mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-23 03:02:36 +01:00
f494c1982c
Author: Ron Lieberman <ronl@codeaurora.org> llvm-svn: 254165
3791 lines
125 KiB
C++
3791 lines
125 KiB
C++
//===-- HexagonInstrInfo.cpp - Hexagon Instruction Information ------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the Hexagon implementation of the TargetInstrInfo class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "HexagonInstrInfo.h"
|
|
#include "Hexagon.h"
|
|
#include "HexagonRegisterInfo.h"
|
|
#include "HexagonSubtarget.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/CodeGen/DFAPacketizer.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/PseudoSourceValue.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <cctype>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "hexagon-instrinfo"
|
|
|
|
#define GET_INSTRINFO_CTOR_DTOR
|
|
#define GET_INSTRMAP_INFO
|
|
#include "HexagonGenInstrInfo.inc"
|
|
#include "HexagonGenDFAPacketizer.inc"
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<bool> ScheduleInlineAsm("hexagon-sched-inline-asm", cl::Hidden,
|
|
cl::init(false), cl::desc("Do not consider inline-asm a scheduling/"
|
|
"packetization boundary."));
|
|
|
|
static cl::opt<bool> EnableBranchPrediction("hexagon-enable-branch-prediction",
|
|
cl::Hidden, cl::init(true), cl::desc("Enable branch prediction"));
|
|
|
|
static cl::opt<bool> EnableTimingClassLatency(
|
|
"enable-timing-class-latency", cl::Hidden, cl::init(false),
|
|
cl::desc("Enable timing class latency"));
|
|
|
|
static cl::opt<bool> EnableALUForwarding(
|
|
"enable-alu-forwarding", cl::Hidden, cl::init(true),
|
|
cl::desc("Enable vec alu forwarding"));
|
|
|
|
static cl::opt<bool> EnableACCForwarding(
|
|
"enable-acc-forwarding", cl::Hidden, cl::init(true),
|
|
cl::desc("Enable vec acc forwarding"));
|
|
|
|
static cl::opt<bool> BranchRelaxAsmLarge("branch-relax-asm-large",
|
|
cl::init(true), cl::Hidden, cl::ZeroOrMore, cl::desc("branch relax asm"));
|
|
|
|
///
|
|
/// Constants for Hexagon instructions.
|
|
///
|
|
const int Hexagon_MEMV_OFFSET_MAX_128B = 2047; // #s7
|
|
const int Hexagon_MEMV_OFFSET_MIN_128B = -2048; // #s7
|
|
const int Hexagon_MEMV_OFFSET_MAX = 1023; // #s6
|
|
const int Hexagon_MEMV_OFFSET_MIN = -1024; // #s6
|
|
const int Hexagon_MEMW_OFFSET_MAX = 4095;
|
|
const int Hexagon_MEMW_OFFSET_MIN = -4096;
|
|
const int Hexagon_MEMD_OFFSET_MAX = 8191;
|
|
const int Hexagon_MEMD_OFFSET_MIN = -8192;
|
|
const int Hexagon_MEMH_OFFSET_MAX = 2047;
|
|
const int Hexagon_MEMH_OFFSET_MIN = -2048;
|
|
const int Hexagon_MEMB_OFFSET_MAX = 1023;
|
|
const int Hexagon_MEMB_OFFSET_MIN = -1024;
|
|
const int Hexagon_ADDI_OFFSET_MAX = 32767;
|
|
const int Hexagon_ADDI_OFFSET_MIN = -32768;
|
|
const int Hexagon_MEMD_AUTOINC_MAX = 56;
|
|
const int Hexagon_MEMD_AUTOINC_MIN = -64;
|
|
const int Hexagon_MEMW_AUTOINC_MAX = 28;
|
|
const int Hexagon_MEMW_AUTOINC_MIN = -32;
|
|
const int Hexagon_MEMH_AUTOINC_MAX = 14;
|
|
const int Hexagon_MEMH_AUTOINC_MIN = -16;
|
|
const int Hexagon_MEMB_AUTOINC_MAX = 7;
|
|
const int Hexagon_MEMB_AUTOINC_MIN = -8;
|
|
const int Hexagon_MEMV_AUTOINC_MAX = 192;
|
|
const int Hexagon_MEMV_AUTOINC_MIN = -256;
|
|
const int Hexagon_MEMV_AUTOINC_MAX_128B = 384;
|
|
const int Hexagon_MEMV_AUTOINC_MIN_128B = -512;
|
|
|
|
// Pin the vtable to this file.
|
|
void HexagonInstrInfo::anchor() {}
|
|
|
|
HexagonInstrInfo::HexagonInstrInfo(HexagonSubtarget &ST)
|
|
: HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN, Hexagon::ADJCALLSTACKUP),
|
|
RI() {}
|
|
|
|
|
|
static bool isIntRegForSubInst(unsigned Reg) {
|
|
return (Reg >= Hexagon::R0 && Reg <= Hexagon::R7) ||
|
|
(Reg >= Hexagon::R16 && Reg <= Hexagon::R23);
|
|
}
|
|
|
|
|
|
static bool isDblRegForSubInst(unsigned Reg, const HexagonRegisterInfo &HRI) {
|
|
return isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::subreg_loreg)) &&
|
|
isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::subreg_hireg));
|
|
}
|
|
|
|
|
|
/// Calculate number of instructions excluding the debug instructions.
|
|
static unsigned nonDbgMICount(MachineBasicBlock::const_instr_iterator MIB,
|
|
MachineBasicBlock::const_instr_iterator MIE) {
|
|
unsigned Count = 0;
|
|
for (; MIB != MIE; ++MIB) {
|
|
if (!MIB->isDebugValue())
|
|
++Count;
|
|
}
|
|
return Count;
|
|
}
|
|
|
|
|
|
/// Find the hardware loop instruction used to set-up the specified loop.
|
|
/// On Hexagon, we have two instructions used to set-up the hardware loop
|
|
/// (LOOP0, LOOP1) with corresponding endloop (ENDLOOP0, ENDLOOP1) instructions
|
|
/// to indicate the end of a loop.
|
|
static MachineInstr *findLoopInstr(MachineBasicBlock *BB, int EndLoopOp,
|
|
SmallPtrSet<MachineBasicBlock *, 8> &Visited) {
|
|
int LOOPi;
|
|
int LOOPr;
|
|
if (EndLoopOp == Hexagon::ENDLOOP0) {
|
|
LOOPi = Hexagon::J2_loop0i;
|
|
LOOPr = Hexagon::J2_loop0r;
|
|
} else { // EndLoopOp == Hexagon::EndLOOP1
|
|
LOOPi = Hexagon::J2_loop1i;
|
|
LOOPr = Hexagon::J2_loop1r;
|
|
}
|
|
|
|
// The loop set-up instruction will be in a predecessor block
|
|
for (MachineBasicBlock::pred_iterator PB = BB->pred_begin(),
|
|
PE = BB->pred_end(); PB != PE; ++PB) {
|
|
// If this has been visited, already skip it.
|
|
if (!Visited.insert(*PB).second)
|
|
continue;
|
|
if (*PB == BB)
|
|
continue;
|
|
for (MachineBasicBlock::reverse_instr_iterator I = (*PB)->instr_rbegin(),
|
|
E = (*PB)->instr_rend(); I != E; ++I) {
|
|
int Opc = I->getOpcode();
|
|
if (Opc == LOOPi || Opc == LOOPr)
|
|
return &*I;
|
|
// We've reached a different loop, which means the loop0 has been removed.
|
|
if (Opc == EndLoopOp)
|
|
return 0;
|
|
}
|
|
// Check the predecessors for the LOOP instruction.
|
|
MachineInstr *loop = findLoopInstr(*PB, EndLoopOp, Visited);
|
|
if (loop)
|
|
return loop;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/// Gather register def/uses from MI.
|
|
/// This treats possible (predicated) defs as actually happening ones
|
|
/// (conservatively).
|
|
static inline void parseOperands(const MachineInstr *MI,
|
|
SmallVector<unsigned, 4> &Defs, SmallVector<unsigned, 8> &Uses) {
|
|
Defs.clear();
|
|
Uses.clear();
|
|
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = MI->getOperand(i);
|
|
|
|
if (!MO.isReg())
|
|
continue;
|
|
|
|
unsigned Reg = MO.getReg();
|
|
if (!Reg)
|
|
continue;
|
|
|
|
if (MO.isUse())
|
|
Uses.push_back(MO.getReg());
|
|
|
|
if (MO.isDef())
|
|
Defs.push_back(MO.getReg());
|
|
}
|
|
}
|
|
|
|
|
|
// Position dependent, so check twice for swap.
|
|
static bool isDuplexPairMatch(unsigned Ga, unsigned Gb) {
|
|
switch (Ga) {
|
|
case HexagonII::HSIG_None:
|
|
default:
|
|
return false;
|
|
case HexagonII::HSIG_L1:
|
|
return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_A);
|
|
case HexagonII::HSIG_L2:
|
|
return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
|
|
Gb == HexagonII::HSIG_A);
|
|
case HexagonII::HSIG_S1:
|
|
return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
|
|
Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_A);
|
|
case HexagonII::HSIG_S2:
|
|
return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
|
|
Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_S2 ||
|
|
Gb == HexagonII::HSIG_A);
|
|
case HexagonII::HSIG_A:
|
|
return (Gb == HexagonII::HSIG_A);
|
|
case HexagonII::HSIG_Compound:
|
|
return (Gb == HexagonII::HSIG_Compound);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
|
|
/// isLoadFromStackSlot - If the specified machine instruction is a direct
|
|
/// load from a stack slot, return the virtual or physical register number of
|
|
/// the destination along with the FrameIndex of the loaded stack slot. If
|
|
/// not, return 0. This predicate must return 0 if the instruction has
|
|
/// any side effects other than loading from the stack slot.
|
|
unsigned HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
|
|
int &FrameIndex) const {
|
|
switch (MI->getOpcode()) {
|
|
default: break;
|
|
case Hexagon::L2_loadri_io:
|
|
case Hexagon::L2_loadrd_io:
|
|
case Hexagon::L2_loadrh_io:
|
|
case Hexagon::L2_loadrb_io:
|
|
case Hexagon::L2_loadrub_io:
|
|
if (MI->getOperand(2).isFI() &&
|
|
MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
|
|
FrameIndex = MI->getOperand(2).getIndex();
|
|
return MI->getOperand(0).getReg();
|
|
}
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/// isStoreToStackSlot - If the specified machine instruction is a direct
|
|
/// store to a stack slot, return the virtual or physical register number of
|
|
/// the source reg along with the FrameIndex of the loaded stack slot. If
|
|
/// not, return 0. This predicate must return 0 if the instruction has
|
|
/// any side effects other than storing to the stack slot.
|
|
unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
|
|
int &FrameIndex) const {
|
|
switch (MI->getOpcode()) {
|
|
default: break;
|
|
case Hexagon::S2_storeri_io:
|
|
case Hexagon::S2_storerd_io:
|
|
case Hexagon::S2_storerh_io:
|
|
case Hexagon::S2_storerb_io:
|
|
if (MI->getOperand(2).isFI() &&
|
|
MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
|
|
FrameIndex = MI->getOperand(0).getIndex();
|
|
return MI->getOperand(2).getReg();
|
|
}
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/// This function can analyze one/two way branching only and should (mostly) be
|
|
/// called by target independent side.
|
|
/// First entry is always the opcode of the branching instruction, except when
|
|
/// the Cond vector is supposed to be empty, e.g., when AnalyzeBranch fails, a
|
|
/// BB with only unconditional jump. Subsequent entries depend upon the opcode,
|
|
/// e.g. Jump_c p will have
|
|
/// Cond[0] = Jump_c
|
|
/// Cond[1] = p
|
|
/// HW-loop ENDLOOP:
|
|
/// Cond[0] = ENDLOOP
|
|
/// Cond[1] = MBB
|
|
/// New value jump:
|
|
/// Cond[0] = Hexagon::CMPEQri_f_Jumpnv_t_V4 -- specific opcode
|
|
/// Cond[1] = R
|
|
/// Cond[2] = Imm
|
|
///
|
|
bool HexagonInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
|
|
MachineBasicBlock *&TBB,
|
|
MachineBasicBlock *&FBB,
|
|
SmallVectorImpl<MachineOperand> &Cond,
|
|
bool AllowModify) const {
|
|
TBB = nullptr;
|
|
FBB = nullptr;
|
|
Cond.clear();
|
|
|
|
// If the block has no terminators, it just falls into the block after it.
|
|
MachineBasicBlock::instr_iterator I = MBB.instr_end();
|
|
if (I == MBB.instr_begin())
|
|
return false;
|
|
|
|
// A basic block may looks like this:
|
|
//
|
|
// [ insn
|
|
// EH_LABEL
|
|
// insn
|
|
// insn
|
|
// insn
|
|
// EH_LABEL
|
|
// insn ]
|
|
//
|
|
// It has two succs but does not have a terminator
|
|
// Don't know how to handle it.
|
|
do {
|
|
--I;
|
|
if (I->isEHLabel())
|
|
// Don't analyze EH branches.
|
|
return true;
|
|
} while (I != MBB.instr_begin());
|
|
|
|
I = MBB.instr_end();
|
|
--I;
|
|
|
|
while (I->isDebugValue()) {
|
|
if (I == MBB.instr_begin())
|
|
return false;
|
|
--I;
|
|
}
|
|
|
|
bool JumpToBlock = I->getOpcode() == Hexagon::J2_jump &&
|
|
I->getOperand(0).isMBB();
|
|
// Delete the J2_jump if it's equivalent to a fall-through.
|
|
if (AllowModify && JumpToBlock &&
|
|
MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
|
|
DEBUG(dbgs()<< "\nErasing the jump to successor block\n";);
|
|
I->eraseFromParent();
|
|
I = MBB.instr_end();
|
|
if (I == MBB.instr_begin())
|
|
return false;
|
|
--I;
|
|
}
|
|
if (!isUnpredicatedTerminator(&*I))
|
|
return false;
|
|
|
|
// Get the last instruction in the block.
|
|
MachineInstr *LastInst = &*I;
|
|
MachineInstr *SecondLastInst = nullptr;
|
|
// Find one more terminator if present.
|
|
for (;;) {
|
|
if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(&*I)) {
|
|
if (!SecondLastInst)
|
|
SecondLastInst = &*I;
|
|
else
|
|
// This is a third branch.
|
|
return true;
|
|
}
|
|
if (I == MBB.instr_begin())
|
|
break;
|
|
--I;
|
|
}
|
|
|
|
int LastOpcode = LastInst->getOpcode();
|
|
int SecLastOpcode = SecondLastInst ? SecondLastInst->getOpcode() : 0;
|
|
// If the branch target is not a basic block, it could be a tail call.
|
|
// (It is, if the target is a function.)
|
|
if (LastOpcode == Hexagon::J2_jump && !LastInst->getOperand(0).isMBB())
|
|
return true;
|
|
if (SecLastOpcode == Hexagon::J2_jump &&
|
|
!SecondLastInst->getOperand(0).isMBB())
|
|
return true;
|
|
|
|
bool LastOpcodeHasJMP_c = PredOpcodeHasJMP_c(LastOpcode);
|
|
bool LastOpcodeHasNVJump = isNewValueJump(LastInst);
|
|
|
|
// If there is only one terminator instruction, process it.
|
|
if (LastInst && !SecondLastInst) {
|
|
if (LastOpcode == Hexagon::J2_jump) {
|
|
TBB = LastInst->getOperand(0).getMBB();
|
|
return false;
|
|
}
|
|
if (isEndLoopN(LastOpcode)) {
|
|
TBB = LastInst->getOperand(0).getMBB();
|
|
Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
|
|
Cond.push_back(LastInst->getOperand(0));
|
|
return false;
|
|
}
|
|
if (LastOpcodeHasJMP_c) {
|
|
TBB = LastInst->getOperand(1).getMBB();
|
|
Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
|
|
Cond.push_back(LastInst->getOperand(0));
|
|
return false;
|
|
}
|
|
// Only supporting rr/ri versions of new-value jumps.
|
|
if (LastOpcodeHasNVJump && (LastInst->getNumExplicitOperands() == 3)) {
|
|
TBB = LastInst->getOperand(2).getMBB();
|
|
Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
|
|
Cond.push_back(LastInst->getOperand(0));
|
|
Cond.push_back(LastInst->getOperand(1));
|
|
return false;
|
|
}
|
|
DEBUG(dbgs() << "\nCant analyze BB#" << MBB.getNumber()
|
|
<< " with one jump\n";);
|
|
// Otherwise, don't know what this is.
|
|
return true;
|
|
}
|
|
|
|
bool SecLastOpcodeHasJMP_c = PredOpcodeHasJMP_c(SecLastOpcode);
|
|
bool SecLastOpcodeHasNVJump = isNewValueJump(SecondLastInst);
|
|
if (SecLastOpcodeHasJMP_c && (LastOpcode == Hexagon::J2_jump)) {
|
|
TBB = SecondLastInst->getOperand(1).getMBB();
|
|
Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
|
|
Cond.push_back(SecondLastInst->getOperand(0));
|
|
FBB = LastInst->getOperand(0).getMBB();
|
|
return false;
|
|
}
|
|
|
|
// Only supporting rr/ri versions of new-value jumps.
|
|
if (SecLastOpcodeHasNVJump &&
|
|
(SecondLastInst->getNumExplicitOperands() == 3) &&
|
|
(LastOpcode == Hexagon::J2_jump)) {
|
|
TBB = SecondLastInst->getOperand(2).getMBB();
|
|
Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
|
|
Cond.push_back(SecondLastInst->getOperand(0));
|
|
Cond.push_back(SecondLastInst->getOperand(1));
|
|
FBB = LastInst->getOperand(0).getMBB();
|
|
return false;
|
|
}
|
|
|
|
// If the block ends with two Hexagon:JMPs, handle it. The second one is not
|
|
// executed, so remove it.
|
|
if (SecLastOpcode == Hexagon::J2_jump && LastOpcode == Hexagon::J2_jump) {
|
|
TBB = SecondLastInst->getOperand(0).getMBB();
|
|
I = LastInst->getIterator();
|
|
if (AllowModify)
|
|
I->eraseFromParent();
|
|
return false;
|
|
}
|
|
|
|
// If the block ends with an ENDLOOP, and J2_jump, handle it.
|
|
if (isEndLoopN(SecLastOpcode) && LastOpcode == Hexagon::J2_jump) {
|
|
TBB = SecondLastInst->getOperand(0).getMBB();
|
|
Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
|
|
Cond.push_back(SecondLastInst->getOperand(0));
|
|
FBB = LastInst->getOperand(0).getMBB();
|
|
return false;
|
|
}
|
|
DEBUG(dbgs() << "\nCant analyze BB#" << MBB.getNumber()
|
|
<< " with two jumps";);
|
|
// Otherwise, can't handle this.
|
|
return true;
|
|
}
|
|
|
|
|
|
unsigned HexagonInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
|
|
DEBUG(dbgs() << "\nRemoving branches out of BB#" << MBB.getNumber());
|
|
MachineBasicBlock::iterator I = MBB.end();
|
|
unsigned Count = 0;
|
|
while (I != MBB.begin()) {
|
|
--I;
|
|
if (I->isDebugValue())
|
|
continue;
|
|
// Only removing branches from end of MBB.
|
|
if (!I->isBranch())
|
|
return Count;
|
|
if (Count && (I->getOpcode() == Hexagon::J2_jump))
|
|
llvm_unreachable("Malformed basic block: unconditional branch not last");
|
|
MBB.erase(&MBB.back());
|
|
I = MBB.end();
|
|
++Count;
|
|
}
|
|
return Count;
|
|
}
|
|
|
|
|
|
unsigned HexagonInstrInfo::InsertBranch(MachineBasicBlock &MBB,
|
|
MachineBasicBlock *TBB, MachineBasicBlock *FBB,
|
|
ArrayRef<MachineOperand> Cond, DebugLoc DL) const {
|
|
unsigned BOpc = Hexagon::J2_jump;
|
|
unsigned BccOpc = Hexagon::J2_jumpt;
|
|
assert(validateBranchCond(Cond) && "Invalid branching condition");
|
|
assert(TBB && "InsertBranch must not be told to insert a fallthrough");
|
|
|
|
// Check if ReverseBranchCondition has asked to reverse this branch
|
|
// If we want to reverse the branch an odd number of times, we want
|
|
// J2_jumpf.
|
|
if (!Cond.empty() && Cond[0].isImm())
|
|
BccOpc = Cond[0].getImm();
|
|
|
|
if (!FBB) {
|
|
if (Cond.empty()) {
|
|
// Due to a bug in TailMerging/CFG Optimization, we need to add a
|
|
// special case handling of a predicated jump followed by an
|
|
// unconditional jump. If not, Tail Merging and CFG Optimization go
|
|
// into an infinite loop.
|
|
MachineBasicBlock *NewTBB, *NewFBB;
|
|
SmallVector<MachineOperand, 4> Cond;
|
|
MachineInstr *Term = MBB.getFirstTerminator();
|
|
if (Term != MBB.end() && isPredicated(Term) &&
|
|
!AnalyzeBranch(MBB, NewTBB, NewFBB, Cond, false)) {
|
|
MachineBasicBlock *NextBB = &*++MBB.getIterator();
|
|
if (NewTBB == NextBB) {
|
|
ReverseBranchCondition(Cond);
|
|
RemoveBranch(MBB);
|
|
return InsertBranch(MBB, TBB, nullptr, Cond, DL);
|
|
}
|
|
}
|
|
BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
|
|
} else if (isEndLoopN(Cond[0].getImm())) {
|
|
int EndLoopOp = Cond[0].getImm();
|
|
assert(Cond[1].isMBB());
|
|
// Since we're adding an ENDLOOP, there better be a LOOP instruction.
|
|
// Check for it, and change the BB target if needed.
|
|
SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
|
|
MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, VisitedBBs);
|
|
assert(Loop != 0 && "Inserting an ENDLOOP without a LOOP");
|
|
Loop->getOperand(0).setMBB(TBB);
|
|
// Add the ENDLOOP after the finding the LOOP0.
|
|
BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
|
|
} else if (isNewValueJump(Cond[0].getImm())) {
|
|
assert((Cond.size() == 3) && "Only supporting rr/ri version of nvjump");
|
|
// New value jump
|
|
// (ins IntRegs:$src1, IntRegs:$src2, brtarget:$offset)
|
|
// (ins IntRegs:$src1, u5Imm:$src2, brtarget:$offset)
|
|
unsigned Flags1 = getUndefRegState(Cond[1].isUndef());
|
|
DEBUG(dbgs() << "\nInserting NVJump for BB#" << MBB.getNumber(););
|
|
if (Cond[2].isReg()) {
|
|
unsigned Flags2 = getUndefRegState(Cond[2].isUndef());
|
|
BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
|
|
addReg(Cond[2].getReg(), Flags2).addMBB(TBB);
|
|
} else if(Cond[2].isImm()) {
|
|
BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
|
|
addImm(Cond[2].getImm()).addMBB(TBB);
|
|
} else
|
|
llvm_unreachable("Invalid condition for branching");
|
|
} else {
|
|
assert((Cond.size() == 2) && "Malformed cond vector");
|
|
const MachineOperand &RO = Cond[1];
|
|
unsigned Flags = getUndefRegState(RO.isUndef());
|
|
BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
|
|
}
|
|
return 1;
|
|
}
|
|
assert((!Cond.empty()) &&
|
|
"Cond. cannot be empty when multiple branchings are required");
|
|
assert((!isNewValueJump(Cond[0].getImm())) &&
|
|
"NV-jump cannot be inserted with another branch");
|
|
// Special case for hardware loops. The condition is a basic block.
|
|
if (isEndLoopN(Cond[0].getImm())) {
|
|
int EndLoopOp = Cond[0].getImm();
|
|
assert(Cond[1].isMBB());
|
|
// Since we're adding an ENDLOOP, there better be a LOOP instruction.
|
|
// Check for it, and change the BB target if needed.
|
|
SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
|
|
MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, VisitedBBs);
|
|
assert(Loop != 0 && "Inserting an ENDLOOP without a LOOP");
|
|
Loop->getOperand(0).setMBB(TBB);
|
|
// Add the ENDLOOP after the finding the LOOP0.
|
|
BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
|
|
} else {
|
|
const MachineOperand &RO = Cond[1];
|
|
unsigned Flags = getUndefRegState(RO.isUndef());
|
|
BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
|
|
}
|
|
BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
|
|
|
|
return 2;
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock &MBB,
|
|
unsigned NumCycles, unsigned ExtraPredCycles,
|
|
BranchProbability Probability) const {
|
|
return nonDbgBBSize(&MBB) <= 3;
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
|
|
unsigned NumTCycles, unsigned ExtraTCycles, MachineBasicBlock &FMBB,
|
|
unsigned NumFCycles, unsigned ExtraFCycles, BranchProbability Probability)
|
|
const {
|
|
return nonDbgBBSize(&TMBB) <= 3 && nonDbgBBSize(&FMBB) <= 3;
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
|
|
unsigned NumInstrs, BranchProbability Probability) const {
|
|
return NumInstrs <= 4;
|
|
}
|
|
|
|
|
|
void HexagonInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I, DebugLoc DL, unsigned DestReg,
|
|
unsigned SrcReg, bool KillSrc) const {
|
|
auto &HRI = getRegisterInfo();
|
|
if (Hexagon::IntRegsRegClass.contains(SrcReg, DestReg)) {
|
|
BuildMI(MBB, I, DL, get(Hexagon::A2_tfr), DestReg).addReg(SrcReg);
|
|
return;
|
|
}
|
|
if (Hexagon::DoubleRegsRegClass.contains(SrcReg, DestReg)) {
|
|
BuildMI(MBB, I, DL, get(Hexagon::A2_tfrp), DestReg).addReg(SrcReg);
|
|
return;
|
|
}
|
|
if (Hexagon::PredRegsRegClass.contains(SrcReg, DestReg)) {
|
|
// Map Pd = Ps to Pd = or(Ps, Ps).
|
|
BuildMI(MBB, I, DL, get(Hexagon::C2_or),
|
|
DestReg).addReg(SrcReg).addReg(SrcReg);
|
|
return;
|
|
}
|
|
if (Hexagon::DoubleRegsRegClass.contains(DestReg) &&
|
|
Hexagon::IntRegsRegClass.contains(SrcReg)) {
|
|
// We can have an overlap between single and double reg: r1:0 = r0.
|
|
if(SrcReg == RI.getSubReg(DestReg, Hexagon::subreg_loreg)) {
|
|
// r1:0 = r0
|
|
BuildMI(MBB, I, DL, get(Hexagon::A2_tfrsi), (RI.getSubReg(DestReg,
|
|
Hexagon::subreg_hireg))).addImm(0);
|
|
} else {
|
|
// r1:0 = r1 or no overlap.
|
|
BuildMI(MBB, I, DL, get(Hexagon::A2_tfr), (RI.getSubReg(DestReg,
|
|
Hexagon::subreg_loreg))).addReg(SrcReg);
|
|
BuildMI(MBB, I, DL, get(Hexagon::A2_tfrsi), (RI.getSubReg(DestReg,
|
|
Hexagon::subreg_hireg))).addImm(0);
|
|
}
|
|
return;
|
|
}
|
|
if (Hexagon::CtrRegsRegClass.contains(DestReg) &&
|
|
Hexagon::IntRegsRegClass.contains(SrcReg)) {
|
|
BuildMI(MBB, I, DL, get(Hexagon::A2_tfrrcr), DestReg).addReg(SrcReg);
|
|
return;
|
|
}
|
|
if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
|
|
Hexagon::IntRegsRegClass.contains(DestReg)) {
|
|
BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg).
|
|
addReg(SrcReg, getKillRegState(KillSrc));
|
|
return;
|
|
}
|
|
if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
|
|
Hexagon::PredRegsRegClass.contains(DestReg)) {
|
|
BuildMI(MBB, I, DL, get(Hexagon::C2_tfrrp), DestReg).
|
|
addReg(SrcReg, getKillRegState(KillSrc));
|
|
return;
|
|
}
|
|
if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
|
|
Hexagon::IntRegsRegClass.contains(DestReg)) {
|
|
BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg).
|
|
addReg(SrcReg, getKillRegState(KillSrc));
|
|
return;
|
|
}
|
|
if (Hexagon::VectorRegsRegClass.contains(SrcReg, DestReg)) {
|
|
BuildMI(MBB, I, DL, get(Hexagon::V6_vassign), DestReg).
|
|
addReg(SrcReg, getKillRegState(KillSrc));
|
|
return;
|
|
}
|
|
if (Hexagon::VecDblRegsRegClass.contains(SrcReg, DestReg)) {
|
|
BuildMI(MBB, I, DL, get(Hexagon::V6_vcombine), DestReg).
|
|
addReg(HRI.getSubReg(SrcReg, Hexagon::subreg_hireg),
|
|
getKillRegState(KillSrc)).
|
|
addReg(HRI.getSubReg(SrcReg, Hexagon::subreg_loreg),
|
|
getKillRegState(KillSrc));
|
|
return;
|
|
}
|
|
if (Hexagon::VecPredRegsRegClass.contains(SrcReg, DestReg)) {
|
|
BuildMI(MBB, I, DL, get(Hexagon::V6_pred_and), DestReg).
|
|
addReg(SrcReg).
|
|
addReg(SrcReg, getKillRegState(KillSrc));
|
|
return;
|
|
}
|
|
if (Hexagon::VecPredRegsRegClass.contains(SrcReg) &&
|
|
Hexagon::VectorRegsRegClass.contains(DestReg)) {
|
|
llvm_unreachable("Unimplemented pred to vec");
|
|
return;
|
|
}
|
|
if (Hexagon::VecPredRegsRegClass.contains(DestReg) &&
|
|
Hexagon::VectorRegsRegClass.contains(SrcReg)) {
|
|
llvm_unreachable("Unimplemented vec to pred");
|
|
return;
|
|
}
|
|
if (Hexagon::VecPredRegs128BRegClass.contains(SrcReg, DestReg)) {
|
|
BuildMI(MBB, I, DL, get(Hexagon::V6_pred_and),
|
|
HRI.getSubReg(DestReg, Hexagon::subreg_hireg)).
|
|
addReg(HRI.getSubReg(SrcReg, Hexagon::subreg_hireg),
|
|
getKillRegState(KillSrc));
|
|
BuildMI(MBB, I, DL, get(Hexagon::V6_pred_and),
|
|
HRI.getSubReg(DestReg, Hexagon::subreg_loreg)).
|
|
addReg(HRI.getSubReg(SrcReg, Hexagon::subreg_loreg),
|
|
getKillRegState(KillSrc));
|
|
return;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
// Show the invalid registers to ease debugging.
|
|
dbgs() << "Invalid registers for copy in BB#" << MBB.getNumber()
|
|
<< ": " << PrintReg(DestReg, &HRI)
|
|
<< " = " << PrintReg(SrcReg, &HRI) << '\n';
|
|
#endif
|
|
llvm_unreachable("Unimplemented");
|
|
}
|
|
|
|
|
|
void HexagonInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I, unsigned SrcReg, bool isKill, int FI,
|
|
const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const {
|
|
DebugLoc DL = MBB.findDebugLoc(I);
|
|
MachineFunction &MF = *MBB.getParent();
|
|
MachineFrameInfo &MFI = *MF.getFrameInfo();
|
|
unsigned Align = MFI.getObjectAlignment(FI);
|
|
|
|
MachineMemOperand *MMO = MF.getMachineMemOperand(
|
|
MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
|
|
MFI.getObjectSize(FI), Align);
|
|
|
|
if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
|
|
BuildMI(MBB, I, DL, get(Hexagon::S2_storeri_io))
|
|
.addFrameIndex(FI).addImm(0)
|
|
.addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
|
|
} else if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) {
|
|
BuildMI(MBB, I, DL, get(Hexagon::S2_storerd_io))
|
|
.addFrameIndex(FI).addImm(0)
|
|
.addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
|
|
} else if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) {
|
|
BuildMI(MBB, I, DL, get(Hexagon::STriw_pred))
|
|
.addFrameIndex(FI).addImm(0)
|
|
.addReg(SrcReg, getKillRegState(isKill)).addMemOperand(MMO);
|
|
} else {
|
|
llvm_unreachable("Unimplemented");
|
|
}
|
|
}
|
|
|
|
|
|
void HexagonInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I, unsigned DestReg, int FI,
|
|
const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const {
|
|
DebugLoc DL = MBB.findDebugLoc(I);
|
|
MachineFunction &MF = *MBB.getParent();
|
|
MachineFrameInfo &MFI = *MF.getFrameInfo();
|
|
unsigned Align = MFI.getObjectAlignment(FI);
|
|
|
|
MachineMemOperand *MMO = MF.getMachineMemOperand(
|
|
MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
|
|
MFI.getObjectSize(FI), Align);
|
|
if (RC == &Hexagon::IntRegsRegClass) {
|
|
BuildMI(MBB, I, DL, get(Hexagon::L2_loadri_io), DestReg)
|
|
.addFrameIndex(FI).addImm(0).addMemOperand(MMO);
|
|
} else if (RC == &Hexagon::DoubleRegsRegClass) {
|
|
BuildMI(MBB, I, DL, get(Hexagon::L2_loadrd_io), DestReg)
|
|
.addFrameIndex(FI).addImm(0).addMemOperand(MMO);
|
|
} else if (RC == &Hexagon::PredRegsRegClass) {
|
|
BuildMI(MBB, I, DL, get(Hexagon::LDriw_pred), DestReg)
|
|
.addFrameIndex(FI).addImm(0).addMemOperand(MMO);
|
|
} else {
|
|
llvm_unreachable("Can't store this register to stack slot");
|
|
}
|
|
}
|
|
|
|
|
|
/// expandPostRAPseudo - This function is called for all pseudo instructions
|
|
/// that remain after register allocation. Many pseudo instructions are
|
|
/// created to help register allocation. This is the place to convert them
|
|
/// into real instructions. The target can edit MI in place, or it can insert
|
|
/// new instructions and erase MI. The function should return true if
|
|
/// anything was changed.
|
|
bool HexagonInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI)
|
|
const {
|
|
const HexagonRegisterInfo &HRI = getRegisterInfo();
|
|
MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
|
|
MachineBasicBlock &MBB = *MI->getParent();
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
unsigned Opc = MI->getOpcode();
|
|
const unsigned VecOffset = 1;
|
|
bool Is128B = false;
|
|
|
|
switch (Opc) {
|
|
case Hexagon::ALIGNA:
|
|
BuildMI(MBB, MI, DL, get(Hexagon::A2_andir), MI->getOperand(0).getReg())
|
|
.addReg(HRI.getFrameRegister())
|
|
.addImm(-MI->getOperand(1).getImm());
|
|
MBB.erase(MI);
|
|
return true;
|
|
case Hexagon::HEXAGON_V6_vassignp_128B:
|
|
case Hexagon::HEXAGON_V6_vassignp: {
|
|
unsigned SrcReg = MI->getOperand(1).getReg();
|
|
unsigned DstReg = MI->getOperand(0).getReg();
|
|
if (SrcReg != DstReg)
|
|
copyPhysReg(MBB, MI, DL, DstReg, SrcReg, MI->getOperand(1).isKill());
|
|
MBB.erase(MI);
|
|
return true;
|
|
}
|
|
case Hexagon::HEXAGON_V6_lo_128B:
|
|
case Hexagon::HEXAGON_V6_lo: {
|
|
unsigned SrcReg = MI->getOperand(1).getReg();
|
|
unsigned DstReg = MI->getOperand(0).getReg();
|
|
unsigned SrcSubLo = HRI.getSubReg(SrcReg, Hexagon::subreg_loreg);
|
|
copyPhysReg(MBB, MI, DL, DstReg, SrcSubLo, MI->getOperand(1).isKill());
|
|
MBB.erase(MI);
|
|
MRI.clearKillFlags(SrcSubLo);
|
|
return true;
|
|
}
|
|
case Hexagon::HEXAGON_V6_hi_128B:
|
|
case Hexagon::HEXAGON_V6_hi: {
|
|
unsigned SrcReg = MI->getOperand(1).getReg();
|
|
unsigned DstReg = MI->getOperand(0).getReg();
|
|
unsigned SrcSubHi = HRI.getSubReg(SrcReg, Hexagon::subreg_hireg);
|
|
copyPhysReg(MBB, MI, DL, DstReg, SrcSubHi, MI->getOperand(1).isKill());
|
|
MBB.erase(MI);
|
|
MRI.clearKillFlags(SrcSubHi);
|
|
return true;
|
|
}
|
|
case Hexagon::STrivv_indexed_128B:
|
|
Is128B = true;
|
|
case Hexagon::STrivv_indexed: {
|
|
unsigned SrcReg = MI->getOperand(2).getReg();
|
|
unsigned SrcSubHi = HRI.getSubReg(SrcReg, Hexagon::subreg_hireg);
|
|
unsigned SrcSubLo = HRI.getSubReg(SrcReg, Hexagon::subreg_loreg);
|
|
unsigned NewOpcd = Is128B ? Hexagon::V6_vS32b_ai_128B
|
|
: Hexagon::V6_vS32b_ai;
|
|
unsigned Offset = Is128B ? VecOffset << 7 : VecOffset << 6;
|
|
MachineInstr *MI1New = BuildMI(MBB, MI, DL, get(NewOpcd))
|
|
.addOperand(MI->getOperand(0))
|
|
.addImm(MI->getOperand(1).getImm())
|
|
.addReg(SrcSubLo)
|
|
.setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
|
|
MI1New->getOperand(0).setIsKill(false);
|
|
BuildMI(MBB, MI, DL, get(NewOpcd))
|
|
.addOperand(MI->getOperand(0))
|
|
// The Vectors are indexed in multiples of vector size.
|
|
.addImm(MI->getOperand(1).getImm()+Offset)
|
|
.addReg(SrcSubHi)
|
|
.setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
|
|
MBB.erase(MI);
|
|
return true;
|
|
}
|
|
case Hexagon::LDrivv_pseudo_V6_128B:
|
|
case Hexagon::LDrivv_indexed_128B:
|
|
Is128B = true;
|
|
case Hexagon::LDrivv_pseudo_V6:
|
|
case Hexagon::LDrivv_indexed: {
|
|
unsigned NewOpcd = Is128B ? Hexagon::V6_vL32b_ai_128B
|
|
: Hexagon::V6_vL32b_ai;
|
|
unsigned DstReg = MI->getOperand(0).getReg();
|
|
unsigned Offset = Is128B ? VecOffset << 7 : VecOffset << 6;
|
|
MachineInstr *MI1New =
|
|
BuildMI(MBB, MI, DL, get(NewOpcd),
|
|
HRI.getSubReg(DstReg, Hexagon::subreg_loreg))
|
|
.addOperand(MI->getOperand(1))
|
|
.addImm(MI->getOperand(2).getImm());
|
|
MI1New->getOperand(1).setIsKill(false);
|
|
BuildMI(MBB, MI, DL, get(NewOpcd),
|
|
HRI.getSubReg(DstReg, Hexagon::subreg_hireg))
|
|
.addOperand(MI->getOperand(1))
|
|
// The Vectors are indexed in multiples of vector size.
|
|
.addImm(MI->getOperand(2).getImm() + Offset)
|
|
.setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
|
|
MBB.erase(MI);
|
|
return true;
|
|
}
|
|
case Hexagon::LDriv_pseudo_V6_128B:
|
|
Is128B = true;
|
|
case Hexagon::LDriv_pseudo_V6: {
|
|
unsigned DstReg = MI->getOperand(0).getReg();
|
|
unsigned NewOpc = Is128B ? Hexagon::V6_vL32b_ai_128B
|
|
: Hexagon::V6_vL32b_ai;
|
|
int32_t Off = MI->getOperand(2).getImm();
|
|
int32_t Idx = Off;
|
|
BuildMI(MBB, MI, DL, get(NewOpc), DstReg)
|
|
.addOperand(MI->getOperand(1))
|
|
.addImm(Idx)
|
|
.setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
|
|
MBB.erase(MI);
|
|
return true;
|
|
}
|
|
case Hexagon::STriv_pseudo_V6_128B:
|
|
Is128B = true;
|
|
case Hexagon::STriv_pseudo_V6: {
|
|
unsigned NewOpc = Is128B ? Hexagon::V6_vS32b_ai_128B
|
|
: Hexagon::V6_vS32b_ai;
|
|
int32_t Off = MI->getOperand(1).getImm();
|
|
int32_t Idx = Is128B ? (Off >> 7) : (Off >> 6);
|
|
BuildMI(MBB, MI, DL, get(NewOpc))
|
|
.addOperand(MI->getOperand(0))
|
|
.addImm(Idx)
|
|
.addOperand(MI->getOperand(2))
|
|
.setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
|
|
MBB.erase(MI);
|
|
return true;
|
|
}
|
|
case Hexagon::TFR_PdTrue: {
|
|
unsigned Reg = MI->getOperand(0).getReg();
|
|
BuildMI(MBB, MI, DL, get(Hexagon::C2_orn), Reg)
|
|
.addReg(Reg, RegState::Undef)
|
|
.addReg(Reg, RegState::Undef);
|
|
MBB.erase(MI);
|
|
return true;
|
|
}
|
|
case Hexagon::TFR_PdFalse: {
|
|
unsigned Reg = MI->getOperand(0).getReg();
|
|
BuildMI(MBB, MI, DL, get(Hexagon::C2_andn), Reg)
|
|
.addReg(Reg, RegState::Undef)
|
|
.addReg(Reg, RegState::Undef);
|
|
MBB.erase(MI);
|
|
return true;
|
|
}
|
|
case Hexagon::VMULW: {
|
|
// Expand a 64-bit vector multiply into 2 32-bit scalar multiplies.
|
|
unsigned DstReg = MI->getOperand(0).getReg();
|
|
unsigned Src1Reg = MI->getOperand(1).getReg();
|
|
unsigned Src2Reg = MI->getOperand(2).getReg();
|
|
unsigned Src1SubHi = HRI.getSubReg(Src1Reg, Hexagon::subreg_hireg);
|
|
unsigned Src1SubLo = HRI.getSubReg(Src1Reg, Hexagon::subreg_loreg);
|
|
unsigned Src2SubHi = HRI.getSubReg(Src2Reg, Hexagon::subreg_hireg);
|
|
unsigned Src2SubLo = HRI.getSubReg(Src2Reg, Hexagon::subreg_loreg);
|
|
BuildMI(MBB, MI, MI->getDebugLoc(), get(Hexagon::M2_mpyi),
|
|
HRI.getSubReg(DstReg, Hexagon::subreg_hireg)).addReg(Src1SubHi)
|
|
.addReg(Src2SubHi);
|
|
BuildMI(MBB, MI, MI->getDebugLoc(), get(Hexagon::M2_mpyi),
|
|
HRI.getSubReg(DstReg, Hexagon::subreg_loreg)).addReg(Src1SubLo)
|
|
.addReg(Src2SubLo);
|
|
MBB.erase(MI);
|
|
MRI.clearKillFlags(Src1SubHi);
|
|
MRI.clearKillFlags(Src1SubLo);
|
|
MRI.clearKillFlags(Src2SubHi);
|
|
MRI.clearKillFlags(Src2SubLo);
|
|
return true;
|
|
}
|
|
case Hexagon::VMULW_ACC: {
|
|
// Expand 64-bit vector multiply with addition into 2 scalar multiplies.
|
|
unsigned DstReg = MI->getOperand(0).getReg();
|
|
unsigned Src1Reg = MI->getOperand(1).getReg();
|
|
unsigned Src2Reg = MI->getOperand(2).getReg();
|
|
unsigned Src3Reg = MI->getOperand(3).getReg();
|
|
unsigned Src1SubHi = HRI.getSubReg(Src1Reg, Hexagon::subreg_hireg);
|
|
unsigned Src1SubLo = HRI.getSubReg(Src1Reg, Hexagon::subreg_loreg);
|
|
unsigned Src2SubHi = HRI.getSubReg(Src2Reg, Hexagon::subreg_hireg);
|
|
unsigned Src2SubLo = HRI.getSubReg(Src2Reg, Hexagon::subreg_loreg);
|
|
unsigned Src3SubHi = HRI.getSubReg(Src3Reg, Hexagon::subreg_hireg);
|
|
unsigned Src3SubLo = HRI.getSubReg(Src3Reg, Hexagon::subreg_loreg);
|
|
BuildMI(MBB, MI, MI->getDebugLoc(), get(Hexagon::M2_maci),
|
|
HRI.getSubReg(DstReg, Hexagon::subreg_hireg)).addReg(Src1SubHi)
|
|
.addReg(Src2SubHi).addReg(Src3SubHi);
|
|
BuildMI(MBB, MI, MI->getDebugLoc(), get(Hexagon::M2_maci),
|
|
HRI.getSubReg(DstReg, Hexagon::subreg_loreg)).addReg(Src1SubLo)
|
|
.addReg(Src2SubLo).addReg(Src3SubLo);
|
|
MBB.erase(MI);
|
|
MRI.clearKillFlags(Src1SubHi);
|
|
MRI.clearKillFlags(Src1SubLo);
|
|
MRI.clearKillFlags(Src2SubHi);
|
|
MRI.clearKillFlags(Src2SubLo);
|
|
MRI.clearKillFlags(Src3SubHi);
|
|
MRI.clearKillFlags(Src3SubLo);
|
|
return true;
|
|
}
|
|
case Hexagon::MUX64_rr: {
|
|
const MachineOperand &Op0 = MI->getOperand(0);
|
|
const MachineOperand &Op1 = MI->getOperand(1);
|
|
const MachineOperand &Op2 = MI->getOperand(2);
|
|
const MachineOperand &Op3 = MI->getOperand(3);
|
|
unsigned Rd = Op0.getReg();
|
|
unsigned Pu = Op1.getReg();
|
|
unsigned Rs = Op2.getReg();
|
|
unsigned Rt = Op3.getReg();
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
unsigned K1 = getKillRegState(Op1.isKill());
|
|
unsigned K2 = getKillRegState(Op2.isKill());
|
|
unsigned K3 = getKillRegState(Op3.isKill());
|
|
if (Rd != Rs)
|
|
BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrpt), Rd)
|
|
.addReg(Pu, (Rd == Rt) ? K1 : 0)
|
|
.addReg(Rs, K2);
|
|
if (Rd != Rt)
|
|
BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrpf), Rd)
|
|
.addReg(Pu, K1)
|
|
.addReg(Rt, K3);
|
|
MBB.erase(MI);
|
|
return true;
|
|
}
|
|
case Hexagon::TCRETURNi:
|
|
MI->setDesc(get(Hexagon::J2_jump));
|
|
return true;
|
|
case Hexagon::TCRETURNr:
|
|
MI->setDesc(get(Hexagon::J2_jumpr));
|
|
return true;
|
|
case Hexagon::TFRI_f:
|
|
case Hexagon::TFRI_cPt_f:
|
|
case Hexagon::TFRI_cNotPt_f: {
|
|
unsigned Opx = (Opc == Hexagon::TFRI_f) ? 1 : 2;
|
|
APFloat FVal = MI->getOperand(Opx).getFPImm()->getValueAPF();
|
|
APInt IVal = FVal.bitcastToAPInt();
|
|
MI->RemoveOperand(Opx);
|
|
unsigned NewOpc = (Opc == Hexagon::TFRI_f) ? Hexagon::A2_tfrsi :
|
|
(Opc == Hexagon::TFRI_cPt_f) ? Hexagon::C2_cmoveit :
|
|
Hexagon::C2_cmoveif;
|
|
MI->setDesc(get(NewOpc));
|
|
MI->addOperand(MachineOperand::CreateImm(IVal.getZExtValue()));
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
// We indicate that we want to reverse the branch by
|
|
// inserting the reversed branching opcode.
|
|
bool HexagonInstrInfo::ReverseBranchCondition(
|
|
SmallVectorImpl<MachineOperand> &Cond) const {
|
|
if (Cond.empty())
|
|
return true;
|
|
assert(Cond[0].isImm() && "First entry in the cond vector not imm-val");
|
|
unsigned opcode = Cond[0].getImm();
|
|
//unsigned temp;
|
|
assert(get(opcode).isBranch() && "Should be a branching condition.");
|
|
if (isEndLoopN(opcode))
|
|
return true;
|
|
unsigned NewOpcode = getInvertedPredicatedOpcode(opcode);
|
|
Cond[0].setImm(NewOpcode);
|
|
return false;
|
|
}
|
|
|
|
|
|
void HexagonInstrInfo::insertNoop(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI) const {
|
|
DebugLoc DL;
|
|
BuildMI(MBB, MI, DL, get(Hexagon::A2_nop));
|
|
}
|
|
|
|
|
|
// Returns true if an instruction is predicated irrespective of the predicate
|
|
// sense. For example, all of the following will return true.
|
|
// if (p0) R1 = add(R2, R3)
|
|
// if (!p0) R1 = add(R2, R3)
|
|
// if (p0.new) R1 = add(R2, R3)
|
|
// if (!p0.new) R1 = add(R2, R3)
|
|
// Note: New-value stores are not included here as in the current
|
|
// implementation, we don't need to check their predicate sense.
|
|
bool HexagonInstrInfo::isPredicated(const MachineInstr *MI) const {
|
|
const uint64_t F = MI->getDesc().TSFlags;
|
|
return (F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask;
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::PredicateInstruction(MachineInstr *MI,
|
|
ArrayRef<MachineOperand> Cond) const {
|
|
if (Cond.empty() || isNewValueJump(Cond[0].getImm()) ||
|
|
isEndLoopN(Cond[0].getImm())) {
|
|
DEBUG(dbgs() << "\nCannot predicate:"; MI->dump(););
|
|
return false;
|
|
}
|
|
int Opc = MI->getOpcode();
|
|
assert (isPredicable(MI) && "Expected predicable instruction");
|
|
bool invertJump = predOpcodeHasNot(Cond);
|
|
|
|
// We have to predicate MI "in place", i.e. after this function returns,
|
|
// MI will need to be transformed into a predicated form. To avoid com-
|
|
// plicated manipulations with the operands (handling tied operands,
|
|
// etc.), build a new temporary instruction, then overwrite MI with it.
|
|
|
|
MachineBasicBlock &B = *MI->getParent();
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
unsigned PredOpc = getCondOpcode(Opc, invertJump);
|
|
MachineInstrBuilder T = BuildMI(B, MI, DL, get(PredOpc));
|
|
unsigned NOp = 0, NumOps = MI->getNumOperands();
|
|
while (NOp < NumOps) {
|
|
MachineOperand &Op = MI->getOperand(NOp);
|
|
if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
|
|
break;
|
|
T.addOperand(Op);
|
|
NOp++;
|
|
}
|
|
|
|
unsigned PredReg, PredRegPos, PredRegFlags;
|
|
bool GotPredReg = getPredReg(Cond, PredReg, PredRegPos, PredRegFlags);
|
|
(void)GotPredReg;
|
|
assert(GotPredReg);
|
|
T.addReg(PredReg, PredRegFlags);
|
|
while (NOp < NumOps)
|
|
T.addOperand(MI->getOperand(NOp++));
|
|
|
|
MI->setDesc(get(PredOpc));
|
|
while (unsigned n = MI->getNumOperands())
|
|
MI->RemoveOperand(n-1);
|
|
for (unsigned i = 0, n = T->getNumOperands(); i < n; ++i)
|
|
MI->addOperand(T->getOperand(i));
|
|
|
|
MachineBasicBlock::instr_iterator TI = T->getIterator();
|
|
B.erase(TI);
|
|
|
|
MachineRegisterInfo &MRI = B.getParent()->getRegInfo();
|
|
MRI.clearKillFlags(PredReg);
|
|
return true;
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
|
|
ArrayRef<MachineOperand> Pred2) const {
|
|
// TODO: Fix this
|
|
return false;
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::DefinesPredicate(MachineInstr *MI,
|
|
std::vector<MachineOperand> &Pred) const {
|
|
auto &HRI = getRegisterInfo();
|
|
for (unsigned oper = 0; oper < MI->getNumOperands(); ++oper) {
|
|
MachineOperand MO = MI->getOperand(oper);
|
|
if (MO.isReg() && MO.isDef()) {
|
|
const TargetRegisterClass* RC = HRI.getMinimalPhysRegClass(MO.getReg());
|
|
if (RC == &Hexagon::PredRegsRegClass) {
|
|
Pred.push_back(MO);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool HexagonInstrInfo::isPredicable(MachineInstr *MI) const {
|
|
bool isPred = MI->getDesc().isPredicable();
|
|
|
|
if (!isPred)
|
|
return false;
|
|
|
|
const int Opc = MI->getOpcode();
|
|
int NumOperands = MI->getNumOperands();
|
|
|
|
// Keep a flag for upto 4 operands in the instructions, to indicate if
|
|
// that operand has been constant extended.
|
|
bool OpCExtended[4];
|
|
if (NumOperands > 4)
|
|
NumOperands = 4;
|
|
|
|
for (int i = 0; i < NumOperands; i++)
|
|
OpCExtended[i] = (isOperandExtended(MI, i) && isConstExtended(MI));
|
|
|
|
switch(Opc) {
|
|
case Hexagon::A2_tfrsi:
|
|
return (isOperandExtended(MI, 1) && isConstExtended(MI)) ||
|
|
isInt<12>(MI->getOperand(1).getImm());
|
|
|
|
case Hexagon::S2_storerd_io:
|
|
return isShiftedUInt<6,3>(MI->getOperand(1).getImm());
|
|
|
|
case Hexagon::S2_storeri_io:
|
|
case Hexagon::S2_storerinew_io:
|
|
return isShiftedUInt<6,2>(MI->getOperand(1).getImm());
|
|
|
|
case Hexagon::S2_storerh_io:
|
|
case Hexagon::S2_storerhnew_io:
|
|
return isShiftedUInt<6,1>(MI->getOperand(1).getImm());
|
|
|
|
case Hexagon::S2_storerb_io:
|
|
case Hexagon::S2_storerbnew_io:
|
|
return isUInt<6>(MI->getOperand(1).getImm());
|
|
|
|
case Hexagon::L2_loadrd_io:
|
|
return isShiftedUInt<6,3>(MI->getOperand(2).getImm());
|
|
|
|
case Hexagon::L2_loadri_io:
|
|
return isShiftedUInt<6,2>(MI->getOperand(2).getImm());
|
|
|
|
case Hexagon::L2_loadrh_io:
|
|
case Hexagon::L2_loadruh_io:
|
|
return isShiftedUInt<6,1>(MI->getOperand(2).getImm());
|
|
|
|
case Hexagon::L2_loadrb_io:
|
|
case Hexagon::L2_loadrub_io:
|
|
return isUInt<6>(MI->getOperand(2).getImm());
|
|
|
|
case Hexagon::L2_loadrd_pi:
|
|
return isShiftedInt<4,3>(MI->getOperand(3).getImm());
|
|
|
|
case Hexagon::L2_loadri_pi:
|
|
return isShiftedInt<4,2>(MI->getOperand(3).getImm());
|
|
|
|
case Hexagon::L2_loadrh_pi:
|
|
case Hexagon::L2_loadruh_pi:
|
|
return isShiftedInt<4,1>(MI->getOperand(3).getImm());
|
|
|
|
case Hexagon::L2_loadrb_pi:
|
|
case Hexagon::L2_loadrub_pi:
|
|
return isInt<4>(MI->getOperand(3).getImm());
|
|
|
|
case Hexagon::S4_storeirb_io:
|
|
case Hexagon::S4_storeirh_io:
|
|
case Hexagon::S4_storeiri_io:
|
|
return (OpCExtended[1] || isUInt<6>(MI->getOperand(1).getImm())) &&
|
|
(OpCExtended[2] || isInt<6>(MI->getOperand(2).getImm()));
|
|
|
|
case Hexagon::A2_addi:
|
|
return isInt<8>(MI->getOperand(2).getImm());
|
|
|
|
case Hexagon::A2_aslh:
|
|
case Hexagon::A2_asrh:
|
|
case Hexagon::A2_sxtb:
|
|
case Hexagon::A2_sxth:
|
|
case Hexagon::A2_zxtb:
|
|
case Hexagon::A2_zxth:
|
|
return true;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
|
|
const MachineBasicBlock *MBB, const MachineFunction &MF) const {
|
|
// Debug info is never a scheduling boundary. It's necessary to be explicit
|
|
// due to the special treatment of IT instructions below, otherwise a
|
|
// dbg_value followed by an IT will result in the IT instruction being
|
|
// considered a scheduling hazard, which is wrong. It should be the actual
|
|
// instruction preceding the dbg_value instruction(s), just like it is
|
|
// when debug info is not present.
|
|
if (MI->isDebugValue())
|
|
return false;
|
|
|
|
// Throwing call is a boundary.
|
|
if (MI->isCall()) {
|
|
// If any of the block's successors is a landing pad, this could be a
|
|
// throwing call.
|
|
for (auto I : MBB->successors())
|
|
if (I->isEHPad())
|
|
return true;
|
|
}
|
|
|
|
// Don't mess around with no return calls.
|
|
if (MI->getOpcode() == Hexagon::CALLv3nr)
|
|
return true;
|
|
|
|
// Terminators and labels can't be scheduled around.
|
|
if (MI->getDesc().isTerminator() || MI->isPosition())
|
|
return true;
|
|
|
|
if (MI->isInlineAsm() && !ScheduleInlineAsm)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/// Measure the specified inline asm to determine an approximation of its
|
|
/// length.
|
|
/// Comments (which run till the next SeparatorString or newline) do not
|
|
/// count as an instruction.
|
|
/// Any other non-whitespace text is considered an instruction, with
|
|
/// multiple instructions separated by SeparatorString or newlines.
|
|
/// Variable-length instructions are not handled here; this function
|
|
/// may be overloaded in the target code to do that.
|
|
/// Hexagon counts the number of ##'s and adjust for that many
|
|
/// constant exenders.
|
|
unsigned HexagonInstrInfo::getInlineAsmLength(const char *Str,
|
|
const MCAsmInfo &MAI) const {
|
|
StringRef AStr(Str);
|
|
// Count the number of instructions in the asm.
|
|
bool atInsnStart = true;
|
|
unsigned Length = 0;
|
|
for (; *Str; ++Str) {
|
|
if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
|
|
strlen(MAI.getSeparatorString())) == 0)
|
|
atInsnStart = true;
|
|
if (atInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) {
|
|
Length += MAI.getMaxInstLength();
|
|
atInsnStart = false;
|
|
}
|
|
if (atInsnStart && strncmp(Str, MAI.getCommentString(),
|
|
strlen(MAI.getCommentString())) == 0)
|
|
atInsnStart = false;
|
|
}
|
|
|
|
// Add to size number of constant extenders seen * 4.
|
|
StringRef Occ("##");
|
|
Length += AStr.count(Occ)*4;
|
|
return Length;
|
|
}
|
|
|
|
|
|
ScheduleHazardRecognizer*
|
|
HexagonInstrInfo::CreateTargetPostRAHazardRecognizer(
|
|
const InstrItineraryData *II, const ScheduleDAG *DAG) const {
|
|
return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
|
|
}
|
|
|
|
|
|
/// \brief For a comparison instruction, return the source registers in
|
|
/// \p SrcReg and \p SrcReg2 if having two register operands, and the value it
|
|
/// compares against in CmpValue. Return true if the comparison instruction
|
|
/// can be analyzed.
|
|
bool HexagonInstrInfo::analyzeCompare(const MachineInstr *MI,
|
|
unsigned &SrcReg, unsigned &SrcReg2, int &Mask, int &Value) const {
|
|
unsigned Opc = MI->getOpcode();
|
|
|
|
// Set mask and the first source register.
|
|
switch (Opc) {
|
|
case Hexagon::C2_cmpeq:
|
|
case Hexagon::C2_cmpeqp:
|
|
case Hexagon::C2_cmpgt:
|
|
case Hexagon::C2_cmpgtp:
|
|
case Hexagon::C2_cmpgtu:
|
|
case Hexagon::C2_cmpgtup:
|
|
case Hexagon::C4_cmpneq:
|
|
case Hexagon::C4_cmplte:
|
|
case Hexagon::C4_cmplteu:
|
|
case Hexagon::C2_cmpeqi:
|
|
case Hexagon::C2_cmpgti:
|
|
case Hexagon::C2_cmpgtui:
|
|
case Hexagon::C4_cmpneqi:
|
|
case Hexagon::C4_cmplteui:
|
|
case Hexagon::C4_cmpltei:
|
|
SrcReg = MI->getOperand(1).getReg();
|
|
Mask = ~0;
|
|
break;
|
|
case Hexagon::A4_cmpbeq:
|
|
case Hexagon::A4_cmpbgt:
|
|
case Hexagon::A4_cmpbgtu:
|
|
case Hexagon::A4_cmpbeqi:
|
|
case Hexagon::A4_cmpbgti:
|
|
case Hexagon::A4_cmpbgtui:
|
|
SrcReg = MI->getOperand(1).getReg();
|
|
Mask = 0xFF;
|
|
break;
|
|
case Hexagon::A4_cmpheq:
|
|
case Hexagon::A4_cmphgt:
|
|
case Hexagon::A4_cmphgtu:
|
|
case Hexagon::A4_cmpheqi:
|
|
case Hexagon::A4_cmphgti:
|
|
case Hexagon::A4_cmphgtui:
|
|
SrcReg = MI->getOperand(1).getReg();
|
|
Mask = 0xFFFF;
|
|
break;
|
|
}
|
|
|
|
// Set the value/second source register.
|
|
switch (Opc) {
|
|
case Hexagon::C2_cmpeq:
|
|
case Hexagon::C2_cmpeqp:
|
|
case Hexagon::C2_cmpgt:
|
|
case Hexagon::C2_cmpgtp:
|
|
case Hexagon::C2_cmpgtu:
|
|
case Hexagon::C2_cmpgtup:
|
|
case Hexagon::A4_cmpbeq:
|
|
case Hexagon::A4_cmpbgt:
|
|
case Hexagon::A4_cmpbgtu:
|
|
case Hexagon::A4_cmpheq:
|
|
case Hexagon::A4_cmphgt:
|
|
case Hexagon::A4_cmphgtu:
|
|
case Hexagon::C4_cmpneq:
|
|
case Hexagon::C4_cmplte:
|
|
case Hexagon::C4_cmplteu:
|
|
SrcReg2 = MI->getOperand(2).getReg();
|
|
return true;
|
|
|
|
case Hexagon::C2_cmpeqi:
|
|
case Hexagon::C2_cmpgtui:
|
|
case Hexagon::C2_cmpgti:
|
|
case Hexagon::C4_cmpneqi:
|
|
case Hexagon::C4_cmplteui:
|
|
case Hexagon::C4_cmpltei:
|
|
case Hexagon::A4_cmpbeqi:
|
|
case Hexagon::A4_cmpbgti:
|
|
case Hexagon::A4_cmpbgtui:
|
|
case Hexagon::A4_cmpheqi:
|
|
case Hexagon::A4_cmphgti:
|
|
case Hexagon::A4_cmphgtui:
|
|
SrcReg2 = 0;
|
|
Value = MI->getOperand(2).getImm();
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
unsigned HexagonInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
|
|
const MachineInstr *MI, unsigned *PredCost) const {
|
|
return getInstrTimingClassLatency(ItinData, MI);
|
|
}
|
|
|
|
|
|
DFAPacketizer *HexagonInstrInfo::CreateTargetScheduleState(
|
|
const TargetSubtargetInfo &STI) const {
|
|
const InstrItineraryData *II = STI.getInstrItineraryData();
|
|
return static_cast<const HexagonSubtarget&>(STI).createDFAPacketizer(II);
|
|
}
|
|
|
|
|
|
// Inspired by this pair:
|
|
// %R13<def> = L2_loadri_io %R29, 136; mem:LD4[FixedStack0]
|
|
// S2_storeri_io %R29, 132, %R1<kill>; flags: mem:ST4[FixedStack1]
|
|
// Currently AA considers the addresses in these instructions to be aliasing.
|
|
bool HexagonInstrInfo::areMemAccessesTriviallyDisjoint(MachineInstr *MIa,
|
|
MachineInstr *MIb, AliasAnalysis *AA) const {
|
|
int OffsetA = 0, OffsetB = 0;
|
|
unsigned SizeA = 0, SizeB = 0;
|
|
|
|
if (MIa->hasUnmodeledSideEffects() || MIb->hasUnmodeledSideEffects() ||
|
|
MIa->hasOrderedMemoryRef() || MIa->hasOrderedMemoryRef())
|
|
return false;
|
|
|
|
// Instructions that are pure loads, not loads and stores like memops are not
|
|
// dependent.
|
|
if (MIa->mayLoad() && !isMemOp(MIa) && MIb->mayLoad() && !isMemOp(MIb))
|
|
return true;
|
|
|
|
// Get base, offset, and access size in MIa.
|
|
unsigned BaseRegA = getBaseAndOffset(MIa, OffsetA, SizeA);
|
|
if (!BaseRegA || !SizeA)
|
|
return false;
|
|
|
|
// Get base, offset, and access size in MIb.
|
|
unsigned BaseRegB = getBaseAndOffset(MIb, OffsetB, SizeB);
|
|
if (!BaseRegB || !SizeB)
|
|
return false;
|
|
|
|
if (BaseRegA != BaseRegB)
|
|
return false;
|
|
|
|
// This is a mem access with the same base register and known offsets from it.
|
|
// Reason about it.
|
|
if (OffsetA > OffsetB) {
|
|
uint64_t offDiff = (uint64_t)((int64_t)OffsetA - (int64_t)OffsetB);
|
|
return (SizeB <= offDiff);
|
|
} else if (OffsetA < OffsetB) {
|
|
uint64_t offDiff = (uint64_t)((int64_t)OffsetB - (int64_t)OffsetA);
|
|
return (SizeA <= offDiff);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
unsigned HexagonInstrInfo::createVR(MachineFunction* MF, MVT VT) const {
|
|
MachineRegisterInfo &MRI = MF->getRegInfo();
|
|
const TargetRegisterClass *TRC;
|
|
if (VT == MVT::i1) {
|
|
TRC = &Hexagon::PredRegsRegClass;
|
|
} else if (VT == MVT::i32 || VT == MVT::f32) {
|
|
TRC = &Hexagon::IntRegsRegClass;
|
|
} else if (VT == MVT::i64 || VT == MVT::f64) {
|
|
TRC = &Hexagon::DoubleRegsRegClass;
|
|
} else {
|
|
llvm_unreachable("Cannot handle this register class");
|
|
}
|
|
|
|
unsigned NewReg = MRI.createVirtualRegister(TRC);
|
|
return NewReg;
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::isAbsoluteSet(const MachineInstr* MI) const {
|
|
return (getAddrMode(MI) == HexagonII::AbsoluteSet);
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::isAccumulator(const MachineInstr *MI) const {
|
|
const uint64_t F = MI->getDesc().TSFlags;
|
|
return((F >> HexagonII::AccumulatorPos) & HexagonII::AccumulatorMask);
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::isComplex(const MachineInstr *MI) const {
|
|
const MachineFunction *MF = MI->getParent()->getParent();
|
|
const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
|
|
const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
|
|
|
|
if (!(isTC1(MI))
|
|
&& !(QII->isTC2Early(MI))
|
|
&& !(MI->getDesc().mayLoad())
|
|
&& !(MI->getDesc().mayStore())
|
|
&& (MI->getDesc().getOpcode() != Hexagon::S2_allocframe)
|
|
&& (MI->getDesc().getOpcode() != Hexagon::L2_deallocframe)
|
|
&& !(QII->isMemOp(MI))
|
|
&& !(MI->isBranch())
|
|
&& !(MI->isReturn())
|
|
&& !MI->isCall())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
// Return true if the the instruction is a compund branch instruction.
|
|
bool HexagonInstrInfo::isCompoundBranchInstr(const MachineInstr *MI) const {
|
|
return (getType(MI) == HexagonII::TypeCOMPOUND && MI->isBranch());
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::isCondInst(const MachineInstr *MI) const {
|
|
return (MI->isBranch() && isPredicated(MI)) ||
|
|
isConditionalTransfer(MI) ||
|
|
isConditionalALU32(MI) ||
|
|
isConditionalLoad(MI) ||
|
|
// Predicated stores which don't have a .new on any operands.
|
|
(MI->mayStore() && isPredicated(MI) && !isNewValueStore(MI) &&
|
|
!isPredicatedNew(MI));
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::isConditionalALU32(const MachineInstr* MI) const {
|
|
switch (MI->getOpcode()) {
|
|
case Hexagon::A2_paddf:
|
|
case Hexagon::A2_paddfnew:
|
|
case Hexagon::A2_paddif:
|
|
case Hexagon::A2_paddifnew:
|
|
case Hexagon::A2_paddit:
|
|
case Hexagon::A2_padditnew:
|
|
case Hexagon::A2_paddt:
|
|
case Hexagon::A2_paddtnew:
|
|
case Hexagon::A2_pandf:
|
|
case Hexagon::A2_pandfnew:
|
|
case Hexagon::A2_pandt:
|
|
case Hexagon::A2_pandtnew:
|
|
case Hexagon::A2_porf:
|
|
case Hexagon::A2_porfnew:
|
|
case Hexagon::A2_port:
|
|
case Hexagon::A2_portnew:
|
|
case Hexagon::A2_psubf:
|
|
case Hexagon::A2_psubfnew:
|
|
case Hexagon::A2_psubt:
|
|
case Hexagon::A2_psubtnew:
|
|
case Hexagon::A2_pxorf:
|
|
case Hexagon::A2_pxorfnew:
|
|
case Hexagon::A2_pxort:
|
|
case Hexagon::A2_pxortnew:
|
|
case Hexagon::A4_paslhf:
|
|
case Hexagon::A4_paslhfnew:
|
|
case Hexagon::A4_paslht:
|
|
case Hexagon::A4_paslhtnew:
|
|
case Hexagon::A4_pasrhf:
|
|
case Hexagon::A4_pasrhfnew:
|
|
case Hexagon::A4_pasrht:
|
|
case Hexagon::A4_pasrhtnew:
|
|
case Hexagon::A4_psxtbf:
|
|
case Hexagon::A4_psxtbfnew:
|
|
case Hexagon::A4_psxtbt:
|
|
case Hexagon::A4_psxtbtnew:
|
|
case Hexagon::A4_psxthf:
|
|
case Hexagon::A4_psxthfnew:
|
|
case Hexagon::A4_psxtht:
|
|
case Hexagon::A4_psxthtnew:
|
|
case Hexagon::A4_pzxtbf:
|
|
case Hexagon::A4_pzxtbfnew:
|
|
case Hexagon::A4_pzxtbt:
|
|
case Hexagon::A4_pzxtbtnew:
|
|
case Hexagon::A4_pzxthf:
|
|
case Hexagon::A4_pzxthfnew:
|
|
case Hexagon::A4_pzxtht:
|
|
case Hexagon::A4_pzxthtnew:
|
|
case Hexagon::C2_ccombinewf:
|
|
case Hexagon::C2_ccombinewt:
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
// FIXME - Function name and it's functionality don't match.
|
|
// It should be renamed to hasPredNewOpcode()
|
|
bool HexagonInstrInfo::isConditionalLoad(const MachineInstr* MI) const {
|
|
if (!MI->getDesc().mayLoad() || !isPredicated(MI))
|
|
return false;
|
|
|
|
int PNewOpcode = Hexagon::getPredNewOpcode(MI->getOpcode());
|
|
// Instruction with valid predicated-new opcode can be promoted to .new.
|
|
return PNewOpcode >= 0;
|
|
}
|
|
|
|
|
|
// Returns true if an instruction is a conditional store.
|
|
//
|
|
// Note: It doesn't include conditional new-value stores as they can't be
|
|
// converted to .new predicate.
|
|
bool HexagonInstrInfo::isConditionalStore(const MachineInstr* MI) const {
|
|
switch (MI->getOpcode()) {
|
|
default: return false;
|
|
case Hexagon::S4_storeirbt_io:
|
|
case Hexagon::S4_storeirbf_io:
|
|
case Hexagon::S4_pstorerbt_rr:
|
|
case Hexagon::S4_pstorerbf_rr:
|
|
case Hexagon::S2_pstorerbt_io:
|
|
case Hexagon::S2_pstorerbf_io:
|
|
case Hexagon::S2_pstorerbt_pi:
|
|
case Hexagon::S2_pstorerbf_pi:
|
|
case Hexagon::S2_pstorerdt_io:
|
|
case Hexagon::S2_pstorerdf_io:
|
|
case Hexagon::S4_pstorerdt_rr:
|
|
case Hexagon::S4_pstorerdf_rr:
|
|
case Hexagon::S2_pstorerdt_pi:
|
|
case Hexagon::S2_pstorerdf_pi:
|
|
case Hexagon::S2_pstorerht_io:
|
|
case Hexagon::S2_pstorerhf_io:
|
|
case Hexagon::S4_storeirht_io:
|
|
case Hexagon::S4_storeirhf_io:
|
|
case Hexagon::S4_pstorerht_rr:
|
|
case Hexagon::S4_pstorerhf_rr:
|
|
case Hexagon::S2_pstorerht_pi:
|
|
case Hexagon::S2_pstorerhf_pi:
|
|
case Hexagon::S2_pstorerit_io:
|
|
case Hexagon::S2_pstorerif_io:
|
|
case Hexagon::S4_storeirit_io:
|
|
case Hexagon::S4_storeirif_io:
|
|
case Hexagon::S4_pstorerit_rr:
|
|
case Hexagon::S4_pstorerif_rr:
|
|
case Hexagon::S2_pstorerit_pi:
|
|
case Hexagon::S2_pstorerif_pi:
|
|
|
|
// V4 global address store before promoting to dot new.
|
|
case Hexagon::S4_pstorerdt_abs:
|
|
case Hexagon::S4_pstorerdf_abs:
|
|
case Hexagon::S4_pstorerbt_abs:
|
|
case Hexagon::S4_pstorerbf_abs:
|
|
case Hexagon::S4_pstorerht_abs:
|
|
case Hexagon::S4_pstorerhf_abs:
|
|
case Hexagon::S4_pstorerit_abs:
|
|
case Hexagon::S4_pstorerif_abs:
|
|
return true;
|
|
|
|
// Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
|
|
// from the "Conditional Store" list. Because a predicated new value store
|
|
// would NOT be promoted to a double dot new store.
|
|
// This function returns yes for those stores that are predicated but not
|
|
// yet promoted to predicate dot new instructions.
|
|
}
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::isConditionalTransfer(const MachineInstr *MI) const {
|
|
switch (MI->getOpcode()) {
|
|
case Hexagon::A2_tfrt:
|
|
case Hexagon::A2_tfrf:
|
|
case Hexagon::C2_cmoveit:
|
|
case Hexagon::C2_cmoveif:
|
|
case Hexagon::A2_tfrtnew:
|
|
case Hexagon::A2_tfrfnew:
|
|
case Hexagon::C2_cmovenewit:
|
|
case Hexagon::C2_cmovenewif:
|
|
case Hexagon::A2_tfrpt:
|
|
case Hexagon::A2_tfrpf:
|
|
return true;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
// TODO: In order to have isExtendable for fpimm/f32Ext, we need to handle
|
|
// isFPImm and later getFPImm as well.
|
|
bool HexagonInstrInfo::isConstExtended(const MachineInstr *MI) const {
|
|
const uint64_t F = MI->getDesc().TSFlags;
|
|
unsigned isExtended = (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
|
|
if (isExtended) // Instruction must be extended.
|
|
return true;
|
|
|
|
unsigned isExtendable =
|
|
(F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask;
|
|
if (!isExtendable)
|
|
return false;
|
|
|
|
if (MI->isCall())
|
|
return false;
|
|
|
|
short ExtOpNum = getCExtOpNum(MI);
|
|
const MachineOperand &MO = MI->getOperand(ExtOpNum);
|
|
// Use MO operand flags to determine if MO
|
|
// has the HMOTF_ConstExtended flag set.
|
|
if (MO.getTargetFlags() && HexagonII::HMOTF_ConstExtended)
|
|
return true;
|
|
// If this is a Machine BB address we are talking about, and it is
|
|
// not marked as extended, say so.
|
|
if (MO.isMBB())
|
|
return false;
|
|
|
|
// We could be using an instruction with an extendable immediate and shoehorn
|
|
// a global address into it. If it is a global address it will be constant
|
|
// extended. We do this for COMBINE.
|
|
// We currently only handle isGlobal() because it is the only kind of
|
|
// object we are going to end up with here for now.
|
|
// In the future we probably should add isSymbol(), etc.
|
|
if (MO.isGlobal() || MO.isSymbol() || MO.isBlockAddress() ||
|
|
MO.isJTI() || MO.isCPI())
|
|
return true;
|
|
|
|
// If the extendable operand is not 'Immediate' type, the instruction should
|
|
// have 'isExtended' flag set.
|
|
assert(MO.isImm() && "Extendable operand must be Immediate type");
|
|
|
|
int MinValue = getMinValue(MI);
|
|
int MaxValue = getMaxValue(MI);
|
|
int ImmValue = MO.getImm();
|
|
|
|
return (ImmValue < MinValue || ImmValue > MaxValue);
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::isDeallocRet(const MachineInstr *MI) const {
|
|
switch (MI->getOpcode()) {
|
|
case Hexagon::L4_return :
|
|
case Hexagon::L4_return_t :
|
|
case Hexagon::L4_return_f :
|
|
case Hexagon::L4_return_tnew_pnt :
|
|
case Hexagon::L4_return_fnew_pnt :
|
|
case Hexagon::L4_return_tnew_pt :
|
|
case Hexagon::L4_return_fnew_pt :
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
// Return true when ConsMI uses a register defined by ProdMI.
|
|
bool HexagonInstrInfo::isDependent(const MachineInstr *ProdMI,
|
|
const MachineInstr *ConsMI) const {
|
|
const MCInstrDesc &ProdMCID = ProdMI->getDesc();
|
|
if (!ProdMCID.getNumDefs())
|
|
return false;
|
|
|
|
auto &HRI = getRegisterInfo();
|
|
|
|
SmallVector<unsigned, 4> DefsA;
|
|
SmallVector<unsigned, 4> DefsB;
|
|
SmallVector<unsigned, 8> UsesA;
|
|
SmallVector<unsigned, 8> UsesB;
|
|
|
|
parseOperands(ProdMI, DefsA, UsesA);
|
|
parseOperands(ConsMI, DefsB, UsesB);
|
|
|
|
for (auto &RegA : DefsA)
|
|
for (auto &RegB : UsesB) {
|
|
// True data dependency.
|
|
if (RegA == RegB)
|
|
return true;
|
|
|
|
if (Hexagon::DoubleRegsRegClass.contains(RegA))
|
|
for (MCSubRegIterator SubRegs(RegA, &HRI); SubRegs.isValid(); ++SubRegs)
|
|
if (RegB == *SubRegs)
|
|
return true;
|
|
|
|
if (Hexagon::DoubleRegsRegClass.contains(RegB))
|
|
for (MCSubRegIterator SubRegs(RegB, &HRI); SubRegs.isValid(); ++SubRegs)
|
|
if (RegA == *SubRegs)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
// Returns true if the instruction is alread a .cur.
|
|
bool HexagonInstrInfo::isDotCurInst(const MachineInstr* MI) const {
|
|
switch (MI->getOpcode()) {
|
|
case Hexagon::V6_vL32b_cur_pi:
|
|
case Hexagon::V6_vL32b_cur_ai:
|
|
case Hexagon::V6_vL32b_cur_pi_128B:
|
|
case Hexagon::V6_vL32b_cur_ai_128B:
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
// Returns true, if any one of the operands is a dot new
|
|
// insn, whether it is predicated dot new or register dot new.
|
|
bool HexagonInstrInfo::isDotNewInst(const MachineInstr* MI) const {
|
|
if (isNewValueInst(MI) ||
|
|
(isPredicated(MI) && isPredicatedNew(MI)))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/// Symmetrical. See if these two instructions are fit for duplex pair.
|
|
bool HexagonInstrInfo::isDuplexPair(const MachineInstr *MIa,
|
|
const MachineInstr *MIb) const {
|
|
HexagonII::SubInstructionGroup MIaG = getDuplexCandidateGroup(MIa);
|
|
HexagonII::SubInstructionGroup MIbG = getDuplexCandidateGroup(MIb);
|
|
return (isDuplexPairMatch(MIaG, MIbG) || isDuplexPairMatch(MIbG, MIaG));
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::isEarlySourceInstr(MachineInstr *MI) const {
|
|
if (!MI)
|
|
return false;
|
|
|
|
if (MI->mayLoad() || MI->mayStore() || MI->isCompare())
|
|
return true;
|
|
|
|
// Multiply
|
|
unsigned SchedClass = MI->getDesc().getSchedClass();
|
|
if (SchedClass == Hexagon::Sched::M_tc_3or4x_SLOT23)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::isEndLoopN(unsigned Opcode) const {
|
|
return (Opcode == Hexagon::ENDLOOP0 ||
|
|
Opcode == Hexagon::ENDLOOP1);
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::isExpr(unsigned OpType) const {
|
|
switch(OpType) {
|
|
case MachineOperand::MO_MachineBasicBlock:
|
|
case MachineOperand::MO_GlobalAddress:
|
|
case MachineOperand::MO_ExternalSymbol:
|
|
case MachineOperand::MO_JumpTableIndex:
|
|
case MachineOperand::MO_ConstantPoolIndex:
|
|
case MachineOperand::MO_BlockAddress:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::isExtendable(const MachineInstr *MI) const {
|
|
const MCInstrDesc &MID = MI->getDesc();
|
|
const uint64_t F = MID.TSFlags;
|
|
if ((F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask)
|
|
return true;
|
|
|
|
// TODO: This is largely obsolete now. Will need to be removed
|
|
// in consecutive patches.
|
|
switch(MI->getOpcode()) {
|
|
// TFR_FI Remains a special case.
|
|
case Hexagon::TFR_FI:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
// This returns true in two cases:
|
|
// - The OP code itself indicates that this is an extended instruction.
|
|
// - One of MOs has been marked with HMOTF_ConstExtended flag.
|
|
bool HexagonInstrInfo::isExtended(const MachineInstr *MI) const {
|
|
// First check if this is permanently extended op code.
|
|
const uint64_t F = MI->getDesc().TSFlags;
|
|
if ((F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask)
|
|
return true;
|
|
// Use MO operand flags to determine if one of MI's operands
|
|
// has HMOTF_ConstExtended flag set.
|
|
for (MachineInstr::const_mop_iterator I = MI->operands_begin(),
|
|
E = MI->operands_end(); I != E; ++I) {
|
|
if (I->getTargetFlags() && HexagonII::HMOTF_ConstExtended)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::isFloat(MachineInstr *MI) const {
|
|
unsigned Opcode = MI->getOpcode();
|
|
const uint64_t F = get(Opcode).TSFlags;
|
|
return (F >> HexagonII::FPPos) & HexagonII::FPMask;
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::isIndirectCall(const MachineInstr *MI) const {
|
|
switch (MI->getOpcode()) {
|
|
case Hexagon::J2_callr :
|
|
case Hexagon::J2_callrf :
|
|
case Hexagon::J2_callrt :
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::isIndirectL4Return(const MachineInstr *MI) const {
|
|
switch (MI->getOpcode()) {
|
|
case Hexagon::L4_return :
|
|
case Hexagon::L4_return_t :
|
|
case Hexagon::L4_return_f :
|
|
case Hexagon::L4_return_fnew_pnt :
|
|
case Hexagon::L4_return_fnew_pt :
|
|
case Hexagon::L4_return_tnew_pnt :
|
|
case Hexagon::L4_return_tnew_pt :
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::isJumpR(const MachineInstr *MI) const {
|
|
switch (MI->getOpcode()) {
|
|
case Hexagon::J2_jumpr :
|
|
case Hexagon::J2_jumprt :
|
|
case Hexagon::J2_jumprf :
|
|
case Hexagon::J2_jumprtnewpt :
|
|
case Hexagon::J2_jumprfnewpt :
|
|
case Hexagon::J2_jumprtnew :
|
|
case Hexagon::J2_jumprfnew :
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
// Return true if a given MI can accomodate given offset.
|
|
// Use abs estimate as oppose to the exact number.
|
|
// TODO: This will need to be changed to use MC level
|
|
// definition of instruction extendable field size.
|
|
bool HexagonInstrInfo::isJumpWithinBranchRange(const MachineInstr *MI,
|
|
unsigned offset) const {
|
|
// This selection of jump instructions matches to that what
|
|
// AnalyzeBranch can parse, plus NVJ.
|
|
if (isNewValueJump(MI)) // r9:2
|
|
return isInt<11>(offset);
|
|
|
|
switch (MI->getOpcode()) {
|
|
// Still missing Jump to address condition on register value.
|
|
default:
|
|
return false;
|
|
case Hexagon::J2_jump: // bits<24> dst; // r22:2
|
|
case Hexagon::J2_call:
|
|
case Hexagon::CALLv3nr:
|
|
return isInt<24>(offset);
|
|
case Hexagon::J2_jumpt: //bits<17> dst; // r15:2
|
|
case Hexagon::J2_jumpf:
|
|
case Hexagon::J2_jumptnew:
|
|
case Hexagon::J2_jumptnewpt:
|
|
case Hexagon::J2_jumpfnew:
|
|
case Hexagon::J2_jumpfnewpt:
|
|
case Hexagon::J2_callt:
|
|
case Hexagon::J2_callf:
|
|
return isInt<17>(offset);
|
|
case Hexagon::J2_loop0i:
|
|
case Hexagon::J2_loop0iext:
|
|
case Hexagon::J2_loop0r:
|
|
case Hexagon::J2_loop0rext:
|
|
case Hexagon::J2_loop1i:
|
|
case Hexagon::J2_loop1iext:
|
|
case Hexagon::J2_loop1r:
|
|
case Hexagon::J2_loop1rext:
|
|
return isInt<9>(offset);
|
|
// TODO: Add all the compound branches here. Can we do this in Relation model?
|
|
case Hexagon::J4_cmpeqi_tp0_jump_nt:
|
|
case Hexagon::J4_cmpeqi_tp1_jump_nt:
|
|
return isInt<11>(offset);
|
|
}
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::isLateInstrFeedsEarlyInstr(MachineInstr *LRMI,
|
|
MachineInstr *ESMI) const {
|
|
if (!LRMI || !ESMI)
|
|
return false;
|
|
|
|
bool isLate = isLateResultInstr(LRMI);
|
|
bool isEarly = isEarlySourceInstr(ESMI);
|
|
|
|
DEBUG(dbgs() << "V60" << (isLate ? "-LR " : " -- "));
|
|
DEBUG(LRMI->dump());
|
|
DEBUG(dbgs() << "V60" << (isEarly ? "-ES " : " -- "));
|
|
DEBUG(ESMI->dump());
|
|
|
|
if (isLate && isEarly) {
|
|
DEBUG(dbgs() << "++Is Late Result feeding Early Source\n");
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::isLateResultInstr(MachineInstr *MI) const {
|
|
if (!MI)
|
|
return false;
|
|
|
|
switch (MI->getOpcode()) {
|
|
case TargetOpcode::EXTRACT_SUBREG:
|
|
case TargetOpcode::INSERT_SUBREG:
|
|
case TargetOpcode::SUBREG_TO_REG:
|
|
case TargetOpcode::REG_SEQUENCE:
|
|
case TargetOpcode::IMPLICIT_DEF:
|
|
case TargetOpcode::COPY:
|
|
case TargetOpcode::INLINEASM:
|
|
case TargetOpcode::PHI:
|
|
return false;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
unsigned SchedClass = MI->getDesc().getSchedClass();
|
|
|
|
switch (SchedClass) {
|
|
case Hexagon::Sched::ALU32_2op_tc_1_SLOT0123:
|
|
case Hexagon::Sched::ALU32_3op_tc_1_SLOT0123:
|
|
case Hexagon::Sched::ALU32_ADDI_tc_1_SLOT0123:
|
|
case Hexagon::Sched::ALU64_tc_1_SLOT23:
|
|
case Hexagon::Sched::EXTENDER_tc_1_SLOT0123:
|
|
case Hexagon::Sched::S_2op_tc_1_SLOT23:
|
|
case Hexagon::Sched::S_3op_tc_1_SLOT23:
|
|
case Hexagon::Sched::V2LDST_tc_ld_SLOT01:
|
|
case Hexagon::Sched::V2LDST_tc_st_SLOT0:
|
|
case Hexagon::Sched::V2LDST_tc_st_SLOT01:
|
|
case Hexagon::Sched::V4LDST_tc_ld_SLOT01:
|
|
case Hexagon::Sched::V4LDST_tc_st_SLOT0:
|
|
case Hexagon::Sched::V4LDST_tc_st_SLOT01:
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::isLateSourceInstr(const MachineInstr *MI) const {
|
|
if (!MI)
|
|
return false;
|
|
|
|
// Instructions with iclass A_CVI_VX and attribute A_CVI_LATE uses a multiply
|
|
// resource, but all operands can be received late like an ALU instruction.
|
|
return MI->getDesc().getSchedClass() == Hexagon::Sched::CVI_VX_LATE;
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::isLoopN(unsigned Opcode) const {
|
|
return (Opcode == Hexagon::J2_loop0i ||
|
|
Opcode == Hexagon::J2_loop0r ||
|
|
Opcode == Hexagon::J2_loop0iext ||
|
|
Opcode == Hexagon::J2_loop0rext ||
|
|
Opcode == Hexagon::J2_loop1i ||
|
|
Opcode == Hexagon::J2_loop1r ||
|
|
Opcode == Hexagon::J2_loop1iext ||
|
|
Opcode == Hexagon::J2_loop1rext);
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::isMemOp(const MachineInstr *MI) const {
|
|
switch (MI->getOpcode()) {
|
|
default: return false;
|
|
case Hexagon::L4_iadd_memopw_io :
|
|
case Hexagon::L4_isub_memopw_io :
|
|
case Hexagon::L4_add_memopw_io :
|
|
case Hexagon::L4_sub_memopw_io :
|
|
case Hexagon::L4_and_memopw_io :
|
|
case Hexagon::L4_or_memopw_io :
|
|
case Hexagon::L4_iadd_memoph_io :
|
|
case Hexagon::L4_isub_memoph_io :
|
|
case Hexagon::L4_add_memoph_io :
|
|
case Hexagon::L4_sub_memoph_io :
|
|
case Hexagon::L4_and_memoph_io :
|
|
case Hexagon::L4_or_memoph_io :
|
|
case Hexagon::L4_iadd_memopb_io :
|
|
case Hexagon::L4_isub_memopb_io :
|
|
case Hexagon::L4_add_memopb_io :
|
|
case Hexagon::L4_sub_memopb_io :
|
|
case Hexagon::L4_and_memopb_io :
|
|
case Hexagon::L4_or_memopb_io :
|
|
case Hexagon::L4_ior_memopb_io:
|
|
case Hexagon::L4_ior_memoph_io:
|
|
case Hexagon::L4_ior_memopw_io:
|
|
case Hexagon::L4_iand_memopb_io:
|
|
case Hexagon::L4_iand_memoph_io:
|
|
case Hexagon::L4_iand_memopw_io:
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::isNewValue(const MachineInstr* MI) const {
|
|
const uint64_t F = MI->getDesc().TSFlags;
|
|
return (F >> HexagonII::NewValuePos) & HexagonII::NewValueMask;
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::isNewValue(unsigned Opcode) const {
|
|
const uint64_t F = get(Opcode).TSFlags;
|
|
return (F >> HexagonII::NewValuePos) & HexagonII::NewValueMask;
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::isNewValueInst(const MachineInstr *MI) const {
|
|
return isNewValueJump(MI) || isNewValueStore(MI);
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::isNewValueJump(const MachineInstr *MI) const {
|
|
return isNewValue(MI) && MI->isBranch();
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::isNewValueJump(unsigned Opcode) const {
|
|
return isNewValue(Opcode) && get(Opcode).isBranch() && isPredicated(Opcode);
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::isNewValueStore(const MachineInstr *MI) const {
|
|
const uint64_t F = MI->getDesc().TSFlags;
|
|
return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask;
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::isNewValueStore(unsigned Opcode) const {
|
|
const uint64_t F = get(Opcode).TSFlags;
|
|
return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask;
|
|
}
|
|
|
|
|
|
// Returns true if a particular operand is extendable for an instruction.
|
|
bool HexagonInstrInfo::isOperandExtended(const MachineInstr *MI,
|
|
unsigned OperandNum) const {
|
|
const uint64_t F = MI->getDesc().TSFlags;
|
|
return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask)
|
|
== OperandNum;
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::isPostIncrement(const MachineInstr* MI) const {
|
|
return getAddrMode(MI) == HexagonII::PostInc;
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::isPredicatedNew(const MachineInstr *MI) const {
|
|
const uint64_t F = MI->getDesc().TSFlags;
|
|
assert(isPredicated(MI));
|
|
return (F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask;
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode) const {
|
|
const uint64_t F = get(Opcode).TSFlags;
|
|
assert(isPredicated(Opcode));
|
|
return (F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask;
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::isPredicatedTrue(const MachineInstr *MI) const {
|
|
const uint64_t F = MI->getDesc().TSFlags;
|
|
return !((F >> HexagonII::PredicatedFalsePos) &
|
|
HexagonII::PredicatedFalseMask);
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode) const {
|
|
const uint64_t F = get(Opcode).TSFlags;
|
|
// Make sure that the instruction is predicated.
|
|
assert((F>> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
|
|
return !((F >> HexagonII::PredicatedFalsePos) &
|
|
HexagonII::PredicatedFalseMask);
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::isPredicated(unsigned Opcode) const {
|
|
const uint64_t F = get(Opcode).TSFlags;
|
|
return (F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask;
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::isPredicateLate(unsigned Opcode) const {
|
|
const uint64_t F = get(Opcode).TSFlags;
|
|
return ~(F >> HexagonII::PredicateLatePos) & HexagonII::PredicateLateMask;
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::isPredictedTaken(unsigned Opcode) const {
|
|
const uint64_t F = get(Opcode).TSFlags;
|
|
assert(get(Opcode).isBranch() &&
|
|
(isPredicatedNew(Opcode) || isNewValue(Opcode)));
|
|
return (F >> HexagonII::TakenPos) & HexagonII::TakenMask;
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr *MI) const {
|
|
return MI->getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4 ||
|
|
MI->getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT;
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::isSolo(const MachineInstr* MI) const {
|
|
const uint64_t F = MI->getDesc().TSFlags;
|
|
return (F >> HexagonII::SoloPos) & HexagonII::SoloMask;
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::isSpillPredRegOp(const MachineInstr *MI) const {
|
|
switch (MI->getOpcode()) {
|
|
case Hexagon::STriw_pred :
|
|
case Hexagon::LDriw_pred :
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
// Returns true when SU has a timing class TC1.
|
|
bool HexagonInstrInfo::isTC1(const MachineInstr *MI) const {
|
|
unsigned SchedClass = MI->getDesc().getSchedClass();
|
|
switch (SchedClass) {
|
|
case Hexagon::Sched::ALU32_2op_tc_1_SLOT0123:
|
|
case Hexagon::Sched::ALU32_3op_tc_1_SLOT0123:
|
|
case Hexagon::Sched::ALU32_ADDI_tc_1_SLOT0123:
|
|
case Hexagon::Sched::ALU64_tc_1_SLOT23:
|
|
case Hexagon::Sched::EXTENDER_tc_1_SLOT0123:
|
|
//case Hexagon::Sched::M_tc_1_SLOT23:
|
|
case Hexagon::Sched::S_2op_tc_1_SLOT23:
|
|
case Hexagon::Sched::S_3op_tc_1_SLOT23:
|
|
return true;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::isTC2(const MachineInstr *MI) const {
|
|
unsigned SchedClass = MI->getDesc().getSchedClass();
|
|
switch (SchedClass) {
|
|
case Hexagon::Sched::ALU32_3op_tc_2_SLOT0123:
|
|
case Hexagon::Sched::ALU64_tc_2_SLOT23:
|
|
case Hexagon::Sched::CR_tc_2_SLOT3:
|
|
case Hexagon::Sched::M_tc_2_SLOT23:
|
|
case Hexagon::Sched::S_2op_tc_2_SLOT23:
|
|
case Hexagon::Sched::S_3op_tc_2_SLOT23:
|
|
return true;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::isTC2Early(const MachineInstr *MI) const {
|
|
unsigned SchedClass = MI->getDesc().getSchedClass();
|
|
switch (SchedClass) {
|
|
case Hexagon::Sched::ALU32_2op_tc_2early_SLOT0123:
|
|
case Hexagon::Sched::ALU32_3op_tc_2early_SLOT0123:
|
|
case Hexagon::Sched::ALU64_tc_2early_SLOT23:
|
|
case Hexagon::Sched::CR_tc_2early_SLOT23:
|
|
case Hexagon::Sched::CR_tc_2early_SLOT3:
|
|
case Hexagon::Sched::J_tc_2early_SLOT0123:
|
|
case Hexagon::Sched::J_tc_2early_SLOT2:
|
|
case Hexagon::Sched::J_tc_2early_SLOT23:
|
|
case Hexagon::Sched::S_2op_tc_2early_SLOT23:
|
|
case Hexagon::Sched::S_3op_tc_2early_SLOT23:
|
|
return true;
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::isTC4x(const MachineInstr *MI) const {
|
|
if (!MI)
|
|
return false;
|
|
|
|
unsigned SchedClass = MI->getDesc().getSchedClass();
|
|
return SchedClass == Hexagon::Sched::M_tc_3or4x_SLOT23;
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::isV60VectorInstruction(const MachineInstr *MI) const {
|
|
if (!MI)
|
|
return false;
|
|
|
|
const uint64_t V = getType(MI);
|
|
return HexagonII::TypeCVI_FIRST <= V && V <= HexagonII::TypeCVI_LAST;
|
|
}
|
|
|
|
|
|
// Check if the Offset is a valid auto-inc imm by Load/Store Type.
|
|
//
|
|
bool HexagonInstrInfo::isValidAutoIncImm(const EVT VT, const int Offset) const {
|
|
if (VT == MVT::v16i32 || VT == MVT::v8i64 ||
|
|
VT == MVT::v32i16 || VT == MVT::v64i8) {
|
|
return (Offset >= Hexagon_MEMV_AUTOINC_MIN &&
|
|
Offset <= Hexagon_MEMV_AUTOINC_MAX &&
|
|
(Offset & 0x3f) == 0);
|
|
}
|
|
// 128B
|
|
if (VT == MVT::v32i32 || VT == MVT::v16i64 ||
|
|
VT == MVT::v64i16 || VT == MVT::v128i8) {
|
|
return (Offset >= Hexagon_MEMV_AUTOINC_MIN_128B &&
|
|
Offset <= Hexagon_MEMV_AUTOINC_MAX_128B &&
|
|
(Offset & 0x7f) == 0);
|
|
}
|
|
if (VT == MVT::i64) {
|
|
return (Offset >= Hexagon_MEMD_AUTOINC_MIN &&
|
|
Offset <= Hexagon_MEMD_AUTOINC_MAX &&
|
|
(Offset & 0x7) == 0);
|
|
}
|
|
if (VT == MVT::i32) {
|
|
return (Offset >= Hexagon_MEMW_AUTOINC_MIN &&
|
|
Offset <= Hexagon_MEMW_AUTOINC_MAX &&
|
|
(Offset & 0x3) == 0);
|
|
}
|
|
if (VT == MVT::i16) {
|
|
return (Offset >= Hexagon_MEMH_AUTOINC_MIN &&
|
|
Offset <= Hexagon_MEMH_AUTOINC_MAX &&
|
|
(Offset & 0x1) == 0);
|
|
}
|
|
if (VT == MVT::i8) {
|
|
return (Offset >= Hexagon_MEMB_AUTOINC_MIN &&
|
|
Offset <= Hexagon_MEMB_AUTOINC_MAX);
|
|
}
|
|
llvm_unreachable("Not an auto-inc opc!");
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::isValidOffset(unsigned Opcode, int Offset,
|
|
bool Extend) const {
|
|
// This function is to check whether the "Offset" is in the correct range of
|
|
// the given "Opcode". If "Offset" is not in the correct range, "A2_addi" is
|
|
// inserted to calculate the final address. Due to this reason, the function
|
|
// assumes that the "Offset" has correct alignment.
|
|
// We used to assert if the offset was not properly aligned, however,
|
|
// there are cases where a misaligned pointer recast can cause this
|
|
// problem, and we need to allow for it. The front end warns of such
|
|
// misaligns with respect to load size.
|
|
|
|
switch (Opcode) {
|
|
case Hexagon::STriq_pred_V6:
|
|
case Hexagon::STriq_pred_vec_V6:
|
|
case Hexagon::STriv_pseudo_V6:
|
|
case Hexagon::STrivv_pseudo_V6:
|
|
case Hexagon::LDriq_pred_V6:
|
|
case Hexagon::LDriq_pred_vec_V6:
|
|
case Hexagon::LDriv_pseudo_V6:
|
|
case Hexagon::LDrivv_pseudo_V6:
|
|
case Hexagon::LDrivv_indexed:
|
|
case Hexagon::STrivv_indexed:
|
|
case Hexagon::V6_vL32b_ai:
|
|
case Hexagon::V6_vS32b_ai:
|
|
case Hexagon::V6_vL32Ub_ai:
|
|
case Hexagon::V6_vS32Ub_ai:
|
|
return (Offset >= Hexagon_MEMV_OFFSET_MIN) &&
|
|
(Offset <= Hexagon_MEMV_OFFSET_MAX);
|
|
|
|
case Hexagon::STriq_pred_V6_128B:
|
|
case Hexagon::STriq_pred_vec_V6_128B:
|
|
case Hexagon::STriv_pseudo_V6_128B:
|
|
case Hexagon::STrivv_pseudo_V6_128B:
|
|
case Hexagon::LDriq_pred_V6_128B:
|
|
case Hexagon::LDriq_pred_vec_V6_128B:
|
|
case Hexagon::LDriv_pseudo_V6_128B:
|
|
case Hexagon::LDrivv_pseudo_V6_128B:
|
|
case Hexagon::LDrivv_indexed_128B:
|
|
case Hexagon::STrivv_indexed_128B:
|
|
case Hexagon::V6_vL32b_ai_128B:
|
|
case Hexagon::V6_vS32b_ai_128B:
|
|
case Hexagon::V6_vL32Ub_ai_128B:
|
|
case Hexagon::V6_vS32Ub_ai_128B:
|
|
return (Offset >= Hexagon_MEMV_OFFSET_MIN_128B) &&
|
|
(Offset <= Hexagon_MEMV_OFFSET_MAX_128B);
|
|
|
|
case Hexagon::J2_loop0i:
|
|
case Hexagon::J2_loop1i:
|
|
return isUInt<10>(Offset);
|
|
}
|
|
|
|
if (Extend)
|
|
return true;
|
|
|
|
switch (Opcode) {
|
|
case Hexagon::L2_loadri_io:
|
|
case Hexagon::S2_storeri_io:
|
|
return (Offset >= Hexagon_MEMW_OFFSET_MIN) &&
|
|
(Offset <= Hexagon_MEMW_OFFSET_MAX);
|
|
|
|
case Hexagon::L2_loadrd_io:
|
|
case Hexagon::S2_storerd_io:
|
|
return (Offset >= Hexagon_MEMD_OFFSET_MIN) &&
|
|
(Offset <= Hexagon_MEMD_OFFSET_MAX);
|
|
|
|
case Hexagon::L2_loadrh_io:
|
|
case Hexagon::L2_loadruh_io:
|
|
case Hexagon::S2_storerh_io:
|
|
return (Offset >= Hexagon_MEMH_OFFSET_MIN) &&
|
|
(Offset <= Hexagon_MEMH_OFFSET_MAX);
|
|
|
|
case Hexagon::L2_loadrb_io:
|
|
case Hexagon::L2_loadrub_io:
|
|
case Hexagon::S2_storerb_io:
|
|
return (Offset >= Hexagon_MEMB_OFFSET_MIN) &&
|
|
(Offset <= Hexagon_MEMB_OFFSET_MAX);
|
|
|
|
case Hexagon::A2_addi:
|
|
return (Offset >= Hexagon_ADDI_OFFSET_MIN) &&
|
|
(Offset <= Hexagon_ADDI_OFFSET_MAX);
|
|
|
|
case Hexagon::L4_iadd_memopw_io :
|
|
case Hexagon::L4_isub_memopw_io :
|
|
case Hexagon::L4_add_memopw_io :
|
|
case Hexagon::L4_sub_memopw_io :
|
|
case Hexagon::L4_and_memopw_io :
|
|
case Hexagon::L4_or_memopw_io :
|
|
return (0 <= Offset && Offset <= 255);
|
|
|
|
case Hexagon::L4_iadd_memoph_io :
|
|
case Hexagon::L4_isub_memoph_io :
|
|
case Hexagon::L4_add_memoph_io :
|
|
case Hexagon::L4_sub_memoph_io :
|
|
case Hexagon::L4_and_memoph_io :
|
|
case Hexagon::L4_or_memoph_io :
|
|
return (0 <= Offset && Offset <= 127);
|
|
|
|
case Hexagon::L4_iadd_memopb_io :
|
|
case Hexagon::L4_isub_memopb_io :
|
|
case Hexagon::L4_add_memopb_io :
|
|
case Hexagon::L4_sub_memopb_io :
|
|
case Hexagon::L4_and_memopb_io :
|
|
case Hexagon::L4_or_memopb_io :
|
|
return (0 <= Offset && Offset <= 63);
|
|
|
|
// LDri_pred and STriw_pred are pseudo operations, so it has to take offset of
|
|
// any size. Later pass knows how to handle it.
|
|
case Hexagon::STriw_pred:
|
|
case Hexagon::LDriw_pred:
|
|
return true;
|
|
|
|
case Hexagon::TFR_FI:
|
|
case Hexagon::TFR_FIA:
|
|
case Hexagon::INLINEASM:
|
|
return true;
|
|
|
|
case Hexagon::L2_ploadrbt_io:
|
|
case Hexagon::L2_ploadrbf_io:
|
|
case Hexagon::L2_ploadrubt_io:
|
|
case Hexagon::L2_ploadrubf_io:
|
|
case Hexagon::S2_pstorerbt_io:
|
|
case Hexagon::S2_pstorerbf_io:
|
|
case Hexagon::S4_storeirb_io:
|
|
case Hexagon::S4_storeirbt_io:
|
|
case Hexagon::S4_storeirbf_io:
|
|
return isUInt<6>(Offset);
|
|
|
|
case Hexagon::L2_ploadrht_io:
|
|
case Hexagon::L2_ploadrhf_io:
|
|
case Hexagon::L2_ploadruht_io:
|
|
case Hexagon::L2_ploadruhf_io:
|
|
case Hexagon::S2_pstorerht_io:
|
|
case Hexagon::S2_pstorerhf_io:
|
|
case Hexagon::S4_storeirh_io:
|
|
case Hexagon::S4_storeirht_io:
|
|
case Hexagon::S4_storeirhf_io:
|
|
return isShiftedUInt<6,1>(Offset);
|
|
|
|
case Hexagon::L2_ploadrit_io:
|
|
case Hexagon::L2_ploadrif_io:
|
|
case Hexagon::S2_pstorerit_io:
|
|
case Hexagon::S2_pstorerif_io:
|
|
case Hexagon::S4_storeiri_io:
|
|
case Hexagon::S4_storeirit_io:
|
|
case Hexagon::S4_storeirif_io:
|
|
return isShiftedUInt<6,2>(Offset);
|
|
|
|
case Hexagon::L2_ploadrdt_io:
|
|
case Hexagon::L2_ploadrdf_io:
|
|
case Hexagon::S2_pstorerdt_io:
|
|
case Hexagon::S2_pstorerdf_io:
|
|
return isShiftedUInt<6,3>(Offset);
|
|
} // switch
|
|
|
|
llvm_unreachable("No offset range is defined for this opcode. "
|
|
"Please define it in the above switch statement!");
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::isVecAcc(const MachineInstr *MI) const {
|
|
return MI && isV60VectorInstruction(MI) && isAccumulator(MI);
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::isVecALU(const MachineInstr *MI) const {
|
|
if (!MI)
|
|
return false;
|
|
const uint64_t F = get(MI->getOpcode()).TSFlags;
|
|
const uint64_t V = ((F >> HexagonII::TypePos) & HexagonII::TypeMask);
|
|
return
|
|
V == HexagonII::TypeCVI_VA ||
|
|
V == HexagonII::TypeCVI_VA_DV;
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::isVecUsableNextPacket(const MachineInstr *ProdMI,
|
|
const MachineInstr *ConsMI) const {
|
|
if (EnableACCForwarding && isVecAcc(ProdMI) && isVecAcc(ConsMI))
|
|
return true;
|
|
|
|
if (EnableALUForwarding && (isVecALU(ConsMI) || isLateSourceInstr(ConsMI)))
|
|
return true;
|
|
|
|
if (mayBeNewStore(ConsMI))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::hasEHLabel(const MachineBasicBlock *B) const {
|
|
for (auto &I : *B)
|
|
if (I.isEHLabel())
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
|
|
// Returns true if an instruction can be converted into a non-extended
|
|
// equivalent instruction.
|
|
bool HexagonInstrInfo::hasNonExtEquivalent(const MachineInstr *MI) const {
|
|
short NonExtOpcode;
|
|
// Check if the instruction has a register form that uses register in place
|
|
// of the extended operand, if so return that as the non-extended form.
|
|
if (Hexagon::getRegForm(MI->getOpcode()) >= 0)
|
|
return true;
|
|
|
|
if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
|
|
// Check addressing mode and retrieve non-ext equivalent instruction.
|
|
|
|
switch (getAddrMode(MI)) {
|
|
case HexagonII::Absolute :
|
|
// Load/store with absolute addressing mode can be converted into
|
|
// base+offset mode.
|
|
NonExtOpcode = Hexagon::getBaseWithImmOffset(MI->getOpcode());
|
|
break;
|
|
case HexagonII::BaseImmOffset :
|
|
// Load/store with base+offset addressing mode can be converted into
|
|
// base+register offset addressing mode. However left shift operand should
|
|
// be set to 0.
|
|
NonExtOpcode = Hexagon::getBaseWithRegOffset(MI->getOpcode());
|
|
break;
|
|
case HexagonII::BaseLongOffset:
|
|
NonExtOpcode = Hexagon::getRegShlForm(MI->getOpcode());
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
if (NonExtOpcode < 0)
|
|
return false;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::hasPseudoInstrPair(MachineInstr *MI) const {
|
|
return Hexagon::getRealHWInstr(MI->getOpcode(),
|
|
Hexagon::InstrType_Pseudo) >= 0;
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::hasUncondBranch(const MachineBasicBlock *B)
|
|
const {
|
|
MachineBasicBlock::const_iterator I = B->getFirstTerminator(), E = B->end();
|
|
while (I != E) {
|
|
if (I->isBarrier())
|
|
return true;
|
|
++I;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
// Returns true, if a LD insn can be promoted to a cur load.
|
|
bool HexagonInstrInfo::mayBeCurLoad(const MachineInstr *MI) const {
|
|
auto &HST = MI->getParent()->getParent()->getSubtarget<HexagonSubtarget>();
|
|
const uint64_t F = MI->getDesc().TSFlags;
|
|
return ((F >> HexagonII::mayCVLoadPos) & HexagonII::mayCVLoadMask) &&
|
|
HST.hasV60TOps();
|
|
}
|
|
|
|
|
|
// Returns true, if a ST insn can be promoted to a new-value store.
|
|
bool HexagonInstrInfo::mayBeNewStore(const MachineInstr *MI) const {
|
|
const uint64_t F = MI->getDesc().TSFlags;
|
|
return (F >> HexagonII::mayNVStorePos) & HexagonII::mayNVStoreMask;
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::producesStall(const MachineInstr *ProdMI,
|
|
const MachineInstr *ConsMI) const {
|
|
// There is no stall when ProdMI is not a V60 vector.
|
|
if (!isV60VectorInstruction(ProdMI))
|
|
return false;
|
|
|
|
// There is no stall when ProdMI and ConsMI are not dependent.
|
|
if (!isDependent(ProdMI, ConsMI))
|
|
return false;
|
|
|
|
// When Forward Scheduling is enabled, there is no stall if ProdMI and ConsMI
|
|
// are scheduled in consecutive packets.
|
|
if (isVecUsableNextPacket(ProdMI, ConsMI))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::producesStall(const MachineInstr *MI,
|
|
MachineBasicBlock::const_instr_iterator BII) const {
|
|
// There is no stall when I is not a V60 vector.
|
|
if (!isV60VectorInstruction(MI))
|
|
return false;
|
|
|
|
MachineBasicBlock::const_instr_iterator MII = BII;
|
|
MachineBasicBlock::const_instr_iterator MIE = MII->getParent()->instr_end();
|
|
|
|
if (!(*MII).isBundle()) {
|
|
const MachineInstr *J = &*MII;
|
|
if (!isV60VectorInstruction(J))
|
|
return false;
|
|
else if (isVecUsableNextPacket(J, MI))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
for (++MII; MII != MIE && MII->isInsideBundle(); ++MII) {
|
|
const MachineInstr *J = &*MII;
|
|
if (producesStall(J, MI))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::predCanBeUsedAsDotNew(MachineInstr *MI,
|
|
unsigned PredReg) const {
|
|
for (unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++) {
|
|
MachineOperand &MO = MI->getOperand(opNum);
|
|
if (MO.isReg() && MO.isDef() && MO.isImplicit() && (MO.getReg() == PredReg))
|
|
return false; // Predicate register must be explicitly defined.
|
|
}
|
|
|
|
// Hexagon Programmer's Reference says that decbin, memw_locked, and
|
|
// memd_locked cannot be used as .new as well,
|
|
// but we don't seem to have these instructions defined.
|
|
return MI->getOpcode() != Hexagon::A4_tlbmatch;
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::PredOpcodeHasJMP_c(unsigned Opcode) const {
|
|
return (Opcode == Hexagon::J2_jumpt) ||
|
|
(Opcode == Hexagon::J2_jumpf) ||
|
|
(Opcode == Hexagon::J2_jumptnew) ||
|
|
(Opcode == Hexagon::J2_jumpfnew) ||
|
|
(Opcode == Hexagon::J2_jumptnewpt) ||
|
|
(Opcode == Hexagon::J2_jumpfnewpt);
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::predOpcodeHasNot(ArrayRef<MachineOperand> Cond) const {
|
|
if (Cond.empty() || !isPredicated(Cond[0].getImm()))
|
|
return false;
|
|
return !isPredicatedTrue(Cond[0].getImm());
|
|
}
|
|
|
|
|
|
unsigned HexagonInstrInfo::getAddrMode(const MachineInstr* MI) const {
|
|
const uint64_t F = MI->getDesc().TSFlags;
|
|
return (F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask;
|
|
}
|
|
|
|
|
|
// Returns the base register in a memory access (load/store). The offset is
|
|
// returned in Offset and the access size is returned in AccessSize.
|
|
unsigned HexagonInstrInfo::getBaseAndOffset(const MachineInstr *MI,
|
|
int &Offset, unsigned &AccessSize) const {
|
|
// Return if it is not a base+offset type instruction or a MemOp.
|
|
if (getAddrMode(MI) != HexagonII::BaseImmOffset &&
|
|
getAddrMode(MI) != HexagonII::BaseLongOffset &&
|
|
!isMemOp(MI) && !isPostIncrement(MI))
|
|
return 0;
|
|
|
|
// Since it is a memory access instruction, getMemAccessSize() should never
|
|
// return 0.
|
|
assert (getMemAccessSize(MI) &&
|
|
"BaseImmOffset or BaseLongOffset or MemOp without accessSize");
|
|
|
|
// Return Values of getMemAccessSize() are
|
|
// 0 - Checked in the assert above.
|
|
// 1, 2, 3, 4 & 7, 8 - The statement below is correct for all these.
|
|
// MemAccessSize is represented as 1+log2(N) where N is size in bits.
|
|
AccessSize = (1U << (getMemAccessSize(MI) - 1));
|
|
|
|
unsigned basePos = 0, offsetPos = 0;
|
|
if (!getBaseAndOffsetPosition(MI, basePos, offsetPos))
|
|
return 0;
|
|
|
|
// Post increment updates its EA after the mem access,
|
|
// so we need to treat its offset as zero.
|
|
if (isPostIncrement(MI))
|
|
Offset = 0;
|
|
else {
|
|
Offset = MI->getOperand(offsetPos).getImm();
|
|
}
|
|
|
|
return MI->getOperand(basePos).getReg();
|
|
}
|
|
|
|
|
|
/// Return the position of the base and offset operands for this instruction.
|
|
bool HexagonInstrInfo::getBaseAndOffsetPosition(const MachineInstr *MI,
|
|
unsigned &BasePos, unsigned &OffsetPos) const {
|
|
// Deal with memops first.
|
|
if (isMemOp(MI)) {
|
|
assert (MI->getOperand(0).isReg() && MI->getOperand(1).isImm() &&
|
|
"Bad Memop.");
|
|
BasePos = 0;
|
|
OffsetPos = 1;
|
|
} else if (MI->mayStore()) {
|
|
BasePos = 0;
|
|
OffsetPos = 1;
|
|
} else if (MI->mayLoad()) {
|
|
BasePos = 1;
|
|
OffsetPos = 2;
|
|
} else
|
|
return false;
|
|
|
|
if (isPredicated(MI)) {
|
|
BasePos++;
|
|
OffsetPos++;
|
|
}
|
|
if (isPostIncrement(MI)) {
|
|
BasePos++;
|
|
OffsetPos++;
|
|
}
|
|
|
|
if (!MI->getOperand(BasePos).isReg() || !MI->getOperand(OffsetPos).isImm())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
// Inserts branching instructions in reverse order of their occurence.
|
|
// e.g. jump_t t1 (i1)
|
|
// jump t2 (i2)
|
|
// Jumpers = {i2, i1}
|
|
SmallVector<MachineInstr*, 2> HexagonInstrInfo::getBranchingInstrs(
|
|
MachineBasicBlock& MBB) const {
|
|
SmallVector<MachineInstr*, 2> Jumpers;
|
|
// If the block has no terminators, it just falls into the block after it.
|
|
MachineBasicBlock::instr_iterator I = MBB.instr_end();
|
|
if (I == MBB.instr_begin())
|
|
return Jumpers;
|
|
|
|
// A basic block may looks like this:
|
|
//
|
|
// [ insn
|
|
// EH_LABEL
|
|
// insn
|
|
// insn
|
|
// insn
|
|
// EH_LABEL
|
|
// insn ]
|
|
//
|
|
// It has two succs but does not have a terminator
|
|
// Don't know how to handle it.
|
|
do {
|
|
--I;
|
|
if (I->isEHLabel())
|
|
return Jumpers;
|
|
} while (I != MBB.instr_begin());
|
|
|
|
I = MBB.instr_end();
|
|
--I;
|
|
|
|
while (I->isDebugValue()) {
|
|
if (I == MBB.instr_begin())
|
|
return Jumpers;
|
|
--I;
|
|
}
|
|
if (!isUnpredicatedTerminator(&*I))
|
|
return Jumpers;
|
|
|
|
// Get the last instruction in the block.
|
|
MachineInstr *LastInst = &*I;
|
|
Jumpers.push_back(LastInst);
|
|
MachineInstr *SecondLastInst = nullptr;
|
|
// Find one more terminator if present.
|
|
do {
|
|
if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(&*I)) {
|
|
if (!SecondLastInst) {
|
|
SecondLastInst = &*I;
|
|
Jumpers.push_back(SecondLastInst);
|
|
} else // This is a third branch.
|
|
return Jumpers;
|
|
}
|
|
if (I == MBB.instr_begin())
|
|
break;
|
|
--I;
|
|
} while (true);
|
|
return Jumpers;
|
|
}
|
|
|
|
|
|
// Returns Operand Index for the constant extended instruction.
|
|
unsigned HexagonInstrInfo::getCExtOpNum(const MachineInstr *MI) const {
|
|
const uint64_t F = MI->getDesc().TSFlags;
|
|
return (F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask;
|
|
}
|
|
|
|
// See if instruction could potentially be a duplex candidate.
|
|
// If so, return its group. Zero otherwise.
|
|
HexagonII::CompoundGroup HexagonInstrInfo::getCompoundCandidateGroup(
|
|
const MachineInstr *MI) const {
|
|
unsigned DstReg, SrcReg, Src1Reg, Src2Reg;
|
|
|
|
switch (MI->getOpcode()) {
|
|
default:
|
|
return HexagonII::HCG_None;
|
|
//
|
|
// Compound pairs.
|
|
// "p0=cmp.eq(Rs16,Rt16); if (p0.new) jump:nt #r9:2"
|
|
// "Rd16=#U6 ; jump #r9:2"
|
|
// "Rd16=Rs16 ; jump #r9:2"
|
|
//
|
|
case Hexagon::C2_cmpeq:
|
|
case Hexagon::C2_cmpgt:
|
|
case Hexagon::C2_cmpgtu:
|
|
DstReg = MI->getOperand(0).getReg();
|
|
Src1Reg = MI->getOperand(1).getReg();
|
|
Src2Reg = MI->getOperand(2).getReg();
|
|
if (Hexagon::PredRegsRegClass.contains(DstReg) &&
|
|
(Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
|
|
isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg))
|
|
return HexagonII::HCG_A;
|
|
break;
|
|
case Hexagon::C2_cmpeqi:
|
|
case Hexagon::C2_cmpgti:
|
|
case Hexagon::C2_cmpgtui:
|
|
// P0 = cmp.eq(Rs,#u2)
|
|
DstReg = MI->getOperand(0).getReg();
|
|
SrcReg = MI->getOperand(1).getReg();
|
|
if (Hexagon::PredRegsRegClass.contains(DstReg) &&
|
|
(Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
|
|
isIntRegForSubInst(SrcReg) && MI->getOperand(2).isImm() &&
|
|
((isUInt<5>(MI->getOperand(2).getImm())) ||
|
|
(MI->getOperand(2).getImm() == -1)))
|
|
return HexagonII::HCG_A;
|
|
break;
|
|
case Hexagon::A2_tfr:
|
|
// Rd = Rs
|
|
DstReg = MI->getOperand(0).getReg();
|
|
SrcReg = MI->getOperand(1).getReg();
|
|
if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
|
|
return HexagonII::HCG_A;
|
|
break;
|
|
case Hexagon::A2_tfrsi:
|
|
// Rd = #u6
|
|
// Do not test for #u6 size since the const is getting extended
|
|
// regardless and compound could be formed.
|
|
DstReg = MI->getOperand(0).getReg();
|
|
if (isIntRegForSubInst(DstReg))
|
|
return HexagonII::HCG_A;
|
|
break;
|
|
case Hexagon::S2_tstbit_i:
|
|
DstReg = MI->getOperand(0).getReg();
|
|
Src1Reg = MI->getOperand(1).getReg();
|
|
if (Hexagon::PredRegsRegClass.contains(DstReg) &&
|
|
(Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
|
|
MI->getOperand(2).isImm() &&
|
|
isIntRegForSubInst(Src1Reg) && (MI->getOperand(2).getImm() == 0))
|
|
return HexagonII::HCG_A;
|
|
break;
|
|
// The fact that .new form is used pretty much guarantees
|
|
// that predicate register will match. Nevertheless,
|
|
// there could be some false positives without additional
|
|
// checking.
|
|
case Hexagon::J2_jumptnew:
|
|
case Hexagon::J2_jumpfnew:
|
|
case Hexagon::J2_jumptnewpt:
|
|
case Hexagon::J2_jumpfnewpt:
|
|
Src1Reg = MI->getOperand(0).getReg();
|
|
if (Hexagon::PredRegsRegClass.contains(Src1Reg) &&
|
|
(Hexagon::P0 == Src1Reg || Hexagon::P1 == Src1Reg))
|
|
return HexagonII::HCG_B;
|
|
break;
|
|
// Transfer and jump:
|
|
// Rd=#U6 ; jump #r9:2
|
|
// Rd=Rs ; jump #r9:2
|
|
// Do not test for jump range here.
|
|
case Hexagon::J2_jump:
|
|
case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
|
|
return HexagonII::HCG_C;
|
|
break;
|
|
}
|
|
|
|
return HexagonII::HCG_None;
|
|
}
|
|
|
|
|
|
// Returns -1 when there is no opcode found.
|
|
unsigned HexagonInstrInfo::getCompoundOpcode(const MachineInstr *GA,
|
|
const MachineInstr *GB) const {
|
|
assert(getCompoundCandidateGroup(GA) == HexagonII::HCG_A);
|
|
assert(getCompoundCandidateGroup(GB) == HexagonII::HCG_B);
|
|
if ((GA->getOpcode() != Hexagon::C2_cmpeqi) ||
|
|
(GB->getOpcode() != Hexagon::J2_jumptnew))
|
|
return -1;
|
|
unsigned DestReg = GA->getOperand(0).getReg();
|
|
if (!GB->readsRegister(DestReg))
|
|
return -1;
|
|
if (DestReg == Hexagon::P0)
|
|
return Hexagon::J4_cmpeqi_tp0_jump_nt;
|
|
if (DestReg == Hexagon::P1)
|
|
return Hexagon::J4_cmpeqi_tp1_jump_nt;
|
|
return -1;
|
|
}
|
|
|
|
|
|
int HexagonInstrInfo::getCondOpcode(int Opc, bool invertPredicate) const {
|
|
enum Hexagon::PredSense inPredSense;
|
|
inPredSense = invertPredicate ? Hexagon::PredSense_false :
|
|
Hexagon::PredSense_true;
|
|
int CondOpcode = Hexagon::getPredOpcode(Opc, inPredSense);
|
|
if (CondOpcode >= 0) // Valid Conditional opcode/instruction
|
|
return CondOpcode;
|
|
|
|
// This switch case will be removed once all the instructions have been
|
|
// modified to use relation maps.
|
|
switch(Opc) {
|
|
case Hexagon::TFRI_f:
|
|
return !invertPredicate ? Hexagon::TFRI_cPt_f :
|
|
Hexagon::TFRI_cNotPt_f;
|
|
}
|
|
|
|
llvm_unreachable("Unexpected predicable instruction");
|
|
}
|
|
|
|
|
|
// Return the cur value instruction for a given store.
|
|
int HexagonInstrInfo::getDotCurOp(const MachineInstr* MI) const {
|
|
switch (MI->getOpcode()) {
|
|
default: llvm_unreachable("Unknown .cur type");
|
|
case Hexagon::V6_vL32b_pi:
|
|
return Hexagon::V6_vL32b_cur_pi;
|
|
case Hexagon::V6_vL32b_ai:
|
|
return Hexagon::V6_vL32b_cur_ai;
|
|
//128B
|
|
case Hexagon::V6_vL32b_pi_128B:
|
|
return Hexagon::V6_vL32b_cur_pi_128B;
|
|
case Hexagon::V6_vL32b_ai_128B:
|
|
return Hexagon::V6_vL32b_cur_ai_128B;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
|
|
// The diagram below shows the steps involved in the conversion of a predicated
|
|
// store instruction to its .new predicated new-value form.
|
|
//
|
|
// p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ]
|
|
// ^ ^
|
|
// / \ (not OK. it will cause new-value store to be
|
|
// / X conditional on p0.new while R2 producer is
|
|
// / \ on p0)
|
|
// / \.
|
|
// p.new store p.old NV store
|
|
// [if(p0.new)memw(R0+#0)=R2] [if(p0)memw(R0+#0)=R2.new]
|
|
// ^ ^
|
|
// \ /
|
|
// \ /
|
|
// \ /
|
|
// p.old store
|
|
// [if (p0)memw(R0+#0)=R2]
|
|
//
|
|
//
|
|
// The following set of instructions further explains the scenario where
|
|
// conditional new-value store becomes invalid when promoted to .new predicate
|
|
// form.
|
|
//
|
|
// { 1) if (p0) r0 = add(r1, r2)
|
|
// 2) p0 = cmp.eq(r3, #0) }
|
|
//
|
|
// 3) if (p0) memb(r1+#0) = r0 --> this instruction can't be grouped with
|
|
// the first two instructions because in instr 1, r0 is conditional on old value
|
|
// of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which
|
|
// is not valid for new-value stores.
|
|
// Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
|
|
// from the "Conditional Store" list. Because a predicated new value store
|
|
// would NOT be promoted to a double dot new store. See diagram below:
|
|
// This function returns yes for those stores that are predicated but not
|
|
// yet promoted to predicate dot new instructions.
|
|
//
|
|
// +---------------------+
|
|
// /-----| if (p0) memw(..)=r0 |---------\~
|
|
// || +---------------------+ ||
|
|
// promote || /\ /\ || promote
|
|
// || /||\ /||\ ||
|
|
// \||/ demote || \||/
|
|
// \/ || || \/
|
|
// +-------------------------+ || +-------------------------+
|
|
// | if (p0.new) memw(..)=r0 | || | if (p0) memw(..)=r0.new |
|
|
// +-------------------------+ || +-------------------------+
|
|
// || || ||
|
|
// || demote \||/
|
|
// promote || \/ NOT possible
|
|
// || || /\~
|
|
// \||/ || /||\~
|
|
// \/ || ||
|
|
// +-----------------------------+
|
|
// | if (p0.new) memw(..)=r0.new |
|
|
// +-----------------------------+
|
|
// Double Dot New Store
|
|
//
|
|
// Returns the most basic instruction for the .new predicated instructions and
|
|
// new-value stores.
|
|
// For example, all of the following instructions will be converted back to the
|
|
// same instruction:
|
|
// 1) if (p0.new) memw(R0+#0) = R1.new --->
|
|
// 2) if (p0) memw(R0+#0)= R1.new -------> if (p0) memw(R0+#0) = R1
|
|
// 3) if (p0.new) memw(R0+#0) = R1 --->
|
|
//
|
|
// To understand the translation of instruction 1 to its original form, consider
|
|
// a packet with 3 instructions.
|
|
// { p0 = cmp.eq(R0,R1)
|
|
// if (p0.new) R2 = add(R3, R4)
|
|
// R5 = add (R3, R1)
|
|
// }
|
|
// if (p0) memw(R5+#0) = R2 <--- trying to include it in the previous packet
|
|
//
|
|
// This instruction can be part of the previous packet only if both p0 and R2
|
|
// are promoted to .new values. This promotion happens in steps, first
|
|
// predicate register is promoted to .new and in the next iteration R2 is
|
|
// promoted. Therefore, in case of dependence check failure (due to R5) during
|
|
// next iteration, it should be converted back to its most basic form.
|
|
|
|
|
|
// Return the new value instruction for a given store.
|
|
int HexagonInstrInfo::getDotNewOp(const MachineInstr* MI) const {
|
|
int NVOpcode = Hexagon::getNewValueOpcode(MI->getOpcode());
|
|
if (NVOpcode >= 0) // Valid new-value store instruction.
|
|
return NVOpcode;
|
|
|
|
switch (MI->getOpcode()) {
|
|
default: llvm_unreachable("Unknown .new type");
|
|
case Hexagon::S4_storerb_ur:
|
|
return Hexagon::S4_storerbnew_ur;
|
|
|
|
case Hexagon::S2_storerb_pci:
|
|
return Hexagon::S2_storerb_pci;
|
|
|
|
case Hexagon::S2_storeri_pci:
|
|
return Hexagon::S2_storeri_pci;
|
|
|
|
case Hexagon::S2_storerh_pci:
|
|
return Hexagon::S2_storerh_pci;
|
|
|
|
case Hexagon::S2_storerd_pci:
|
|
return Hexagon::S2_storerd_pci;
|
|
|
|
case Hexagon::S2_storerf_pci:
|
|
return Hexagon::S2_storerf_pci;
|
|
|
|
case Hexagon::V6_vS32b_ai:
|
|
return Hexagon::V6_vS32b_new_ai;
|
|
|
|
case Hexagon::V6_vS32b_pi:
|
|
return Hexagon::V6_vS32b_new_pi;
|
|
|
|
// 128B
|
|
case Hexagon::V6_vS32b_ai_128B:
|
|
return Hexagon::V6_vS32b_new_ai_128B;
|
|
|
|
case Hexagon::V6_vS32b_pi_128B:
|
|
return Hexagon::V6_vS32b_new_pi_128B;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Returns the opcode to use when converting MI, which is a conditional jump,
|
|
// into a conditional instruction which uses the .new value of the predicate.
|
|
// We also use branch probabilities to add a hint to the jump.
|
|
int HexagonInstrInfo::getDotNewPredJumpOp(MachineInstr *MI,
|
|
const MachineBranchProbabilityInfo *MBPI) const {
|
|
// We assume that block can have at most two successors.
|
|
bool taken = false;
|
|
MachineBasicBlock *Src = MI->getParent();
|
|
MachineOperand *BrTarget = &MI->getOperand(1);
|
|
MachineBasicBlock *Dst = BrTarget->getMBB();
|
|
|
|
const BranchProbability Prediction = MBPI->getEdgeProbability(Src, Dst);
|
|
if (Prediction >= BranchProbability(1,2))
|
|
taken = true;
|
|
|
|
switch (MI->getOpcode()) {
|
|
case Hexagon::J2_jumpt:
|
|
return taken ? Hexagon::J2_jumptnewpt : Hexagon::J2_jumptnew;
|
|
case Hexagon::J2_jumpf:
|
|
return taken ? Hexagon::J2_jumpfnewpt : Hexagon::J2_jumpfnew;
|
|
|
|
default:
|
|
llvm_unreachable("Unexpected jump instruction.");
|
|
}
|
|
}
|
|
|
|
|
|
// Return .new predicate version for an instruction.
|
|
int HexagonInstrInfo::getDotNewPredOp(MachineInstr *MI,
|
|
const MachineBranchProbabilityInfo *MBPI) const {
|
|
int NewOpcode = Hexagon::getPredNewOpcode(MI->getOpcode());
|
|
if (NewOpcode >= 0) // Valid predicate new instruction
|
|
return NewOpcode;
|
|
|
|
switch (MI->getOpcode()) {
|
|
// Condtional Jumps
|
|
case Hexagon::J2_jumpt:
|
|
case Hexagon::J2_jumpf:
|
|
return getDotNewPredJumpOp(MI, MBPI);
|
|
|
|
default:
|
|
assert(0 && "Unknown .new type");
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
int HexagonInstrInfo::getDotOldOp(const int opc) const {
|
|
int NewOp = opc;
|
|
if (isPredicated(NewOp) && isPredicatedNew(NewOp)) { // Get predicate old form
|
|
NewOp = Hexagon::getPredOldOpcode(NewOp);
|
|
assert(NewOp >= 0 &&
|
|
"Couldn't change predicate new instruction to its old form.");
|
|
}
|
|
|
|
if (isNewValueStore(NewOp)) { // Convert into non-new-value format
|
|
NewOp = Hexagon::getNonNVStore(NewOp);
|
|
assert(NewOp >= 0 && "Couldn't change new-value store to its old form.");
|
|
}
|
|
return NewOp;
|
|
}
|
|
|
|
|
|
// See if instruction could potentially be a duplex candidate.
|
|
// If so, return its group. Zero otherwise.
|
|
HexagonII::SubInstructionGroup HexagonInstrInfo::getDuplexCandidateGroup(
|
|
const MachineInstr *MI) const {
|
|
unsigned DstReg, SrcReg, Src1Reg, Src2Reg;
|
|
auto &HRI = getRegisterInfo();
|
|
|
|
switch (MI->getOpcode()) {
|
|
default:
|
|
return HexagonII::HSIG_None;
|
|
//
|
|
// Group L1:
|
|
//
|
|
// Rd = memw(Rs+#u4:2)
|
|
// Rd = memub(Rs+#u4:0)
|
|
case Hexagon::L2_loadri_io:
|
|
DstReg = MI->getOperand(0).getReg();
|
|
SrcReg = MI->getOperand(1).getReg();
|
|
// Special case this one from Group L2.
|
|
// Rd = memw(r29+#u5:2)
|
|
if (isIntRegForSubInst(DstReg)) {
|
|
if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
|
|
HRI.getStackRegister() == SrcReg &&
|
|
MI->getOperand(2).isImm() &&
|
|
isShiftedUInt<5,2>(MI->getOperand(2).getImm()))
|
|
return HexagonII::HSIG_L2;
|
|
// Rd = memw(Rs+#u4:2)
|
|
if (isIntRegForSubInst(SrcReg) &&
|
|
(MI->getOperand(2).isImm() &&
|
|
isShiftedUInt<4,2>(MI->getOperand(2).getImm())))
|
|
return HexagonII::HSIG_L1;
|
|
}
|
|
break;
|
|
case Hexagon::L2_loadrub_io:
|
|
// Rd = memub(Rs+#u4:0)
|
|
DstReg = MI->getOperand(0).getReg();
|
|
SrcReg = MI->getOperand(1).getReg();
|
|
if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
|
|
MI->getOperand(2).isImm() && isUInt<4>(MI->getOperand(2).getImm()))
|
|
return HexagonII::HSIG_L1;
|
|
break;
|
|
//
|
|
// Group L2:
|
|
//
|
|
// Rd = memh/memuh(Rs+#u3:1)
|
|
// Rd = memb(Rs+#u3:0)
|
|
// Rd = memw(r29+#u5:2) - Handled above.
|
|
// Rdd = memd(r29+#u5:3)
|
|
// deallocframe
|
|
// [if ([!]p0[.new])] dealloc_return
|
|
// [if ([!]p0[.new])] jumpr r31
|
|
case Hexagon::L2_loadrh_io:
|
|
case Hexagon::L2_loadruh_io:
|
|
// Rd = memh/memuh(Rs+#u3:1)
|
|
DstReg = MI->getOperand(0).getReg();
|
|
SrcReg = MI->getOperand(1).getReg();
|
|
if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
|
|
MI->getOperand(2).isImm() &&
|
|
isShiftedUInt<3,1>(MI->getOperand(2).getImm()))
|
|
return HexagonII::HSIG_L2;
|
|
break;
|
|
case Hexagon::L2_loadrb_io:
|
|
// Rd = memb(Rs+#u3:0)
|
|
DstReg = MI->getOperand(0).getReg();
|
|
SrcReg = MI->getOperand(1).getReg();
|
|
if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
|
|
MI->getOperand(2).isImm() &&
|
|
isUInt<3>(MI->getOperand(2).getImm()))
|
|
return HexagonII::HSIG_L2;
|
|
break;
|
|
case Hexagon::L2_loadrd_io:
|
|
// Rdd = memd(r29+#u5:3)
|
|
DstReg = MI->getOperand(0).getReg();
|
|
SrcReg = MI->getOperand(1).getReg();
|
|
if (isDblRegForSubInst(DstReg, HRI) &&
|
|
Hexagon::IntRegsRegClass.contains(SrcReg) &&
|
|
HRI.getStackRegister() == SrcReg &&
|
|
MI->getOperand(2).isImm() &&
|
|
isShiftedUInt<5,3>(MI->getOperand(2).getImm()))
|
|
return HexagonII::HSIG_L2;
|
|
break;
|
|
// dealloc_return is not documented in Hexagon Manual, but marked
|
|
// with A_SUBINSN attribute in iset_v4classic.py.
|
|
case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
|
|
case Hexagon::L4_return:
|
|
case Hexagon::L2_deallocframe:
|
|
return HexagonII::HSIG_L2;
|
|
case Hexagon::EH_RETURN_JMPR:
|
|
case Hexagon::JMPret :
|
|
// jumpr r31
|
|
// Actual form JMPR %PC<imp-def>, %R31<imp-use>, %R0<imp-use,internal>.
|
|
DstReg = MI->getOperand(0).getReg();
|
|
if (Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg))
|
|
return HexagonII::HSIG_L2;
|
|
break;
|
|
case Hexagon::JMPrett:
|
|
case Hexagon::JMPretf:
|
|
case Hexagon::JMPrettnewpt:
|
|
case Hexagon::JMPretfnewpt :
|
|
case Hexagon::JMPrettnew :
|
|
case Hexagon::JMPretfnew :
|
|
DstReg = MI->getOperand(1).getReg();
|
|
SrcReg = MI->getOperand(0).getReg();
|
|
// [if ([!]p0[.new])] jumpr r31
|
|
if ((Hexagon::PredRegsRegClass.contains(SrcReg) &&
|
|
(Hexagon::P0 == SrcReg)) &&
|
|
(Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg)))
|
|
return HexagonII::HSIG_L2;
|
|
break;
|
|
case Hexagon::L4_return_t :
|
|
case Hexagon::L4_return_f :
|
|
case Hexagon::L4_return_tnew_pnt :
|
|
case Hexagon::L4_return_fnew_pnt :
|
|
case Hexagon::L4_return_tnew_pt :
|
|
case Hexagon::L4_return_fnew_pt :
|
|
// [if ([!]p0[.new])] dealloc_return
|
|
SrcReg = MI->getOperand(0).getReg();
|
|
if (Hexagon::PredRegsRegClass.contains(SrcReg) && (Hexagon::P0 == SrcReg))
|
|
return HexagonII::HSIG_L2;
|
|
break;
|
|
//
|
|
// Group S1:
|
|
//
|
|
// memw(Rs+#u4:2) = Rt
|
|
// memb(Rs+#u4:0) = Rt
|
|
case Hexagon::S2_storeri_io:
|
|
// Special case this one from Group S2.
|
|
// memw(r29+#u5:2) = Rt
|
|
Src1Reg = MI->getOperand(0).getReg();
|
|
Src2Reg = MI->getOperand(2).getReg();
|
|
if (Hexagon::IntRegsRegClass.contains(Src1Reg) &&
|
|
isIntRegForSubInst(Src2Reg) &&
|
|
HRI.getStackRegister() == Src1Reg && MI->getOperand(1).isImm() &&
|
|
isShiftedUInt<5,2>(MI->getOperand(1).getImm()))
|
|
return HexagonII::HSIG_S2;
|
|
// memw(Rs+#u4:2) = Rt
|
|
if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
|
|
MI->getOperand(1).isImm() &&
|
|
isShiftedUInt<4,2>(MI->getOperand(1).getImm()))
|
|
return HexagonII::HSIG_S1;
|
|
break;
|
|
case Hexagon::S2_storerb_io:
|
|
// memb(Rs+#u4:0) = Rt
|
|
Src1Reg = MI->getOperand(0).getReg();
|
|
Src2Reg = MI->getOperand(2).getReg();
|
|
if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
|
|
MI->getOperand(1).isImm() && isUInt<4>(MI->getOperand(1).getImm()))
|
|
return HexagonII::HSIG_S1;
|
|
break;
|
|
//
|
|
// Group S2:
|
|
//
|
|
// memh(Rs+#u3:1) = Rt
|
|
// memw(r29+#u5:2) = Rt
|
|
// memd(r29+#s6:3) = Rtt
|
|
// memw(Rs+#u4:2) = #U1
|
|
// memb(Rs+#u4) = #U1
|
|
// allocframe(#u5:3)
|
|
case Hexagon::S2_storerh_io:
|
|
// memh(Rs+#u3:1) = Rt
|
|
Src1Reg = MI->getOperand(0).getReg();
|
|
Src2Reg = MI->getOperand(2).getReg();
|
|
if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
|
|
MI->getOperand(1).isImm() &&
|
|
isShiftedUInt<3,1>(MI->getOperand(1).getImm()))
|
|
return HexagonII::HSIG_S1;
|
|
break;
|
|
case Hexagon::S2_storerd_io:
|
|
// memd(r29+#s6:3) = Rtt
|
|
Src1Reg = MI->getOperand(0).getReg();
|
|
Src2Reg = MI->getOperand(2).getReg();
|
|
if (isDblRegForSubInst(Src2Reg, HRI) &&
|
|
Hexagon::IntRegsRegClass.contains(Src1Reg) &&
|
|
HRI.getStackRegister() == Src1Reg && MI->getOperand(1).isImm() &&
|
|
isShiftedInt<6,3>(MI->getOperand(1).getImm()))
|
|
return HexagonII::HSIG_S2;
|
|
break;
|
|
case Hexagon::S4_storeiri_io:
|
|
// memw(Rs+#u4:2) = #U1
|
|
Src1Reg = MI->getOperand(0).getReg();
|
|
if (isIntRegForSubInst(Src1Reg) && MI->getOperand(1).isImm() &&
|
|
isShiftedUInt<4,2>(MI->getOperand(1).getImm()) &&
|
|
MI->getOperand(2).isImm() && isUInt<1>(MI->getOperand(2).getImm()))
|
|
return HexagonII::HSIG_S2;
|
|
break;
|
|
case Hexagon::S4_storeirb_io:
|
|
// memb(Rs+#u4) = #U1
|
|
Src1Reg = MI->getOperand(0).getReg();
|
|
if (isIntRegForSubInst(Src1Reg) && MI->getOperand(1).isImm() &&
|
|
isUInt<4>(MI->getOperand(1).getImm()) && MI->getOperand(2).isImm() &&
|
|
MI->getOperand(2).isImm() && isUInt<1>(MI->getOperand(2).getImm()))
|
|
return HexagonII::HSIG_S2;
|
|
break;
|
|
case Hexagon::S2_allocframe:
|
|
if (MI->getOperand(0).isImm() &&
|
|
isShiftedUInt<5,3>(MI->getOperand(0).getImm()))
|
|
return HexagonII::HSIG_S1;
|
|
break;
|
|
//
|
|
// Group A:
|
|
//
|
|
// Rx = add(Rx,#s7)
|
|
// Rd = Rs
|
|
// Rd = #u6
|
|
// Rd = #-1
|
|
// if ([!]P0[.new]) Rd = #0
|
|
// Rd = add(r29,#u6:2)
|
|
// Rx = add(Rx,Rs)
|
|
// P0 = cmp.eq(Rs,#u2)
|
|
// Rdd = combine(#0,Rs)
|
|
// Rdd = combine(Rs,#0)
|
|
// Rdd = combine(#u2,#U2)
|
|
// Rd = add(Rs,#1)
|
|
// Rd = add(Rs,#-1)
|
|
// Rd = sxth/sxtb/zxtb/zxth(Rs)
|
|
// Rd = and(Rs,#1)
|
|
case Hexagon::A2_addi:
|
|
DstReg = MI->getOperand(0).getReg();
|
|
SrcReg = MI->getOperand(1).getReg();
|
|
if (isIntRegForSubInst(DstReg)) {
|
|
// Rd = add(r29,#u6:2)
|
|
if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
|
|
HRI.getStackRegister() == SrcReg && MI->getOperand(2).isImm() &&
|
|
isShiftedUInt<6,2>(MI->getOperand(2).getImm()))
|
|
return HexagonII::HSIG_A;
|
|
// Rx = add(Rx,#s7)
|
|
if ((DstReg == SrcReg) && MI->getOperand(2).isImm() &&
|
|
isInt<7>(MI->getOperand(2).getImm()))
|
|
return HexagonII::HSIG_A;
|
|
// Rd = add(Rs,#1)
|
|
// Rd = add(Rs,#-1)
|
|
if (isIntRegForSubInst(SrcReg) && MI->getOperand(2).isImm() &&
|
|
((MI->getOperand(2).getImm() == 1) ||
|
|
(MI->getOperand(2).getImm() == -1)))
|
|
return HexagonII::HSIG_A;
|
|
}
|
|
break;
|
|
case Hexagon::A2_add:
|
|
// Rx = add(Rx,Rs)
|
|
DstReg = MI->getOperand(0).getReg();
|
|
Src1Reg = MI->getOperand(1).getReg();
|
|
Src2Reg = MI->getOperand(2).getReg();
|
|
if (isIntRegForSubInst(DstReg) && (DstReg == Src1Reg) &&
|
|
isIntRegForSubInst(Src2Reg))
|
|
return HexagonII::HSIG_A;
|
|
break;
|
|
case Hexagon::A2_andir:
|
|
// Same as zxtb.
|
|
// Rd16=and(Rs16,#255)
|
|
// Rd16=and(Rs16,#1)
|
|
DstReg = MI->getOperand(0).getReg();
|
|
SrcReg = MI->getOperand(1).getReg();
|
|
if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
|
|
MI->getOperand(2).isImm() &&
|
|
((MI->getOperand(2).getImm() == 1) ||
|
|
(MI->getOperand(2).getImm() == 255)))
|
|
return HexagonII::HSIG_A;
|
|
break;
|
|
case Hexagon::A2_tfr:
|
|
// Rd = Rs
|
|
DstReg = MI->getOperand(0).getReg();
|
|
SrcReg = MI->getOperand(1).getReg();
|
|
if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
|
|
return HexagonII::HSIG_A;
|
|
break;
|
|
case Hexagon::A2_tfrsi:
|
|
// Rd = #u6
|
|
// Do not test for #u6 size since the const is getting extended
|
|
// regardless and compound could be formed.
|
|
// Rd = #-1
|
|
DstReg = MI->getOperand(0).getReg();
|
|
if (isIntRegForSubInst(DstReg))
|
|
return HexagonII::HSIG_A;
|
|
break;
|
|
case Hexagon::C2_cmoveit:
|
|
case Hexagon::C2_cmovenewit:
|
|
case Hexagon::C2_cmoveif:
|
|
case Hexagon::C2_cmovenewif:
|
|
// if ([!]P0[.new]) Rd = #0
|
|
// Actual form:
|
|
// %R16<def> = C2_cmovenewit %P0<internal>, 0, %R16<imp-use,undef>;
|
|
DstReg = MI->getOperand(0).getReg();
|
|
SrcReg = MI->getOperand(1).getReg();
|
|
if (isIntRegForSubInst(DstReg) &&
|
|
Hexagon::PredRegsRegClass.contains(SrcReg) && Hexagon::P0 == SrcReg &&
|
|
MI->getOperand(2).isImm() && MI->getOperand(2).getImm() == 0)
|
|
return HexagonII::HSIG_A;
|
|
break;
|
|
case Hexagon::C2_cmpeqi:
|
|
// P0 = cmp.eq(Rs,#u2)
|
|
DstReg = MI->getOperand(0).getReg();
|
|
SrcReg = MI->getOperand(1).getReg();
|
|
if (Hexagon::PredRegsRegClass.contains(DstReg) &&
|
|
Hexagon::P0 == DstReg && isIntRegForSubInst(SrcReg) &&
|
|
MI->getOperand(2).isImm() && isUInt<2>(MI->getOperand(2).getImm()))
|
|
return HexagonII::HSIG_A;
|
|
break;
|
|
case Hexagon::A2_combineii:
|
|
case Hexagon::A4_combineii:
|
|
// Rdd = combine(#u2,#U2)
|
|
DstReg = MI->getOperand(0).getReg();
|
|
if (isDblRegForSubInst(DstReg, HRI) &&
|
|
((MI->getOperand(1).isImm() && isUInt<2>(MI->getOperand(1).getImm())) ||
|
|
(MI->getOperand(1).isGlobal() &&
|
|
isUInt<2>(MI->getOperand(1).getOffset()))) &&
|
|
((MI->getOperand(2).isImm() && isUInt<2>(MI->getOperand(2).getImm())) ||
|
|
(MI->getOperand(2).isGlobal() &&
|
|
isUInt<2>(MI->getOperand(2).getOffset()))))
|
|
return HexagonII::HSIG_A;
|
|
break;
|
|
case Hexagon::A4_combineri:
|
|
// Rdd = combine(Rs,#0)
|
|
DstReg = MI->getOperand(0).getReg();
|
|
SrcReg = MI->getOperand(1).getReg();
|
|
if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) &&
|
|
((MI->getOperand(2).isImm() && MI->getOperand(2).getImm() == 0) ||
|
|
(MI->getOperand(2).isGlobal() && MI->getOperand(2).getOffset() == 0)))
|
|
return HexagonII::HSIG_A;
|
|
break;
|
|
case Hexagon::A4_combineir:
|
|
// Rdd = combine(#0,Rs)
|
|
DstReg = MI->getOperand(0).getReg();
|
|
SrcReg = MI->getOperand(2).getReg();
|
|
if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) &&
|
|
((MI->getOperand(1).isImm() && MI->getOperand(1).getImm() == 0) ||
|
|
(MI->getOperand(1).isGlobal() && MI->getOperand(1).getOffset() == 0)))
|
|
return HexagonII::HSIG_A;
|
|
break;
|
|
case Hexagon::A2_sxtb:
|
|
case Hexagon::A2_sxth:
|
|
case Hexagon::A2_zxtb:
|
|
case Hexagon::A2_zxth:
|
|
// Rd = sxth/sxtb/zxtb/zxth(Rs)
|
|
DstReg = MI->getOperand(0).getReg();
|
|
SrcReg = MI->getOperand(1).getReg();
|
|
if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
|
|
return HexagonII::HSIG_A;
|
|
break;
|
|
}
|
|
|
|
return HexagonII::HSIG_None;
|
|
}
|
|
|
|
|
|
short HexagonInstrInfo::getEquivalentHWInstr(MachineInstr *MI) const {
|
|
return Hexagon::getRealHWInstr(MI->getOpcode(), Hexagon::InstrType_Real);
|
|
}
|
|
|
|
|
|
// Return first non-debug instruction in the basic block.
|
|
MachineInstr *HexagonInstrInfo::getFirstNonDbgInst(MachineBasicBlock *BB)
|
|
const {
|
|
for (auto MII = BB->instr_begin(), End = BB->instr_end(); MII != End; MII++) {
|
|
MachineInstr *MI = &*MII;
|
|
if (MI->isDebugValue())
|
|
continue;
|
|
return MI;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
|
|
unsigned HexagonInstrInfo::getInstrTimingClassLatency(
|
|
const InstrItineraryData *ItinData, const MachineInstr *MI) const {
|
|
// Default to one cycle for no itinerary. However, an "empty" itinerary may
|
|
// still have a MinLatency property, which getStageLatency checks.
|
|
if (!ItinData)
|
|
return getInstrLatency(ItinData, MI);
|
|
|
|
// Get the latency embedded in the itinerary. If we're not using timing class
|
|
// latencies or if we using BSB scheduling, then restrict the maximum latency
|
|
// to 1 (that is, either 0 or 1).
|
|
if (MI->isTransient())
|
|
return 0;
|
|
unsigned Latency = ItinData->getStageLatency(MI->getDesc().getSchedClass());
|
|
if (!EnableTimingClassLatency ||
|
|
MI->getParent()->getParent()->getSubtarget<HexagonSubtarget>().
|
|
useBSBScheduling())
|
|
if (Latency > 1)
|
|
Latency = 1;
|
|
return Latency;
|
|
}
|
|
|
|
|
|
// inverts the predication logic.
|
|
// p -> NotP
|
|
// NotP -> P
|
|
bool HexagonInstrInfo::getInvertedPredSense(
|
|
SmallVectorImpl<MachineOperand> &Cond) const {
|
|
if (Cond.empty())
|
|
return false;
|
|
unsigned Opc = getInvertedPredicatedOpcode(Cond[0].getImm());
|
|
Cond[0].setImm(Opc);
|
|
return true;
|
|
}
|
|
|
|
|
|
unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc) const {
|
|
int InvPredOpcode;
|
|
InvPredOpcode = isPredicatedTrue(Opc) ? Hexagon::getFalsePredOpcode(Opc)
|
|
: Hexagon::getTruePredOpcode(Opc);
|
|
if (InvPredOpcode >= 0) // Valid instruction with the inverted predicate.
|
|
return InvPredOpcode;
|
|
|
|
llvm_unreachable("Unexpected predicated instruction");
|
|
}
|
|
|
|
|
|
// Returns the max value that doesn't need to be extended.
|
|
int HexagonInstrInfo::getMaxValue(const MachineInstr *MI) const {
|
|
const uint64_t F = MI->getDesc().TSFlags;
|
|
unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
|
|
& HexagonII::ExtentSignedMask;
|
|
unsigned bits = (F >> HexagonII::ExtentBitsPos)
|
|
& HexagonII::ExtentBitsMask;
|
|
|
|
if (isSigned) // if value is signed
|
|
return ~(-1U << (bits - 1));
|
|
else
|
|
return ~(-1U << bits);
|
|
}
|
|
|
|
|
|
unsigned HexagonInstrInfo::getMemAccessSize(const MachineInstr* MI) const {
|
|
const uint64_t F = MI->getDesc().TSFlags;
|
|
return (F >> HexagonII::MemAccessSizePos) & HexagonII::MemAccesSizeMask;
|
|
}
|
|
|
|
|
|
// Returns the min value that doesn't need to be extended.
|
|
int HexagonInstrInfo::getMinValue(const MachineInstr *MI) const {
|
|
const uint64_t F = MI->getDesc().TSFlags;
|
|
unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
|
|
& HexagonII::ExtentSignedMask;
|
|
unsigned bits = (F >> HexagonII::ExtentBitsPos)
|
|
& HexagonII::ExtentBitsMask;
|
|
|
|
if (isSigned) // if value is signed
|
|
return -1U << (bits - 1);
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
|
|
// Returns opcode of the non-extended equivalent instruction.
|
|
short HexagonInstrInfo::getNonExtOpcode(const MachineInstr *MI) const {
|
|
// Check if the instruction has a register form that uses register in place
|
|
// of the extended operand, if so return that as the non-extended form.
|
|
short NonExtOpcode = Hexagon::getRegForm(MI->getOpcode());
|
|
if (NonExtOpcode >= 0)
|
|
return NonExtOpcode;
|
|
|
|
if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
|
|
// Check addressing mode and retrieve non-ext equivalent instruction.
|
|
switch (getAddrMode(MI)) {
|
|
case HexagonII::Absolute :
|
|
return Hexagon::getBaseWithImmOffset(MI->getOpcode());
|
|
case HexagonII::BaseImmOffset :
|
|
return Hexagon::getBaseWithRegOffset(MI->getOpcode());
|
|
case HexagonII::BaseLongOffset:
|
|
return Hexagon::getRegShlForm(MI->getOpcode());
|
|
|
|
default:
|
|
return -1;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::getPredReg(ArrayRef<MachineOperand> Cond,
|
|
unsigned &PredReg, unsigned &PredRegPos, unsigned &PredRegFlags) const {
|
|
if (Cond.empty())
|
|
return false;
|
|
assert(Cond.size() == 2);
|
|
if (isNewValueJump(Cond[0].getImm()) || Cond[1].isMBB()) {
|
|
DEBUG(dbgs() << "No predregs for new-value jumps/endloop");
|
|
return false;
|
|
}
|
|
PredReg = Cond[1].getReg();
|
|
PredRegPos = 1;
|
|
// See IfConversion.cpp why we add RegState::Implicit | RegState::Undef
|
|
PredRegFlags = 0;
|
|
if (Cond[1].isImplicit())
|
|
PredRegFlags = RegState::Implicit;
|
|
if (Cond[1].isUndef())
|
|
PredRegFlags |= RegState::Undef;
|
|
return true;
|
|
}
|
|
|
|
|
|
short HexagonInstrInfo::getPseudoInstrPair(MachineInstr *MI) const {
|
|
return Hexagon::getRealHWInstr(MI->getOpcode(), Hexagon::InstrType_Pseudo);
|
|
}
|
|
|
|
|
|
short HexagonInstrInfo::getRegForm(const MachineInstr *MI) const {
|
|
return Hexagon::getRegForm(MI->getOpcode());
|
|
}
|
|
|
|
|
|
// Return the number of bytes required to encode the instruction.
|
|
// Hexagon instructions are fixed length, 4 bytes, unless they
|
|
// use a constant extender, which requires another 4 bytes.
|
|
// For debug instructions and prolog labels, return 0.
|
|
unsigned HexagonInstrInfo::getSize(const MachineInstr *MI) const {
|
|
if (MI->isDebugValue() || MI->isPosition())
|
|
return 0;
|
|
|
|
unsigned Size = MI->getDesc().getSize();
|
|
if (!Size)
|
|
// Assume the default insn size in case it cannot be determined
|
|
// for whatever reason.
|
|
Size = HEXAGON_INSTR_SIZE;
|
|
|
|
if (isConstExtended(MI) || isExtended(MI))
|
|
Size += HEXAGON_INSTR_SIZE;
|
|
|
|
// Try and compute number of instructions in asm.
|
|
if (BranchRelaxAsmLarge && MI->getOpcode() == Hexagon::INLINEASM) {
|
|
const MachineBasicBlock &MBB = *MI->getParent();
|
|
const MachineFunction *MF = MBB.getParent();
|
|
const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
|
|
|
|
// Count the number of register definitions to find the asm string.
|
|
unsigned NumDefs = 0;
|
|
for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
|
|
++NumDefs)
|
|
assert(NumDefs != MI->getNumOperands()-2 && "No asm string?");
|
|
|
|
assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?");
|
|
// Disassemble the AsmStr and approximate number of instructions.
|
|
const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
|
|
Size = getInlineAsmLength(AsmStr, *MAI);
|
|
}
|
|
|
|
return Size;
|
|
}
|
|
|
|
|
|
uint64_t HexagonInstrInfo::getType(const MachineInstr* MI) const {
|
|
const uint64_t F = MI->getDesc().TSFlags;
|
|
return (F >> HexagonII::TypePos) & HexagonII::TypeMask;
|
|
}
|
|
|
|
|
|
unsigned HexagonInstrInfo::getUnits(const MachineInstr* MI) const {
|
|
const TargetSubtargetInfo &ST = MI->getParent()->getParent()->getSubtarget();
|
|
const InstrItineraryData &II = *ST.getInstrItineraryData();
|
|
const InstrStage &IS = *II.beginStage(MI->getDesc().getSchedClass());
|
|
|
|
return IS.getUnits();
|
|
}
|
|
|
|
|
|
unsigned HexagonInstrInfo::getValidSubTargets(const unsigned Opcode) const {
|
|
const uint64_t F = get(Opcode).TSFlags;
|
|
return (F >> HexagonII::validSubTargetPos) & HexagonII::validSubTargetMask;
|
|
}
|
|
|
|
|
|
// Calculate size of the basic block without debug instructions.
|
|
unsigned HexagonInstrInfo::nonDbgBBSize(const MachineBasicBlock *BB) const {
|
|
return nonDbgMICount(BB->instr_begin(), BB->instr_end());
|
|
}
|
|
|
|
|
|
unsigned HexagonInstrInfo::nonDbgBundleSize(
|
|
MachineBasicBlock::const_iterator BundleHead) const {
|
|
assert(BundleHead->isBundle() && "Not a bundle header");
|
|
auto MII = BundleHead.getInstrIterator();
|
|
// Skip the bundle header.
|
|
return nonDbgMICount(++MII, getBundleEnd(BundleHead));
|
|
}
|
|
|
|
|
|
/// immediateExtend - Changes the instruction in place to one using an immediate
|
|
/// extender.
|
|
void HexagonInstrInfo::immediateExtend(MachineInstr *MI) const {
|
|
assert((isExtendable(MI)||isConstExtended(MI)) &&
|
|
"Instruction must be extendable");
|
|
// Find which operand is extendable.
|
|
short ExtOpNum = getCExtOpNum(MI);
|
|
MachineOperand &MO = MI->getOperand(ExtOpNum);
|
|
// This needs to be something we understand.
|
|
assert((MO.isMBB() || MO.isImm()) &&
|
|
"Branch with unknown extendable field type");
|
|
// Mark given operand as extended.
|
|
MO.addTargetFlag(HexagonII::HMOTF_ConstExtended);
|
|
}
|
|
|
|
|
|
bool HexagonInstrInfo::invertAndChangeJumpTarget(
|
|
MachineInstr* MI, MachineBasicBlock* NewTarget) const {
|
|
DEBUG(dbgs() << "\n[invertAndChangeJumpTarget] to BB#"
|
|
<< NewTarget->getNumber(); MI->dump(););
|
|
assert(MI->isBranch());
|
|
unsigned NewOpcode = getInvertedPredicatedOpcode(MI->getOpcode());
|
|
int TargetPos = MI->getNumOperands() - 1;
|
|
// In general branch target is the last operand,
|
|
// but some implicit defs added at the end might change it.
|
|
while ((TargetPos > -1) && !MI->getOperand(TargetPos).isMBB())
|
|
--TargetPos;
|
|
assert((TargetPos >= 0) && MI->getOperand(TargetPos).isMBB());
|
|
MI->getOperand(TargetPos).setMBB(NewTarget);
|
|
if (EnableBranchPrediction && isPredicatedNew(MI)) {
|
|
NewOpcode = reversePrediction(NewOpcode);
|
|
}
|
|
MI->setDesc(get(NewOpcode));
|
|
return true;
|
|
}
|
|
|
|
|
|
void HexagonInstrInfo::genAllInsnTimingClasses(MachineFunction &MF) const {
|
|
/* +++ The code below is used to generate complete set of Hexagon Insn +++ */
|
|
MachineFunction::iterator A = MF.begin();
|
|
MachineBasicBlock &B = *A;
|
|
MachineBasicBlock::iterator I = B.begin();
|
|
MachineInstr *MI = &*I;
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
MachineInstr *NewMI;
|
|
|
|
for (unsigned insn = TargetOpcode::GENERIC_OP_END+1;
|
|
insn < Hexagon::INSTRUCTION_LIST_END; ++insn) {
|
|
NewMI = BuildMI(B, MI, DL, get(insn));
|
|
DEBUG(dbgs() << "\n" << getName(NewMI->getOpcode()) <<
|
|
" Class: " << NewMI->getDesc().getSchedClass());
|
|
NewMI->eraseFromParent();
|
|
}
|
|
/* --- The code above is used to generate complete set of Hexagon Insn --- */
|
|
}
|
|
|
|
|
|
// inverts the predication logic.
|
|
// p -> NotP
|
|
// NotP -> P
|
|
bool HexagonInstrInfo::reversePredSense(MachineInstr* MI) const {
|
|
DEBUG(dbgs() << "\nTrying to reverse pred. sense of:"; MI->dump());
|
|
MI->setDesc(get(getInvertedPredicatedOpcode(MI->getOpcode())));
|
|
return true;
|
|
}
|
|
|
|
|
|
// Reverse the branch prediction.
|
|
unsigned HexagonInstrInfo::reversePrediction(unsigned Opcode) const {
|
|
int PredRevOpcode = -1;
|
|
if (isPredictedTaken(Opcode))
|
|
PredRevOpcode = Hexagon::notTakenBranchPrediction(Opcode);
|
|
else
|
|
PredRevOpcode = Hexagon::takenBranchPrediction(Opcode);
|
|
assert(PredRevOpcode > 0);
|
|
return PredRevOpcode;
|
|
}
|
|
|
|
|
|
// TODO: Add more rigorous validation.
|
|
bool HexagonInstrInfo::validateBranchCond(const ArrayRef<MachineOperand> &Cond)
|
|
const {
|
|
return Cond.empty() || (Cond[0].isImm() && (Cond.size() != 1));
|
|
}
|
|
|