1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 19:52:54 +01:00
llvm-mirror/lib/Target/X86/X86InstrFragmentsSIMD.td
Bruno Cardoso Lopes f02589db47 Add versions 256-bit versions of alignedstore and alignedload, to be
more strict about the alignment checking. This was found by inspection
and I don't have any testcases so far, although the llvm testsuite runs
without any problem.

llvm-svn: 139625
2011-09-13 19:33:03 +00:00

466 lines
20 KiB
TableGen

//======- X86InstrFragmentsSIMD.td - x86 ISA -------------*- tablegen -*-=====//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file provides pattern fragments useful for SIMD instructions.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// MMX Pattern Fragments
//===----------------------------------------------------------------------===//
def load_mmx : PatFrag<(ops node:$ptr), (x86mmx (load node:$ptr))>;
def bc_mmx : PatFrag<(ops node:$in), (x86mmx (bitconvert node:$in))>;
//===----------------------------------------------------------------------===//
// SSE specific DAG Nodes.
//===----------------------------------------------------------------------===//
def SDTX86FPShiftOp : SDTypeProfile<1, 2, [ SDTCisSameAs<0, 1>,
SDTCisFP<0>, SDTCisInt<2> ]>;
def SDTX86VFCMP : SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<1, 2>,
SDTCisFP<1>, SDTCisVT<3, i8>]>;
def X86fmin : SDNode<"X86ISD::FMIN", SDTFPBinOp>;
def X86fmax : SDNode<"X86ISD::FMAX", SDTFPBinOp>;
def X86fand : SDNode<"X86ISD::FAND", SDTFPBinOp,
[SDNPCommutative, SDNPAssociative]>;
def X86for : SDNode<"X86ISD::FOR", SDTFPBinOp,
[SDNPCommutative, SDNPAssociative]>;
def X86fxor : SDNode<"X86ISD::FXOR", SDTFPBinOp,
[SDNPCommutative, SDNPAssociative]>;
def X86frsqrt : SDNode<"X86ISD::FRSQRT", SDTFPUnaryOp>;
def X86frcp : SDNode<"X86ISD::FRCP", SDTFPUnaryOp>;
def X86fsrl : SDNode<"X86ISD::FSRL", SDTX86FPShiftOp>;
def X86fgetsign: SDNode<"X86ISD::FGETSIGNx86",SDTFPToIntOp>;
def X86comi : SDNode<"X86ISD::COMI", SDTX86CmpTest>;
def X86ucomi : SDNode<"X86ISD::UCOMI", SDTX86CmpTest>;
def X86cmpss : SDNode<"X86ISD::FSETCCss", SDTX86Cmpss>;
def X86cmpsd : SDNode<"X86ISD::FSETCCsd", SDTX86Cmpsd>;
def X86pshufb : SDNode<"X86ISD::PSHUFB",
SDTypeProfile<1, 2, [SDTCisVT<0, v16i8>, SDTCisSameAs<0,1>,
SDTCisSameAs<0,2>]>>;
def X86andnp : SDNode<"X86ISD::ANDNP",
SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0,1>,
SDTCisSameAs<0,2>]>>;
def X86psignb : SDNode<"X86ISD::PSIGNB",
SDTypeProfile<1, 2, [SDTCisVT<0, v16i8>, SDTCisSameAs<0,1>,
SDTCisSameAs<0,2>]>>;
def X86psignw : SDNode<"X86ISD::PSIGNW",
SDTypeProfile<1, 2, [SDTCisVT<0, v8i16>, SDTCisSameAs<0,1>,
SDTCisSameAs<0,2>]>>;
def X86psignd : SDNode<"X86ISD::PSIGND",
SDTypeProfile<1, 2, [SDTCisVT<0, v4i32>, SDTCisSameAs<0,1>,
SDTCisSameAs<0,2>]>>;
def X86pextrb : SDNode<"X86ISD::PEXTRB",
SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisPtrTy<2>]>>;
def X86pextrw : SDNode<"X86ISD::PEXTRW",
SDTypeProfile<1, 2, [SDTCisVT<0, i32>, SDTCisPtrTy<2>]>>;
def X86pinsrb : SDNode<"X86ISD::PINSRB",
SDTypeProfile<1, 3, [SDTCisVT<0, v16i8>, SDTCisSameAs<0,1>,
SDTCisVT<2, i32>, SDTCisPtrTy<3>]>>;
def X86pinsrw : SDNode<"X86ISD::PINSRW",
SDTypeProfile<1, 3, [SDTCisVT<0, v8i16>, SDTCisSameAs<0,1>,
SDTCisVT<2, i32>, SDTCisPtrTy<3>]>>;
def X86insrtps : SDNode<"X86ISD::INSERTPS",
SDTypeProfile<1, 3, [SDTCisVT<0, v4f32>, SDTCisSameAs<0,1>,
SDTCisVT<2, v4f32>, SDTCisPtrTy<3>]>>;
def X86vzmovl : SDNode<"X86ISD::VZEXT_MOVL",
SDTypeProfile<1, 1, [SDTCisSameAs<0,1>]>>;
def X86vzload : SDNode<"X86ISD::VZEXT_LOAD", SDTLoad,
[SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
def X86vshl : SDNode<"X86ISD::VSHL", SDTIntShiftOp>;
def X86vshr : SDNode<"X86ISD::VSRL", SDTIntShiftOp>;
def X86cmpps : SDNode<"X86ISD::CMPPS", SDTX86VFCMP>;
def X86cmppd : SDNode<"X86ISD::CMPPD", SDTX86VFCMP>;
def X86pcmpeqb : SDNode<"X86ISD::PCMPEQB", SDTIntBinOp, [SDNPCommutative]>;
def X86pcmpeqw : SDNode<"X86ISD::PCMPEQW", SDTIntBinOp, [SDNPCommutative]>;
def X86pcmpeqd : SDNode<"X86ISD::PCMPEQD", SDTIntBinOp, [SDNPCommutative]>;
def X86pcmpeqq : SDNode<"X86ISD::PCMPEQQ", SDTIntBinOp, [SDNPCommutative]>;
def X86pcmpgtb : SDNode<"X86ISD::PCMPGTB", SDTIntBinOp>;
def X86pcmpgtw : SDNode<"X86ISD::PCMPGTW", SDTIntBinOp>;
def X86pcmpgtd : SDNode<"X86ISD::PCMPGTD", SDTIntBinOp>;
def X86pcmpgtq : SDNode<"X86ISD::PCMPGTQ", SDTIntBinOp>;
def SDTX86CmpPTest : SDTypeProfile<1, 2, [SDTCisVT<0, i32>,
SDTCisVec<1>,
SDTCisSameAs<2, 1>]>;
def X86ptest : SDNode<"X86ISD::PTEST", SDTX86CmpPTest>;
def X86testp : SDNode<"X86ISD::TESTP", SDTX86CmpPTest>;
// Specific shuffle nodes - At some point ISD::VECTOR_SHUFFLE will always get
// translated into one of the target nodes below during lowering.
// Note: this is a work in progress...
def SDTShuff1Op : SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisSameAs<0,1>]>;
def SDTShuff2Op : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0,1>,
SDTCisSameAs<0,2>]>;
def SDTShuff2OpI : SDTypeProfile<1, 2, [SDTCisVec<0>,
SDTCisSameAs<0,1>, SDTCisInt<2>]>;
def SDTShuff3OpI : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>,
SDTCisSameAs<0,2>, SDTCisInt<3>]>;
def SDTVBroadcast : SDTypeProfile<1, 1, [SDTCisVec<0>]>;
def X86PAlign : SDNode<"X86ISD::PALIGN", SDTShuff3OpI>;
def X86PShufd : SDNode<"X86ISD::PSHUFD", SDTShuff2OpI>;
def X86PShufhw : SDNode<"X86ISD::PSHUFHW", SDTShuff2OpI>;
def X86PShuflw : SDNode<"X86ISD::PSHUFLW", SDTShuff2OpI>;
def X86Shufpd : SDNode<"X86ISD::SHUFPD", SDTShuff3OpI>;
def X86Shufps : SDNode<"X86ISD::SHUFPS", SDTShuff3OpI>;
def X86Movddup : SDNode<"X86ISD::MOVDDUP", SDTShuff1Op>;
def X86Movshdup : SDNode<"X86ISD::MOVSHDUP", SDTShuff1Op>;
def X86Movsldup : SDNode<"X86ISD::MOVSLDUP", SDTShuff1Op>;
def X86Movsd : SDNode<"X86ISD::MOVSD", SDTShuff2Op>;
def X86Movss : SDNode<"X86ISD::MOVSS", SDTShuff2Op>;
def X86Movlhps : SDNode<"X86ISD::MOVLHPS", SDTShuff2Op>;
def X86Movlhpd : SDNode<"X86ISD::MOVLHPD", SDTShuff2Op>;
def X86Movhlps : SDNode<"X86ISD::MOVHLPS", SDTShuff2Op>;
def X86Movhlpd : SDNode<"X86ISD::MOVHLPD", SDTShuff2Op>;
def X86Movlps : SDNode<"X86ISD::MOVLPS", SDTShuff2Op>;
def X86Movlpd : SDNode<"X86ISD::MOVLPD", SDTShuff2Op>;
def X86Unpcklps : SDNode<"X86ISD::UNPCKLPS", SDTShuff2Op>;
def X86Unpcklpd : SDNode<"X86ISD::UNPCKLPD", SDTShuff2Op>;
def X86Unpcklpsy : SDNode<"X86ISD::VUNPCKLPSY", SDTShuff2Op>;
def X86Unpcklpdy : SDNode<"X86ISD::VUNPCKLPDY", SDTShuff2Op>;
def X86Unpckhps : SDNode<"X86ISD::UNPCKHPS", SDTShuff2Op>;
def X86Unpckhpd : SDNode<"X86ISD::UNPCKHPD", SDTShuff2Op>;
def X86Unpckhpsy : SDNode<"X86ISD::VUNPCKHPSY", SDTShuff2Op>;
def X86Unpckhpdy : SDNode<"X86ISD::VUNPCKHPDY", SDTShuff2Op>;
def X86Punpcklbw : SDNode<"X86ISD::PUNPCKLBW", SDTShuff2Op>;
def X86Punpcklwd : SDNode<"X86ISD::PUNPCKLWD", SDTShuff2Op>;
def X86Punpckldq : SDNode<"X86ISD::PUNPCKLDQ", SDTShuff2Op>;
def X86Punpcklqdq : SDNode<"X86ISD::PUNPCKLQDQ", SDTShuff2Op>;
def X86Punpckhbw : SDNode<"X86ISD::PUNPCKHBW", SDTShuff2Op>;
def X86Punpckhwd : SDNode<"X86ISD::PUNPCKHWD", SDTShuff2Op>;
def X86Punpckhdq : SDNode<"X86ISD::PUNPCKHDQ", SDTShuff2Op>;
def X86Punpckhqdq : SDNode<"X86ISD::PUNPCKHQDQ", SDTShuff2Op>;
def X86VPermilps : SDNode<"X86ISD::VPERMILPS", SDTShuff2OpI>;
def X86VPermilpsy : SDNode<"X86ISD::VPERMILPSY", SDTShuff2OpI>;
def X86VPermilpd : SDNode<"X86ISD::VPERMILPD", SDTShuff2OpI>;
def X86VPermilpdy : SDNode<"X86ISD::VPERMILPDY", SDTShuff2OpI>;
def X86VPerm2f128 : SDNode<"X86ISD::VPERM2F128", SDTShuff3OpI>;
def X86VBroadcast : SDNode<"X86ISD::VBROADCAST", SDTVBroadcast>;
//===----------------------------------------------------------------------===//
// SSE Complex Patterns
//===----------------------------------------------------------------------===//
// These are 'extloads' from a scalar to the low element of a vector, zeroing
// the top elements. These are used for the SSE 'ss' and 'sd' instruction
// forms.
def sse_load_f32 : ComplexPattern<v4f32, 5, "SelectScalarSSELoad", [],
[SDNPHasChain, SDNPMayLoad, SDNPMemOperand,
SDNPWantRoot]>;
def sse_load_f64 : ComplexPattern<v2f64, 5, "SelectScalarSSELoad", [],
[SDNPHasChain, SDNPMayLoad, SDNPMemOperand,
SDNPWantRoot]>;
def ssmem : Operand<v4f32> {
let PrintMethod = "printf32mem";
let MIOperandInfo = (ops ptr_rc, i8imm, ptr_rc_nosp, i32imm, i8imm);
let ParserMatchClass = X86MemAsmOperand;
let OperandType = "OPERAND_MEMORY";
}
def sdmem : Operand<v2f64> {
let PrintMethod = "printf64mem";
let MIOperandInfo = (ops ptr_rc, i8imm, ptr_rc_nosp, i32imm, i8imm);
let ParserMatchClass = X86MemAsmOperand;
let OperandType = "OPERAND_MEMORY";
}
//===----------------------------------------------------------------------===//
// SSE pattern fragments
//===----------------------------------------------------------------------===//
// 128-bit load pattern fragments
def loadv4f32 : PatFrag<(ops node:$ptr), (v4f32 (load node:$ptr))>;
def loadv2f64 : PatFrag<(ops node:$ptr), (v2f64 (load node:$ptr))>;
def loadv4i32 : PatFrag<(ops node:$ptr), (v4i32 (load node:$ptr))>;
def loadv2i64 : PatFrag<(ops node:$ptr), (v2i64 (load node:$ptr))>;
// 256-bit load pattern fragments
def loadv8f32 : PatFrag<(ops node:$ptr), (v8f32 (load node:$ptr))>;
def loadv4f64 : PatFrag<(ops node:$ptr), (v4f64 (load node:$ptr))>;
def loadv8i32 : PatFrag<(ops node:$ptr), (v8i32 (load node:$ptr))>;
def loadv4i64 : PatFrag<(ops node:$ptr), (v4i64 (load node:$ptr))>;
// Like 'store', but always requires 128-bit vector alignment.
def alignedstore : PatFrag<(ops node:$val, node:$ptr),
(store node:$val, node:$ptr), [{
return cast<StoreSDNode>(N)->getAlignment() >= 16;
}]>;
// Like 'store', but always requires 256-bit vector alignment.
def alignedstore256 : PatFrag<(ops node:$val, node:$ptr),
(store node:$val, node:$ptr), [{
return cast<StoreSDNode>(N)->getAlignment() >= 32;
}]>;
// Like 'load', but always requires 128-bit vector alignment.
def alignedload : PatFrag<(ops node:$ptr), (load node:$ptr), [{
return cast<LoadSDNode>(N)->getAlignment() >= 16;
}]>;
// Like 'load', but always requires 256-bit vector alignment.
def alignedload256 : PatFrag<(ops node:$ptr), (load node:$ptr), [{
return cast<LoadSDNode>(N)->getAlignment() >= 32;
}]>;
def alignedloadfsf32 : PatFrag<(ops node:$ptr),
(f32 (alignedload node:$ptr))>;
def alignedloadfsf64 : PatFrag<(ops node:$ptr),
(f64 (alignedload node:$ptr))>;
// 128-bit aligned load pattern fragments
def alignedloadv4f32 : PatFrag<(ops node:$ptr),
(v4f32 (alignedload node:$ptr))>;
def alignedloadv2f64 : PatFrag<(ops node:$ptr),
(v2f64 (alignedload node:$ptr))>;
def alignedloadv4i32 : PatFrag<(ops node:$ptr),
(v4i32 (alignedload node:$ptr))>;
def alignedloadv2i64 : PatFrag<(ops node:$ptr),
(v2i64 (alignedload node:$ptr))>;
// 256-bit aligned load pattern fragments
def alignedloadv8f32 : PatFrag<(ops node:$ptr),
(v8f32 (alignedload256 node:$ptr))>;
def alignedloadv4f64 : PatFrag<(ops node:$ptr),
(v4f64 (alignedload256 node:$ptr))>;
def alignedloadv8i32 : PatFrag<(ops node:$ptr),
(v8i32 (alignedload256 node:$ptr))>;
def alignedloadv4i64 : PatFrag<(ops node:$ptr),
(v4i64 (alignedload256 node:$ptr))>;
// Like 'load', but uses special alignment checks suitable for use in
// memory operands in most SSE instructions, which are required to
// be naturally aligned on some targets but not on others. If the subtarget
// allows unaligned accesses, match any load, though this may require
// setting a feature bit in the processor (on startup, for example).
// Opteron 10h and later implement such a feature.
def memop : PatFrag<(ops node:$ptr), (load node:$ptr), [{
return Subtarget->hasVectorUAMem()
|| cast<LoadSDNode>(N)->getAlignment() >= 16;
}]>;
def memopfsf32 : PatFrag<(ops node:$ptr), (f32 (memop node:$ptr))>;
def memopfsf64 : PatFrag<(ops node:$ptr), (f64 (memop node:$ptr))>;
// 128-bit memop pattern fragments
def memopv4f32 : PatFrag<(ops node:$ptr), (v4f32 (memop node:$ptr))>;
def memopv2f64 : PatFrag<(ops node:$ptr), (v2f64 (memop node:$ptr))>;
def memopv4i32 : PatFrag<(ops node:$ptr), (v4i32 (memop node:$ptr))>;
def memopv2i64 : PatFrag<(ops node:$ptr), (v2i64 (memop node:$ptr))>;
def memopv8i16 : PatFrag<(ops node:$ptr), (v8i16 (memop node:$ptr))>;
def memopv16i8 : PatFrag<(ops node:$ptr), (v16i8 (memop node:$ptr))>;
// 256-bit memop pattern fragments
def memopv32i8 : PatFrag<(ops node:$ptr), (v32i8 (memop node:$ptr))>;
def memopv8f32 : PatFrag<(ops node:$ptr), (v8f32 (memop node:$ptr))>;
def memopv4f64 : PatFrag<(ops node:$ptr), (v4f64 (memop node:$ptr))>;
def memopv4i64 : PatFrag<(ops node:$ptr), (v4i64 (memop node:$ptr))>;
def memopv8i32 : PatFrag<(ops node:$ptr), (v8i32 (memop node:$ptr))>;
// SSSE3 uses MMX registers for some instructions. They aren't aligned on a
// 16-byte boundary.
// FIXME: 8 byte alignment for mmx reads is not required
def memop64 : PatFrag<(ops node:$ptr), (load node:$ptr), [{
return cast<LoadSDNode>(N)->getAlignment() >= 8;
}]>;
def memopmmx : PatFrag<(ops node:$ptr), (x86mmx (memop64 node:$ptr))>;
// MOVNT Support
// Like 'store', but requires the non-temporal bit to be set
def nontemporalstore : PatFrag<(ops node:$val, node:$ptr),
(st node:$val, node:$ptr), [{
if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N))
return ST->isNonTemporal();
return false;
}]>;
def alignednontemporalstore : PatFrag<(ops node:$val, node:$ptr),
(st node:$val, node:$ptr), [{
if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N))
return ST->isNonTemporal() && !ST->isTruncatingStore() &&
ST->getAddressingMode() == ISD::UNINDEXED &&
ST->getAlignment() >= 16;
return false;
}]>;
def unalignednontemporalstore : PatFrag<(ops node:$val, node:$ptr),
(st node:$val, node:$ptr), [{
if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N))
return ST->isNonTemporal() &&
ST->getAlignment() < 16;
return false;
}]>;
// 128-bit bitconvert pattern fragments
def bc_v4f32 : PatFrag<(ops node:$in), (v4f32 (bitconvert node:$in))>;
def bc_v2f64 : PatFrag<(ops node:$in), (v2f64 (bitconvert node:$in))>;
def bc_v16i8 : PatFrag<(ops node:$in), (v16i8 (bitconvert node:$in))>;
def bc_v8i16 : PatFrag<(ops node:$in), (v8i16 (bitconvert node:$in))>;
def bc_v4i32 : PatFrag<(ops node:$in), (v4i32 (bitconvert node:$in))>;
def bc_v2i64 : PatFrag<(ops node:$in), (v2i64 (bitconvert node:$in))>;
// 256-bit bitconvert pattern fragments
def bc_v8i32 : PatFrag<(ops node:$in), (v8i32 (bitconvert node:$in))>;
def bc_v4i64 : PatFrag<(ops node:$in), (v4i64 (bitconvert node:$in))>;
def vzmovl_v2i64 : PatFrag<(ops node:$src),
(bitconvert (v2i64 (X86vzmovl
(v2i64 (scalar_to_vector (loadi64 node:$src))))))>;
def vzmovl_v4i32 : PatFrag<(ops node:$src),
(bitconvert (v4i32 (X86vzmovl
(v4i32 (scalar_to_vector (loadi32 node:$src))))))>;
def vzload_v2i64 : PatFrag<(ops node:$src),
(bitconvert (v2i64 (X86vzload node:$src)))>;
def fp32imm0 : PatLeaf<(f32 fpimm), [{
return N->isExactlyValue(+0.0);
}]>;
// BYTE_imm - Transform bit immediates into byte immediates.
def BYTE_imm : SDNodeXForm<imm, [{
// Transformation function: imm >> 3
return getI32Imm(N->getZExtValue() >> 3);
}]>;
// SHUFFLE_get_shuf_imm xform function: convert vector_shuffle mask to PSHUF*,
// SHUFP* etc. imm.
def SHUFFLE_get_shuf_imm : SDNodeXForm<vector_shuffle, [{
return getI8Imm(X86::getShuffleSHUFImmediate(N));
}]>;
// SHUFFLE_get_pshufhw_imm xform function: convert vector_shuffle mask to
// PSHUFHW imm.
def SHUFFLE_get_pshufhw_imm : SDNodeXForm<vector_shuffle, [{
return getI8Imm(X86::getShufflePSHUFHWImmediate(N));
}]>;
// SHUFFLE_get_pshuflw_imm xform function: convert vector_shuffle mask to
// PSHUFLW imm.
def SHUFFLE_get_pshuflw_imm : SDNodeXForm<vector_shuffle, [{
return getI8Imm(X86::getShufflePSHUFLWImmediate(N));
}]>;
// SHUFFLE_get_palign_imm xform function: convert vector_shuffle mask to
// a PALIGNR imm.
def SHUFFLE_get_palign_imm : SDNodeXForm<vector_shuffle, [{
return getI8Imm(X86::getShufflePALIGNRImmediate(N));
}]>;
// EXTRACT_get_vextractf128_imm xform function: convert extract_subvector index
// to VEXTRACTF128 imm.
def EXTRACT_get_vextractf128_imm : SDNodeXForm<extract_subvector, [{
return getI8Imm(X86::getExtractVEXTRACTF128Immediate(N));
}]>;
// INSERT_get_vinsertf128_imm xform function: convert insert_subvector index to
// VINSERTF128 imm.
def INSERT_get_vinsertf128_imm : SDNodeXForm<insert_subvector, [{
return getI8Imm(X86::getInsertVINSERTF128Immediate(N));
}]>;
def splat_lo : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
return SVOp->isSplat() && SVOp->getSplatIndex() == 0;
}]>;
def movddup : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return X86::isMOVDDUPMask(cast<ShuffleVectorSDNode>(N));
}]>;
def movhlps : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return X86::isMOVHLPSMask(cast<ShuffleVectorSDNode>(N));
}]>;
def movhlps_undef : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return X86::isMOVHLPS_v_undef_Mask(cast<ShuffleVectorSDNode>(N));
}]>;
def movlhps : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return X86::isMOVLHPSMask(cast<ShuffleVectorSDNode>(N));
}]>;
def movlp : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return X86::isMOVLPMask(cast<ShuffleVectorSDNode>(N));
}]>;
def movl : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return X86::isMOVLMask(cast<ShuffleVectorSDNode>(N));
}]>;
def unpckl : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return X86::isUNPCKLMask(cast<ShuffleVectorSDNode>(N));
}]>;
def unpckh : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return X86::isUNPCKHMask(cast<ShuffleVectorSDNode>(N));
}]>;
def pshufd : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return X86::isPSHUFDMask(cast<ShuffleVectorSDNode>(N));
}], SHUFFLE_get_shuf_imm>;
def shufp : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return X86::isSHUFPMask(cast<ShuffleVectorSDNode>(N));
}], SHUFFLE_get_shuf_imm>;
def pshufhw : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return X86::isPSHUFHWMask(cast<ShuffleVectorSDNode>(N));
}], SHUFFLE_get_pshufhw_imm>;
def pshuflw : PatFrag<(ops node:$lhs, node:$rhs),
(vector_shuffle node:$lhs, node:$rhs), [{
return X86::isPSHUFLWMask(cast<ShuffleVectorSDNode>(N));
}], SHUFFLE_get_pshuflw_imm>;
def vextractf128_extract : PatFrag<(ops node:$bigvec, node:$index),
(extract_subvector node:$bigvec,
node:$index), [{
return X86::isVEXTRACTF128Index(N);
}], EXTRACT_get_vextractf128_imm>;
def vinsertf128_insert : PatFrag<(ops node:$bigvec, node:$smallvec,
node:$index),
(insert_subvector node:$bigvec, node:$smallvec,
node:$index), [{
return X86::isVINSERTF128Index(N);
}], INSERT_get_vinsertf128_imm>;