1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 18:54:02 +01:00
llvm-mirror/utils/TableGen/IntrinsicEmitter.cpp
2021-02-07 09:49:35 -08:00

939 lines
32 KiB
C++

//===- IntrinsicEmitter.cpp - Generate intrinsic information --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend emits information about intrinsic functions.
//
//===----------------------------------------------------------------------===//
#include "CodeGenIntrinsics.h"
#include "CodeGenTarget.h"
#include "SequenceToOffsetTable.h"
#include "TableGenBackends.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/StringMatcher.h"
#include "llvm/TableGen/StringToOffsetTable.h"
#include "llvm/TableGen/TableGenBackend.h"
#include <algorithm>
using namespace llvm;
cl::OptionCategory GenIntrinsicCat("Options for -gen-intrinsic-enums");
cl::opt<std::string>
IntrinsicPrefix("intrinsic-prefix",
cl::desc("Generate intrinsics with this target prefix"),
cl::value_desc("target prefix"), cl::cat(GenIntrinsicCat));
namespace {
class IntrinsicEmitter {
RecordKeeper &Records;
public:
IntrinsicEmitter(RecordKeeper &R) : Records(R) {}
void run(raw_ostream &OS, bool Enums);
void EmitEnumInfo(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
void EmitTargetInfo(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
void EmitIntrinsicToNameTable(const CodeGenIntrinsicTable &Ints,
raw_ostream &OS);
void EmitIntrinsicToOverloadTable(const CodeGenIntrinsicTable &Ints,
raw_ostream &OS);
void EmitGenerator(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
void EmitAttributes(const CodeGenIntrinsicTable &Ints, raw_ostream &OS);
void EmitIntrinsicToBuiltinMap(const CodeGenIntrinsicTable &Ints, bool IsGCC,
raw_ostream &OS);
};
} // End anonymous namespace
//===----------------------------------------------------------------------===//
// IntrinsicEmitter Implementation
//===----------------------------------------------------------------------===//
void IntrinsicEmitter::run(raw_ostream &OS, bool Enums) {
emitSourceFileHeader("Intrinsic Function Source Fragment", OS);
CodeGenIntrinsicTable Ints(Records);
if (Enums) {
// Emit the enum information.
EmitEnumInfo(Ints, OS);
} else {
// Emit the target metadata.
EmitTargetInfo(Ints, OS);
// Emit the intrinsic ID -> name table.
EmitIntrinsicToNameTable(Ints, OS);
// Emit the intrinsic ID -> overload table.
EmitIntrinsicToOverloadTable(Ints, OS);
// Emit the intrinsic declaration generator.
EmitGenerator(Ints, OS);
// Emit the intrinsic parameter attributes.
EmitAttributes(Ints, OS);
// Emit code to translate GCC builtins into LLVM intrinsics.
EmitIntrinsicToBuiltinMap(Ints, true, OS);
// Emit code to translate MS builtins into LLVM intrinsics.
EmitIntrinsicToBuiltinMap(Ints, false, OS);
}
}
void IntrinsicEmitter::EmitEnumInfo(const CodeGenIntrinsicTable &Ints,
raw_ostream &OS) {
// Find the TargetSet for which to generate enums. There will be an initial
// set with an empty target prefix which will include target independent
// intrinsics like dbg.value.
const CodeGenIntrinsicTable::TargetSet *Set = nullptr;
for (const auto &Target : Ints.Targets) {
if (Target.Name == IntrinsicPrefix) {
Set = &Target;
break;
}
}
if (!Set) {
std::vector<std::string> KnownTargets;
for (const auto &Target : Ints.Targets)
if (!Target.Name.empty())
KnownTargets.push_back(Target.Name);
PrintFatalError("tried to generate intrinsics for unknown target " +
IntrinsicPrefix +
"\nKnown targets are: " + join(KnownTargets, ", ") + "\n");
}
// Generate a complete header for target specific intrinsics.
if (!IntrinsicPrefix.empty()) {
std::string UpperPrefix = StringRef(IntrinsicPrefix).upper();
OS << "#ifndef LLVM_IR_INTRINSIC_" << UpperPrefix << "_ENUMS_H\n";
OS << "#define LLVM_IR_INTRINSIC_" << UpperPrefix << "_ENUMS_H\n\n";
OS << "namespace llvm {\n";
OS << "namespace Intrinsic {\n";
OS << "enum " << UpperPrefix << "Intrinsics : unsigned {\n";
}
OS << "// Enum values for intrinsics\n";
for (unsigned i = Set->Offset, e = Set->Offset + Set->Count; i != e; ++i) {
OS << " " << Ints[i].EnumName;
// Assign a value to the first intrinsic in this target set so that all
// intrinsic ids are distinct.
if (i == Set->Offset)
OS << " = " << (Set->Offset + 1);
OS << ", ";
if (Ints[i].EnumName.size() < 40)
OS.indent(40 - Ints[i].EnumName.size());
OS << " // " << Ints[i].Name << "\n";
}
// Emit num_intrinsics into the target neutral enum.
if (IntrinsicPrefix.empty()) {
OS << " num_intrinsics = " << (Ints.size() + 1) << "\n";
} else {
OS << "}; // enum\n";
OS << "} // namespace Intrinsic\n";
OS << "} // namespace llvm\n\n";
OS << "#endif\n";
}
}
void IntrinsicEmitter::EmitTargetInfo(const CodeGenIntrinsicTable &Ints,
raw_ostream &OS) {
OS << "// Target mapping\n";
OS << "#ifdef GET_INTRINSIC_TARGET_DATA\n";
OS << "struct IntrinsicTargetInfo {\n"
<< " llvm::StringLiteral Name;\n"
<< " size_t Offset;\n"
<< " size_t Count;\n"
<< "};\n";
OS << "static constexpr IntrinsicTargetInfo TargetInfos[] = {\n";
for (auto Target : Ints.Targets)
OS << " {llvm::StringLiteral(\"" << Target.Name << "\"), " << Target.Offset
<< ", " << Target.Count << "},\n";
OS << "};\n";
OS << "#endif\n\n";
}
void IntrinsicEmitter::EmitIntrinsicToNameTable(
const CodeGenIntrinsicTable &Ints, raw_ostream &OS) {
OS << "// Intrinsic ID to name table\n";
OS << "#ifdef GET_INTRINSIC_NAME_TABLE\n";
OS << " // Note that entry #0 is the invalid intrinsic!\n";
for (unsigned i = 0, e = Ints.size(); i != e; ++i)
OS << " \"" << Ints[i].Name << "\",\n";
OS << "#endif\n\n";
}
void IntrinsicEmitter::EmitIntrinsicToOverloadTable(
const CodeGenIntrinsicTable &Ints, raw_ostream &OS) {
OS << "// Intrinsic ID to overload bitset\n";
OS << "#ifdef GET_INTRINSIC_OVERLOAD_TABLE\n";
OS << "static const uint8_t OTable[] = {\n";
OS << " 0";
for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
// Add one to the index so we emit a null bit for the invalid #0 intrinsic.
if ((i+1)%8 == 0)
OS << ",\n 0";
if (Ints[i].isOverloaded)
OS << " | (1<<" << (i+1)%8 << ')';
}
OS << "\n};\n\n";
// OTable contains a true bit at the position if the intrinsic is overloaded.
OS << "return (OTable[id/8] & (1 << (id%8))) != 0;\n";
OS << "#endif\n\n";
}
// NOTE: This must be kept in synch with the copy in lib/IR/Function.cpp!
enum IIT_Info {
// Common values should be encoded with 0-15.
IIT_Done = 0,
IIT_I1 = 1,
IIT_I8 = 2,
IIT_I16 = 3,
IIT_I32 = 4,
IIT_I64 = 5,
IIT_F16 = 6,
IIT_F32 = 7,
IIT_F64 = 8,
IIT_V2 = 9,
IIT_V4 = 10,
IIT_V8 = 11,
IIT_V16 = 12,
IIT_V32 = 13,
IIT_PTR = 14,
IIT_ARG = 15,
// Values from 16+ are only encodable with the inefficient encoding.
IIT_V64 = 16,
IIT_MMX = 17,
IIT_TOKEN = 18,
IIT_METADATA = 19,
IIT_EMPTYSTRUCT = 20,
IIT_STRUCT2 = 21,
IIT_STRUCT3 = 22,
IIT_STRUCT4 = 23,
IIT_STRUCT5 = 24,
IIT_EXTEND_ARG = 25,
IIT_TRUNC_ARG = 26,
IIT_ANYPTR = 27,
IIT_V1 = 28,
IIT_VARARG = 29,
IIT_HALF_VEC_ARG = 30,
IIT_SAME_VEC_WIDTH_ARG = 31,
IIT_PTR_TO_ARG = 32,
IIT_PTR_TO_ELT = 33,
IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
IIT_I128 = 35,
IIT_V512 = 36,
IIT_V1024 = 37,
IIT_STRUCT6 = 38,
IIT_STRUCT7 = 39,
IIT_STRUCT8 = 40,
IIT_F128 = 41,
IIT_VEC_ELEMENT = 42,
IIT_SCALABLE_VEC = 43,
IIT_SUBDIVIDE2_ARG = 44,
IIT_SUBDIVIDE4_ARG = 45,
IIT_VEC_OF_BITCASTS_TO_INT = 46,
IIT_V128 = 47,
IIT_BF16 = 48,
IIT_STRUCT9 = 49,
IIT_V256 = 50,
IIT_AMX = 51
};
static void EncodeFixedValueType(MVT::SimpleValueType VT,
std::vector<unsigned char> &Sig) {
if (MVT(VT).isInteger()) {
unsigned BitWidth = MVT(VT).getFixedSizeInBits();
switch (BitWidth) {
default: PrintFatalError("unhandled integer type width in intrinsic!");
case 1: return Sig.push_back(IIT_I1);
case 8: return Sig.push_back(IIT_I8);
case 16: return Sig.push_back(IIT_I16);
case 32: return Sig.push_back(IIT_I32);
case 64: return Sig.push_back(IIT_I64);
case 128: return Sig.push_back(IIT_I128);
}
}
switch (VT) {
default: PrintFatalError("unhandled MVT in intrinsic!");
case MVT::f16: return Sig.push_back(IIT_F16);
case MVT::bf16: return Sig.push_back(IIT_BF16);
case MVT::f32: return Sig.push_back(IIT_F32);
case MVT::f64: return Sig.push_back(IIT_F64);
case MVT::f128: return Sig.push_back(IIT_F128);
case MVT::token: return Sig.push_back(IIT_TOKEN);
case MVT::Metadata: return Sig.push_back(IIT_METADATA);
case MVT::x86mmx: return Sig.push_back(IIT_MMX);
case MVT::x86amx: return Sig.push_back(IIT_AMX);
// MVT::OtherVT is used to mean the empty struct type here.
case MVT::Other: return Sig.push_back(IIT_EMPTYSTRUCT);
// MVT::isVoid is used to represent varargs here.
case MVT::isVoid: return Sig.push_back(IIT_VARARG);
}
}
#if defined(_MSC_VER) && !defined(__clang__)
#pragma optimize("",off) // MSVC 2015 optimizer can't deal with this function.
#endif
static void EncodeFixedType(Record *R, std::vector<unsigned char> &ArgCodes,
unsigned &NextArgCode,
std::vector<unsigned char> &Sig,
ArrayRef<unsigned char> Mapping) {
if (R->isSubClassOf("LLVMMatchType")) {
unsigned Number = Mapping[R->getValueAsInt("Number")];
assert(Number < ArgCodes.size() && "Invalid matching number!");
if (R->isSubClassOf("LLVMExtendedType"))
Sig.push_back(IIT_EXTEND_ARG);
else if (R->isSubClassOf("LLVMTruncatedType"))
Sig.push_back(IIT_TRUNC_ARG);
else if (R->isSubClassOf("LLVMHalfElementsVectorType"))
Sig.push_back(IIT_HALF_VEC_ARG);
else if (R->isSubClassOf("LLVMScalarOrSameVectorWidth")) {
Sig.push_back(IIT_SAME_VEC_WIDTH_ARG);
Sig.push_back((Number << 3) | ArgCodes[Number]);
MVT::SimpleValueType VT = getValueType(R->getValueAsDef("ElTy"));
EncodeFixedValueType(VT, Sig);
return;
}
else if (R->isSubClassOf("LLVMPointerTo"))
Sig.push_back(IIT_PTR_TO_ARG);
else if (R->isSubClassOf("LLVMVectorOfAnyPointersToElt")) {
Sig.push_back(IIT_VEC_OF_ANYPTRS_TO_ELT);
// Encode overloaded ArgNo
Sig.push_back(NextArgCode++);
// Encode LLVMMatchType<Number> ArgNo
Sig.push_back(Number);
return;
} else if (R->isSubClassOf("LLVMPointerToElt"))
Sig.push_back(IIT_PTR_TO_ELT);
else if (R->isSubClassOf("LLVMVectorElementType"))
Sig.push_back(IIT_VEC_ELEMENT);
else if (R->isSubClassOf("LLVMSubdivide2VectorType"))
Sig.push_back(IIT_SUBDIVIDE2_ARG);
else if (R->isSubClassOf("LLVMSubdivide4VectorType"))
Sig.push_back(IIT_SUBDIVIDE4_ARG);
else if (R->isSubClassOf("LLVMVectorOfBitcastsToInt"))
Sig.push_back(IIT_VEC_OF_BITCASTS_TO_INT);
else
Sig.push_back(IIT_ARG);
return Sig.push_back((Number << 3) | 7 /*IITDescriptor::AK_MatchType*/);
}
MVT::SimpleValueType VT = getValueType(R->getValueAsDef("VT"));
unsigned Tmp = 0;
switch (VT) {
default: break;
case MVT::iPTRAny: ++Tmp; LLVM_FALLTHROUGH;
case MVT::vAny: ++Tmp; LLVM_FALLTHROUGH;
case MVT::fAny: ++Tmp; LLVM_FALLTHROUGH;
case MVT::iAny: ++Tmp; LLVM_FALLTHROUGH;
case MVT::Any: {
// If this is an "any" valuetype, then the type is the type of the next
// type in the list specified to getIntrinsic().
Sig.push_back(IIT_ARG);
// Figure out what arg # this is consuming, and remember what kind it was.
assert(NextArgCode < ArgCodes.size() && ArgCodes[NextArgCode] == Tmp &&
"Invalid or no ArgCode associated with overloaded VT!");
unsigned ArgNo = NextArgCode++;
// Encode what sort of argument it must be in the low 3 bits of the ArgNo.
return Sig.push_back((ArgNo << 3) | Tmp);
}
case MVT::iPTR: {
unsigned AddrSpace = 0;
if (R->isSubClassOf("LLVMQualPointerType")) {
AddrSpace = R->getValueAsInt("AddrSpace");
assert(AddrSpace < 256 && "Address space exceeds 255");
}
if (AddrSpace) {
Sig.push_back(IIT_ANYPTR);
Sig.push_back(AddrSpace);
} else {
Sig.push_back(IIT_PTR);
}
return EncodeFixedType(R->getValueAsDef("ElTy"), ArgCodes, NextArgCode, Sig,
Mapping);
}
}
if (MVT(VT).isVector()) {
MVT VVT = VT;
if (VVT.isScalableVector())
Sig.push_back(IIT_SCALABLE_VEC);
switch (VVT.getVectorNumElements()) {
default: PrintFatalError("unhandled vector type width in intrinsic!");
case 1: Sig.push_back(IIT_V1); break;
case 2: Sig.push_back(IIT_V2); break;
case 4: Sig.push_back(IIT_V4); break;
case 8: Sig.push_back(IIT_V8); break;
case 16: Sig.push_back(IIT_V16); break;
case 32: Sig.push_back(IIT_V32); break;
case 64: Sig.push_back(IIT_V64); break;
case 128: Sig.push_back(IIT_V128); break;
case 256: Sig.push_back(IIT_V256); break;
case 512: Sig.push_back(IIT_V512); break;
case 1024: Sig.push_back(IIT_V1024); break;
}
return EncodeFixedValueType(VVT.getVectorElementType().SimpleTy, Sig);
}
EncodeFixedValueType(VT, Sig);
}
static void UpdateArgCodes(Record *R, std::vector<unsigned char> &ArgCodes,
unsigned int &NumInserted,
SmallVectorImpl<unsigned char> &Mapping) {
if (R->isSubClassOf("LLVMMatchType")) {
if (R->isSubClassOf("LLVMVectorOfAnyPointersToElt")) {
ArgCodes.push_back(3 /*vAny*/);
++NumInserted;
}
return;
}
unsigned Tmp = 0;
switch (getValueType(R->getValueAsDef("VT"))) {
default: break;
case MVT::iPTR:
UpdateArgCodes(R->getValueAsDef("ElTy"), ArgCodes, NumInserted, Mapping);
break;
case MVT::iPTRAny:
++Tmp;
LLVM_FALLTHROUGH;
case MVT::vAny:
++Tmp;
LLVM_FALLTHROUGH;
case MVT::fAny:
++Tmp;
LLVM_FALLTHROUGH;
case MVT::iAny:
++Tmp;
LLVM_FALLTHROUGH;
case MVT::Any:
unsigned OriginalIdx = ArgCodes.size() - NumInserted;
assert(OriginalIdx >= Mapping.size());
Mapping.resize(OriginalIdx+1);
Mapping[OriginalIdx] = ArgCodes.size();
ArgCodes.push_back(Tmp);
break;
}
}
#if defined(_MSC_VER) && !defined(__clang__)
#pragma optimize("",on)
#endif
/// ComputeFixedEncoding - If we can encode the type signature for this
/// intrinsic into 32 bits, return it. If not, return ~0U.
static void ComputeFixedEncoding(const CodeGenIntrinsic &Int,
std::vector<unsigned char> &TypeSig) {
std::vector<unsigned char> ArgCodes;
// Add codes for any overloaded result VTs.
unsigned int NumInserted = 0;
SmallVector<unsigned char, 8> ArgMapping;
for (unsigned i = 0, e = Int.IS.RetVTs.size(); i != e; ++i)
UpdateArgCodes(Int.IS.RetTypeDefs[i], ArgCodes, NumInserted, ArgMapping);
// Add codes for any overloaded operand VTs.
for (unsigned i = 0, e = Int.IS.ParamTypeDefs.size(); i != e; ++i)
UpdateArgCodes(Int.IS.ParamTypeDefs[i], ArgCodes, NumInserted, ArgMapping);
unsigned NextArgCode = 0;
if (Int.IS.RetVTs.empty())
TypeSig.push_back(IIT_Done);
else if (Int.IS.RetVTs.size() == 1 &&
Int.IS.RetVTs[0] == MVT::isVoid)
TypeSig.push_back(IIT_Done);
else {
switch (Int.IS.RetVTs.size()) {
case 1: break;
case 2: TypeSig.push_back(IIT_STRUCT2); break;
case 3: TypeSig.push_back(IIT_STRUCT3); break;
case 4: TypeSig.push_back(IIT_STRUCT4); break;
case 5: TypeSig.push_back(IIT_STRUCT5); break;
case 6: TypeSig.push_back(IIT_STRUCT6); break;
case 7: TypeSig.push_back(IIT_STRUCT7); break;
case 8: TypeSig.push_back(IIT_STRUCT8); break;
case 9: TypeSig.push_back(IIT_STRUCT9); break;
default: llvm_unreachable("Unhandled case in struct");
}
for (unsigned i = 0, e = Int.IS.RetVTs.size(); i != e; ++i)
EncodeFixedType(Int.IS.RetTypeDefs[i], ArgCodes, NextArgCode, TypeSig,
ArgMapping);
}
for (unsigned i = 0, e = Int.IS.ParamTypeDefs.size(); i != e; ++i)
EncodeFixedType(Int.IS.ParamTypeDefs[i], ArgCodes, NextArgCode, TypeSig,
ArgMapping);
}
static void printIITEntry(raw_ostream &OS, unsigned char X) {
OS << (unsigned)X;
}
void IntrinsicEmitter::EmitGenerator(const CodeGenIntrinsicTable &Ints,
raw_ostream &OS) {
// If we can compute a 32-bit fixed encoding for this intrinsic, do so and
// capture it in this vector, otherwise store a ~0U.
std::vector<unsigned> FixedEncodings;
SequenceToOffsetTable<std::vector<unsigned char> > LongEncodingTable;
std::vector<unsigned char> TypeSig;
// Compute the unique argument type info.
for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
// Get the signature for the intrinsic.
TypeSig.clear();
ComputeFixedEncoding(Ints[i], TypeSig);
// Check to see if we can encode it into a 32-bit word. We can only encode
// 8 nibbles into a 32-bit word.
if (TypeSig.size() <= 8) {
bool Failed = false;
unsigned Result = 0;
for (unsigned i = 0, e = TypeSig.size(); i != e; ++i) {
// If we had an unencodable argument, bail out.
if (TypeSig[i] > 15) {
Failed = true;
break;
}
Result = (Result << 4) | TypeSig[e-i-1];
}
// If this could be encoded into a 31-bit word, return it.
if (!Failed && (Result >> 31) == 0) {
FixedEncodings.push_back(Result);
continue;
}
}
// Otherwise, we're going to unique the sequence into the
// LongEncodingTable, and use its offset in the 32-bit table instead.
LongEncodingTable.add(TypeSig);
// This is a placehold that we'll replace after the table is laid out.
FixedEncodings.push_back(~0U);
}
LongEncodingTable.layout();
OS << "// Global intrinsic function declaration type table.\n";
OS << "#ifdef GET_INTRINSIC_GENERATOR_GLOBAL\n";
OS << "static const unsigned IIT_Table[] = {\n ";
for (unsigned i = 0, e = FixedEncodings.size(); i != e; ++i) {
if ((i & 7) == 7)
OS << "\n ";
// If the entry fit in the table, just emit it.
if (FixedEncodings[i] != ~0U) {
OS << "0x" << Twine::utohexstr(FixedEncodings[i]) << ", ";
continue;
}
TypeSig.clear();
ComputeFixedEncoding(Ints[i], TypeSig);
// Otherwise, emit the offset into the long encoding table. We emit it this
// way so that it is easier to read the offset in the .def file.
OS << "(1U<<31) | " << LongEncodingTable.get(TypeSig) << ", ";
}
OS << "0\n};\n\n";
// Emit the shared table of register lists.
OS << "static const unsigned char IIT_LongEncodingTable[] = {\n";
if (!LongEncodingTable.empty())
LongEncodingTable.emit(OS, printIITEntry);
OS << " 255\n};\n\n";
OS << "#endif\n\n"; // End of GET_INTRINSIC_GENERATOR_GLOBAL
}
namespace {
struct AttributeComparator {
bool operator()(const CodeGenIntrinsic *L, const CodeGenIntrinsic *R) const {
// Sort throwing intrinsics after non-throwing intrinsics.
if (L->canThrow != R->canThrow)
return R->canThrow;
if (L->isNoDuplicate != R->isNoDuplicate)
return R->isNoDuplicate;
if (L->isNoReturn != R->isNoReturn)
return R->isNoReturn;
if (L->isNoSync != R->isNoSync)
return R->isNoSync;
if (L->isNoFree != R->isNoFree)
return R->isNoFree;
if (L->isWillReturn != R->isWillReturn)
return R->isWillReturn;
if (L->isCold != R->isCold)
return R->isCold;
if (L->isConvergent != R->isConvergent)
return R->isConvergent;
if (L->isSpeculatable != R->isSpeculatable)
return R->isSpeculatable;
if (L->hasSideEffects != R->hasSideEffects)
return R->hasSideEffects;
// Try to order by readonly/readnone attribute.
CodeGenIntrinsic::ModRefBehavior LK = L->ModRef;
CodeGenIntrinsic::ModRefBehavior RK = R->ModRef;
if (LK != RK) return (LK > RK);
// Order by argument attributes.
// This is reliable because each side is already sorted internally.
return (L->ArgumentAttributes < R->ArgumentAttributes);
}
};
} // End anonymous namespace
/// EmitAttributes - This emits the Intrinsic::getAttributes method.
void IntrinsicEmitter::EmitAttributes(const CodeGenIntrinsicTable &Ints,
raw_ostream &OS) {
OS << "// Add parameter attributes that are not common to all intrinsics.\n";
OS << "#ifdef GET_INTRINSIC_ATTRIBUTES\n";
OS << "AttributeList Intrinsic::getAttributes(LLVMContext &C, ID id) {\n";
// Compute the maximum number of attribute arguments and the map
typedef std::map<const CodeGenIntrinsic*, unsigned,
AttributeComparator> UniqAttrMapTy;
UniqAttrMapTy UniqAttributes;
unsigned maxArgAttrs = 0;
unsigned AttrNum = 0;
for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
const CodeGenIntrinsic &intrinsic = Ints[i];
maxArgAttrs =
std::max(maxArgAttrs, unsigned(intrinsic.ArgumentAttributes.size()));
unsigned &N = UniqAttributes[&intrinsic];
if (N) continue;
N = ++AttrNum;
assert(N < 65536 && "Too many unique attributes for table!");
}
// Emit an array of AttributeList. Most intrinsics will have at least one
// entry, for the function itself (index ~1), which is usually nounwind.
OS << " static const uint16_t IntrinsicsToAttributesMap[] = {\n";
for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
const CodeGenIntrinsic &intrinsic = Ints[i];
OS << " " << UniqAttributes[&intrinsic] << ", // "
<< intrinsic.Name << "\n";
}
OS << " };\n\n";
OS << " AttributeList AS[" << maxArgAttrs + 1 << "];\n";
OS << " unsigned NumAttrs = 0;\n";
OS << " if (id != 0) {\n";
OS << " switch(IntrinsicsToAttributesMap[id - 1]) {\n";
OS << " default: llvm_unreachable(\"Invalid attribute number\");\n";
for (UniqAttrMapTy::const_iterator I = UniqAttributes.begin(),
E = UniqAttributes.end(); I != E; ++I) {
OS << " case " << I->second << ": {\n";
const CodeGenIntrinsic &intrinsic = *(I->first);
// Keep track of the number of attributes we're writing out.
unsigned numAttrs = 0;
// The argument attributes are alreadys sorted by argument index.
unsigned ai = 0, ae = intrinsic.ArgumentAttributes.size();
if (ae) {
while (ai != ae) {
unsigned attrIdx = intrinsic.ArgumentAttributes[ai].Index;
OS << " const Attribute::AttrKind AttrParam" << attrIdx << "[]= {";
ListSeparator LS(",");
bool AllValuesAreZero = true;
SmallVector<uint64_t, 8> Values;
do {
switch (intrinsic.ArgumentAttributes[ai].Kind) {
case CodeGenIntrinsic::NoCapture:
OS << LS << "Attribute::NoCapture";
break;
case CodeGenIntrinsic::NoAlias:
OS << LS << "Attribute::NoAlias";
break;
case CodeGenIntrinsic::NoUndef:
OS << LS << "Attribute::NoUndef";
break;
case CodeGenIntrinsic::Returned:
OS << LS << "Attribute::Returned";
break;
case CodeGenIntrinsic::ReadOnly:
OS << LS << "Attribute::ReadOnly";
break;
case CodeGenIntrinsic::WriteOnly:
OS << LS << "Attribute::WriteOnly";
break;
case CodeGenIntrinsic::ReadNone:
OS << LS << "Attribute::ReadNone";
break;
case CodeGenIntrinsic::ImmArg:
OS << LS << "Attribute::ImmArg";
break;
case CodeGenIntrinsic::Alignment:
OS << LS << "Attribute::Alignment";
break;
}
uint64_t V = intrinsic.ArgumentAttributes[ai].Value;
Values.push_back(V);
AllValuesAreZero &= (V == 0);
++ai;
} while (ai != ae && intrinsic.ArgumentAttributes[ai].Index == attrIdx);
OS << "};\n";
// Generate attribute value array if not all attribute values are zero.
if (!AllValuesAreZero) {
OS << " const uint64_t AttrValParam" << attrIdx << "[]= {";
ListSeparator LSV(",");
for (const auto V : Values)
OS << LSV << V;
OS << "};\n";
}
OS << " AS[" << numAttrs++ << "] = AttributeList::get(C, "
<< attrIdx << ", AttrParam" << attrIdx;
if (!AllValuesAreZero)
OS << ", AttrValParam" << attrIdx;
OS << ");\n";
}
}
if (!intrinsic.canThrow ||
(intrinsic.ModRef != CodeGenIntrinsic::ReadWriteMem &&
!intrinsic.hasSideEffects) ||
intrinsic.isNoReturn || intrinsic.isNoSync || intrinsic.isNoFree ||
intrinsic.isWillReturn || intrinsic.isCold || intrinsic.isNoDuplicate ||
intrinsic.isConvergent || intrinsic.isSpeculatable) {
OS << " const Attribute::AttrKind Atts[] = {";
ListSeparator LS(",");
if (!intrinsic.canThrow)
OS << LS << "Attribute::NoUnwind";
if (intrinsic.isNoReturn)
OS << LS << "Attribute::NoReturn";
if (intrinsic.isNoSync)
OS << LS << "Attribute::NoSync";
if (intrinsic.isNoFree)
OS << LS << "Attribute::NoFree";
if (intrinsic.isWillReturn)
OS << LS << "Attribute::WillReturn";
if (intrinsic.isCold)
OS << LS << "Attribute::Cold";
if (intrinsic.isNoDuplicate)
OS << LS << "Attribute::NoDuplicate";
if (intrinsic.isConvergent)
OS << LS << "Attribute::Convergent";
if (intrinsic.isSpeculatable)
OS << LS << "Attribute::Speculatable";
switch (intrinsic.ModRef) {
case CodeGenIntrinsic::NoMem:
if (intrinsic.hasSideEffects)
break;
OS << LS;
OS << "Attribute::ReadNone";
break;
case CodeGenIntrinsic::ReadArgMem:
OS << LS;
OS << "Attribute::ReadOnly,";
OS << "Attribute::ArgMemOnly";
break;
case CodeGenIntrinsic::ReadMem:
OS << LS;
OS << "Attribute::ReadOnly";
break;
case CodeGenIntrinsic::ReadInaccessibleMem:
OS << LS;
OS << "Attribute::ReadOnly,";
OS << "Attribute::InaccessibleMemOnly";
break;
case CodeGenIntrinsic::ReadInaccessibleMemOrArgMem:
OS << LS;
OS << "Attribute::ReadOnly,";
OS << "Attribute::InaccessibleMemOrArgMemOnly";
break;
case CodeGenIntrinsic::WriteArgMem:
OS << LS;
OS << "Attribute::WriteOnly,";
OS << "Attribute::ArgMemOnly";
break;
case CodeGenIntrinsic::WriteMem:
OS << LS;
OS << "Attribute::WriteOnly";
break;
case CodeGenIntrinsic::WriteInaccessibleMem:
OS << LS;
OS << "Attribute::WriteOnly,";
OS << "Attribute::InaccessibleMemOnly";
break;
case CodeGenIntrinsic::WriteInaccessibleMemOrArgMem:
OS << LS;
OS << "Attribute::WriteOnly,";
OS << "Attribute::InaccessibleMemOrArgMemOnly";
break;
case CodeGenIntrinsic::ReadWriteArgMem:
OS << LS;
OS << "Attribute::ArgMemOnly";
break;
case CodeGenIntrinsic::ReadWriteInaccessibleMem:
OS << LS;
OS << "Attribute::InaccessibleMemOnly";
break;
case CodeGenIntrinsic::ReadWriteInaccessibleMemOrArgMem:
OS << LS;
OS << "Attribute::InaccessibleMemOrArgMemOnly";
break;
case CodeGenIntrinsic::ReadWriteMem:
break;
}
OS << "};\n";
OS << " AS[" << numAttrs++ << "] = AttributeList::get(C, "
<< "AttributeList::FunctionIndex, Atts);\n";
}
if (numAttrs) {
OS << " NumAttrs = " << numAttrs << ";\n";
OS << " break;\n";
OS << " }\n";
} else {
OS << " return AttributeList();\n";
OS << " }\n";
}
}
OS << " }\n";
OS << " }\n";
OS << " return AttributeList::get(C, makeArrayRef(AS, NumAttrs));\n";
OS << "}\n";
OS << "#endif // GET_INTRINSIC_ATTRIBUTES\n\n";
}
void IntrinsicEmitter::EmitIntrinsicToBuiltinMap(
const CodeGenIntrinsicTable &Ints, bool IsGCC, raw_ostream &OS) {
StringRef CompilerName = (IsGCC ? "GCC" : "MS");
typedef std::map<std::string, std::map<std::string, std::string>> BIMTy;
BIMTy BuiltinMap;
StringToOffsetTable Table;
for (unsigned i = 0, e = Ints.size(); i != e; ++i) {
const std::string &BuiltinName =
IsGCC ? Ints[i].GCCBuiltinName : Ints[i].MSBuiltinName;
if (!BuiltinName.empty()) {
// Get the map for this target prefix.
std::map<std::string, std::string> &BIM =
BuiltinMap[Ints[i].TargetPrefix];
if (!BIM.insert(std::make_pair(BuiltinName, Ints[i].EnumName)).second)
PrintFatalError(Ints[i].TheDef->getLoc(),
"Intrinsic '" + Ints[i].TheDef->getName() +
"': duplicate " + CompilerName + " builtin name!");
Table.GetOrAddStringOffset(BuiltinName);
}
}
OS << "// Get the LLVM intrinsic that corresponds to a builtin.\n";
OS << "// This is used by the C front-end. The builtin name is passed\n";
OS << "// in as BuiltinName, and a target prefix (e.g. 'ppc') is passed\n";
OS << "// in as TargetPrefix. The result is assigned to 'IntrinsicID'.\n";
OS << "#ifdef GET_LLVM_INTRINSIC_FOR_" << CompilerName << "_BUILTIN\n";
OS << "Intrinsic::ID Intrinsic::getIntrinsicFor" << CompilerName
<< "Builtin(const char "
<< "*TargetPrefixStr, StringRef BuiltinNameStr) {\n";
if (Table.Empty()) {
OS << " return Intrinsic::not_intrinsic;\n";
OS << "}\n";
OS << "#endif\n\n";
return;
}
OS << " static const char BuiltinNames[] = {\n";
Table.EmitCharArray(OS);
OS << " };\n\n";
OS << " struct BuiltinEntry {\n";
OS << " Intrinsic::ID IntrinID;\n";
OS << " unsigned StrTabOffset;\n";
OS << " const char *getName() const {\n";
OS << " return &BuiltinNames[StrTabOffset];\n";
OS << " }\n";
OS << " bool operator<(StringRef RHS) const {\n";
OS << " return strncmp(getName(), RHS.data(), RHS.size()) < 0;\n";
OS << " }\n";
OS << " };\n";
OS << " StringRef TargetPrefix(TargetPrefixStr);\n\n";
// Note: this could emit significantly better code if we cared.
for (BIMTy::iterator I = BuiltinMap.begin(), E = BuiltinMap.end();I != E;++I){
OS << " ";
if (!I->first.empty())
OS << "if (TargetPrefix == \"" << I->first << "\") ";
else
OS << "/* Target Independent Builtins */ ";
OS << "{\n";
// Emit the comparisons for this target prefix.
OS << " static const BuiltinEntry " << I->first << "Names[] = {\n";
for (const auto &P : I->second) {
OS << " {Intrinsic::" << P.second << ", "
<< Table.GetOrAddStringOffset(P.first) << "}, // " << P.first << "\n";
}
OS << " };\n";
OS << " auto I = std::lower_bound(std::begin(" << I->first << "Names),\n";
OS << " std::end(" << I->first << "Names),\n";
OS << " BuiltinNameStr);\n";
OS << " if (I != std::end(" << I->first << "Names) &&\n";
OS << " I->getName() == BuiltinNameStr)\n";
OS << " return I->IntrinID;\n";
OS << " }\n";
}
OS << " return ";
OS << "Intrinsic::not_intrinsic;\n";
OS << "}\n";
OS << "#endif\n\n";
}
void llvm::EmitIntrinsicEnums(RecordKeeper &RK, raw_ostream &OS) {
IntrinsicEmitter(RK).run(OS, /*Enums=*/true);
}
void llvm::EmitIntrinsicImpl(RecordKeeper &RK, raw_ostream &OS) {
IntrinsicEmitter(RK).run(OS, /*Enums=*/false);
}