1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2025-02-01 13:11:39 +01:00
Scott Linder 47e3a5ca06 [DebugInfo] Enforce implicit constraints on distinct MDNodes
Add UNIQUED and DISTINCT properties in Metadata.def and use them to
implement restrictions on the `distinct` property of MDNodes:

* DIExpression can currently be parsed from IR or read from bitcode
  as `distinct`, but this property is silently dropped when printing
  to IR. This causes accepted IR to fail to round-trip. As DIExpression
  appears inline at each use in the canonical form of IR, it cannot
  actually be `distinct` anyway, as there is no syntax to describe it.
* Similarly, DIArgList is conceptually always uniqued. It is currently
  restricted to only appearing in contexts where there is no syntax for
  `distinct`, but for consistency it is treated equivalently to
  DIExpression in this patch.
* DICompileUnit is already restricted to always being `distinct`, but
  along with adding general support for the inverse restriction I went
  ahead and described this in Metadata.def and updated the parser to be
  general. Future nodes which have this restriction can share this
  support.

The new UNIQUED property applies to DIExpression and DIArgList, and
forbids them to be `distinct`. It also implies they are canonically
printed inline at each use, rather than via MDNode ID.

The new DISTINCT property applies to DICompileUnit, and requires it to
be `distinct`.

A potential alternative change is to forbid the non-inline syntax for
DIExpression entirely, as is done with DIArgList implicitly by requiring
it appear in the context of a function. For example, we would forbid:

    !named = !{!0}
    !0 = !DIExpression()

Instead we would only accept the equivalent inlined version:

    !named = !{!DIExpression()}

This essentially removes the ability to create a `distinct` DIExpression
by construction, as there is no syntax for `distinct` inline. If this
patch is accepted as-is, the result would be that the non-canonical
version is accepted, but the following would be an error and produce a diagnostic:

    !named = !{!0}
    ; error: 'distinct' not allowed for !DIExpression()
    !0 = distinct !DIExpression()

Also update some documentation to consistently use the inline syntax for
DIExpression, and to describe the restrictions on `distinct` for nodes
where applicable.

Reviewed By: StephenTozer, t-tye

Differential Revision: https://reviews.llvm.org/D104827
2021-06-28 21:20:04 +00:00
..
2019-09-13 14:58:24 +00:00
2020-11-17 16:18:11 +00:00
2020-08-09 19:31:49 -07:00
2021-05-03 10:59:51 +02:00
2020-08-09 19:31:49 -07:00
2020-12-21 19:10:34 +00:00
2020-08-09 19:31:49 -07:00
2021-03-02 15:07:36 +01:00
2020-03-22 22:49:33 +01:00
2020-03-22 22:49:33 +01:00
2021-03-10 16:03:55 +11:00

LLVM Documentation
==================

LLVM's documentation is written in reStructuredText, a lightweight
plaintext markup language (file extension `.rst`). While the
reStructuredText documentation should be quite readable in source form, it
is mostly meant to be processed by the Sphinx documentation generation
system to create HTML pages which are hosted on <https://llvm.org/docs/> and
updated after every commit. Manpage output is also supported, see below.

If you instead would like to generate and view the HTML locally, install
Sphinx <http://sphinx-doc.org/> and then do:

    cd <build-dir>
    cmake -DLLVM_ENABLE_SPHINX=true -DSPHINX_OUTPUT_HTML=true <src-dir>
    make -j3 docs-llvm-html
    $BROWSER <build-dir>/docs//html/index.html

The mapping between reStructuredText files and generated documentation is
`docs/Foo.rst` <-> `<build-dir>/docs//html/Foo.html` <-> `https://llvm.org/docs/Foo.html`.

If you are interested in writing new documentation, you will want to read
`SphinxQuickstartTemplate.rst` which will get you writing documentation
very fast and includes examples of the most important reStructuredText
markup syntax.

Manpage Output
===============

Building the manpages is similar to building the HTML documentation. The
primary difference is to use the `man` makefile target, instead of the
default (which is `html`). Sphinx then produces the man pages in the
directory `<build-dir>/docs/man/`.

    cd <build-dir>
    cmake -DLLVM_ENABLE_SPHINX=true -DSPHINX_OUTPUT_MAN=true <src-dir>
    make -j3 docs-llvm-man
    man -l >build-dir>/docs/man/FileCheck.1

The correspondence between .rst files and man pages is
`docs/CommandGuide/Foo.rst` <-> `<build-dir>/docs//man/Foo.1`.
These .rst files are also included during HTML generation so they are also
viewable online (as noted above) at e.g.
`https://llvm.org/docs/CommandGuide/Foo.html`.

Checking links
==============

The reachability of external links in the documentation can be checked by
running:

    cd docs/
    make -f Makefile.sphinx linkcheck

Doxygen page Output
==============

Install doxygen <http://www.stack.nl/~dimitri/doxygen/download.html> and dot2tex <https://dot2tex.readthedocs.io/en/latest>.

    cd <build-dir>
    cmake -DLLVM_ENABLE_DOXYGEN=On <llvm-top-src-dir>
    make doxygen-llvm # for LLVM docs
    make doxygen-clang # for clang docs

It will generate html in

    <build-dir>/docs/doxygen/html # for LLVM docs
    <build-dir>/tools/clang/docs/doxygen/html # for clang docs