1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-22 04:22:57 +02:00
llvm-mirror/test/Analysis/Delinearization/multidim_only_ivs_3d_cast.ll
Sebastian Pop d5cb815565 split delinearization pass in 3 steps
To compute the dimensions of the array in a unique way, we split the
delinearization analysis in three steps:

- find parametric terms in all memory access functions
- compute the array dimensions from the set of terms
- compute the delinearized access functions for each dimension

The first step is executed on all the memory access functions such that we
gather all the patterns in which an array is accessed. The second step reduces
all this information in a unique description of the sizes of the array. The
third step is delinearizing each memory access function following the common
description of the shape of the array computed in step 2.

This rewrite of the delinearization pass also solves a problem we had with the
previous implementation: because the previous algorithm was by induction on the
structure of the SCEV, it would not correctly recognize the shape of the array
when the memory access was not following the nesting of the loops: for example,
see polly/test/ScopInfo/multidim_only_ivs_3d_reverse.ll

; void foo(long n, long m, long o, double A[n][m][o]) {
;
;   for (long i = 0; i < n; i++)
;     for (long j = 0; j < m; j++)
;       for (long k = 0; k < o; k++)
;         A[i][k][j] = 1.0;

Starting with this patch we no longer delinearize access functions that do not
contain parameters, for example in test/Analysis/DependenceAnalysis/GCD.ll

;;  for (long int i = 0; i < 100; i++)
;;    for (long int j = 0; j < 100; j++) {
;;      A[2*i - 4*j] = i;
;;      *B++ = A[6*i + 8*j];

these accesses will not be delinearized as the upper bound of the loops are
constants, and their access functions do not contain SCEVUnknown parameters.

llvm-svn: 208232
2014-05-07 18:01:20 +00:00

66 lines
2.0 KiB
LLVM

; RUN: opt < %s -analyze -delinearize | FileCheck %s
; void foo(int n, int m, int o, double A[n][m][o]) {
;
; for (int i = 0; i < n; i++)
; for (int j = 0; j < m; j++)
; for (int k = 0; k < o; k++)
; A[i][j][k] = 1.0;
; }
; AddRec: {{{%A,+,(8 * (zext i32 %m to i64) * (zext i32 %o to i64))}<%for.i>,+,(8 * (zext i32 %o to i64))}<%for.j>,+,8}<%for.k>
; CHECK: Base offset: %A
; CHECK: ArrayDecl[UnknownSize][(zext i32 %m to i64)][(zext i32 %o to i64)] with elements of 8 bytes.
; CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128-n8:16:32:64-S128"
target triple = "x86_64-unknown-linux-gnu"
define void @foo(i32 %n, i32 %m, i32 %o, double* %A) {
entry:
%m_zext = zext i32 %m to i64
%n_zext = zext i32 %o to i64
br label %for.i
for.i:
%i = phi i64 [ %i.inc, %for.i.inc ], [ 0, %entry ]
br label %for.j
for.j:
%j = phi i64 [ %j.inc, %for.j.inc ], [ 0, %for.i ]
br label %for.k
for.k:
%k = phi i64 [ %k.inc, %for.k.inc ], [ 0, %for.j ]
%tmp = mul i64 %i, %m_zext
%tmp1 = trunc i64 %j to i32
%tmp2 = trunc i64 %i to i32
%mul.us.us = mul nsw i32 %tmp1, %tmp2
%tmp.us.us = add i64 %j, %tmp
%tmp17.us.us = mul i64 %tmp.us.us, %n_zext
%subscript = add i64 %tmp17.us.us, %k
%idx = getelementptr inbounds double* %A, i64 %subscript
store double 1.0, double* %idx
br label %for.k.inc
for.k.inc:
%k.inc = add i64 %k, 1
%k.inc.trunc = trunc i64 %k.inc to i32
%k.exitcond = icmp eq i32 %k.inc.trunc, %o
br i1 %k.exitcond, label %for.j.inc, label %for.k
for.j.inc:
%j.inc = add i64 %j, 1
%j.inc.trunc = trunc i64 %j.inc to i32
%j.exitcond = icmp eq i32 %j.inc.trunc, %m
br i1 %j.exitcond, label %for.i.inc, label %for.j
for.i.inc:
%i.inc = add i64 %i, 1
%i.inc.trunc = trunc i64 %i.inc to i32
%i.exitcond = icmp eq i32 %i.inc.trunc, %n
br i1 %i.exitcond, label %end, label %for.i
end:
ret void
}