|
Op = Idx == 0 ? Op0 : DAG.getUNDEF(Op0.getValueType());
|
|
} else {
|
|
// Operand can't be combined - bail out.
|
|
return SDValue();
|
|
}
|
|
}
|
|
|
|
// Don't duplicate a non-constant BUILD_VECTOR operand unless we're
|
|
// generating a splat; semantically, this is fine, but it's likely to
|
|
// generate low-quality code if the target can't reconstruct an appropriate
|
|
// shuffle.
|
|
if (!Op.isUndef() && !isIntOrFPConstant(Op))
|
|
if (!IsSplat && !DuplicateOps.insert(Op).second)
|
|
return SDValue();
|
|
|
|
Ops.push_back(Op);
|
|
}
|
|
|
|
// BUILD_VECTOR requires all inputs to be of the same type, find the
|
|
// maximum type and extend them all.
|
|
EVT SVT = VT.getScalarType();
|
|
if (SVT.isInteger())
|
|
for (SDValue &Op : Ops)
|
|
SVT = (SVT.bitsLT(Op.getValueType()) ? Op.getValueType() : SVT);
|
|
if (SVT != VT.getScalarType())
|
|
for (SDValue &Op : Ops)
|
|
Op = TLI.isZExtFree(Op.getValueType(), SVT)
|
|
? DAG.getZExtOrTrunc(Op, SDLoc(SVN), SVT)
|
|
: DAG.getSExtOrTrunc(Op, SDLoc(SVN), SVT);
|
|
return DAG.getBuildVector(VT, SDLoc(SVN), Ops);
|
|
}
|
|
|
|
// Match shuffles that can be converted to any_vector_extend_in_reg.
|
|
// This is often generated during legalization.
|
|
// e.g. v4i32 <0,u,1,u> -> (v2i64 any_vector_extend_in_reg(v4i32 src))
|
|
// TODO Add support for ZERO_EXTEND_VECTOR_INREG when we have a test case.
|
|
static SDValue combineShuffleToVectorExtend(ShuffleVectorSDNode *SVN,
|
|
SelectionDAG &DAG,
|
|
const TargetLowering &TLI,
|
|
bool LegalOperations) {
|
|
EVT VT = SVN->getValueType(0);
|
|
bool IsBigEndian = DAG.getDataLayout().isBigEndian();
|
|
|
|
// TODO Add support for big-endian when we have a test case.
|
|
if (!VT.isInteger() || IsBigEndian)
|
|
return SDValue();
|
|
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
unsigned EltSizeInBits = VT.getScalarSizeInBits();
|
|
ArrayRef<int> Mask = SVN->getMask();
|
|
SDValue N0 = SVN->getOperand(0);
|
|
|
|
// shuffle<0,-1,1,-1> == (v2i64 anyextend_vector_inreg(v4i32))
|
|
auto isAnyExtend = [&Mask, &NumElts](unsigned Scale) {
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
if (Mask[i] < 0)
|
|
continue;
|
|
if ((i % Scale) == 0 && Mask[i] == (int)(i / Scale))
|
|
continue;
|
|
return false;
|
|
}
|
|
return true;
|
|
};
|
|
|
|
// Attempt to match a '*_extend_vector_inreg' shuffle, we just search for
|
|
// power-of-2 extensions as they are the most likely.
|
|
for (unsigned Scale = 2; Scale < NumElts; Scale *= 2) {
|
|
// Check for non power of 2 vector sizes
|
|
if (NumElts % Scale != 0)
|
|
continue;
|
|
if (!isAnyExtend(Scale))
|
|
continue;
|
|
|
|
EVT OutSVT = EVT::getIntegerVT(*DAG.getContext(), EltSizeInBits * Scale);
|
|
EVT OutVT = EVT::getVectorVT(*DAG.getContext(), OutSVT, NumElts / Scale);
|
|
// Never create an illegal type. Only create unsupported operations if we
|
|
// are pre-legalization.
|
|
if (TLI.isTypeLegal(OutVT))
|
|
if (!LegalOperations ||
|
|
TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND_VECTOR_INREG, OutVT))
|
|
return DAG.getBitcast(VT,
|
|
DAG.getNode(ISD::ANY_EXTEND_VECTOR_INREG,
|
|
SDLoc(SVN), OutVT, N0));
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// Detect 'truncate_vector_inreg' style shuffles that pack the lower parts of
|
|
// each source element of a large type into the lowest elements of a smaller
|
|
// destination type. This is often generated during legalization.
|
|
// If the source node itself was a '*_extend_vector_inreg' node then we should
|
|
// then be able to remove it.
|
|
static SDValue combineTruncationShuffle(ShuffleVectorSDNode *SVN,
|
|
SelectionDAG &DAG) {
|
|
EVT VT = SVN->getValueType(0);
|
|
bool IsBigEndian = DAG.getDataLayout().isBigEndian();
|
|
|
|
// TODO Add support for big-endian when we have a test case.
|
|
if (!VT.isInteger() || IsBigEndian)
|
|
return SDValue();
|
|
|
|
SDValue N0 = peekThroughBitcasts(SVN->getOperand(0));
|
|
|
|
unsigned Opcode = N0.getOpcode();
|
|
if (Opcode != ISD::ANY_EXTEND_VECTOR_INREG &&
|
|
Opcode != ISD::SIGN_EXTEND_VECTOR_INREG &&
|
|
Opcode != ISD::ZERO_EXTEND_VECTOR_INREG)
|
|
return SDValue();
|
|
|
|
SDValue N00 = N0.getOperand(0);
|
|
ArrayRef<int> Mask = SVN->getMask();
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
unsigned EltSizeInBits = VT.getScalarSizeInBits();
|
|
unsigned ExtSrcSizeInBits = N00.getScalarValueSizeInBits();
|
|
unsigned ExtDstSizeInBits = N0.getScalarValueSizeInBits();
|
|
|
|
if (ExtDstSizeInBits % ExtSrcSizeInBits != 0)
|
|
return SDValue();
|
|
unsigned ExtScale = ExtDstSizeInBits / ExtSrcSizeInBits;
|
|
|
|
// (v4i32 truncate_vector_inreg(v2i64)) == shuffle<0,2-1,-1>
|
|
// (v8i16 truncate_vector_inreg(v4i32)) == shuffle<0,2,4,6,-1,-1,-1,-1>
|
|
// (v8i16 truncate_vector_inreg(v2i64)) == shuffle<0,4,-1,-1,-1,-1,-1,-1>
|
|
auto isTruncate = [&Mask, &NumElts](unsigned Scale) {
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
if (Mask[i] < 0)
|
|
continue;
|
|
if ((i * Scale) < NumElts && Mask[i] == (int)(i * Scale))
|
|
continue;
|
|
return false;
|
|
}
|
|
return true;
|
|
};
|
|
|
|
// At the moment we just handle the case where we've truncated back to the
|
|
// same size as before the extension.
|
|
// TODO: handle more extension/truncation cases as cases arise.
|
|
if (EltSizeInBits != ExtSrcSizeInBits)
|
|
return SDValue();
|
|
|
|
// We can remove *extend_vector_inreg only if the truncation happens at
|
|
// the same scale as the extension.
|
|
if (isTruncate(ExtScale))
|
|
return DAG.getBitcast(VT, N00);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// Combine shuffles of splat-shuffles of the form:
|
|
// shuffle (shuffle V, undef, splat-mask), undef, M
|
|
// If splat-mask contains undef elements, we need to be careful about
|
|
// introducing undef's in the folded mask which are not the result of composing
|
|
// the masks of the shuffles.
|
|
static SDValue combineShuffleOfSplatVal(ShuffleVectorSDNode *Shuf,
|
|
SelectionDAG &DAG) {
|
|
if (!Shuf->getOperand(1).isUndef())
|
|
return SDValue();
|
|
auto *Splat = dyn_cast<ShuffleVectorSDNode>(Shuf->getOperand(0));
|
|
if (!Splat || !Splat->isSplat())
|
|
return SDValue();
|
|
|
|
ArrayRef<int> ShufMask = Shuf->getMask();
|
|
ArrayRef<int> SplatMask = Splat->getMask();
|
|
assert(ShufMask.size() == SplatMask.size() && "Mask length mismatch");
|
|
|
|
// Prefer simplifying to the splat-shuffle, if possible. This is legal if
|
|
// every undef mask element in the splat-shuffle has a corresponding undef
|
|
// element in the user-shuffle's mask or if the composition of mask elements
|
|
// would result in undef.
|
|
// Examples for (shuffle (shuffle v, undef, SplatMask), undef, UserMask):
|
|
// * UserMask=[0,2,u,u], SplatMask=[2,u,2,u] -> [2,2,u,u]
|
|
// In this case it is not legal to simplify to the splat-shuffle because we
|
|
// may be exposing the users of the shuffle an undef element at index 1
|
|
// which was not there before the combine.
|
|
// * UserMask=[0,u,2,u], SplatMask=[2,u,2,u] -> [2,u,2,u]
|
|
// In this case the composition of masks yields SplatMask, so it's ok to
|
|
// simplify to the splat-shuffle.
|
|
// * UserMask=[3,u,2,u], SplatMask=[2,u,2,u] -> [u,u,2,u]
|
|
// In this case the composed mask includes all undef elements of SplatMask
|
|
// and in addition sets element zero to undef. It is safe to simplify to
|
|
// the splat-shuffle.
|
|
auto CanSimplifyToExistingSplat = [](ArrayRef<int> UserMask,
|
|
ArrayRef<int> SplatMask) {
|
|
for (unsigned i = 0, e = UserMask.size(); i != e; ++i)
|
|
if (UserMask[i] != -1 && SplatMask[i] == -1 &&
|
|
SplatMask[UserMask[i]] != -1)
|
|
return false;
|
|
return true;
|
|
};
|
|
if (CanSimplifyToExistingSplat(ShufMask, SplatMask))
|
|
return Shuf->getOperand(0);
|
|
|
|
// Create a new shuffle with a mask that is composed of the two shuffles'
|
|
// masks.
|
|
SmallVector<int, 32> NewMask;
|
|
for (int Idx : ShufMask)
|
|
NewMask.push_back(Idx == -1 ? -1 : SplatMask[Idx]);
|
|
|
|
return DAG.getVectorShuffle(Splat->getValueType(0), SDLoc(Splat),
|
|
Splat->getOperand(0), Splat->getOperand(1),
|
|
NewMask);
|
|
}
|
|
|
|
/// Combine shuffle of shuffle of the form:
|
|
/// shuf (shuf X, undef, InnerMask), undef, OuterMask --> splat X
|
|
static SDValue formSplatFromShuffles(ShuffleVectorSDNode *OuterShuf,
|
|
SelectionDAG &DAG) {
|
|
if (!OuterShuf->getOperand(1).isUndef())
|
|
return SDValue();
|
|
auto *InnerShuf = dyn_cast<ShuffleVectorSDNode>(OuterShuf->getOperand(0));
|
|
if (!InnerShuf || !InnerShuf->getOperand(1).isUndef())
|
|
return SDValue();
|
|
|
|
ArrayRef<int> OuterMask = OuterShuf->getMask();
|
|
ArrayRef<int> InnerMask = InnerShuf->getMask();
|
|
unsigned NumElts = OuterMask.size();
|
|
assert(NumElts == InnerMask.size() && "Mask length mismatch");
|
|
SmallVector<int, 32> CombinedMask(NumElts, -1);
|
|
int SplatIndex = -1;
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
// Undef lanes remain undef.
|
|
int OuterMaskElt = OuterMask[i];
|
|
if (OuterMaskElt == -1)
|
|
continue;
|
|
|
|
// Peek through the shuffle masks to get the underlying source element.
|
|
int InnerMaskElt = InnerMask[OuterMaskElt];
|
|
if (InnerMaskElt == -1)
|
|
continue;
|
|
|
|
// Initialize the splatted element.
|
|
if (SplatIndex == -1)
|
|
SplatIndex = InnerMaskElt;
|
|
|
|
// Non-matching index - this is not a splat.
|
|
if (SplatIndex != InnerMaskElt)
|
|
return SDValue();
|
|
|
|
CombinedMask[i] = InnerMaskElt;
|
|
}
|
|
assert((all_of(CombinedMask, [](int M) { return M == -1; }) ||
|
|
getSplatIndex(CombinedMask) != -1) &&
|
|
"Expected a splat mask");
|
|
|
|
// TODO: The transform may be a win even if the mask is not legal.
|
|
EVT VT = OuterShuf->getValueType(0);
|
|
assert(VT == InnerShuf->getValueType(0) && "Expected matching shuffle types");
|
|
if (!DAG.getTargetLoweringInfo().isShuffleMaskLegal(CombinedMask, VT))
|
|
return SDValue();
|
|
|
|
return DAG.getVectorShuffle(VT, SDLoc(OuterShuf), InnerShuf->getOperand(0),
|
|
InnerShuf->getOperand(1), CombinedMask);
|
|
}
|
|
|
|
/// If the shuffle mask is taking exactly one element from the first vector
|
|
/// operand and passing through all other elements from the second vector
|
|
/// operand, return the index of the mask element that is choosing an element
|
|
/// from the first operand. Otherwise, return -1.
|
|
static int getShuffleMaskIndexOfOneElementFromOp0IntoOp1(ArrayRef<int> Mask) {
|
|
int MaskSize = Mask.size();
|
|
int EltFromOp0 = -1;
|
|
// TODO: This does not match if there are undef elements in the shuffle mask.
|
|
// Should we ignore undefs in the shuffle mask instead? The trade-off is
|
|
// removing an instruction (a shuffle), but losing the knowledge that some
|
|
// vector lanes are not needed.
|
|
for (int i = 0; i != MaskSize; ++i) {
|
|
if (Mask[i] >= 0 && Mask[i] < MaskSize) {
|
|
// We're looking for a shuffle of exactly one element from operand 0.
|
|
if (EltFromOp0 != -1)
|
|
return -1;
|
|
EltFromOp0 = i;
|
|
} else if (Mask[i] != i + MaskSize) {
|
|
// Nothing from operand 1 can change lanes.
|
|
return -1;
|
|
}
|
|
}
|
|
return EltFromOp0;
|
|
}
|
|
|
|
/// If a shuffle inserts exactly one element from a source vector operand into
|
|
/// another vector operand and we can access the specified element as a scalar,
|
|
/// then we can eliminate the shuffle.
|
|
static SDValue replaceShuffleOfInsert(ShuffleVectorSDNode *Shuf,
|
|
SelectionDAG &DAG) {
|
|
// First, check if we are taking one element of a vector and shuffling that
|
|
// element into another vector.
|
|
ArrayRef<int> Mask = Shuf->getMask();
|
|
SmallVector<int, 16> CommutedMask(Mask.begin(), Mask.end());
|
|
SDValue Op0 = Shuf->getOperand(0);
|
|
SDValue Op1 = Shuf->getOperand(1);
|
|
int ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(Mask);
|
|
if (ShufOp0Index == -1) {
|
|
// Commute mask and check again.
|
|
ShuffleVectorSDNode::commuteMask(CommutedMask);
|
|
ShufOp0Index = getShuffleMaskIndexOfOneElementFromOp0IntoOp1(CommutedMask);
|
|
if (ShufOp0Index == -1)
|
|
return SDValue();
|
|
// Commute operands to match the commuted shuffle mask.
|
|
std::swap(Op0, Op1);
|
|
Mask = CommutedMask;
|
|
}
|
|
|
|
// The shuffle inserts exactly one element from operand 0 into operand 1.
|
|
// Now see if we can access that element as a scalar via a real insert element
|
|
// instruction.
|
|
// TODO: We can try harder to locate the element as a scalar. Examples: it
|
|
// could be an operand of SCALAR_TO_VECTOR, BUILD_VECTOR, or a constant.
|
|
assert(Mask[ShufOp0Index] >= 0 && Mask[ShufOp0Index] < (int)Mask.size() &&
|
|
"Shuffle mask value must be from operand 0");
|
|
if (Op0.getOpcode() != ISD::INSERT_VECTOR_ELT)
|
|
return SDValue();
|
|
|
|
auto *InsIndexC = dyn_cast<ConstantSDNode>(Op0.getOperand(2));
|
|
if (!InsIndexC || InsIndexC->getSExtValue() != Mask[ShufOp0Index])
|
|
return SDValue();
|
|
|
|
// There's an existing insertelement with constant insertion index, so we
|
|
// don't need to check the legality/profitability of a replacement operation
|
|
// that differs at most in the constant value. The target should be able to
|
|
// lower any of those in a similar way. If not, legalization will expand this
|
|
// to a scalar-to-vector plus shuffle.
|
|
//
|
|
// Note that the shuffle may move the scalar from the position that the insert
|
|
// element used. Therefore, our new insert element occurs at the shuffle's
|
|
// mask index value, not the insert's index value.
|
|
// shuffle (insertelt v1, x, C), v2, mask --> insertelt v2, x, C'
|
|
SDValue NewInsIndex = DAG.getVectorIdxConstant(ShufOp0Index, SDLoc(Shuf));
|
|
return DAG.getNode(ISD::INSERT_VECTOR_ELT, SDLoc(Shuf), Op0.getValueType(),
|
|
Op1, Op0.getOperand(1), NewInsIndex);
|
|
}
|
|
|
|
/// If we have a unary shuffle of a shuffle, see if it can be folded away
|
|
/// completely. This has the potential to lose undef knowledge because the first
|
|
/// shuffle may not have an undef mask element where the second one does. So
|
|
/// only call this after doing simplifications based on demanded elements.
|
|
static SDValue simplifyShuffleOfShuffle(ShuffleVectorSDNode *Shuf) {
|
|
// shuf (shuf0 X, Y, Mask0), undef, Mask
|
|
auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(Shuf->getOperand(0));
|
|
if (!Shuf0 || !Shuf->getOperand(1).isUndef())
|
|
return SDValue();
|
|
|
|
ArrayRef<int> Mask = Shuf->getMask();
|
|
ArrayRef<int> Mask0 = Shuf0->getMask();
|
|
for (int i = 0, e = (int)Mask.size(); i != e; ++i) {
|
|
// Ignore undef elements.
|
|
if (Mask[i] == -1)
|
|
continue;
|
|
assert(Mask[i] >= 0 && Mask[i] < e && "Unexpected shuffle mask value");
|
|
|
|
// Is the element of the shuffle operand chosen by this shuffle the same as
|
|
// the element chosen by the shuffle operand itself?
|
|
if (Mask0[Mask[i]] != Mask0[i])
|
|
return SDValue();
|
|
}
|
|
// Every element of this shuffle is identical to the result of the previous
|
|
// shuffle, so we can replace this value.
|
|
return Shuf->getOperand(0);
|
|
}
|
|
|
|
SDValue DAGCombiner::visitVECTOR_SHUFFLE(SDNode *N) {
|
|
EVT VT = N->getValueType(0);
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
|
|
assert(N0.getValueType() == VT && "Vector shuffle must be normalized in DAG");
|
|
|
|
// Canonicalize shuffle undef, undef -> undef
|
|
if (N0.isUndef() && N1.isUndef())
|
|
return DAG.getUNDEF(VT);
|
|
|
|
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
|
|
|
|
// Canonicalize shuffle v, v -> v, undef
|
|
if (N0 == N1) {
|
|
SmallVector<int, 8> NewMask;
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
int Idx = SVN->getMaskElt(i);
|
|
if (Idx >= (int)NumElts) Idx -= NumElts;
|
|
NewMask.push_back(Idx);
|
|
}
|
|
return DAG.getVectorShuffle(VT, SDLoc(N), N0, DAG.getUNDEF(VT), NewMask);
|
|
}
|
|
|
|
// Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
|
|
if (N0.isUndef())
|
|
return DAG.getCommutedVectorShuffle(*SVN);
|
|
|
|
// Remove references to rhs if it is undef
|
|
if (N1.isUndef()) {
|
|
bool Changed = false;
|
|
SmallVector<int, 8> NewMask;
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
int Idx = SVN->getMaskElt(i);
|
|
if (Idx >= (int)NumElts) {
|
|
Idx = -1;
|
|
Changed = true;
|
|
}
|
|
NewMask.push_back(Idx);
|
|
}
|
|
if (Changed)
|
|
return DAG.getVectorShuffle(VT, SDLoc(N), N0, N1, NewMask);
|
|
}
|
|
|
|
if (SDValue InsElt = replaceShuffleOfInsert(SVN, DAG))
|
|
return InsElt;
|
|
|
|
// A shuffle of a single vector that is a splatted value can always be folded.
|
|
if (SDValue V = combineShuffleOfSplatVal(SVN, DAG))
|
|
return V;
|
|
|
|
if (SDValue V = formSplatFromShuffles(SVN, DAG))
|
|
return V;
|
|
|
|
// If it is a splat, check if the argument vector is another splat or a
|
|
// build_vector.
|
|
if (SVN->isSplat() && SVN->getSplatIndex() < (int)NumElts) {
|
|
int SplatIndex = SVN->getSplatIndex();
|
|
if (N0.hasOneUse() && TLI.isExtractVecEltCheap(VT, SplatIndex) &&
|
|
TLI.isBinOp(N0.getOpcode()) && N0.getNode()->getNumValues() == 1) {
|
|
// splat (vector_bo L, R), Index -->
|
|
// splat (scalar_bo (extelt L, Index), (extelt R, Index))
|
|
SDValue L = N0.getOperand(0), R = N0.getOperand(1);
|
|
SDLoc DL(N);
|
|
EVT EltVT = VT.getScalarType();
|
|
SDValue Index = DAG.getVectorIdxConstant(SplatIndex, DL);
|
|
SDValue ExtL = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, L, Index);
|
|
SDValue ExtR = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, R, Index);
|
|
SDValue NewBO = DAG.getNode(N0.getOpcode(), DL, EltVT, ExtL, ExtR,
|
|
N0.getNode()->getFlags());
|
|
SDValue Insert = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VT, NewBO);
|
|
SmallVector<int, 16> ZeroMask(VT.getVectorNumElements(), 0);
|
|
return DAG.getVectorShuffle(VT, DL, Insert, DAG.getUNDEF(VT), ZeroMask);
|
|
}
|
|
|
|
// If this is a bit convert that changes the element type of the vector but
|
|
// not the number of vector elements, look through it. Be careful not to
|
|
// look though conversions that change things like v4f32 to v2f64.
|
|
SDNode *V = N0.getNode();
|
|
if (V->getOpcode() == ISD::BITCAST) {
|
|
SDValue ConvInput = V->getOperand(0);
|
|
if (ConvInput.getValueType().isVector() &&
|
|
ConvInput.getValueType().getVectorNumElements() == NumElts)
|
|
V = ConvInput.getNode();
|
|
}
|
|
|
|
if (V->getOpcode() == ISD::BUILD_VECTOR) {
|
|
assert(V->getNumOperands() == NumElts &&
|
|
"BUILD_VECTOR has wrong number of operands");
|
|
SDValue Base;
|
|
bool AllSame = true;
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
if (!V->getOperand(i).isUndef()) {
|
|
Base = V->getOperand(i);
|
|
break;
|
|
}
|
|
}
|
|
// Splat of <u, u, u, u>, return <u, u, u, u>
|
|
if (!Base.getNode())
|
|
return N0;
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
if (V->getOperand(i) != Base) {
|
|
AllSame = false;
|
|
break;
|
|
}
|
|
}
|
|
// Splat of <x, x, x, x>, return <x, x, x, x>
|
|
if (AllSame)
|
|
return N0;
|
|
|
|
// Canonicalize any other splat as a build_vector.
|
|
SDValue Splatted = V->getOperand(SplatIndex);
|
|
SmallVector<SDValue, 8> Ops(NumElts, Splatted);
|
|
SDValue NewBV = DAG.getBuildVector(V->getValueType(0), SDLoc(N), Ops);
|
|
|
|
// We may have jumped through bitcasts, so the type of the
|
|
// BUILD_VECTOR may not match the type of the shuffle.
|
|
if (V->getValueType(0) != VT)
|
|
NewBV = DAG.getBitcast(VT, NewBV);
|
|
return NewBV;
|
|
}
|
|
}
|
|
|
|
// Simplify source operands based on shuffle mask.
|
|
if (SimplifyDemandedVectorElts(SDValue(N, 0)))
|
|
return SDValue(N, 0);
|
|
|
|
// This is intentionally placed after demanded elements simplification because
|
|
// it could eliminate knowledge of undef elements created by this shuffle.
|
|
if (SDValue ShufOp = simplifyShuffleOfShuffle(SVN))
|
|
return ShufOp;
|
|
|
|
// Match shuffles that can be converted to any_vector_extend_in_reg.
|
|
if (SDValue V = combineShuffleToVectorExtend(SVN, DAG, TLI, LegalOperations))
|
|
return V;
|
|
|
|
// Combine "truncate_vector_in_reg" style shuffles.
|
|
if (SDValue V = combineTruncationShuffle(SVN, DAG))
|
|
return V;
|
|
|
|
if (N0.getOpcode() == ISD::CONCAT_VECTORS &&
|
|
Level < AfterLegalizeVectorOps &&
|
|
(N1.isUndef() ||
|
|
(N1.getOpcode() == ISD::CONCAT_VECTORS &&
|
|
N0.getOperand(0).getValueType() == N1.getOperand(0).getValueType()))) {
|
|
if (SDValue V = partitionShuffleOfConcats(N, DAG))
|
|
return V;
|
|
}
|
|
|
|
// A shuffle of a concat of the same narrow vector can be reduced to use
|
|
// only low-half elements of a concat with undef:
|
|
// shuf (concat X, X), undef, Mask --> shuf (concat X, undef), undef, Mask'
|
|
if (N0.getOpcode() == ISD::CONCAT_VECTORS && N1.isUndef() &&
|
|
N0.getNumOperands() == 2 &&
|
|
N0.getOperand(0) == N0.getOperand(1)) {
|
|
int HalfNumElts = (int)NumElts / 2;
|
|
SmallVector<int, 8> NewMask;
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
int Idx = SVN->getMaskElt(i);
|
|
if (Idx >= HalfNumElts) {
|
|
assert(Idx < (int)NumElts && "Shuffle mask chooses undef op");
|
|
Idx -= HalfNumElts;
|
|
}
|
|
NewMask.push_back(Idx);
|
|
}
|
|
if (TLI.isShuffleMaskLegal(NewMask, VT)) {
|
|
SDValue UndefVec = DAG.getUNDEF(N0.getOperand(0).getValueType());
|
|
SDValue NewCat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
|
|
N0.getOperand(0), UndefVec);
|
|
return DAG.getVectorShuffle(VT, SDLoc(N), NewCat, N1, NewMask);
|
|
}
|
|
}
|
|
|
|
// Attempt to combine a shuffle of 2 inputs of 'scalar sources' -
|
|
// BUILD_VECTOR or SCALAR_TO_VECTOR into a single BUILD_VECTOR.
|
|
if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT))
|
|
if (SDValue Res = combineShuffleOfScalars(SVN, DAG, TLI))
|
|
return Res;
|
|
|
|
// If this shuffle only has a single input that is a bitcasted shuffle,
|
|
// attempt to merge the 2 shuffles and suitably bitcast the inputs/output
|
|
// back to their original types.
|
|
if (N0.getOpcode() == ISD::BITCAST && N0.hasOneUse() &&
|
|
N1.isUndef() && Level < AfterLegalizeVectorOps &&
|
|
TLI.isTypeLegal(VT)) {
|
|
|
|
SDValue BC0 = peekThroughOneUseBitcasts(N0);
|
|
if (BC0.getOpcode() == ISD::VECTOR_SHUFFLE && BC0.hasOneUse()) {
|
|
EVT SVT = VT.getScalarType();
|
|
EVT InnerVT = BC0->getValueType(0);
|
|
EVT InnerSVT = InnerVT.getScalarType();
|
|
|
|
// Determine which shuffle works with the smaller scalar type.
|
|
EVT ScaleVT = SVT.bitsLT(InnerSVT) ? VT : InnerVT;
|
|
EVT ScaleSVT = ScaleVT.getScalarType();
|
|
|
|
if (TLI.isTypeLegal(ScaleVT) &&
|
|
0 == (InnerSVT.getSizeInBits() % ScaleSVT.getSizeInBits()) &&
|
|
0 == (SVT.getSizeInBits() % ScaleSVT.getSizeInBits())) {
|
|
int InnerScale = InnerSVT.getSizeInBits() / ScaleSVT.getSizeInBits();
|
|
int OuterScale = SVT.getSizeInBits() / ScaleSVT.getSizeInBits();
|
|
|
|
// Scale the shuffle masks to the smaller scalar type.
|
|
ShuffleVectorSDNode *InnerSVN = cast<ShuffleVectorSDNode>(BC0);
|
|
SmallVector<int, 8> InnerMask;
|
|
SmallVector<int, 8> OuterMask;
|
|
narrowShuffleMaskElts(InnerScale, InnerSVN->getMask(), InnerMask);
|
|
narrowShuffleMaskElts(OuterScale, SVN->getMask(), OuterMask);
|
|
|
|
// Merge the shuffle masks.
|
|
SmallVector<int, 8> NewMask;
|
|
for (int M : OuterMask)
|
|
NewMask.push_back(M < 0 ? -1 : InnerMask[M]);
|
|
|
|
// Test for shuffle mask legality over both commutations.
|
|
SDValue SV0 = BC0->getOperand(0);
|
|
SDValue SV1 = BC0->getOperand(1);
|
|
bool LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT);
|
|
if (!LegalMask) {
|
|
std::swap(SV0, SV1);
|
|
ShuffleVectorSDNode::commuteMask(NewMask);
|
|
LegalMask = TLI.isShuffleMaskLegal(NewMask, ScaleVT);
|
|
}
|
|
|
|
if (LegalMask) {
|
|
SV0 = DAG.getBitcast(ScaleVT, SV0);
|
|
SV1 = DAG.getBitcast(ScaleVT, SV1);
|
|
return DAG.getBitcast(
|
|
VT, DAG.getVectorShuffle(ScaleVT, SDLoc(N), SV0, SV1, NewMask));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Compute the combined shuffle mask for a shuffle with SV0 as the first
|
|
// operand, and SV1 as the second operand.
|
|
// i.e. Merge SVN(OtherSVN, N1) -> shuffle(SV0, SV1, Mask) iff Commute = false
|
|
// Merge SVN(N1, OtherSVN) -> shuffle(SV0, SV1, Mask') iff Commute = true
|
|
auto MergeInnerShuffle =
|
|
[NumElts, &VT](bool Commute, ShuffleVectorSDNode *SVN,
|
|
ShuffleVectorSDNode *OtherSVN, SDValue N1,
|
|
const TargetLowering &TLI, SDValue &SV0, SDValue &SV1,
|
|
SmallVectorImpl<int> &Mask) -> bool {
|
|
// Don't try to fold splats; they're likely to simplify somehow, or they
|
|
// might be free.
|
|
if (OtherSVN->isSplat())
|
|
return false;
|
|
|
|
SV0 = SV1 = SDValue();
|
|
Mask.clear();
|
|
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
int Idx = SVN->getMaskElt(i);
|
|
if (Idx < 0) {
|
|
// Propagate Undef.
|
|
Mask.push_back(Idx);
|
|
continue;
|
|
}
|
|
|
|
if (Commute)
|
|
Idx = (Idx < (int)NumElts) ? (Idx + NumElts) : (Idx - NumElts);
|
|
|
|
SDValue CurrentVec;
|
|
if (Idx < (int)NumElts) {
|
|
// This shuffle index refers to the inner shuffle N0. Lookup the inner
|
|
// shuffle mask to identify which vector is actually referenced.
|
|
Idx = OtherSVN->getMaskElt(Idx);
|
|
if (Idx < 0) {
|
|
// Propagate Undef.
|
|
Mask.push_back(Idx);
|
|
continue;
|
|
}
|
|
CurrentVec = (Idx < (int)NumElts) ? OtherSVN->getOperand(0)
|
|
: OtherSVN->getOperand(1);
|
|
} else {
|
|
// This shuffle index references an element within N1.
|
|
CurrentVec = N1;
|
|
}
|
|
|
|
// Simple case where 'CurrentVec' is UNDEF.
|
|
if (CurrentVec.isUndef()) {
|
|
Mask.push_back(-1);
|
|
continue;
|
|
}
|
|
|
|
// Canonicalize the shuffle index. We don't know yet if CurrentVec
|
|
// will be the first or second operand of the combined shuffle.
|
|
Idx = Idx % NumElts;
|
|
if (!SV0.getNode() || SV0 == CurrentVec) {
|
|
// Ok. CurrentVec is the left hand side.
|
|
// Update the mask accordingly.
|
|
SV0 = CurrentVec;
|
|
Mask.push_back(Idx);
|
|
continue;
|
|
}
|
|
if (!SV1.getNode() || SV1 == CurrentVec) {
|
|
// Ok. CurrentVec is the right hand side.
|
|
// Update the mask accordingly.
|
|
SV1 = CurrentVec;
|
|
Mask.push_back(Idx + NumElts);
|
|
continue;
|
|
}
|
|
|
|
// Last chance - see if the vector is another shuffle and if it
|
|
// uses one of the existing candidate shuffle ops.
|
|
if (auto *CurrentSVN = dyn_cast<ShuffleVectorSDNode>(CurrentVec)) {
|
|
int InnerIdx = CurrentSVN->getMaskElt(Idx);
|
|
if (InnerIdx < 0) {
|
|
Mask.push_back(-1);
|
|
continue;
|
|
}
|
|
SDValue InnerVec = (InnerIdx < (int)NumElts)
|
|
? CurrentSVN->getOperand(0)
|
|
: CurrentSVN->getOperand(1);
|
|
if (InnerVec.isUndef()) {
|
|
Mask.push_back(-1);
|
|
continue;
|
|
}
|
|
InnerIdx %= NumElts;
|
|
if (InnerVec == SV0) {
|
|
Mask.push_back(InnerIdx);
|
|
continue;
|
|
}
|
|
if (InnerVec == SV1) {
|
|
Mask.push_back(InnerIdx + NumElts);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Bail out if we cannot convert the shuffle pair into a single shuffle.
|
|
return false;
|
|
}
|
|
|
|
if (llvm::all_of(Mask, [](int M) { return M < 0; }))
|
|
return true;
|
|
|
|
// Avoid introducing shuffles with illegal mask.
|
|
// shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
|
|
// shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
|
|
// shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
|
|
// shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, A, M2)
|
|
// shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, A, M2)
|
|
// shuffle(shuffle(A, B, M0), C, M1) -> shuffle(C, B, M2)
|
|
if (TLI.isShuffleMaskLegal(Mask, VT))
|
|
return true;
|
|
|
|
std::swap(SV0, SV1);
|
|
ShuffleVectorSDNode::commuteMask(Mask);
|
|
return TLI.isShuffleMaskLegal(Mask, VT);
|
|
};
|
|
|
|
if (Level < AfterLegalizeDAG && TLI.isTypeLegal(VT)) {
|
|
// Canonicalize shuffles according to rules:
|
|
// shuffle(A, shuffle(A, B)) -> shuffle(shuffle(A,B), A)
|
|
// shuffle(B, shuffle(A, B)) -> shuffle(shuffle(A,B), B)
|
|
// shuffle(B, shuffle(A, Undef)) -> shuffle(shuffle(A, Undef), B)
|
|
if (N1.getOpcode() == ISD::VECTOR_SHUFFLE &&
|
|
N0.getOpcode() != ISD::VECTOR_SHUFFLE) {
|
|
// The incoming shuffle must be of the same type as the result of the
|
|
// current shuffle.
|
|
assert(N1->getOperand(0).getValueType() == VT &&
|
|
"Shuffle types don't match");
|
|
|
|
SDValue SV0 = N1->getOperand(0);
|
|
SDValue SV1 = N1->getOperand(1);
|
|
bool HasSameOp0 = N0 == SV0;
|
|
bool IsSV1Undef = SV1.isUndef();
|
|
if (HasSameOp0 || IsSV1Undef || N0 == SV1)
|
|
// Commute the operands of this shuffle so merging below will trigger.
|
|
return DAG.getCommutedVectorShuffle(*SVN);
|
|
}
|
|
|
|
// Canonicalize splat shuffles to the RHS to improve merging below.
|
|
// shuffle(splat(A,u), shuffle(C,D)) -> shuffle'(shuffle(C,D), splat(A,u))
|
|
if (N0.getOpcode() == ISD::VECTOR_SHUFFLE &&
|
|
N1.getOpcode() == ISD::VECTOR_SHUFFLE &&
|
|
cast<ShuffleVectorSDNode>(N0)->isSplat() &&
|
|
!cast<ShuffleVectorSDNode>(N1)->isSplat()) {
|
|
return DAG.getCommutedVectorShuffle(*SVN);
|
|
}
|
|
|
|
// Try to fold according to rules:
|
|
// shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, B, M2)
|
|
// shuffle(shuffle(A, B, M0), C, M1) -> shuffle(A, C, M2)
|
|
// shuffle(shuffle(A, B, M0), C, M1) -> shuffle(B, C, M2)
|
|
// Don't try to fold shuffles with illegal type.
|
|
// Only fold if this shuffle is the only user of the other shuffle.
|
|
// Try matching shuffle(C,shuffle(A,B)) commutted patterns as well.
|
|
for (int i = 0; i != 2; ++i) {
|
|
if (N->getOperand(i).getOpcode() == ISD::VECTOR_SHUFFLE &&
|
|
N->isOnlyUserOf(N->getOperand(i).getNode())) {
|
|
// The incoming shuffle must be of the same type as the result of the
|
|
// current shuffle.
|
|
auto *OtherSV = cast<ShuffleVectorSDNode>(N->getOperand(i));
|
|
assert(OtherSV->getOperand(0).getValueType() == VT &&
|
|
"Shuffle types don't match");
|
|
|
|
SDValue SV0, SV1;
|
|
SmallVector<int, 4> Mask;
|
|
if (MergeInnerShuffle(i != 0, SVN, OtherSV, N->getOperand(1 - i), TLI,
|
|
SV0, SV1, Mask)) {
|
|
// Check if all indices in Mask are Undef. In case, propagate Undef.
|
|
if (llvm::all_of(Mask, [](int M) { return M < 0; }))
|
|
return DAG.getUNDEF(VT);
|
|
|
|
return DAG.getVectorShuffle(VT, SDLoc(N),
|
|
SV0 ? SV0 : DAG.getUNDEF(VT),
|
|
SV1 ? SV1 : DAG.getUNDEF(VT), Mask);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Merge shuffles through binops if we are able to merge it with at least
|
|
// one other shuffles.
|
|
// shuffle(bop(shuffle(x,y),shuffle(z,w)),undef)
|
|
// shuffle(bop(shuffle(x,y),shuffle(z,w)),bop(shuffle(a,b),shuffle(c,d)))
|
|
unsigned SrcOpcode = N0.getOpcode();
|
|
if (TLI.isBinOp(SrcOpcode) && N->isOnlyUserOf(N0.getNode()) &&
|
|
(N1.isUndef() ||
|
|
(SrcOpcode == N1.getOpcode() && N->isOnlyUserOf(N1.getNode())))) {
|
|
// Get binop source ops, or just pass on the undef.
|
|
SDValue Op00 = N0.getOperand(0);
|
|
SDValue Op01 = N0.getOperand(1);
|
|
SDValue Op10 = N1.isUndef() ? N1 : N1.getOperand(0);
|
|
SDValue Op11 = N1.isUndef() ? N1 : N1.getOperand(1);
|
|
// TODO: We might be able to relax the VT check but we don't currently
|
|
// have any isBinOp() that has different result/ops VTs so play safe until
|
|
// we have test coverage.
|
|
if (Op00.getValueType() == VT && Op10.getValueType() == VT &&
|
|
Op01.getValueType() == VT && Op11.getValueType() == VT &&
|
|
(Op00.getOpcode() == ISD::VECTOR_SHUFFLE ||
|
|
Op10.getOpcode() == ISD::VECTOR_SHUFFLE ||
|
|
Op01.getOpcode() == ISD::VECTOR_SHUFFLE ||
|
|
Op11.getOpcode() == ISD::VECTOR_SHUFFLE)) {
|
|
auto CanMergeInnerShuffle = [&](SDValue &SV0, SDValue &SV1,
|
|
SmallVectorImpl<int> &Mask, bool LeftOp,
|
|
bool Commute) {
|
|
SDValue InnerN = Commute ? N1 : N0;
|
|
SDValue Op0 = LeftOp ? Op00 : Op01;
|
|
SDValue Op1 = LeftOp ? Op10 : Op11;
|
|
if (Commute)
|
|
std::swap(Op0, Op1);
|
|
// Only accept the merged shuffle if we don't introduce undef elements,
|
|
// or the inner shuffle already contained undef elements.
|
|
auto *SVN0 = dyn_cast<ShuffleVectorSDNode>(Op0);
|
|
return SVN0 && InnerN->isOnlyUserOf(SVN0) &&
|
|
MergeInnerShuffle(Commute, SVN, SVN0, Op1, TLI, SV0, SV1,
|
|
Mask) &&
|
|
(llvm::any_of(SVN0->getMask(), [](int M) { return M < 0; }) ||
|
|
llvm::none_of(Mask, [](int M) { return M < 0; }));
|
|
};
|
|
|
|
// Ensure we don't increase the number of shuffles - we must merge a
|
|
// shuffle from at least one of the LHS and RHS ops.
|
|
bool MergedLeft = false;
|
|
SDValue LeftSV0, LeftSV1;
|
|
SmallVector<int, 4> LeftMask;
|
|
if (CanMergeInnerShuffle(LeftSV0, LeftSV1, LeftMask, true, false) ||
|
|
CanMergeInnerShuffle(LeftSV0, LeftSV1, LeftMask, true, true)) {
|
|
MergedLeft = true;
|
|
} else {
|
|
LeftMask.assign(SVN->getMask().begin(), SVN->getMask().end());
|
|
LeftSV0 = Op00, LeftSV1 = Op10;
|
|
}
|
|
|
|
bool MergedRight = false;
|
|
SDValue RightSV0, RightSV1;
|
|
SmallVector<int, 4> RightMask;
|
|
if (CanMergeInnerShuffle(RightSV0, RightSV1, RightMask, false, false) ||
|
|
CanMergeInnerShuffle(RightSV0, RightSV1, RightMask, false, true)) {
|
|
MergedRight = true;
|
|
} else {
|
|
RightMask.assign(SVN->getMask().begin(), SVN->getMask().end());
|
|
RightSV0 = Op01, RightSV1 = Op11;
|
|
}
|
|
|
|
if (MergedLeft || MergedRight) {
|
|
SDLoc DL(N);
|
|
SDValue LHS = DAG.getVectorShuffle(
|
|
VT, DL, LeftSV0 ? LeftSV0 : DAG.getUNDEF(VT),
|
|
LeftSV1 ? LeftSV1 : DAG.getUNDEF(VT), LeftMask);
|
|
SDValue RHS = DAG.getVectorShuffle(
|
|
VT, DL, RightSV0 ? RightSV0 : DAG.getUNDEF(VT),
|
|
RightSV1 ? RightSV1 : DAG.getUNDEF(VT), RightMask);
|
|
return DAG.getNode(SrcOpcode, DL, VT, LHS, RHS);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (SDValue V = foldShuffleOfConcatUndefs(SVN, DAG))
|
|
return V;
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitSCALAR_TO_VECTOR(SDNode *N) {
|
|
SDValue InVal = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
|
|
// Replace a SCALAR_TO_VECTOR(EXTRACT_VECTOR_ELT(V,C0)) pattern
|
|
// with a VECTOR_SHUFFLE and possible truncate.
|
|
if (InVal.getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
|
|
VT.isFixedLengthVector() &&
|
|
InVal->getOperand(0).getValueType().isFixedLengthVector()) {
|
|
SDValue InVec = InVal->getOperand(0);
|
|
SDValue EltNo = InVal->getOperand(1);
|
|
auto InVecT = InVec.getValueType();
|
|
if (ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(EltNo)) {
|
|
SmallVector<int, 8> NewMask(InVecT.getVectorNumElements(), -1);
|
|
int Elt = C0->getZExtValue();
|
|
NewMask[0] = Elt;
|
|
// If we have an implict truncate do truncate here as long as it's legal.
|
|
// if it's not legal, this should
|
|
if (VT.getScalarType() != InVal.getValueType() &&
|
|
InVal.getValueType().isScalarInteger() &&
|
|
isTypeLegal(VT.getScalarType())) {
|
|
SDValue Val =
|
|
DAG.getNode(ISD::TRUNCATE, SDLoc(InVal), VT.getScalarType(), InVal);
|
|
return DAG.getNode(ISD::SCALAR_TO_VECTOR, SDLoc(N), VT, Val);
|
|
}
|
|
if (VT.getScalarType() == InVecT.getScalarType() &&
|
|
VT.getVectorNumElements() <= InVecT.getVectorNumElements()) {
|
|
SDValue LegalShuffle =
|
|
TLI.buildLegalVectorShuffle(InVecT, SDLoc(N), InVec,
|
|
DAG.getUNDEF(InVecT), NewMask, DAG);
|
|
if (LegalShuffle) {
|
|
// If the initial vector is the correct size this shuffle is a
|
|
// valid result.
|
|
if (VT == InVecT)
|
|
return LegalShuffle;
|
|
// If not we must truncate the vector.
|
|
if (VT.getVectorNumElements() != InVecT.getVectorNumElements()) {
|
|
SDValue ZeroIdx = DAG.getVectorIdxConstant(0, SDLoc(N));
|
|
EVT SubVT = EVT::getVectorVT(*DAG.getContext(),
|
|
InVecT.getVectorElementType(),
|
|
VT.getVectorNumElements());
|
|
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, SDLoc(N), SubVT,
|
|
LegalShuffle, ZeroIdx);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitINSERT_SUBVECTOR(SDNode *N) {
|
|
EVT VT = N->getValueType(0);
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
SDValue N2 = N->getOperand(2);
|
|
uint64_t InsIdx = N->getConstantOperandVal(2);
|
|
|
|
// If inserting an UNDEF, just return the original vector.
|
|
if (N1.isUndef())
|
|
return N0;
|
|
|
|
// If this is an insert of an extracted vector into an undef vector, we can
|
|
// just use the input to the extract.
|
|
if (N0.isUndef() && N1.getOpcode() == ISD::EXTRACT_SUBVECTOR &&
|
|
N1.getOperand(1) == N2 && N1.getOperand(0).getValueType() == VT)
|
|
return N1.getOperand(0);
|
|
|
|
// If we are inserting a bitcast value into an undef, with the same
|
|
// number of elements, just use the bitcast input of the extract.
|
|
// i.e. INSERT_SUBVECTOR UNDEF (BITCAST N1) N2 ->
|
|
// BITCAST (INSERT_SUBVECTOR UNDEF N1 N2)
|
|
if (N0.isUndef() && N1.getOpcode() == ISD::BITCAST &&
|
|
N1.getOperand(0).getOpcode() == ISD::EXTRACT_SUBVECTOR &&
|
|
N1.getOperand(0).getOperand(1) == N2 &&
|
|
N1.getOperand(0).getOperand(0).getValueType().getVectorElementCount() ==
|
|
VT.getVectorElementCount() &&
|
|
N1.getOperand(0).getOperand(0).getValueType().getSizeInBits() ==
|
|
VT.getSizeInBits()) {
|
|
return DAG.getBitcast(VT, N1.getOperand(0).getOperand(0));
|
|
}
|
|
|
|
// If both N1 and N2 are bitcast values on which insert_subvector
|
|
// would makes sense, pull the bitcast through.
|
|
// i.e. INSERT_SUBVECTOR (BITCAST N0) (BITCAST N1) N2 ->
|
|
// BITCAST (INSERT_SUBVECTOR N0 N1 N2)
|
|
if (N0.getOpcode() == ISD::BITCAST && N1.getOpcode() == ISD::BITCAST) {
|
|
SDValue CN0 = N0.getOperand(0);
|
|
SDValue CN1 = N1.getOperand(0);
|
|
EVT CN0VT = CN0.getValueType();
|
|
EVT CN1VT = CN1.getValueType();
|
|
if (CN0VT.isVector() && CN1VT.isVector() &&
|
|
CN0VT.getVectorElementType() == CN1VT.getVectorElementType() &&
|
|
CN0VT.getVectorElementCount() == VT.getVectorElementCount()) {
|
|
SDValue NewINSERT = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N),
|
|
CN0.getValueType(), CN0, CN1, N2);
|
|
return DAG.getBitcast(VT, NewINSERT);
|
|
}
|
|
}
|
|
|
|
// Combine INSERT_SUBVECTORs where we are inserting to the same index.
|
|
// INSERT_SUBVECTOR( INSERT_SUBVECTOR( Vec, SubOld, Idx ), SubNew, Idx )
|
|
// --> INSERT_SUBVECTOR( Vec, SubNew, Idx )
|
|
if (N0.getOpcode() == ISD::INSERT_SUBVECTOR &&
|
|
N0.getOperand(1).getValueType() == N1.getValueType() &&
|
|
N0.getOperand(2) == N2)
|
|
return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0.getOperand(0),
|
|
N1, N2);
|
|
|
|
// Eliminate an intermediate insert into an undef vector:
|
|
// insert_subvector undef, (insert_subvector undef, X, 0), N2 -->
|
|
// insert_subvector undef, X, N2
|
|
if (N0.isUndef() && N1.getOpcode() == ISD::INSERT_SUBVECTOR &&
|
|
N1.getOperand(0).isUndef() && isNullConstant(N1.getOperand(2)))
|
|
return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT, N0,
|
|
N1.getOperand(1), N2);
|
|
|
|
// Push subvector bitcasts to the output, adjusting the index as we go.
|
|
// insert_subvector(bitcast(v), bitcast(s), c1)
|
|
// -> bitcast(insert_subvector(v, s, c2))
|
|
if ((N0.isUndef() || N0.getOpcode() == ISD::BITCAST) &&
|
|
N1.getOpcode() == ISD::BITCAST) {
|
|
SDValue N0Src = peekThroughBitcasts(N0);
|
|
SDValue N1Src = peekThroughBitcasts(N1);
|
|
EVT N0SrcSVT = N0Src.getValueType().getScalarType();
|
|
EVT N1SrcSVT = N1Src.getValueType().getScalarType();
|
|
if ((N0.isUndef() || N0SrcSVT == N1SrcSVT) &&
|
|
N0Src.getValueType().isVector() && N1Src.getValueType().isVector()) {
|
|
EVT NewVT;
|
|
SDLoc DL(N);
|
|
SDValue NewIdx;
|
|
LLVMContext &Ctx = *DAG.getContext();
|
|
ElementCount NumElts = VT.getVectorElementCount();
|
|
unsigned EltSizeInBits = VT.getScalarSizeInBits();
|
|
if ((EltSizeInBits % N1SrcSVT.getSizeInBits()) == 0) {
|
|
unsigned Scale = EltSizeInBits / N1SrcSVT.getSizeInBits();
|
|
NewVT = EVT::getVectorVT(Ctx, N1SrcSVT, NumElts * Scale);
|
|
NewIdx = DAG.getVectorIdxConstant(InsIdx * Scale, DL);
|
|
} else if ((N1SrcSVT.getSizeInBits() % EltSizeInBits) == 0) {
|
|
unsigned Scale = N1SrcSVT.getSizeInBits() / EltSizeInBits;
|
|
if (NumElts.isKnownMultipleOf(Scale) && (InsIdx % Scale) == 0) {
|
|
NewVT = EVT::getVectorVT(Ctx, N1SrcSVT,
|
|
NumElts.divideCoefficientBy(Scale));
|
|
NewIdx = DAG.getVectorIdxConstant(InsIdx / Scale, DL);
|
|
}
|
|
}
|
|
if (NewIdx && hasOperation(ISD::INSERT_SUBVECTOR, NewVT)) {
|
|
SDValue Res = DAG.getBitcast(NewVT, N0Src);
|
|
Res = DAG.getNode(ISD::INSERT_SUBVECTOR, DL, NewVT, Res, N1Src, NewIdx);
|
|
return DAG.getBitcast(VT, Res);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Canonicalize insert_subvector dag nodes.
|
|
// Example:
|
|
// (insert_subvector (insert_subvector A, Idx0), Idx1)
|
|
// -> (insert_subvector (insert_subvector A, Idx1), Idx0)
|
|
if (N0.getOpcode() == ISD::INSERT_SUBVECTOR && N0.hasOneUse() &&
|
|
N1.getValueType() == N0.getOperand(1).getValueType()) {
|
|
unsigned OtherIdx = N0.getConstantOperandVal(2);
|
|
if (InsIdx < OtherIdx) {
|
|
// Swap nodes.
|
|
SDValue NewOp = DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N), VT,
|
|
N0.getOperand(0), N1, N2);
|
|
AddToWorklist(NewOp.getNode());
|
|
return DAG.getNode(ISD::INSERT_SUBVECTOR, SDLoc(N0.getNode()),
|
|
VT, NewOp, N0.getOperand(1), N0.getOperand(2));
|
|
}
|
|
}
|
|
|
|
// If the input vector is a concatenation, and the insert replaces
|
|
// one of the pieces, we can optimize into a single concat_vectors.
|
|
if (N0.getOpcode() == ISD::CONCAT_VECTORS && N0.hasOneUse() &&
|
|
N0.getOperand(0).getValueType() == N1.getValueType() &&
|
|
N0.getOperand(0).getValueType().isScalableVector() ==
|
|
N1.getValueType().isScalableVector()) {
|
|
unsigned Factor = N1.getValueType().getVectorMinNumElements();
|
|
SmallVector<SDValue, 8> Ops(N0->op_begin(), N0->op_end());
|
|
Ops[InsIdx / Factor] = N1;
|
|
return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, Ops);
|
|
}
|
|
|
|
// Simplify source operands based on insertion.
|
|
if (SimplifyDemandedVectorElts(SDValue(N, 0)))
|
|
return SDValue(N, 0);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitFP_TO_FP16(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
|
|
// fold (fp_to_fp16 (fp16_to_fp op)) -> op
|
|
if (N0->getOpcode() == ISD::FP16_TO_FP)
|
|
return N0->getOperand(0);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitFP16_TO_FP(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
|
|
// fold fp16_to_fp(op & 0xffff) -> fp16_to_fp(op)
|
|
if (!TLI.shouldKeepZExtForFP16Conv() && N0->getOpcode() == ISD::AND) {
|
|
ConstantSDNode *AndConst = getAsNonOpaqueConstant(N0.getOperand(1));
|
|
if (AndConst && AndConst->getAPIntValue() == 0xffff) {
|
|
return DAG.getNode(ISD::FP16_TO_FP, SDLoc(N), N->getValueType(0),
|
|
N0.getOperand(0));
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::visitVECREDUCE(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT VT = N0.getValueType();
|
|
unsigned Opcode = N->getOpcode();
|
|
|
|
// VECREDUCE over 1-element vector is just an extract.
|
|
if (VT.getVectorElementCount().isScalar()) {
|
|
SDLoc dl(N);
|
|
SDValue Res =
|
|
DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, VT.getVectorElementType(), N0,
|
|
DAG.getVectorIdxConstant(0, dl));
|
|
if (Res.getValueType() != N->getValueType(0))
|
|
Res = DAG.getNode(ISD::ANY_EXTEND, dl, N->getValueType(0), Res);
|
|
return Res;
|
|
}
|
|
|
|
// On an boolean vector an and/or reduction is the same as a umin/umax
|
|
// reduction. Convert them if the latter is legal while the former isn't.
|
|
if (Opcode == ISD::VECREDUCE_AND || Opcode == ISD::VECREDUCE_OR) {
|
|
unsigned NewOpcode = Opcode == ISD::VECREDUCE_AND
|
|
? ISD::VECREDUCE_UMIN : ISD::VECREDUCE_UMAX;
|
|
if (!TLI.isOperationLegalOrCustom(Opcode, VT) &&
|
|
TLI.isOperationLegalOrCustom(NewOpcode, VT) &&
|
|
DAG.ComputeNumSignBits(N0) == VT.getScalarSizeInBits())
|
|
return DAG.getNode(NewOpcode, SDLoc(N), N->getValueType(0), N0);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// Returns a vector_shuffle if it able to transform an AND to a vector_shuffle
|
|
/// with the destination vector and a zero vector.
|
|
/// e.g. AND V, <0xffffffff, 0, 0xffffffff, 0>. ==>
|
|
/// vector_shuffle V, Zero, <0, 4, 2, 4>
|
|
SDValue DAGCombiner::XformToShuffleWithZero(SDNode *N) {
|
|
assert(N->getOpcode() == ISD::AND && "Unexpected opcode!");
|
|
|
|
EVT VT = N->getValueType(0);
|
|
SDValue LHS = N->getOperand(0);
|
|
SDValue RHS = peekThroughBitcasts(N->getOperand(1));
|
|
SDLoc DL(N);
|
|
|
|
// Make sure we're not running after operation legalization where it
|
|
// may have custom lowered the vector shuffles.
|
|
if (LegalOperations)
|
|
return SDValue();
|
|
|
|
if (RHS.getOpcode() != ISD::BUILD_VECTOR)
|
|
return SDValue();
|
|
|
|
EVT RVT = RHS.getValueType();
|
|
unsigned NumElts = RHS.getNumOperands();
|
|
|
|
// Attempt to create a valid clear mask, splitting the mask into
|
|
// sub elements and checking to see if each is
|
|
// all zeros or all ones - suitable for shuffle masking.
|
|
auto BuildClearMask = [&](int Split) {
|
|
int NumSubElts = NumElts * Split;
|
|
int NumSubBits = RVT.getScalarSizeInBits() / Split;
|
|
|
|
SmallVector<int, 8> Indices;
|
|
for (int i = 0; i != NumSubElts; ++i) {
|
|
int EltIdx = i / Split;
|
|
int SubIdx = i % Split;
|
|
SDValue Elt = RHS.getOperand(EltIdx);
|
|
// X & undef --> 0 (not undef). So this lane must be converted to choose
|
|
// from the zero constant vector (same as if the element had all 0-bits).
|
|
if (Elt.isUndef()) {
|
|
Indices.push_back(i + NumSubElts);
|
|
continue;
|
|
}
|
|
|
|
APInt Bits;
|
|
if (isa<ConstantSDNode>(Elt))
|
|
Bits = cast<ConstantSDNode>(Elt)->getAPIntValue();
|
|
else if (isa<ConstantFPSDNode>(Elt))
|
|
Bits = cast<ConstantFPSDNode>(Elt)->getValueAPF().bitcastToAPInt();
|
|
else
|
|
return SDValue();
|
|
|
|
// Extract the sub element from the constant bit mask.
|
|
if (DAG.getDataLayout().isBigEndian())
|
|
Bits = Bits.extractBits(NumSubBits, (Split - SubIdx - 1) * NumSubBits);
|
|
else
|
|
Bits = Bits.extractBits(NumSubBits, SubIdx * NumSubBits);
|
|
|
|
if (Bits.isAllOnesValue())
|
|
Indices.push_back(i);
|
|
else if (Bits == 0)
|
|
Indices.push_back(i + NumSubElts);
|
|
else
|
|
return SDValue();
|
|
}
|
|
|
|
// Let's see if the target supports this vector_shuffle.
|
|
EVT ClearSVT = EVT::getIntegerVT(*DAG.getContext(), NumSubBits);
|
|
EVT ClearVT = EVT::getVectorVT(*DAG.getContext(), ClearSVT, NumSubElts);
|
|
if (!TLI.isVectorClearMaskLegal(Indices, ClearVT))
|
|
return SDValue();
|
|
|
|
SDValue Zero = DAG.getConstant(0, DL, ClearVT);
|
|
return DAG.getBitcast(VT, DAG.getVectorShuffle(ClearVT, DL,
|
|
DAG.getBitcast(ClearVT, LHS),
|
|
Zero, Indices));
|
|
};
|
|
|
|
// Determine maximum split level (byte level masking).
|
|
int MaxSplit = 1;
|
|
if (RVT.getScalarSizeInBits() % 8 == 0)
|
|
MaxSplit = RVT.getScalarSizeInBits() / 8;
|
|
|
|
for (int Split = 1; Split <= MaxSplit; ++Split)
|
|
if (RVT.getScalarSizeInBits() % Split == 0)
|
|
if (SDValue S = BuildClearMask(Split))
|
|
return S;
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// If a vector binop is performed on splat values, it may be profitable to
|
|
/// extract, scalarize, and insert/splat.
|
|
static SDValue scalarizeBinOpOfSplats(SDNode *N, SelectionDAG &DAG) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
unsigned Opcode = N->getOpcode();
|
|
EVT VT = N->getValueType(0);
|
|
EVT EltVT = VT.getVectorElementType();
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
|
|
// TODO: Remove/replace the extract cost check? If the elements are available
|
|
// as scalars, then there may be no extract cost. Should we ask if
|
|
// inserting a scalar back into a vector is cheap instead?
|
|
int Index0, Index1;
|
|
SDValue Src0 = DAG.getSplatSourceVector(N0, Index0);
|
|
SDValue Src1 = DAG.getSplatSourceVector(N1, Index1);
|
|
if (!Src0 || !Src1 || Index0 != Index1 ||
|
|
Src0.getValueType().getVectorElementType() != EltVT ||
|
|
Src1.getValueType().getVectorElementType() != EltVT ||
|
|
!TLI.isExtractVecEltCheap(VT, Index0) ||
|
|
!TLI.isOperationLegalOrCustom(Opcode, EltVT))
|
|
return SDValue();
|
|
|
|
SDLoc DL(N);
|
|
SDValue IndexC = DAG.getVectorIdxConstant(Index0, DL);
|
|
SDValue X = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src0, IndexC);
|
|
SDValue Y = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src1, IndexC);
|
|
SDValue ScalarBO = DAG.getNode(Opcode, DL, EltVT, X, Y, N->getFlags());
|
|
|
|
// If all lanes but 1 are undefined, no need to splat the scalar result.
|
|
// TODO: Keep track of undefs and use that info in the general case.
|
|
if (N0.getOpcode() == ISD::BUILD_VECTOR && N0.getOpcode() == N1.getOpcode() &&
|
|
count_if(N0->ops(), [](SDValue V) { return !V.isUndef(); }) == 1 &&
|
|
count_if(N1->ops(), [](SDValue V) { return !V.isUndef(); }) == 1) {
|
|
// bo (build_vec ..undef, X, undef...), (build_vec ..undef, Y, undef...) -->
|
|
// build_vec ..undef, (bo X, Y), undef...
|
|
SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), DAG.getUNDEF(EltVT));
|
|
Ops[Index0] = ScalarBO;
|
|
return DAG.getBuildVector(VT, DL, Ops);
|
|
}
|
|
|
|
// bo (splat X, Index), (splat Y, Index) --> splat (bo X, Y), Index
|
|
SmallVector<SDValue, 8> Ops(VT.getVectorNumElements(), ScalarBO);
|
|
return DAG.getBuildVector(VT, DL, Ops);
|
|
}
|
|
|
|
/// Visit a binary vector operation, like ADD.
|
|
SDValue DAGCombiner::SimplifyVBinOp(SDNode *N) {
|
|
assert(N->getValueType(0).isVector() &&
|
|
"SimplifyVBinOp only works on vectors!");
|
|
|
|
SDValue LHS = N->getOperand(0);
|
|
SDValue RHS = N->getOperand(1);
|
|
SDValue Ops[] = {LHS, RHS};
|
|
EVT VT = N->getValueType(0);
|
|
unsigned Opcode = N->getOpcode();
|
|
SDNodeFlags Flags = N->getFlags();
|
|
|
|
// See if we can constant fold the vector operation.
|
|
if (SDValue Fold = DAG.FoldConstantVectorArithmetic(
|
|
Opcode, SDLoc(LHS), LHS.getValueType(), Ops, N->getFlags()))
|
|
return Fold;
|
|
|
|
// Move unary shuffles with identical masks after a vector binop:
|
|
// VBinOp (shuffle A, Undef, Mask), (shuffle B, Undef, Mask))
|
|
// --> shuffle (VBinOp A, B), Undef, Mask
|
|
// This does not require type legality checks because we are creating the
|
|
// same types of operations that are in the original sequence. We do have to
|
|
// restrict ops like integer div that have immediate UB (eg, div-by-zero)
|
|
// though. This code is adapted from the identical transform in instcombine.
|
|
if (Opcode != ISD::UDIV && Opcode != ISD::SDIV &&
|
|
Opcode != ISD::UREM && Opcode != ISD::SREM &&
|
|
Opcode != ISD::UDIVREM && Opcode != ISD::SDIVREM) {
|
|
auto *Shuf0 = dyn_cast<ShuffleVectorSDNode>(LHS);
|
|
auto *Shuf1 = dyn_cast<ShuffleVectorSDNode>(RHS);
|
|
if (Shuf0 && Shuf1 && Shuf0->getMask().equals(Shuf1->getMask()) &&
|
|
LHS.getOperand(1).isUndef() && RHS.getOperand(1).isUndef() &&
|
|
(LHS.hasOneUse() || RHS.hasOneUse() || LHS == RHS)) {
|
|
SDLoc DL(N);
|
|
SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, LHS.getOperand(0),
|
|
RHS.getOperand(0), Flags);
|
|
SDValue UndefV = LHS.getOperand(1);
|
|
return DAG.getVectorShuffle(VT, DL, NewBinOp, UndefV, Shuf0->getMask());
|
|
}
|
|
|
|
// Try to sink a splat shuffle after a binop with a uniform constant.
|
|
// This is limited to cases where neither the shuffle nor the constant have
|
|
// undefined elements because that could be poison-unsafe or inhibit
|
|
// demanded elements analysis. It is further limited to not change a splat
|
|
// of an inserted scalar because that may be optimized better by
|
|
// load-folding or other target-specific behaviors.
|
|
if (isConstOrConstSplat(RHS) && Shuf0 && is_splat(Shuf0->getMask()) &&
|
|
Shuf0->hasOneUse() && Shuf0->getOperand(1).isUndef() &&
|
|
Shuf0->getOperand(0).getOpcode() != ISD::INSERT_VECTOR_ELT) {
|
|
// binop (splat X), (splat C) --> splat (binop X, C)
|
|
SDLoc DL(N);
|
|
SDValue X = Shuf0->getOperand(0);
|
|
SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, X, RHS, Flags);
|
|
return DAG.getVectorShuffle(VT, DL, NewBinOp, DAG.getUNDEF(VT),
|
|
Shuf0->getMask());
|
|
}
|
|
if (isConstOrConstSplat(LHS) && Shuf1 && is_splat(Shuf1->getMask()) &&
|
|
Shuf1->hasOneUse() && Shuf1->getOperand(1).isUndef() &&
|
|
Shuf1->getOperand(0).getOpcode() != ISD::INSERT_VECTOR_ELT) {
|
|
// binop (splat C), (splat X) --> splat (binop C, X)
|
|
SDLoc DL(N);
|
|
SDValue X = Shuf1->getOperand(0);
|
|
SDValue NewBinOp = DAG.getNode(Opcode, DL, VT, LHS, X, Flags);
|
|
return DAG.getVectorShuffle(VT, DL, NewBinOp, DAG.getUNDEF(VT),
|
|
Shuf1->getMask());
|
|
}
|
|
}
|
|
|
|
// The following pattern is likely to emerge with vector reduction ops. Moving
|
|
// the binary operation ahead of insertion may allow using a narrower vector
|
|
// instruction that has better performance than the wide version of the op:
|
|
// VBinOp (ins undef, X, Z), (ins undef, Y, Z) --> ins VecC, (VBinOp X, Y), Z
|
|
if (LHS.getOpcode() == ISD::INSERT_SUBVECTOR && LHS.getOperand(0).isUndef() &&
|
|
RHS.getOpcode() == ISD::INSERT_SUBVECTOR && RHS.getOperand(0).isUndef() &&
|
|
LHS.getOperand(2) == RHS.getOperand(2) &&
|
|
(LHS.hasOneUse() || RHS.hasOneUse())) {
|
|
SDValue X = LHS.getOperand(1);
|
|
SDValue Y = RHS.getOperand(1);
|
|
SDValue Z = LHS.getOperand(2);
|
|
EVT NarrowVT = X.getValueType();
|
|
if (NarrowVT == Y.getValueType() &&
|
|
TLI.isOperationLegalOrCustomOrPromote(Opcode, NarrowVT,
|
|
LegalOperations)) {
|
|
// (binop undef, undef) may not return undef, so compute that result.
|
|
SDLoc DL(N);
|
|
SDValue VecC =
|
|
DAG.getNode(Opcode, DL, VT, DAG.getUNDEF(VT), DAG.getUNDEF(VT));
|
|
SDValue NarrowBO = DAG.getNode(Opcode, DL, NarrowVT, X, Y);
|
|
return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT, VecC, NarrowBO, Z);
|
|
}
|
|
}
|
|
|
|
// Make sure all but the first op are undef or constant.
|
|
auto ConcatWithConstantOrUndef = [](SDValue Concat) {
|
|
return Concat.getOpcode() == ISD::CONCAT_VECTORS &&
|
|
all_of(drop_begin(Concat->ops()), [](const SDValue &Op) {
|
|
return Op.isUndef() ||
|
|
ISD::isBuildVectorOfConstantSDNodes(Op.getNode());
|
|
});
|
|
};
|
|
|
|
// The following pattern is likely to emerge with vector reduction ops. Moving
|
|
// the binary operation ahead of the concat may allow using a narrower vector
|
|
// instruction that has better performance than the wide version of the op:
|
|
// VBinOp (concat X, undef/constant), (concat Y, undef/constant) -->
|
|
// concat (VBinOp X, Y), VecC
|
|
if (ConcatWithConstantOrUndef(LHS) && ConcatWithConstantOrUndef(RHS) &&
|
|
(LHS.hasOneUse() || RHS.hasOneUse())) {
|
|
EVT NarrowVT = LHS.getOperand(0).getValueType();
|
|
if (NarrowVT == RHS.getOperand(0).getValueType() &&
|
|
TLI.isOperationLegalOrCustomOrPromote(Opcode, NarrowVT)) {
|
|
SDLoc DL(N);
|
|
unsigned NumOperands = LHS.getNumOperands();
|
|
SmallVector<SDValue, 4> ConcatOps;
|
|
for (unsigned i = 0; i != NumOperands; ++i) {
|
|
// This constant fold for operands 1 and up.
|
|
ConcatOps.push_back(DAG.getNode(Opcode, DL, NarrowVT, LHS.getOperand(i),
|
|
RHS.getOperand(i)));
|
|
}
|
|
|
|
return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps);
|
|
}
|
|
}
|
|
|
|
if (SDValue V = scalarizeBinOpOfSplats(N, DAG))
|
|
return V;
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::SimplifySelect(const SDLoc &DL, SDValue N0, SDValue N1,
|
|
SDValue N2) {
|
|
assert(N0.getOpcode() ==ISD::SETCC && "First argument must be a SetCC node!");
|
|
|
|
SDValue SCC = SimplifySelectCC(DL, N0.getOperand(0), N0.getOperand(1), N1, N2,
|
|
cast<CondCodeSDNode>(N0.getOperand(2))->get());
|
|
|
|
// If we got a simplified select_cc node back from SimplifySelectCC, then
|
|
// break it down into a new SETCC node, and a new SELECT node, and then return
|
|
// the SELECT node, since we were called with a SELECT node.
|
|
if (SCC.getNode()) {
|
|
// Check to see if we got a select_cc back (to turn into setcc/select).
|
|
// Otherwise, just return whatever node we got back, like fabs.
|
|
if (SCC.getOpcode() == ISD::SELECT_CC) {
|
|
const SDNodeFlags Flags = N0.getNode()->getFlags();
|
|
SDValue SETCC = DAG.getNode(ISD::SETCC, SDLoc(N0),
|
|
N0.getValueType(),
|
|
SCC.getOperand(0), SCC.getOperand(1),
|
|
SCC.getOperand(4), Flags);
|
|
AddToWorklist(SETCC.getNode());
|
|
SDValue SelectNode = DAG.getSelect(SDLoc(SCC), SCC.getValueType(), SETCC,
|
|
SCC.getOperand(2), SCC.getOperand(3));
|
|
SelectNode->setFlags(Flags);
|
|
return SelectNode;
|
|
}
|
|
|
|
return SCC;
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
/// Given a SELECT or a SELECT_CC node, where LHS and RHS are the two values
|
|
/// being selected between, see if we can simplify the select. Callers of this
|
|
/// should assume that TheSelect is deleted if this returns true. As such, they
|
|
/// should return the appropriate thing (e.g. the node) back to the top-level of
|
|
/// the DAG combiner loop to avoid it being looked at.
|
|
bool DAGCombiner::SimplifySelectOps(SDNode *TheSelect, SDValue LHS,
|
|
SDValue RHS) {
|
|
// fold (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x))
|
|
// The select + setcc is redundant, because fsqrt returns NaN for X < 0.
|
|
if (const ConstantFPSDNode *NaN = isConstOrConstSplatFP(LHS)) {
|
|
if (NaN->isNaN() && RHS.getOpcode() == ISD::FSQRT) {
|
|
// We have: (select (setcc ?, ?, ?), NaN, (fsqrt ?))
|
|
SDValue Sqrt = RHS;
|
|
ISD::CondCode CC;
|
|
SDValue CmpLHS;
|
|
const ConstantFPSDNode *Zero = nullptr;
|
|
|
|
if (TheSelect->getOpcode() == ISD::SELECT_CC) {
|
|
CC = cast<CondCodeSDNode>(TheSelect->getOperand(4))->get();
|
|
CmpLHS = TheSelect->getOperand(0);
|
|
Zero = isConstOrConstSplatFP(TheSelect->getOperand(1));
|
|
} else {
|
|
// SELECT or VSELECT
|
|
SDValue Cmp = TheSelect->getOperand(0);
|
|
if (Cmp.getOpcode() == ISD::SETCC) {
|
|
CC = cast<CondCodeSDNode>(Cmp.getOperand(2))->get();
|
|
CmpLHS = Cmp.getOperand(0);
|
|
Zero = isConstOrConstSplatFP(Cmp.getOperand(1));
|
|
}
|
|
}
|
|
if (Zero && Zero->isZero() &&
|
|
Sqrt.getOperand(0) == CmpLHS && (CC == ISD::SETOLT ||
|
|
CC == ISD::SETULT || CC == ISD::SETLT)) {
|
|
// We have: (select (setcc x, [+-]0.0, *lt), NaN, (fsqrt x))
|
|
CombineTo(TheSelect, Sqrt);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
// Cannot simplify select with vector condition
|
|
if (TheSelect->getOperand(0).getValueType().isVector()) return false;
|
|
|
|
// If this is a select from two identical things, try to pull the operation
|
|
// through the select.
|
|
if (LHS.getOpcode() != RHS.getOpcode() ||
|
|
!LHS.hasOneUse() || !RHS.hasOneUse())
|
|
return false;
|
|
|
|
// If this is a load and the token chain is identical, replace the select
|
|
// of two loads with a load through a select of the address to load from.
|
|
// This triggers in things like "select bool X, 10.0, 123.0" after the FP
|
|
// constants have been dropped into the constant pool.
|
|
if (LHS.getOpcode() == ISD::LOAD) {
|
|
LoadSDNode *LLD = cast<LoadSDNode>(LHS);
|
|
LoadSDNode *RLD = cast<LoadSDNode>(RHS);
|
|
|
|
// Token chains must be identical.
|
|
if (LHS.getOperand(0) != RHS.getOperand(0) ||
|
|
// Do not let this transformation reduce the number of volatile loads.
|
|
// Be conservative for atomics for the moment
|
|
// TODO: This does appear to be legal for unordered atomics (see D66309)
|
|
!LLD->isSimple() || !RLD->isSimple() ||
|
|
// FIXME: If either is a pre/post inc/dec load,
|
|
// we'd need to split out the address adjustment.
|
|
LLD->isIndexed() || RLD->isIndexed() ||
|
|
// If this is an EXTLOAD, the VT's must match.
|
|
LLD->getMemoryVT() != RLD->getMemoryVT() ||
|
|
// If this is an EXTLOAD, the kind of extension must match.
|
|
(LLD->getExtensionType() != RLD->getExtensionType() &&
|
|
// The only exception is if one of the extensions is anyext.
|
|
LLD->getExtensionType() != ISD::EXTLOAD &&
|
|
RLD->getExtensionType() != ISD::EXTLOAD) ||
|
|
// FIXME: this discards src value information. This is
|
|
// over-conservative. It would be beneficial to be able to remember
|
|
// both potential memory locations. Since we are discarding
|
|
// src value info, don't do the transformation if the memory
|
|
// locations are not in the default address space.
|
|
LLD->getPointerInfo().getAddrSpace() != 0 ||
|
|
RLD->getPointerInfo().getAddrSpace() != 0 ||
|
|
// We can't produce a CMOV of a TargetFrameIndex since we won't
|
|
// generate the address generation required.
|
|
LLD->getBasePtr().getOpcode() == ISD::TargetFrameIndex ||
|
|
RLD->getBasePtr().getOpcode() == ISD::TargetFrameIndex ||
|
|
!TLI.isOperationLegalOrCustom(TheSelect->getOpcode(),
|
|
LLD->getBasePtr().getValueType()))
|
|
return false;
|
|
|
|
// The loads must not depend on one another.
|
|
if (LLD->isPredecessorOf(RLD) || RLD->isPredecessorOf(LLD))
|
|
return false;
|
|
|
|
// Check that the select condition doesn't reach either load. If so,
|
|
// folding this will induce a cycle into the DAG. If not, this is safe to
|
|
// xform, so create a select of the addresses.
|
|
|
|
SmallPtrSet<const SDNode *, 32> Visited;
|
|
SmallVector<const SDNode *, 16> Worklist;
|
|
|
|
// Always fail if LLD and RLD are not independent. TheSelect is a
|
|
// predecessor to all Nodes in question so we need not search past it.
|
|
|
|
Visited.insert(TheSelect);
|
|
Worklist.push_back(LLD);
|
|
Worklist.push_back(RLD);
|
|
|
|
if (SDNode::hasPredecessorHelper(LLD, Visited, Worklist) ||
|
|
SDNode::hasPredecessorHelper(RLD, Visited, Worklist))
|
|
return false;
|
|
|
|
SDValue Addr;
|
|
if (TheSelect->getOpcode() == ISD::SELECT) {
|
|
// We cannot do this optimization if any pair of {RLD, LLD} is a
|
|
// predecessor to {RLD, LLD, CondNode}. As we've already compared the
|
|
// Loads, we only need to check if CondNode is a successor to one of the
|
|
// loads. We can further avoid this if there's no use of their chain
|
|
// value.
|
|
SDNode *CondNode = TheSelect->getOperand(0).getNode();
|
|
Worklist.push_back(CondNode);
|
|
|
|
if ((LLD->hasAnyUseOfValue(1) &&
|
|
SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) ||
|
|
(RLD->hasAnyUseOfValue(1) &&
|
|
SDNode::hasPredecessorHelper(RLD, Visited, Worklist)))
|
|
return false;
|
|
|
|
Addr = DAG.getSelect(SDLoc(TheSelect),
|
|
LLD->getBasePtr().getValueType(),
|
|
TheSelect->getOperand(0), LLD->getBasePtr(),
|
|
RLD->getBasePtr());
|
|
} else { // Otherwise SELECT_CC
|
|
// We cannot do this optimization if any pair of {RLD, LLD} is a
|
|
// predecessor to {RLD, LLD, CondLHS, CondRHS}. As we've already compared
|
|
// the Loads, we only need to check if CondLHS/CondRHS is a successor to
|
|
// one of the loads. We can further avoid this if there's no use of their
|
|
// chain value.
|
|
|
|
SDNode *CondLHS = TheSelect->getOperand(0).getNode();
|
|
SDNode *CondRHS = TheSelect->getOperand(1).getNode();
|
|
Worklist.push_back(CondLHS);
|
|
Worklist.push_back(CondRHS);
|
|
|
|
if ((LLD->hasAnyUseOfValue(1) &&
|
|
SDNode::hasPredecessorHelper(LLD, Visited, Worklist)) ||
|
|
(RLD->hasAnyUseOfValue(1) &&
|
|
SDNode::hasPredecessorHelper(RLD, Visited, Worklist)))
|
|
return false;
|
|
|
|
Addr = DAG.getNode(ISD::SELECT_CC, SDLoc(TheSelect),
|
|
LLD->getBasePtr().getValueType(),
|
|
TheSelect->getOperand(0),
|
|
TheSelect->getOperand(1),
|
|
LLD->getBasePtr(), RLD->getBasePtr(),
|
|
TheSelect->getOperand(4));
|
|
}
|
|
|
|
SDValue Load;
|
|
// It is safe to replace the two loads if they have different alignments,
|
|
// but the new load must be the minimum (most restrictive) alignment of the
|
|
// inputs.
|
|
Align Alignment = std::min(LLD->getAlign(), RLD->getAlign());
|
|
MachineMemOperand::Flags MMOFlags = LLD->getMemOperand()->getFlags();
|
|
if (!RLD->isInvariant())
|
|
MMOFlags &= ~MachineMemOperand::MOInvariant;
|
|
if (!RLD->isDereferenceable())
|
|
MMOFlags &= ~MachineMemOperand::MODereferenceable;
|
|
if (LLD->getExtensionType() == ISD::NON_EXTLOAD) {
|
|
// FIXME: Discards pointer and AA info.
|
|
Load = DAG.getLoad(TheSelect->getValueType(0), SDLoc(TheSelect),
|
|
LLD->getChain(), Addr, MachinePointerInfo(), Alignment,
|
|
MMOFlags);
|
|
} else {
|
|
// FIXME: Discards pointer and AA info.
|
|
Load = DAG.getExtLoad(
|
|
LLD->getExtensionType() == ISD::EXTLOAD ? RLD->getExtensionType()
|
|
: LLD->getExtensionType(),
|
|
SDLoc(TheSelect), TheSelect->getValueType(0), LLD->getChain(), Addr,
|
|
MachinePointerInfo(), LLD->getMemoryVT(), Alignment, MMOFlags);
|
|
}
|
|
|
|
// Users of the select now use the result of the load.
|
|
CombineTo(TheSelect, Load);
|
|
|
|
// Users of the old loads now use the new load's chain. We know the
|
|
// old-load value is dead now.
|
|
CombineTo(LHS.getNode(), Load.getValue(0), Load.getValue(1));
|
|
CombineTo(RHS.getNode(), Load.getValue(0), Load.getValue(1));
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Try to fold an expression of the form (N0 cond N1) ? N2 : N3 to a shift and
|
|
/// bitwise 'and'.
|
|
SDValue DAGCombiner::foldSelectCCToShiftAnd(const SDLoc &DL, SDValue N0,
|
|
SDValue N1, SDValue N2, SDValue N3,
|
|
ISD::CondCode CC) {
|
|
// If this is a select where the false operand is zero and the compare is a
|
|
// check of the sign bit, see if we can perform the "gzip trick":
|
|
// select_cc setlt X, 0, A, 0 -> and (sra X, size(X)-1), A
|
|
// select_cc setgt X, 0, A, 0 -> and (not (sra X, size(X)-1)), A
|
|
EVT XType = N0.getValueType();
|
|
EVT AType = N2.getValueType();
|
|
if (!isNullConstant(N3) || !XType.bitsGE(AType))
|
|
return SDValue();
|
|
|
|
// If the comparison is testing for a positive value, we have to invert
|
|
// the sign bit mask, so only do that transform if the target has a bitwise
|
|
// 'and not' instruction (the invert is free).
|
|
if (CC == ISD::SETGT && TLI.hasAndNot(N2)) {
|
|
// (X > -1) ? A : 0
|
|
// (X > 0) ? X : 0 <-- This is canonical signed max.
|
|
if (!(isAllOnesConstant(N1) || (isNullConstant(N1) && N0 == N2)))
|
|
return SDValue();
|
|
} else if (CC == ISD::SETLT) {
|
|
// (X < 0) ? A : 0
|
|
// (X < 1) ? X : 0 <-- This is un-canonicalized signed min.
|
|
if (!(isNullConstant(N1) || (isOneConstant(N1) && N0 == N2)))
|
|
return SDValue();
|
|
} else {
|
|
return SDValue();
|
|
}
|
|
|
|
// and (sra X, size(X)-1), A -> "and (srl X, C2), A" iff A is a single-bit
|
|
// constant.
|
|
EVT ShiftAmtTy = getShiftAmountTy(N0.getValueType());
|
|
auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
|
|
if (N2C && ((N2C->getAPIntValue() & (N2C->getAPIntValue() - 1)) == 0)) {
|
|
unsigned ShCt = XType.getSizeInBits() - N2C->getAPIntValue().logBase2() - 1;
|
|
if (!TLI.shouldAvoidTransformToShift(XType, ShCt)) {
|
|
SDValue ShiftAmt = DAG.getConstant(ShCt, DL, ShiftAmtTy);
|
|
SDValue Shift = DAG.getNode(ISD::SRL, DL, XType, N0, ShiftAmt);
|
|
AddToWorklist(Shift.getNode());
|
|
|
|
if (XType.bitsGT(AType)) {
|
|
Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
|
|
AddToWorklist(Shift.getNode());
|
|
}
|
|
|
|
if (CC == ISD::SETGT)
|
|
Shift = DAG.getNOT(DL, Shift, AType);
|
|
|
|
return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
|
|
}
|
|
}
|
|
|
|
unsigned ShCt = XType.getSizeInBits() - 1;
|
|
if (TLI.shouldAvoidTransformToShift(XType, ShCt))
|
|
return SDValue();
|
|
|
|
SDValue ShiftAmt = DAG.getConstant(ShCt, DL, ShiftAmtTy);
|
|
SDValue Shift = DAG.getNode(ISD::SRA, DL, XType, N0, ShiftAmt);
|
|
AddToWorklist(Shift.getNode());
|
|
|
|
if (XType.bitsGT(AType)) {
|
|
Shift = DAG.getNode(ISD::TRUNCATE, DL, AType, Shift);
|
|
AddToWorklist(Shift.getNode());
|
|
}
|
|
|
|
if (CC == ISD::SETGT)
|
|
Shift = DAG.getNOT(DL, Shift, AType);
|
|
|
|
return DAG.getNode(ISD::AND, DL, AType, Shift, N2);
|
|
}
|
|
|
|
// Fold select(cc, binop(), binop()) -> binop(select(), select()) etc.
|
|
SDValue DAGCombiner::foldSelectOfBinops(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
SDValue N2 = N->getOperand(2);
|
|
EVT VT = N->getValueType(0);
|
|
SDLoc DL(N);
|
|
|
|
unsigned BinOpc = N1.getOpcode();
|
|
if (!TLI.isBinOp(BinOpc) || (N2.getOpcode() != BinOpc))
|
|
return SDValue();
|
|
|
|
if (!N->isOnlyUserOf(N0.getNode()) || !N->isOnlyUserOf(N1.getNode()))
|
|
return SDValue();
|
|
|
|
// Fold select(cond, binop(x, y), binop(z, y))
|
|
// --> binop(select(cond, x, z), y)
|
|
if (N1.getOperand(1) == N2.getOperand(1)) {
|
|
SDValue NewSel =
|
|
DAG.getSelect(DL, VT, N0, N1.getOperand(0), N2.getOperand(0));
|
|
SDValue NewBinOp = DAG.getNode(BinOpc, DL, VT, NewSel, N1.getOperand(1));
|
|
NewBinOp->setFlags(N1->getFlags());
|
|
NewBinOp->intersectFlagsWith(N2->getFlags());
|
|
return NewBinOp;
|
|
}
|
|
|
|
// Fold select(cond, binop(x, y), binop(x, z))
|
|
// --> binop(x, select(cond, y, z))
|
|
// Second op VT might be different (e.g. shift amount type)
|
|
if (N1.getOperand(0) == N2.getOperand(0) &&
|
|
VT == N1.getOperand(1).getValueType() &&
|
|
VT == N2.getOperand(1).getValueType()) {
|
|
SDValue NewSel =
|
|
DAG.getSelect(DL, VT, N0, N1.getOperand(1), N2.getOperand(1));
|
|
SDValue NewBinOp = DAG.getNode(BinOpc, DL, VT, N1.getOperand(0), NewSel);
|
|
NewBinOp->setFlags(N1->getFlags());
|
|
NewBinOp->intersectFlagsWith(N2->getFlags());
|
|
return NewBinOp;
|
|
}
|
|
|
|
// TODO: Handle isCommutativeBinOp patterns as well?
|
|
return SDValue();
|
|
}
|
|
|
|
// Transform (fneg/fabs (bitconvert x)) to avoid loading constant pool values.
|
|
SDValue DAGCombiner::foldSignChangeInBitcast(SDNode *N) {
|
|
SDValue N0 = N->getOperand(0);
|
|
EVT VT = N->getValueType(0);
|
|
bool IsFabs = N->getOpcode() == ISD::FABS;
|
|
bool IsFree = IsFabs ? TLI.isFAbsFree(VT) : TLI.isFNegFree(VT);
|
|
|
|
if (IsFree || N0.getOpcode() != ISD::BITCAST || !N0.hasOneUse())
|
|
return SDValue();
|
|
|
|
SDValue Int = N0.getOperand(0);
|
|
EVT IntVT = Int.getValueType();
|
|
|
|
// The operand to cast should be integer.
|
|
if (!IntVT.isInteger() || IntVT.isVector())
|
|
return SDValue();
|
|
|
|
// (fneg (bitconvert x)) -> (bitconvert (xor x sign))
|
|
// (fabs (bitconvert x)) -> (bitconvert (and x ~sign))
|
|
APInt SignMask;
|
|
if (N0.getValueType().isVector()) {
|
|
// For vector, create a sign mask (0x80...) or its inverse (for fabs,
|
|
// 0x7f...) per element and splat it.
|
|
SignMask = APInt::getSignMask(N0.getScalarValueSizeInBits());
|
|
if (IsFabs)
|
|
SignMask = ~SignMask;
|
|
SignMask = APInt::getSplat(IntVT.getSizeInBits(), SignMask);
|
|
} else {
|
|
// For scalar, just use the sign mask (0x80... or the inverse, 0x7f...)
|
|
SignMask = APInt::getSignMask(IntVT.getSizeInBits());
|
|
if (IsFabs)
|
|
SignMask = ~SignMask;
|
|
}
|
|
SDLoc DL(N0);
|
|
Int = DAG.getNode(IsFabs ? ISD::AND : ISD::XOR, DL, IntVT, Int,
|
|
DAG.getConstant(SignMask, DL, IntVT));
|
|
AddToWorklist(Int.getNode());
|
|
return DAG.getBitcast(VT, Int);
|
|
}
|
|
|
|
/// Turn "(a cond b) ? 1.0f : 2.0f" into "load (tmp + ((a cond b) ? 0 : 4)"
|
|
/// where "tmp" is a constant pool entry containing an array with 1.0 and 2.0
|
|
/// in it. This may be a win when the constant is not otherwise available
|
|
/// because it replaces two constant pool loads with one.
|
|
SDValue DAGCombiner::convertSelectOfFPConstantsToLoadOffset(
|
|
const SDLoc &DL, SDValue N0, SDValue N1, SDValue N2, SDValue N3,
|
|
ISD::CondCode CC) {
|
|
if (!TLI.reduceSelectOfFPConstantLoads(N0.getValueType()))
|
|
return SDValue();
|
|
|
|
// If we are before legalize types, we want the other legalization to happen
|
|
// first (for example, to avoid messing with soft float).
|
|
auto *TV = dyn_cast<ConstantFPSDNode>(N2);
|
|
auto *FV = dyn_cast<ConstantFPSDNode>(N3);
|
|
EVT VT = N2.getValueType();
|
|
if (!TV || !FV || !TLI.isTypeLegal(VT))
|
|
return SDValue();
|
|
|
|
// If a constant can be materialized without loads, this does not make sense.
|
|
if (TLI.getOperationAction(ISD::ConstantFP, VT) == TargetLowering::Legal ||
|
|
TLI.isFPImmLegal(TV->getValueAPF(), TV->getValueType(0), ForCodeSize) ||
|
|
TLI.isFPImmLegal(FV->getValueAPF(), FV->getValueType(0), ForCodeSize))
|
|
return SDValue();
|
|
|
|
// If both constants have multiple uses, then we won't need to do an extra
|
|
// load. The values are likely around in registers for other users.
|
|
if (!TV->hasOneUse() && !FV->hasOneUse())
|
|
return SDValue();
|
|
|
|
Constant *Elts[] = { const_cast<ConstantFP*>(FV->getConstantFPValue()),
|
|
const_cast<ConstantFP*>(TV->getConstantFPValue()) };
|
|
Type *FPTy = Elts[0]->getType();
|
|
const DataLayout &TD = DAG.getDataLayout();
|
|
|
|
// Create a ConstantArray of the two constants.
|
|
Constant *CA = ConstantArray::get(ArrayType::get(FPTy, 2), Elts);
|
|
SDValue CPIdx = DAG.getConstantPool(CA, TLI.getPointerTy(DAG.getDataLayout()),
|
|
TD.getPrefTypeAlign(FPTy));
|
|
Align Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlign();
|
|
|
|
// Get offsets to the 0 and 1 elements of the array, so we can select between
|
|
// them.
|
|
SDValue Zero = DAG.getIntPtrConstant(0, DL);
|
|
unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType());
|
|
SDValue One = DAG.getIntPtrConstant(EltSize, SDLoc(FV));
|
|
SDValue Cond =
|
|
DAG.getSetCC(DL, getSetCCResultType(N0.getValueType()), N0, N1, CC);
|
|
AddToWorklist(Cond.getNode());
|
|
SDValue CstOffset = DAG.getSelect(DL, Zero.getValueType(), Cond, One, Zero);
|
|
AddToWorklist(CstOffset.getNode());
|
|
CPIdx = DAG.getNode(ISD::ADD, DL, CPIdx.getValueType(), CPIdx, CstOffset);
|
|
AddToWorklist(CPIdx.getNode());
|
|
return DAG.getLoad(TV->getValueType(0), DL, DAG.getEntryNode(), CPIdx,
|
|
MachinePointerInfo::getConstantPool(
|
|
DAG.getMachineFunction()), Alignment);
|
|
}
|
|
|
|
/// Simplify an expression of the form (N0 cond N1) ? N2 : N3
|
|
/// where 'cond' is the comparison specified by CC.
|
|
SDValue DAGCombiner::SimplifySelectCC(const SDLoc &DL, SDValue N0, SDValue N1,
|
|
SDValue N2, SDValue N3, ISD::CondCode CC,
|
|
bool NotExtCompare) {
|
|
// (x ? y : y) -> y.
|
|
if (N2 == N3) return N2;
|
|
|
|
EVT CmpOpVT = N0.getValueType();
|
|
EVT CmpResVT = getSetCCResultType(CmpOpVT);
|
|
EVT VT = N2.getValueType();
|
|
auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
|
|
auto *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
|
|
auto *N3C = dyn_cast<ConstantSDNode>(N3.getNode());
|
|
|
|
// Determine if the condition we're dealing with is constant.
|
|
if (SDValue SCC = DAG.FoldSetCC(CmpResVT, N0, N1, CC, DL)) {
|
|
AddToWorklist(SCC.getNode());
|
|
if (auto *SCCC = dyn_cast<ConstantSDNode>(SCC)) {
|
|
// fold select_cc true, x, y -> x
|
|
// fold select_cc false, x, y -> y
|
|
return !(SCCC->isNullValue()) ? N2 : N3;
|
|
}
|
|
}
|
|
|
|
if (SDValue V =
|
|
convertSelectOfFPConstantsToLoadOffset(DL, N0, N1, N2, N3, CC))
|
|
return V;
|
|
|
|
if (SDValue V = foldSelectCCToShiftAnd(DL, N0, N1, N2, N3, CC))
|
|
return V;
|
|
|
|
// fold (select_cc seteq (and x, y), 0, 0, A) -> (and (shr (shl x)) A)
|
|
// where y is has a single bit set.
|
|
// A plaintext description would be, we can turn the SELECT_CC into an AND
|
|
// when the condition can be materialized as an all-ones register. Any
|
|
// single bit-test can be materialized as an all-ones register with
|
|
// shift-left and shift-right-arith.
|
|
if (CC == ISD::SETEQ && N0->getOpcode() == ISD::AND &&
|
|
N0->getValueType(0) == VT && isNullConstant(N1) && isNullConstant(N2)) {
|
|
SDValue AndLHS = N0->getOperand(0);
|
|
auto *ConstAndRHS = dyn_cast<ConstantSDNode>(N0->getOperand(1));
|
|
if (ConstAndRHS && ConstAndRHS->getAPIntValue().countPopulation() == 1) {
|
|
// Shift the tested bit over the sign bit.
|
|
const APInt &AndMask = ConstAndRHS->getAPIntValue();
|
|
unsigned ShCt = AndMask.getBitWidth() - 1;
|
|
if (!TLI.shouldAvoidTransformToShift(VT, ShCt)) {
|
|
SDValue ShlAmt =
|
|
DAG.getConstant(AndMask.countLeadingZeros(), SDLoc(AndLHS),
|
|
getShiftAmountTy(AndLHS.getValueType()));
|
|
SDValue Shl = DAG.getNode(ISD::SHL, SDLoc(N0), VT, AndLHS, ShlAmt);
|
|
|
|
// Now arithmetic right shift it all the way over, so the result is
|
|
// either all-ones, or zero.
|
|
SDValue ShrAmt =
|
|
DAG.getConstant(ShCt, SDLoc(Shl),
|
|
getShiftAmountTy(Shl.getValueType()));
|
|
SDValue Shr = DAG.getNode(ISD::SRA, SDLoc(N0), VT, Shl, ShrAmt);
|
|
|
|
return DAG.getNode(ISD::AND, DL, VT, Shr, N3);
|
|
}
|
|
}
|
|
}
|
|
|
|
// fold select C, 16, 0 -> shl C, 4
|
|
bool Fold = N2C && isNullConstant(N3) && N2C->getAPIntValue().isPowerOf2();
|
|
bool Swap = N3C && isNullConstant(N2) && N3C->getAPIntValue().isPowerOf2();
|
|
|
|
if ((Fold || Swap) &&
|
|
TLI.getBooleanContents(CmpOpVT) ==
|
|
TargetLowering::ZeroOrOneBooleanContent &&
|
|
(!LegalOperations || TLI.isOperationLegal(ISD::SETCC, CmpOpVT))) {
|
|
|
|
if (Swap) {
|
|
CC = ISD::getSetCCInverse(CC, CmpOpVT);
|
|
std::swap(N2C, N3C);
|
|
}
|
|
|
|
// If the caller doesn't want us to simplify this into a zext of a compare,
|
|
// don't do it.
|
|
if (NotExtCompare && N2C->isOne())
|
|
return SDValue();
|
|
|
|
SDValue Temp, SCC;
|
|
// zext (setcc n0, n1)
|
|
if (LegalTypes) {
|
|
SCC = DAG.getSetCC(DL, CmpResVT, N0, N1, CC);
|
|
if (VT.bitsLT(SCC.getValueType()))
|
|
Temp = DAG.getZeroExtendInReg(SCC, SDLoc(N2), VT);
|
|
else
|
|
Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC);
|
|
} else {
|
|
SCC = DAG.getSetCC(SDLoc(N0), MVT::i1, N0, N1, CC);
|
|
Temp = DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N2), VT, SCC);
|
|
}
|
|
|
|
AddToWorklist(SCC.getNode());
|
|
AddToWorklist(Temp.getNode());
|
|
|
|
if (N2C->isOne())
|
|
return Temp;
|
|
|
|
unsigned ShCt = N2C->getAPIntValue().logBase2();
|
|
if (TLI.shouldAvoidTransformToShift(VT, ShCt))
|
|
return SDValue();
|
|
|
|
// shl setcc result by log2 n2c
|
|
return DAG.getNode(ISD::SHL, DL, N2.getValueType(), Temp,
|
|
DAG.getConstant(ShCt, SDLoc(Temp),
|
|
getShiftAmountTy(Temp.getValueType())));
|
|
}
|
|
|
|
// select_cc seteq X, 0, sizeof(X), ctlz(X) -> ctlz(X)
|
|
// select_cc seteq X, 0, sizeof(X), ctlz_zero_undef(X) -> ctlz(X)
|
|
// select_cc seteq X, 0, sizeof(X), cttz(X) -> cttz(X)
|
|
// select_cc seteq X, 0, sizeof(X), cttz_zero_undef(X) -> cttz(X)
|
|
// select_cc setne X, 0, ctlz(X), sizeof(X) -> ctlz(X)
|
|
// select_cc setne X, 0, ctlz_zero_undef(X), sizeof(X) -> ctlz(X)
|
|
// select_cc setne X, 0, cttz(X), sizeof(X) -> cttz(X)
|
|
// select_cc setne X, 0, cttz_zero_undef(X), sizeof(X) -> cttz(X)
|
|
if (N1C && N1C->isNullValue() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
|
|
SDValue ValueOnZero = N2;
|
|
SDValue Count = N3;
|
|
// If the condition is NE instead of E, swap the operands.
|
|
if (CC == ISD::SETNE)
|
|
std::swap(ValueOnZero, Count);
|
|
// Check if the value on zero is a constant equal to the bits in the type.
|
|
if (auto *ValueOnZeroC = dyn_cast<ConstantSDNode>(ValueOnZero)) {
|
|
if (ValueOnZeroC->getAPIntValue() == VT.getSizeInBits()) {
|
|
// If the other operand is cttz/cttz_zero_undef of N0, and cttz is
|
|
// legal, combine to just cttz.
|
|
if ((Count.getOpcode() == ISD::CTTZ ||
|
|
Count.getOpcode() == ISD::CTTZ_ZERO_UNDEF) &&
|
|
N0 == Count.getOperand(0) &&
|
|
(!LegalOperations || TLI.isOperationLegal(ISD::CTTZ, VT)))
|
|
return DAG.getNode(ISD::CTTZ, DL, VT, N0);
|
|
// If the other operand is ctlz/ctlz_zero_undef of N0, and ctlz is
|
|
// legal, combine to just ctlz.
|
|
if ((Count.getOpcode() == ISD::CTLZ ||
|
|
Count.getOpcode() == ISD::CTLZ_ZERO_UNDEF) &&
|
|
N0 == Count.getOperand(0) &&
|
|
(!LegalOperations || TLI.isOperationLegal(ISD::CTLZ, VT)))
|
|
return DAG.getNode(ISD::CTLZ, DL, VT, N0);
|
|
}
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// This is a stub for TargetLowering::SimplifySetCC.
|
|
SDValue DAGCombiner::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
|
|
ISD::CondCode Cond, const SDLoc &DL,
|
|
bool foldBooleans) {
|
|
TargetLowering::DAGCombinerInfo
|
|
DagCombineInfo(DAG, Level, false, this);
|
|
return TLI.SimplifySetCC(VT, N0, N1, Cond, foldBooleans, DagCombineInfo, DL);
|
|
}
|
|
|
|
/// Given an ISD::SDIV node expressing a divide by constant, return
|
|
/// a DAG expression to select that will generate the same value by multiplying
|
|
/// by a magic number.
|
|
/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
|
|
SDValue DAGCombiner::BuildSDIV(SDNode *N) {
|
|
// when optimising for minimum size, we don't want to expand a div to a mul
|
|
// and a shift.
|
|
if (DAG.getMachineFunction().getFunction().hasMinSize())
|
|
return SDValue();
|
|
|
|
SmallVector<SDNode *, 8> Built;
|
|
if (SDValue S = TLI.BuildSDIV(N, DAG, LegalOperations, Built)) {
|
|
for (SDNode *N : Built)
|
|
AddToWorklist(N);
|
|
return S;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// Given an ISD::SDIV node expressing a divide by constant power of 2, return a
|
|
/// DAG expression that will generate the same value by right shifting.
|
|
SDValue DAGCombiner::BuildSDIVPow2(SDNode *N) {
|
|
ConstantSDNode *C = isConstOrConstSplat(N->getOperand(1));
|
|
if (!C)
|
|
return SDValue();
|
|
|
|
// Avoid division by zero.
|
|
if (C->isNullValue())
|
|
return SDValue();
|
|
|
|
SmallVector<SDNode *, 8> Built;
|
|
if (SDValue S = TLI.BuildSDIVPow2(N, C->getAPIntValue(), DAG, Built)) {
|
|
for (SDNode *N : Built)
|
|
AddToWorklist(N);
|
|
return S;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// Given an ISD::UDIV node expressing a divide by constant, return a DAG
|
|
/// expression that will generate the same value by multiplying by a magic
|
|
/// number.
|
|
/// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
|
|
SDValue DAGCombiner::BuildUDIV(SDNode *N) {
|
|
// when optimising for minimum size, we don't want to expand a div to a mul
|
|
// and a shift.
|
|
if (DAG.getMachineFunction().getFunction().hasMinSize())
|
|
return SDValue();
|
|
|
|
SmallVector<SDNode *, 8> Built;
|
|
if (SDValue S = TLI.BuildUDIV(N, DAG, LegalOperations, Built)) {
|
|
for (SDNode *N : Built)
|
|
AddToWorklist(N);
|
|
return S;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// Determines the LogBase2 value for a non-null input value using the
|
|
/// transform: LogBase2(V) = (EltBits - 1) - ctlz(V).
|
|
SDValue DAGCombiner::BuildLogBase2(SDValue V, const SDLoc &DL) {
|
|
EVT VT = V.getValueType();
|
|
SDValue Ctlz = DAG.getNode(ISD::CTLZ, DL, VT, V);
|
|
SDValue Base = DAG.getConstant(VT.getScalarSizeInBits() - 1, DL, VT);
|
|
SDValue LogBase2 = DAG.getNode(ISD::SUB, DL, VT, Base, Ctlz);
|
|
return LogBase2;
|
|
}
|
|
|
|
/// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
|
|
/// For the reciprocal, we need to find the zero of the function:
|
|
/// F(X) = A X - 1 [which has a zero at X = 1/A]
|
|
/// =>
|
|
/// X_{i+1} = X_i (2 - A X_i) = X_i + X_i (1 - A X_i) [this second form
|
|
/// does not require additional intermediate precision]
|
|
/// For the last iteration, put numerator N into it to gain more precision:
|
|
/// Result = N X_i + X_i (N - N A X_i)
|
|
SDValue DAGCombiner::BuildDivEstimate(SDValue N, SDValue Op,
|
|
SDNodeFlags Flags) {
|
|
if (LegalDAG)
|
|
return SDValue();
|
|
|
|
// TODO: Handle half and/or extended types?
|
|
EVT VT = Op.getValueType();
|
|
if (VT.getScalarType() != MVT::f32 && VT.getScalarType() != MVT::f64)
|
|
return SDValue();
|
|
|
|
// If estimates are explicitly disabled for this function, we're done.
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
int Enabled = TLI.getRecipEstimateDivEnabled(VT, MF);
|
|
if (Enabled == TLI.ReciprocalEstimate::Disabled)
|
|
return SDValue();
|
|
|
|
// Estimates may be explicitly enabled for this type with a custom number of
|
|
// refinement steps.
|
|
int Iterations = TLI.getDivRefinementSteps(VT, MF);
|
|
if (SDValue Est = TLI.getRecipEstimate(Op, DAG, Enabled, Iterations)) {
|
|
AddToWorklist(Est.getNode());
|
|
|
|
SDLoc DL(Op);
|
|
if (Iterations) {
|
|
SDValue FPOne = DAG.getConstantFP(1.0, DL, VT);
|
|
|
|
// Newton iterations: Est = Est + Est (N - Arg * Est)
|
|
// If this is the last iteration, also multiply by the numerator.
|
|
for (int i = 0; i < Iterations; ++i) {
|
|
SDValue MulEst = Est;
|
|
|
|
if (i == Iterations - 1) {
|
|
MulEst = DAG.getNode(ISD::FMUL, DL, VT, N, Est, Flags);
|
|
AddToWorklist(MulEst.getNode());
|
|
}
|
|
|
|
SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Op, MulEst, Flags);
|
|
AddToWorklist(NewEst.getNode());
|
|
|
|
NewEst = DAG.getNode(ISD::FSUB, DL, VT,
|
|
(i == Iterations - 1 ? N : FPOne), NewEst, Flags);
|
|
AddToWorklist(NewEst.getNode());
|
|
|
|
NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags);
|
|
AddToWorklist(NewEst.getNode());
|
|
|
|
Est = DAG.getNode(ISD::FADD, DL, VT, MulEst, NewEst, Flags);
|
|
AddToWorklist(Est.getNode());
|
|
}
|
|
} else {
|
|
// If no iterations are available, multiply with N.
|
|
Est = DAG.getNode(ISD::FMUL, DL, VT, Est, N, Flags);
|
|
AddToWorklist(Est.getNode());
|
|
}
|
|
|
|
return Est;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
|
|
/// For the reciprocal sqrt, we need to find the zero of the function:
|
|
/// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
|
|
/// =>
|
|
/// X_{i+1} = X_i (1.5 - A X_i^2 / 2)
|
|
/// As a result, we precompute A/2 prior to the iteration loop.
|
|
SDValue DAGCombiner::buildSqrtNROneConst(SDValue Arg, SDValue Est,
|
|
unsigned Iterations,
|
|
SDNodeFlags Flags, bool Reciprocal) {
|
|
EVT VT = Arg.getValueType();
|
|
SDLoc DL(Arg);
|
|
SDValue ThreeHalves = DAG.getConstantFP(1.5, DL, VT);
|
|
|
|
// We now need 0.5 * Arg which we can write as (1.5 * Arg - Arg) so that
|
|
// this entire sequence requires only one FP constant.
|
|
SDValue HalfArg = DAG.getNode(ISD::FMUL, DL, VT, ThreeHalves, Arg, Flags);
|
|
HalfArg = DAG.getNode(ISD::FSUB, DL, VT, HalfArg, Arg, Flags);
|
|
|
|
// Newton iterations: Est = Est * (1.5 - HalfArg * Est * Est)
|
|
for (unsigned i = 0; i < Iterations; ++i) {
|
|
SDValue NewEst = DAG.getNode(ISD::FMUL, DL, VT, Est, Est, Flags);
|
|
NewEst = DAG.getNode(ISD::FMUL, DL, VT, HalfArg, NewEst, Flags);
|
|
NewEst = DAG.getNode(ISD::FSUB, DL, VT, ThreeHalves, NewEst, Flags);
|
|
Est = DAG.getNode(ISD::FMUL, DL, VT, Est, NewEst, Flags);
|
|
}
|
|
|
|
// If non-reciprocal square root is requested, multiply the result by Arg.
|
|
if (!Reciprocal)
|
|
Est = DAG.getNode(ISD::FMUL, DL, VT, Est, Arg, Flags);
|
|
|
|
return Est;
|
|
}
|
|
|
|
/// Newton iteration for a function: F(X) is X_{i+1} = X_i - F(X_i)/F'(X_i)
|
|
/// For the reciprocal sqrt, we need to find the zero of the function:
|
|
/// F(X) = 1/X^2 - A [which has a zero at X = 1/sqrt(A)]
|
|
/// =>
|
|
/// X_{i+1} = (-0.5 * X_i) * (A * X_i * X_i + (-3.0))
|
|
SDValue DAGCombiner::buildSqrtNRTwoConst(SDValue Arg, SDValue Est,
|
|
unsigned Iterations,
|
|
SDNodeFlags Flags, bool Reciprocal) {
|
|
EVT VT = Arg.getValueType();
|
|
SDLoc DL(Arg);
|
|
SDValue MinusThree = DAG.getConstantFP(-3.0, DL, VT);
|
|
SDValue MinusHalf = DAG.getConstantFP(-0.5, DL, VT);
|
|
|
|
// This routine must enter the loop below to work correctly
|
|
// when (Reciprocal == false).
|
|
assert(Iterations > 0);
|
|
|
|
// Newton iterations for reciprocal square root:
|
|
// E = (E * -0.5) * ((A * E) * E + -3.0)
|
|
for (unsigned i = 0; i < Iterations; ++i) {
|
|
SDValue AE = DAG.getNode(ISD::FMUL, DL, VT, Arg, Est, Flags);
|
|
SDValue AEE = DAG.getNode(ISD::FMUL, DL, VT, AE, Est, Flags);
|
|
SDValue RHS = DAG.getNode(ISD::FADD, DL, VT, AEE, MinusThree, Flags);
|
|
|
|
// When calculating a square root at the last iteration build:
|
|
// S = ((A * E) * -0.5) * ((A * E) * E + -3.0)
|
|
// (notice a common subexpression)
|
|
SDValue LHS;
|
|
if (Reciprocal || (i + 1) < Iterations) {
|
|
// RSQRT: LHS = (E * -0.5)
|
|
LHS = DAG.getNode(ISD::FMUL, DL, VT, Est, MinusHalf, Flags);
|
|
} else {
|
|
// SQRT: LHS = (A * E) * -0.5
|
|
LHS = DAG.getNode(ISD::FMUL, DL, VT, AE, MinusHalf, Flags);
|
|
}
|
|
|
|
Est = DAG.getNode(ISD::FMUL, DL, VT, LHS, RHS, Flags);
|
|
}
|
|
|
|
return Est;
|
|
}
|
|
|
|
/// Build code to calculate either rsqrt(Op) or sqrt(Op). In the latter case
|
|
/// Op*rsqrt(Op) is actually computed, so additional postprocessing is needed if
|
|
/// Op can be zero.
|
|
SDValue DAGCombiner::buildSqrtEstimateImpl(SDValue Op, SDNodeFlags Flags,
|
|
bool Reciprocal) {
|
|
if (LegalDAG)
|
|
return SDValue();
|
|
|
|
// TODO: Handle half and/or extended types?
|
|
EVT VT = Op.getValueType();
|
|
if (VT.getScalarType() != MVT::f32 && VT.getScalarType() != MVT::f64)
|
|
return SDValue();
|
|
|
|
// If estimates are explicitly disabled for this function, we're done.
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
int Enabled = TLI.getRecipEstimateSqrtEnabled(VT, MF);
|
|
if (Enabled == TLI.ReciprocalEstimate::Disabled)
|
|
return SDValue();
|
|
|
|
// Estimates may be explicitly enabled for this type with a custom number of
|
|
// refinement steps.
|
|
int Iterations = TLI.getSqrtRefinementSteps(VT, MF);
|
|
|
|
bool UseOneConstNR = false;
|
|
if (SDValue Est =
|
|
TLI.getSqrtEstimate(Op, DAG, Enabled, Iterations, UseOneConstNR,
|
|
Reciprocal)) {
|
|
AddToWorklist(Est.getNode());
|
|
|
|
if (Iterations)
|
|
Est = UseOneConstNR
|
|
? buildSqrtNROneConst(Op, Est, Iterations, Flags, Reciprocal)
|
|
: buildSqrtNRTwoConst(Op, Est, Iterations, Flags, Reciprocal);
|
|
if (!Reciprocal) {
|
|
SDLoc DL(Op);
|
|
// Try the target specific test first.
|
|
SDValue Test = TLI.getSqrtInputTest(Op, DAG, DAG.getDenormalMode(VT));
|
|
|
|
// The estimate is now completely wrong if the input was exactly 0.0 or
|
|
// possibly a denormal. Force the answer to 0.0 or value provided by
|
|
// target for those cases.
|
|
Est = DAG.getNode(
|
|
Test.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT, DL, VT,
|
|
Test, TLI.getSqrtResultForDenormInput(Op, DAG), Est);
|
|
}
|
|
return Est;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue DAGCombiner::buildRsqrtEstimate(SDValue Op, SDNodeFlags Flags) {
|
|
return buildSqrtEstimateImpl(Op, Flags, true);
|
|
}
|
|
|
|
SDValue DAGCombiner::buildSqrtEstimate(SDValue Op, SDNodeFlags Flags) {
|
|
return buildSqrtEstimateImpl(Op, Flags, false);
|
|
}
|
|
|
|
/// Return true if there is any possibility that the two addresses overlap.
|
|
bool DAGCombiner::isAlias(SDNode *Op0, SDNode *Op1) const {
|
|
|
|
struct MemUseCharacteristics {
|
|
bool IsVolatile;
|
|
bool IsAtomic;
|
|
SDValue BasePtr;
|
|
int64_t Offset;
|
|
Optional<int64_t> NumBytes;
|
|
MachineMemOperand *MMO;
|
|
};
|
|
|
|
auto getCharacteristics = [](SDNode *N) -> MemUseCharacteristics {
|
|
if (const auto *LSN = dyn_cast<LSBaseSDNode>(N)) {
|
|
int64_t Offset = 0;
|
|
if (auto *C = dyn_cast<ConstantSDNode>(LSN->getOffset()))
|
|
Offset = (LSN->getAddressingMode() == ISD::PRE_INC)
|
|
? C->getSExtValue()
|
|
: (LSN->getAddressingMode() == ISD::PRE_DEC)
|
|
? -1 * C->getSExtValue()
|
|
: 0;
|
|
uint64_t Size =
|
|
MemoryLocation::getSizeOrUnknown(LSN->getMemoryVT().getStoreSize());
|
|
return {LSN->isVolatile(), LSN->isAtomic(), LSN->getBasePtr(),
|
|
Offset /*base offset*/,
|
|
Optional<int64_t>(Size),
|
|
LSN->getMemOperand()};
|
|
}
|
|
if (const auto *LN = cast<LifetimeSDNode>(N))
|
|
return {false /*isVolatile*/, /*isAtomic*/ false, LN->getOperand(1),
|
|
(LN->hasOffset()) ? LN->getOffset() : 0,
|
|
(LN->hasOffset()) ? Optional<int64_t>(LN->getSize())
|
|
: Optional<int64_t>(),
|
|
(MachineMemOperand *)nullptr};
|
|
// Default.
|
|
return {false /*isvolatile*/, /*isAtomic*/ false, SDValue(),
|
|
(int64_t)0 /*offset*/,
|
|
Optional<int64_t>() /*size*/, (MachineMemOperand *)nullptr};
|
|
};
|
|
|
|
MemUseCharacteristics MUC0 = getCharacteristics(Op0),
|
|
MUC1 = getCharacteristics(Op1);
|
|
|
|
// If they are to the same address, then they must be aliases.
|
|
if (MUC0.BasePtr.getNode() && MUC0.BasePtr == MUC1.BasePtr &&
|
|
MUC0.Offset == MUC1.Offset)
|
|
return true;
|
|
|
|
// If they are both volatile then they cannot be reordered.
|
|
if (MUC0.IsVolatile && MUC1.IsVolatile)
|
|
return true;
|
|
|
|
// Be conservative about atomics for the moment
|
|
// TODO: This is way overconservative for unordered atomics (see D66309)
|
|
if (MUC0.IsAtomic && MUC1.IsAtomic)
|
|
return true;
|
|
|
|
if (MUC0.MMO && MUC1.MMO) {
|
|
if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) ||
|
|
(MUC1.MMO->isInvariant() && MUC0.MMO->isStore()))
|
|
return false;
|
|
}
|
|
|
|
// Try to prove that there is aliasing, or that there is no aliasing. Either
|
|
// way, we can return now. If nothing can be proved, proceed with more tests.
|
|
bool IsAlias;
|
|
if (BaseIndexOffset::computeAliasing(Op0, MUC0.NumBytes, Op1, MUC1.NumBytes,
|
|
DAG, IsAlias))
|
|
return IsAlias;
|
|
|
|
// The following all rely on MMO0 and MMO1 being valid. Fail conservatively if
|
|
// either are not known.
|
|
if (!MUC0.MMO || !MUC1.MMO)
|
|
return true;
|
|
|
|
// If one operation reads from invariant memory, and the other may store, they
|
|
// cannot alias. These should really be checking the equivalent of mayWrite,
|
|
// but it only matters for memory nodes other than load /store.
|
|
if ((MUC0.MMO->isInvariant() && MUC1.MMO->isStore()) ||
|
|
(MUC1.MMO->isInvariant() && MUC0.MMO->isStore()))
|
|
return false;
|
|
|
|
// If we know required SrcValue1 and SrcValue2 have relatively large
|
|
// alignment compared to the size and offset of the access, we may be able
|
|
// to prove they do not alias. This check is conservative for now to catch
|
|
// cases created by splitting vector types, it only works when the offsets are
|
|
// multiples of the size of the data.
|
|
int64_t SrcValOffset0 = MUC0.MMO->getOffset();
|
|
int64_t SrcValOffset1 = MUC1.MMO->getOffset();
|
|
Align OrigAlignment0 = MUC0.MMO->getBaseAlign();
|
|
Align OrigAlignment1 = MUC1.MMO->getBaseAlign();
|
|
auto &Size0 = MUC0.NumBytes;
|
|
auto &Size1 = MUC1.NumBytes;
|
|
if (OrigAlignment0 == OrigAlignment1 && SrcValOffset0 != SrcValOffset1 &&
|
|
Size0.hasValue() && Size1.hasValue() && *Size0 == *Size1 &&
|
|
OrigAlignment0 > *Size0 && SrcValOffset0 % *Size0 == 0 &&
|
|
SrcValOffset1 % *Size1 == 0) {
|
|
int64_t OffAlign0 = SrcValOffset0 % OrigAlignment0.value();
|
|
int64_t OffAlign1 = SrcValOffset1 % OrigAlignment1.value();
|
|
|
|
// There is no overlap between these relatively aligned accesses of
|
|
// similar size. Return no alias.
|
|
if ((OffAlign0 + *Size0) <= OffAlign1 || (OffAlign1 + *Size1) <= OffAlign0)
|
|
return false;
|
|
}
|
|
|
|
bool UseAA = CombinerGlobalAA.getNumOccurrences() > 0
|
|
? CombinerGlobalAA
|
|
: DAG.getSubtarget().useAA();
|
|
#ifndef NDEBUG
|
|
if (CombinerAAOnlyFunc.getNumOccurrences() &&
|
|
CombinerAAOnlyFunc != DAG.getMachineFunction().getName())
|
|
UseAA = false;
|
|
#endif
|
|
|
|
if (UseAA && AA && MUC0.MMO->getValue() && MUC1.MMO->getValue() &&
|
|
Size0.hasValue() && Size1.hasValue()) {
|
|
// Use alias analysis information.
|
|
int64_t MinOffset = std::min(SrcValOffset0, SrcValOffset1);
|
|
int64_t Overlap0 = *Size0 + SrcValOffset0 - MinOffset;
|
|
int64_t Overlap1 = *Size1 + SrcValOffset1 - MinOffset;
|
|
if (AA->isNoAlias(
|
|
MemoryLocation(MUC0.MMO->getValue(), Overlap0,
|
|
UseTBAA ? MUC0.MMO->getAAInfo() : AAMDNodes()),
|
|
MemoryLocation(MUC1.MMO->getValue(), Overlap1,
|
|
UseTBAA ? MUC1.MMO->getAAInfo() : AAMDNodes())))
|
|
return false;
|
|
}
|
|
|
|
// Otherwise we have to assume they alias.
|
|
return true;
|
|
}
|
|
|
|
/// Walk up chain skipping non-aliasing memory nodes,
|
|
/// looking for aliasing nodes and adding them to the Aliases vector.
|
|
void DAGCombiner::GatherAllAliases(SDNode *N, SDValue OriginalChain,
|
|
SmallVectorImpl<SDValue> &Aliases) {
|
|
SmallVector<SDValue, 8> Chains; // List of chains to visit.
|
|
SmallPtrSet<SDNode *, 16> Visited; // Visited node set.
|
|
|
|
// Get alias information for node.
|
|
// TODO: relax aliasing for unordered atomics (see D66309)
|
|
const bool IsLoad = isa<LoadSDNode>(N) && cast<LoadSDNode>(N)->isSimple();
|
|
|
|
// Starting off.
|
|
Chains.push_back(OriginalChain);
|
|
unsigned Depth = 0;
|
|
|
|
// Attempt to improve chain by a single step
|
|
std::function<bool(SDValue &)> ImproveChain = [&](SDValue &C) -> bool {
|
|
switch (C.getOpcode()) {
|
|
case ISD::EntryToken:
|
|
// No need to mark EntryToken.
|
|
C = SDValue();
|
|
return true;
|
|
case ISD::LOAD:
|
|
case ISD::STORE: {
|
|
// Get alias information for C.
|
|
// TODO: Relax aliasing for unordered atomics (see D66309)
|
|
bool IsOpLoad = isa<LoadSDNode>(C.getNode()) &&
|
|
cast<LSBaseSDNode>(C.getNode())->isSimple();
|
|
if ((IsLoad && IsOpLoad) || !isAlias(N, C.getNode())) {
|
|
// Look further up the chain.
|
|
C = C.getOperand(0);
|
|
return true;
|
|
}
|
|
// Alias, so stop here.
|
|
return false;
|
|
}
|
|
|
|
case ISD::CopyFromReg:
|
|
// Always forward past past CopyFromReg.
|
|
C = C.getOperand(0);
|
|
return true;
|
|
|
|
case ISD::LIFETIME_START:
|
|
case ISD::LIFETIME_END: {
|
|
// We can forward past any lifetime start/end that can be proven not to
|
|
// alias the memory access.
|
|
if (!isAlias(N, C.getNode())) {
|
|
// Look further up the chain.
|
|
C = C.getOperand(0);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
default:
|
|
return false;
|
|
}
|
|
};
|
|
|
|
// Look at each chain and determine if it is an alias. If so, add it to the
|
|
// aliases list. If not, then continue up the chain looking for the next
|
|
// candidate.
|
|
while (!Chains.empty()) {
|
|
SDValue Chain = Chains.pop_back_val();
|
|
|
|
// Don't bother if we've seen Chain before.
|
|
if (!Visited.insert(Chain.getNode()).second)
|
|
continue;
|
|
|
|
// For TokenFactor nodes, look at each operand and only continue up the
|
|
// chain until we reach the depth limit.
|
|
//
|
|
// FIXME: The depth check could be made to return the last non-aliasing
|
|
// chain we found before we hit a tokenfactor rather than the original
|
|
// chain.
|
|
if (Depth > TLI.getGatherAllAliasesMaxDepth()) {
|
|
Aliases.clear();
|
|
Aliases.push_back(OriginalChain);
|
|
return;
|
|
}
|
|
|
|
if (Chain.getOpcode() == ISD::TokenFactor) {
|
|
// We have to check each of the operands of the token factor for "small"
|
|
// token factors, so we queue them up. Adding the operands to the queue
|
|
// (stack) in reverse order maintains the original order and increases the
|
|
// likelihood that getNode will find a matching token factor (CSE.)
|
|
if (Chain.getNumOperands() > 16) {
|
|
Aliases.push_back(Chain);
|
|
continue;
|
|
}
|
|
for (unsigned n = Chain.getNumOperands(); n;)
|
|
Chains.push_back(Chain.getOperand(--n));
|
|
++Depth;
|
|
continue;
|
|
}
|
|
// Everything else
|
|
if (ImproveChain(Chain)) {
|
|
// Updated Chain Found, Consider new chain if one exists.
|
|
if (Chain.getNode())
|
|
Chains.push_back(Chain);
|
|
++Depth;
|
|
continue;
|
|
}
|
|
// No Improved Chain Possible, treat as Alias.
|
|
Aliases.push_back(Chain);
|
|
}
|
|
}
|
|
|
|
/// Walk up chain skipping non-aliasing memory nodes, looking for a better chain
|
|
/// (aliasing node.)
|
|
SDValue DAGCombiner::FindBetterChain(SDNode *N, SDValue OldChain) {
|
|
if (OptLevel == CodeGenOpt::None)
|
|
return OldChain;
|
|
|
|
// Ops for replacing token factor.
|
|
SmallVector<SDValue, 8> Aliases;
|
|
|
|
// Accumulate all the aliases to this node.
|
|
GatherAllAliases(N, OldChain, Aliases);
|
|
|
|
// If no operands then chain to entry token.
|
|
if (Aliases.size() == 0)
|
|
return DAG.getEntryNode();
|
|
|
|
// If a single operand then chain to it. We don't need to revisit it.
|
|
if (Aliases.size() == 1)
|
|
return Aliases[0];
|
|
|
|
// Construct a custom tailored token factor.
|
|
return DAG.getTokenFactor(SDLoc(N), Aliases);
|
|
}
|
|
|
|
namespace {
|
|
// TODO: Replace with with std::monostate when we move to C++17.
|
|
struct UnitT { } Unit;
|
|
bool operator==(const UnitT &, const UnitT &) { return true; }
|
|
bool operator!=(const UnitT &, const UnitT &) { return false; }
|
|
} // namespace
|
|
|
|
// This function tries to collect a bunch of potentially interesting
|
|
// nodes to improve the chains of, all at once. This might seem
|
|
// redundant, as this function gets called when visiting every store
|
|
// node, so why not let the work be done on each store as it's visited?
|
|
//
|
|
// I believe this is mainly important because mergeConsecutiveStores
|
|
// is unable to deal with merging stores of different sizes, so unless
|
|
// we improve the chains of all the potential candidates up-front
|
|
// before running mergeConsecutiveStores, it might only see some of
|
|
// the nodes that will eventually be candidates, and then not be able
|
|
// to go from a partially-merged state to the desired final
|
|
// fully-merged state.
|
|
|
|
bool DAGCombiner::parallelizeChainedStores(StoreSDNode *St) {
|
|
SmallVector<StoreSDNode *, 8> ChainedStores;
|
|
StoreSDNode *STChain = St;
|
|
// Intervals records which offsets from BaseIndex have been covered. In
|
|
// the common case, every store writes to the immediately previous address
|
|
// space and thus merged with the previous interval at insertion time.
|
|
|
|
using IMap =
|
|
llvm::IntervalMap<int64_t, UnitT, 8, IntervalMapHalfOpenInfo<int64_t>>;
|
|
IMap::Allocator A;
|
|
IMap Intervals(A);
|
|
|
|
// This holds the base pointer, index, and the offset in bytes from the base
|
|
// pointer.
|
|
const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG);
|
|
|
|
// We must have a base and an offset.
|
|
if (!BasePtr.getBase().getNode())
|
|
return false;
|
|
|
|
// Do not handle stores to undef base pointers.
|
|
if (BasePtr.getBase().isUndef())
|
|
return false;
|
|
|
|
// Do not handle stores to opaque types
|
|
if (St->getMemoryVT().isZeroSized())
|
|
return false;
|
|
|
|
// BaseIndexOffset assumes that offsets are fixed-size, which
|
|
// is not valid for scalable vectors where the offsets are
|
|
// scaled by `vscale`, so bail out early.
|
|
if (St->getMemoryVT().isScalableVector())
|
|
return false;
|
|
|
|
// Add ST's interval.
|
|
Intervals.insert(0, (St->getMemoryVT().getSizeInBits() + 7) / 8, Unit);
|
|
|
|
while (StoreSDNode *Chain = dyn_cast<StoreSDNode>(STChain->getChain())) {
|
|
if (Chain->getMemoryVT().isScalableVector())
|
|
return false;
|
|
|
|
// If the chain has more than one use, then we can't reorder the mem ops.
|
|
if (!SDValue(Chain, 0)->hasOneUse())
|
|
break;
|
|
// TODO: Relax for unordered atomics (see D66309)
|
|
if (!Chain->isSimple() || Chain->isIndexed())
|
|
break;
|
|
|
|
// Find the base pointer and offset for this memory node.
|
|
const BaseIndexOffset Ptr = BaseIndexOffset::match(Chain, DAG);
|
|
// Check that the base pointer is the same as the original one.
|
|
int64_t Offset;
|
|
if (!BasePtr.equalBaseIndex(Ptr, DAG, Offset))
|
|
break;
|
|
int64_t Length = (Chain->getMemoryVT().getSizeInBits() + 7) / 8;
|
|
// Make sure we don't overlap with other intervals by checking the ones to
|
|
// the left or right before inserting.
|
|
auto I = Intervals.find(Offset);
|
|
// If there's a next interval, we should end before it.
|
|
if (I != Intervals.end() && I.start() < (Offset + Length))
|
|
break;
|
|
// If there's a previous interval, we should start after it.
|
|
if (I != Intervals.begin() && (--I).stop() <= Offset)
|
|
break;
|
|
Intervals.insert(Offset, Offset + Length, Unit);
|
|
|
|
ChainedStores.push_back(Chain);
|
|
STChain = Chain;
|
|
}
|
|
|
|
// If we didn't find a chained store, exit.
|
|
if (ChainedStores.size() == 0)
|
|
return false;
|
|
|
|
// Improve all chained stores (St and ChainedStores members) starting from
|
|
// where the store chain ended and return single TokenFactor.
|
|
SDValue NewChain = STChain->getChain();
|
|
SmallVector<SDValue, 8> TFOps;
|
|
for (unsigned I = ChainedStores.size(); I;) {
|
|
StoreSDNode *S = ChainedStores[--I];
|
|
SDValue BetterChain = FindBetterChain(S, NewChain);
|
|
S = cast<StoreSDNode>(DAG.UpdateNodeOperands(
|
|
S, BetterChain, S->getOperand(1), S->getOperand(2), S->getOperand(3)));
|
|
TFOps.push_back(SDValue(S, 0));
|
|
ChainedStores[I] = S;
|
|
}
|
|
|
|
// Improve St's chain. Use a new node to avoid creating a loop from CombineTo.
|
|
SDValue BetterChain = FindBetterChain(St, NewChain);
|
|
SDValue NewST;
|
|
if (St->isTruncatingStore())
|
|
NewST = DAG.getTruncStore(BetterChain, SDLoc(St), St->getValue(),
|
|
St->getBasePtr(), St->getMemoryVT(),
|
|
St->getMemOperand());
|
|
else
|
|
NewST = DAG.getStore(BetterChain, SDLoc(St), St->getValue(),
|
|
St->getBasePtr(), St->getMemOperand());
|
|
|
|
TFOps.push_back(NewST);
|
|
|
|
// If we improved every element of TFOps, then we've lost the dependence on
|
|
// NewChain to successors of St and we need to add it back to TFOps. Do so at
|
|
// the beginning to keep relative order consistent with FindBetterChains.
|
|
auto hasImprovedChain = [&](SDValue ST) -> bool {
|
|
return ST->getOperand(0) != NewChain;
|
|
};
|
|
bool AddNewChain = llvm::all_of(TFOps, hasImprovedChain);
|
|
if (AddNewChain)
|
|
TFOps.insert(TFOps.begin(), NewChain);
|
|
|
|
SDValue TF = DAG.getTokenFactor(SDLoc(STChain), TFOps);
|
|
CombineTo(St, TF);
|
|
|
|
// Add TF and its operands to the worklist.
|
|
AddToWorklist(TF.getNode());
|
|
for (const SDValue &Op : TF->ops())
|
|
AddToWorklist(Op.getNode());
|
|
AddToWorklist(STChain);
|
|
return true;
|
|
}
|
|
|
|
bool DAGCombiner::findBetterNeighborChains(StoreSDNode *St) {
|
|
if (OptLevel == CodeGenOpt::None)
|
|
return false;
|
|
|
|
const BaseIndexOffset BasePtr = BaseIndexOffset::match(St, DAG);
|
|
|
|
// We must have a base and an offset.
|
|
if (!BasePtr.getBase().getNode())
|
|
return false;
|
|
|
|
// Do not handle stores to undef base pointers.
|
|
if (BasePtr.getBase().isUndef())
|
|
return false;
|
|
|
|
// Directly improve a chain of disjoint stores starting at St.
|
|
if (parallelizeChainedStores(St))
|
|
return true;
|
|
|
|
// Improve St's Chain..
|
|
SDValue BetterChain = FindBetterChain(St, St->getChain());
|
|
if (St->getChain() != BetterChain) {
|
|
replaceStoreChain(St, BetterChain);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// This is the entry point for the file.
|
|
void SelectionDAG::Combine(CombineLevel Level, AliasAnalysis *AA,
|
|
CodeGenOpt::Level OptLevel) {
|
|
/// This is the main entry point to this class.
|
|
DAGCombiner(*this, AA, OptLevel).Run(Level);
|
|
}
|