mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-23 03:02:36 +01:00
c3b7c2e861
SX Aurora VE uses an intermediate representation similar to VP as its MIR. VE itself uses invidiual VL register as its own vector length register at the hardware level. So, LLVM needs to insert load VL (LVL) instruction just before vector instructions if the value of VL is changed. This LVLGen pass generates LVL instructions for such purpose. Previously, a bug is pointed out in D91416. This patch correct this bug and add a regression test. Reviewed By: craig.topper Differential Revision: https://reviews.llvm.org/D92716
138 lines
4.6 KiB
C++
138 lines
4.6 KiB
C++
//===-- LVLGen.cpp - LVL instruction generator ----------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "VE.h"
|
|
#include "VESubtarget.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "lvl-gen"
|
|
|
|
namespace {
|
|
struct LVLGen : public MachineFunctionPass {
|
|
const TargetInstrInfo *TII;
|
|
const TargetRegisterInfo *TRI;
|
|
|
|
static char ID;
|
|
LVLGen() : MachineFunctionPass(ID) {}
|
|
bool runOnMachineBasicBlock(MachineBasicBlock &MBB);
|
|
bool runOnMachineFunction(MachineFunction &F) override;
|
|
|
|
unsigned getVL(const MachineInstr &MI);
|
|
int getVLIndex(unsigned Opcode);
|
|
};
|
|
char LVLGen::ID = 0;
|
|
|
|
} // end of anonymous namespace
|
|
|
|
FunctionPass *llvm::createLVLGenPass() { return new LVLGen; }
|
|
|
|
int LVLGen::getVLIndex(unsigned Opcode) {
|
|
const MCInstrDesc &MCID = TII->get(Opcode);
|
|
|
|
// If an instruction has VLIndex information, return it.
|
|
if (HAS_VLINDEX(MCID.TSFlags))
|
|
return GET_VLINDEX(MCID.TSFlags);
|
|
|
|
return -1;
|
|
}
|
|
|
|
// returns a register holding a vector length. NoRegister is returned when
|
|
// this MI does not have a vector length.
|
|
unsigned LVLGen::getVL(const MachineInstr &MI) {
|
|
int Index = getVLIndex(MI.getOpcode());
|
|
if (Index >= 0)
|
|
return MI.getOperand(Index).getReg();
|
|
|
|
return VE::NoRegister;
|
|
}
|
|
|
|
bool LVLGen::runOnMachineBasicBlock(MachineBasicBlock &MBB) {
|
|
#define RegName(no) \
|
|
(MBB.getParent()->getSubtarget<VESubtarget>().getRegisterInfo()->getName(no))
|
|
|
|
bool Changed = false;
|
|
bool HasRegForVL = false;
|
|
unsigned RegForVL;
|
|
|
|
for (MachineBasicBlock::iterator I = MBB.begin(); I != MBB.end();) {
|
|
MachineBasicBlock::iterator MI = I;
|
|
|
|
// Check whether MI uses a vector length operand. If so, we prepare for VL
|
|
// register. We would like to reuse VL register as much as possible. We
|
|
// also would like to keep the number of LEA instructions as fewer as
|
|
// possible. Therefore, we use a regular scalar register to hold immediate
|
|
// values to load VL register. And try to reuse identical scalar registers
|
|
// to avoid new LVLr instructions as much as possible.
|
|
unsigned Reg = getVL(*MI);
|
|
if (Reg != VE::NoRegister) {
|
|
LLVM_DEBUG(dbgs() << "Vector instruction found: ");
|
|
LLVM_DEBUG(MI->dump());
|
|
LLVM_DEBUG(dbgs() << "Vector length is " << RegName(Reg) << ". ");
|
|
LLVM_DEBUG(dbgs() << "Current VL is "
|
|
<< (HasRegForVL ? RegName(RegForVL) : "unknown")
|
|
<< ". ");
|
|
|
|
if (!HasRegForVL || RegForVL != Reg) {
|
|
// Use VL, but a different value in a different scalar register.
|
|
// So, generate new LVL instruction just before the current instruction.
|
|
LLVM_DEBUG(dbgs() << "Generate a LVL instruction to load "
|
|
<< RegName(Reg) << ".\n");
|
|
BuildMI(MBB, I, MI->getDebugLoc(), TII->get(VE::LVLr)).addReg(Reg);
|
|
HasRegForVL = true;
|
|
RegForVL = Reg;
|
|
Changed = true;
|
|
} else {
|
|
LLVM_DEBUG(dbgs() << "Reuse current VL.\n");
|
|
}
|
|
}
|
|
// Check the update of a given scalar register holding an immediate value
|
|
// for VL register. Also, a call doesn't preserve VL register.
|
|
if (HasRegForVL) {
|
|
if (MI->definesRegister(RegForVL, TRI) ||
|
|
MI->modifiesRegister(RegForVL, TRI) ||
|
|
MI->killsRegister(RegForVL, TRI) || MI->isCall()) {
|
|
// The latest VL is needed to be updated, so disable HasRegForVL.
|
|
LLVM_DEBUG(dbgs() << RegName(RegForVL) << " is needed to be updated: ");
|
|
LLVM_DEBUG(MI->dump());
|
|
HasRegForVL = false;
|
|
}
|
|
}
|
|
|
|
++I;
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
bool LVLGen::runOnMachineFunction(MachineFunction &F) {
|
|
LLVM_DEBUG(dbgs() << "********** Begin LVLGen **********\n");
|
|
LLVM_DEBUG(dbgs() << "********** Function: " << F.getName() << '\n');
|
|
LLVM_DEBUG(F.dump());
|
|
|
|
bool Changed = false;
|
|
|
|
const VESubtarget &Subtarget = F.getSubtarget<VESubtarget>();
|
|
TII = Subtarget.getInstrInfo();
|
|
TRI = Subtarget.getRegisterInfo();
|
|
|
|
for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
|
|
Changed |= runOnMachineBasicBlock(*FI);
|
|
|
|
if (Changed) {
|
|
LLVM_DEBUG(dbgs() << "\n");
|
|
LLVM_DEBUG(F.dump());
|
|
}
|
|
LLVM_DEBUG(dbgs() << "********** End LVLGen **********\n");
|
|
return Changed;
|
|
}
|