mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 04:02:41 +01:00
882 lines
32 KiB
C++
882 lines
32 KiB
C++
//===- GuardWidening.cpp - ---- Guard widening ----------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the guard widening pass. The semantics of the
|
|
// @llvm.experimental.guard intrinsic lets LLVM transform it so that it fails
|
|
// more often that it did before the transform. This optimization is called
|
|
// "widening" and can be used hoist and common runtime checks in situations like
|
|
// these:
|
|
//
|
|
// %cmp0 = 7 u< Length
|
|
// call @llvm.experimental.guard(i1 %cmp0) [ "deopt"(...) ]
|
|
// call @unknown_side_effects()
|
|
// %cmp1 = 9 u< Length
|
|
// call @llvm.experimental.guard(i1 %cmp1) [ "deopt"(...) ]
|
|
// ...
|
|
//
|
|
// =>
|
|
//
|
|
// %cmp0 = 9 u< Length
|
|
// call @llvm.experimental.guard(i1 %cmp0) [ "deopt"(...) ]
|
|
// call @unknown_side_effects()
|
|
// ...
|
|
//
|
|
// If %cmp0 is false, @llvm.experimental.guard will "deoptimize" back to a
|
|
// generic implementation of the same function, which will have the correct
|
|
// semantics from that point onward. It is always _legal_ to deoptimize (so
|
|
// replacing %cmp0 with false is "correct"), though it may not always be
|
|
// profitable to do so.
|
|
//
|
|
// NB! This pass is a work in progress. It hasn't been tuned to be "production
|
|
// ready" yet. It is known to have quadriatic running time and will not scale
|
|
// to large numbers of guards
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar/GuardWidening.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/BranchProbabilityInfo.h"
|
|
#include "llvm/Analysis/GuardUtils.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/LoopPass.h"
|
|
#include "llvm/Analysis/PostDominators.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/ConstantRange.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/KnownBits.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Utils/GuardUtils.h"
|
|
#include "llvm/Transforms/Utils/LoopUtils.h"
|
|
#include <functional>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "guard-widening"
|
|
|
|
STATISTIC(GuardsEliminated, "Number of eliminated guards");
|
|
STATISTIC(CondBranchEliminated, "Number of eliminated conditional branches");
|
|
|
|
static cl::opt<bool>
|
|
WidenBranchGuards("guard-widening-widen-branch-guards", cl::Hidden,
|
|
cl::desc("Whether or not we should widen guards "
|
|
"expressed as branches by widenable conditions"),
|
|
cl::init(true));
|
|
|
|
namespace {
|
|
|
|
// Get the condition of \p I. It can either be a guard or a conditional branch.
|
|
static Value *getCondition(Instruction *I) {
|
|
if (IntrinsicInst *GI = dyn_cast<IntrinsicInst>(I)) {
|
|
assert(GI->getIntrinsicID() == Intrinsic::experimental_guard &&
|
|
"Bad guard intrinsic?");
|
|
return GI->getArgOperand(0);
|
|
}
|
|
Value *Cond, *WC;
|
|
BasicBlock *IfTrueBB, *IfFalseBB;
|
|
if (parseWidenableBranch(I, Cond, WC, IfTrueBB, IfFalseBB))
|
|
return Cond;
|
|
|
|
return cast<BranchInst>(I)->getCondition();
|
|
}
|
|
|
|
// Set the condition for \p I to \p NewCond. \p I can either be a guard or a
|
|
// conditional branch.
|
|
static void setCondition(Instruction *I, Value *NewCond) {
|
|
if (IntrinsicInst *GI = dyn_cast<IntrinsicInst>(I)) {
|
|
assert(GI->getIntrinsicID() == Intrinsic::experimental_guard &&
|
|
"Bad guard intrinsic?");
|
|
GI->setArgOperand(0, NewCond);
|
|
return;
|
|
}
|
|
cast<BranchInst>(I)->setCondition(NewCond);
|
|
}
|
|
|
|
// Eliminates the guard instruction properly.
|
|
static void eliminateGuard(Instruction *GuardInst) {
|
|
GuardInst->eraseFromParent();
|
|
++GuardsEliminated;
|
|
}
|
|
|
|
class GuardWideningImpl {
|
|
DominatorTree &DT;
|
|
PostDominatorTree *PDT;
|
|
LoopInfo &LI;
|
|
|
|
/// Together, these describe the region of interest. This might be all of
|
|
/// the blocks within a function, or only a given loop's blocks and preheader.
|
|
DomTreeNode *Root;
|
|
std::function<bool(BasicBlock*)> BlockFilter;
|
|
|
|
/// The set of guards and conditional branches whose conditions have been
|
|
/// widened into dominating guards.
|
|
SmallVector<Instruction *, 16> EliminatedGuardsAndBranches;
|
|
|
|
/// The set of guards which have been widened to include conditions to other
|
|
/// guards.
|
|
DenseSet<Instruction *> WidenedGuards;
|
|
|
|
/// Try to eliminate instruction \p Instr by widening it into an earlier
|
|
/// dominating guard. \p DFSI is the DFS iterator on the dominator tree that
|
|
/// is currently visiting the block containing \p Guard, and \p GuardsPerBlock
|
|
/// maps BasicBlocks to the set of guards seen in that block.
|
|
bool eliminateInstrViaWidening(
|
|
Instruction *Instr, const df_iterator<DomTreeNode *> &DFSI,
|
|
const DenseMap<BasicBlock *, SmallVector<Instruction *, 8>> &
|
|
GuardsPerBlock, bool InvertCondition = false);
|
|
|
|
/// Used to keep track of which widening potential is more effective.
|
|
enum WideningScore {
|
|
/// Don't widen.
|
|
WS_IllegalOrNegative,
|
|
|
|
/// Widening is performance neutral as far as the cycles spent in check
|
|
/// conditions goes (but can still help, e.g., code layout, having less
|
|
/// deopt state).
|
|
WS_Neutral,
|
|
|
|
/// Widening is profitable.
|
|
WS_Positive,
|
|
|
|
/// Widening is very profitable. Not significantly different from \c
|
|
/// WS_Positive, except by the order.
|
|
WS_VeryPositive
|
|
};
|
|
|
|
static StringRef scoreTypeToString(WideningScore WS);
|
|
|
|
/// Compute the score for widening the condition in \p DominatedInstr
|
|
/// into \p DominatingGuard. If \p InvertCond is set, then we widen the
|
|
/// inverted condition of the dominating guard.
|
|
WideningScore computeWideningScore(Instruction *DominatedInstr,
|
|
Instruction *DominatingGuard,
|
|
bool InvertCond);
|
|
|
|
/// Helper to check if \p V can be hoisted to \p InsertPos.
|
|
bool isAvailableAt(const Value *V, const Instruction *InsertPos) const {
|
|
SmallPtrSet<const Instruction *, 8> Visited;
|
|
return isAvailableAt(V, InsertPos, Visited);
|
|
}
|
|
|
|
bool isAvailableAt(const Value *V, const Instruction *InsertPos,
|
|
SmallPtrSetImpl<const Instruction *> &Visited) const;
|
|
|
|
/// Helper to hoist \p V to \p InsertPos. Guaranteed to succeed if \c
|
|
/// isAvailableAt returned true.
|
|
void makeAvailableAt(Value *V, Instruction *InsertPos) const;
|
|
|
|
/// Common helper used by \c widenGuard and \c isWideningCondProfitable. Try
|
|
/// to generate an expression computing the logical AND of \p Cond0 and (\p
|
|
/// Cond1 XOR \p InvertCondition).
|
|
/// Return true if the expression computing the AND is only as
|
|
/// expensive as computing one of the two. If \p InsertPt is true then
|
|
/// actually generate the resulting expression, make it available at \p
|
|
/// InsertPt and return it in \p Result (else no change to the IR is made).
|
|
bool widenCondCommon(Value *Cond0, Value *Cond1, Instruction *InsertPt,
|
|
Value *&Result, bool InvertCondition);
|
|
|
|
/// Represents a range check of the form \c Base + \c Offset u< \c Length,
|
|
/// with the constraint that \c Length is not negative. \c CheckInst is the
|
|
/// pre-existing instruction in the IR that computes the result of this range
|
|
/// check.
|
|
class RangeCheck {
|
|
const Value *Base;
|
|
const ConstantInt *Offset;
|
|
const Value *Length;
|
|
ICmpInst *CheckInst;
|
|
|
|
public:
|
|
explicit RangeCheck(const Value *Base, const ConstantInt *Offset,
|
|
const Value *Length, ICmpInst *CheckInst)
|
|
: Base(Base), Offset(Offset), Length(Length), CheckInst(CheckInst) {}
|
|
|
|
void setBase(const Value *NewBase) { Base = NewBase; }
|
|
void setOffset(const ConstantInt *NewOffset) { Offset = NewOffset; }
|
|
|
|
const Value *getBase() const { return Base; }
|
|
const ConstantInt *getOffset() const { return Offset; }
|
|
const APInt &getOffsetValue() const { return getOffset()->getValue(); }
|
|
const Value *getLength() const { return Length; };
|
|
ICmpInst *getCheckInst() const { return CheckInst; }
|
|
|
|
void print(raw_ostream &OS, bool PrintTypes = false) {
|
|
OS << "Base: ";
|
|
Base->printAsOperand(OS, PrintTypes);
|
|
OS << " Offset: ";
|
|
Offset->printAsOperand(OS, PrintTypes);
|
|
OS << " Length: ";
|
|
Length->printAsOperand(OS, PrintTypes);
|
|
}
|
|
|
|
LLVM_DUMP_METHOD void dump() {
|
|
print(dbgs());
|
|
dbgs() << "\n";
|
|
}
|
|
};
|
|
|
|
/// Parse \p CheckCond into a conjunction (logical-and) of range checks; and
|
|
/// append them to \p Checks. Returns true on success, may clobber \c Checks
|
|
/// on failure.
|
|
bool parseRangeChecks(Value *CheckCond, SmallVectorImpl<RangeCheck> &Checks) {
|
|
SmallPtrSet<const Value *, 8> Visited;
|
|
return parseRangeChecks(CheckCond, Checks, Visited);
|
|
}
|
|
|
|
bool parseRangeChecks(Value *CheckCond, SmallVectorImpl<RangeCheck> &Checks,
|
|
SmallPtrSetImpl<const Value *> &Visited);
|
|
|
|
/// Combine the checks in \p Checks into a smaller set of checks and append
|
|
/// them into \p CombinedChecks. Return true on success (i.e. all of checks
|
|
/// in \p Checks were combined into \p CombinedChecks). Clobbers \p Checks
|
|
/// and \p CombinedChecks on success and on failure.
|
|
bool combineRangeChecks(SmallVectorImpl<RangeCheck> &Checks,
|
|
SmallVectorImpl<RangeCheck> &CombinedChecks) const;
|
|
|
|
/// Can we compute the logical AND of \p Cond0 and \p Cond1 for the price of
|
|
/// computing only one of the two expressions?
|
|
bool isWideningCondProfitable(Value *Cond0, Value *Cond1, bool InvertCond) {
|
|
Value *ResultUnused;
|
|
return widenCondCommon(Cond0, Cond1, /*InsertPt=*/nullptr, ResultUnused,
|
|
InvertCond);
|
|
}
|
|
|
|
/// If \p InvertCondition is false, Widen \p ToWiden to fail if
|
|
/// \p NewCondition is false, otherwise make it fail if \p NewCondition is
|
|
/// true (in addition to whatever it is already checking).
|
|
void widenGuard(Instruction *ToWiden, Value *NewCondition,
|
|
bool InvertCondition) {
|
|
Value *Result;
|
|
|
|
widenCondCommon(getCondition(ToWiden), NewCondition, ToWiden, Result,
|
|
InvertCondition);
|
|
if (isGuardAsWidenableBranch(ToWiden)) {
|
|
setWidenableBranchCond(cast<BranchInst>(ToWiden), Result);
|
|
return;
|
|
}
|
|
setCondition(ToWiden, Result);
|
|
}
|
|
|
|
public:
|
|
|
|
explicit GuardWideningImpl(DominatorTree &DT, PostDominatorTree *PDT,
|
|
LoopInfo &LI, DomTreeNode *Root,
|
|
std::function<bool(BasicBlock*)> BlockFilter)
|
|
: DT(DT), PDT(PDT), LI(LI), Root(Root), BlockFilter(BlockFilter)
|
|
{}
|
|
|
|
/// The entry point for this pass.
|
|
bool run();
|
|
};
|
|
}
|
|
|
|
static bool isSupportedGuardInstruction(const Instruction *Insn) {
|
|
if (isGuard(Insn))
|
|
return true;
|
|
if (WidenBranchGuards && isGuardAsWidenableBranch(Insn))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
bool GuardWideningImpl::run() {
|
|
DenseMap<BasicBlock *, SmallVector<Instruction *, 8>> GuardsInBlock;
|
|
bool Changed = false;
|
|
for (auto DFI = df_begin(Root), DFE = df_end(Root);
|
|
DFI != DFE; ++DFI) {
|
|
auto *BB = (*DFI)->getBlock();
|
|
if (!BlockFilter(BB))
|
|
continue;
|
|
|
|
auto &CurrentList = GuardsInBlock[BB];
|
|
|
|
for (auto &I : *BB)
|
|
if (isSupportedGuardInstruction(&I))
|
|
CurrentList.push_back(cast<Instruction>(&I));
|
|
|
|
for (auto *II : CurrentList)
|
|
Changed |= eliminateInstrViaWidening(II, DFI, GuardsInBlock);
|
|
}
|
|
|
|
assert(EliminatedGuardsAndBranches.empty() || Changed);
|
|
for (auto *I : EliminatedGuardsAndBranches)
|
|
if (!WidenedGuards.count(I)) {
|
|
assert(isa<ConstantInt>(getCondition(I)) && "Should be!");
|
|
if (isSupportedGuardInstruction(I))
|
|
eliminateGuard(I);
|
|
else {
|
|
assert(isa<BranchInst>(I) &&
|
|
"Eliminated something other than guard or branch?");
|
|
++CondBranchEliminated;
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool GuardWideningImpl::eliminateInstrViaWidening(
|
|
Instruction *Instr, const df_iterator<DomTreeNode *> &DFSI,
|
|
const DenseMap<BasicBlock *, SmallVector<Instruction *, 8>> &
|
|
GuardsInBlock, bool InvertCondition) {
|
|
// Ignore trivial true or false conditions. These instructions will be
|
|
// trivially eliminated by any cleanup pass. Do not erase them because other
|
|
// guards can possibly be widened into them.
|
|
if (isa<ConstantInt>(getCondition(Instr)))
|
|
return false;
|
|
|
|
Instruction *BestSoFar = nullptr;
|
|
auto BestScoreSoFar = WS_IllegalOrNegative;
|
|
|
|
// In the set of dominating guards, find the one we can merge GuardInst with
|
|
// for the most profit.
|
|
for (unsigned i = 0, e = DFSI.getPathLength(); i != e; ++i) {
|
|
auto *CurBB = DFSI.getPath(i)->getBlock();
|
|
if (!BlockFilter(CurBB))
|
|
break;
|
|
assert(GuardsInBlock.count(CurBB) && "Must have been populated by now!");
|
|
const auto &GuardsInCurBB = GuardsInBlock.find(CurBB)->second;
|
|
|
|
auto I = GuardsInCurBB.begin();
|
|
auto E = Instr->getParent() == CurBB ? find(GuardsInCurBB, Instr)
|
|
: GuardsInCurBB.end();
|
|
|
|
#ifndef NDEBUG
|
|
{
|
|
unsigned Index = 0;
|
|
for (auto &I : *CurBB) {
|
|
if (Index == GuardsInCurBB.size())
|
|
break;
|
|
if (GuardsInCurBB[Index] == &I)
|
|
Index++;
|
|
}
|
|
assert(Index == GuardsInCurBB.size() &&
|
|
"Guards expected to be in order!");
|
|
}
|
|
#endif
|
|
|
|
assert((i == (e - 1)) == (Instr->getParent() == CurBB) && "Bad DFS?");
|
|
|
|
for (auto *Candidate : make_range(I, E)) {
|
|
auto Score = computeWideningScore(Instr, Candidate, InvertCondition);
|
|
LLVM_DEBUG(dbgs() << "Score between " << *getCondition(Instr)
|
|
<< " and " << *getCondition(Candidate) << " is "
|
|
<< scoreTypeToString(Score) << "\n");
|
|
if (Score > BestScoreSoFar) {
|
|
BestScoreSoFar = Score;
|
|
BestSoFar = Candidate;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (BestScoreSoFar == WS_IllegalOrNegative) {
|
|
LLVM_DEBUG(dbgs() << "Did not eliminate guard " << *Instr << "\n");
|
|
return false;
|
|
}
|
|
|
|
assert(BestSoFar != Instr && "Should have never visited same guard!");
|
|
assert(DT.dominates(BestSoFar, Instr) && "Should be!");
|
|
|
|
LLVM_DEBUG(dbgs() << "Widening " << *Instr << " into " << *BestSoFar
|
|
<< " with score " << scoreTypeToString(BestScoreSoFar)
|
|
<< "\n");
|
|
widenGuard(BestSoFar, getCondition(Instr), InvertCondition);
|
|
auto NewGuardCondition = InvertCondition
|
|
? ConstantInt::getFalse(Instr->getContext())
|
|
: ConstantInt::getTrue(Instr->getContext());
|
|
setCondition(Instr, NewGuardCondition);
|
|
EliminatedGuardsAndBranches.push_back(Instr);
|
|
WidenedGuards.insert(BestSoFar);
|
|
return true;
|
|
}
|
|
|
|
GuardWideningImpl::WideningScore
|
|
GuardWideningImpl::computeWideningScore(Instruction *DominatedInstr,
|
|
Instruction *DominatingGuard,
|
|
bool InvertCond) {
|
|
Loop *DominatedInstrLoop = LI.getLoopFor(DominatedInstr->getParent());
|
|
Loop *DominatingGuardLoop = LI.getLoopFor(DominatingGuard->getParent());
|
|
bool HoistingOutOfLoop = false;
|
|
|
|
if (DominatingGuardLoop != DominatedInstrLoop) {
|
|
// Be conservative and don't widen into a sibling loop. TODO: If the
|
|
// sibling is colder, we should consider allowing this.
|
|
if (DominatingGuardLoop &&
|
|
!DominatingGuardLoop->contains(DominatedInstrLoop))
|
|
return WS_IllegalOrNegative;
|
|
|
|
HoistingOutOfLoop = true;
|
|
}
|
|
|
|
if (!isAvailableAt(getCondition(DominatedInstr), DominatingGuard))
|
|
return WS_IllegalOrNegative;
|
|
|
|
// If the guard was conditional executed, it may never be reached
|
|
// dynamically. There are two potential downsides to hoisting it out of the
|
|
// conditionally executed region: 1) we may spuriously deopt without need and
|
|
// 2) we have the extra cost of computing the guard condition in the common
|
|
// case. At the moment, we really only consider the second in our heuristic
|
|
// here. TODO: evaluate cost model for spurious deopt
|
|
// NOTE: As written, this also lets us hoist right over another guard which
|
|
// is essentially just another spelling for control flow.
|
|
if (isWideningCondProfitable(getCondition(DominatedInstr),
|
|
getCondition(DominatingGuard), InvertCond))
|
|
return HoistingOutOfLoop ? WS_VeryPositive : WS_Positive;
|
|
|
|
if (HoistingOutOfLoop)
|
|
return WS_Positive;
|
|
|
|
// Returns true if we might be hoisting above explicit control flow. Note
|
|
// that this completely ignores implicit control flow (guards, calls which
|
|
// throw, etc...). That choice appears arbitrary.
|
|
auto MaybeHoistingOutOfIf = [&]() {
|
|
auto *DominatingBlock = DominatingGuard->getParent();
|
|
auto *DominatedBlock = DominatedInstr->getParent();
|
|
if (isGuardAsWidenableBranch(DominatingGuard))
|
|
DominatingBlock = cast<BranchInst>(DominatingGuard)->getSuccessor(0);
|
|
|
|
// Same Block?
|
|
if (DominatedBlock == DominatingBlock)
|
|
return false;
|
|
// Obvious successor (common loop header/preheader case)
|
|
if (DominatedBlock == DominatingBlock->getUniqueSuccessor())
|
|
return false;
|
|
// TODO: diamond, triangle cases
|
|
if (!PDT) return true;
|
|
return !PDT->dominates(DominatedBlock, DominatingBlock);
|
|
};
|
|
|
|
return MaybeHoistingOutOfIf() ? WS_IllegalOrNegative : WS_Neutral;
|
|
}
|
|
|
|
bool GuardWideningImpl::isAvailableAt(
|
|
const Value *V, const Instruction *Loc,
|
|
SmallPtrSetImpl<const Instruction *> &Visited) const {
|
|
auto *Inst = dyn_cast<Instruction>(V);
|
|
if (!Inst || DT.dominates(Inst, Loc) || Visited.count(Inst))
|
|
return true;
|
|
|
|
if (!isSafeToSpeculativelyExecute(Inst, Loc, &DT) ||
|
|
Inst->mayReadFromMemory())
|
|
return false;
|
|
|
|
Visited.insert(Inst);
|
|
|
|
// We only want to go _up_ the dominance chain when recursing.
|
|
assert(!isa<PHINode>(Loc) &&
|
|
"PHIs should return false for isSafeToSpeculativelyExecute");
|
|
assert(DT.isReachableFromEntry(Inst->getParent()) &&
|
|
"We did a DFS from the block entry!");
|
|
return all_of(Inst->operands(),
|
|
[&](Value *Op) { return isAvailableAt(Op, Loc, Visited); });
|
|
}
|
|
|
|
void GuardWideningImpl::makeAvailableAt(Value *V, Instruction *Loc) const {
|
|
auto *Inst = dyn_cast<Instruction>(V);
|
|
if (!Inst || DT.dominates(Inst, Loc))
|
|
return;
|
|
|
|
assert(isSafeToSpeculativelyExecute(Inst, Loc, &DT) &&
|
|
!Inst->mayReadFromMemory() && "Should've checked with isAvailableAt!");
|
|
|
|
for (Value *Op : Inst->operands())
|
|
makeAvailableAt(Op, Loc);
|
|
|
|
Inst->moveBefore(Loc);
|
|
}
|
|
|
|
bool GuardWideningImpl::widenCondCommon(Value *Cond0, Value *Cond1,
|
|
Instruction *InsertPt, Value *&Result,
|
|
bool InvertCondition) {
|
|
using namespace llvm::PatternMatch;
|
|
|
|
{
|
|
// L >u C0 && L >u C1 -> L >u max(C0, C1)
|
|
ConstantInt *RHS0, *RHS1;
|
|
Value *LHS;
|
|
ICmpInst::Predicate Pred0, Pred1;
|
|
if (match(Cond0, m_ICmp(Pred0, m_Value(LHS), m_ConstantInt(RHS0))) &&
|
|
match(Cond1, m_ICmp(Pred1, m_Specific(LHS), m_ConstantInt(RHS1)))) {
|
|
if (InvertCondition)
|
|
Pred1 = ICmpInst::getInversePredicate(Pred1);
|
|
|
|
ConstantRange CR0 =
|
|
ConstantRange::makeExactICmpRegion(Pred0, RHS0->getValue());
|
|
ConstantRange CR1 =
|
|
ConstantRange::makeExactICmpRegion(Pred1, RHS1->getValue());
|
|
|
|
// SubsetIntersect is a subset of the actual mathematical intersection of
|
|
// CR0 and CR1, while SupersetIntersect is a superset of the actual
|
|
// mathematical intersection. If these two ConstantRanges are equal, then
|
|
// we know we were able to represent the actual mathematical intersection
|
|
// of CR0 and CR1, and can use the same to generate an icmp instruction.
|
|
//
|
|
// Given what we're doing here and the semantics of guards, it would
|
|
// actually be correct to just use SubsetIntersect, but that may be too
|
|
// aggressive in cases we care about.
|
|
auto SubsetIntersect = CR0.inverse().unionWith(CR1.inverse()).inverse();
|
|
auto SupersetIntersect = CR0.intersectWith(CR1);
|
|
|
|
APInt NewRHSAP;
|
|
CmpInst::Predicate Pred;
|
|
if (SubsetIntersect == SupersetIntersect &&
|
|
SubsetIntersect.getEquivalentICmp(Pred, NewRHSAP)) {
|
|
if (InsertPt) {
|
|
ConstantInt *NewRHS = ConstantInt::get(Cond0->getContext(), NewRHSAP);
|
|
Result = new ICmpInst(InsertPt, Pred, LHS, NewRHS, "wide.chk");
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
{
|
|
SmallVector<GuardWideningImpl::RangeCheck, 4> Checks, CombinedChecks;
|
|
// TODO: Support InvertCondition case?
|
|
if (!InvertCondition &&
|
|
parseRangeChecks(Cond0, Checks) && parseRangeChecks(Cond1, Checks) &&
|
|
combineRangeChecks(Checks, CombinedChecks)) {
|
|
if (InsertPt) {
|
|
Result = nullptr;
|
|
for (auto &RC : CombinedChecks) {
|
|
makeAvailableAt(RC.getCheckInst(), InsertPt);
|
|
if (Result)
|
|
Result = BinaryOperator::CreateAnd(RC.getCheckInst(), Result, "",
|
|
InsertPt);
|
|
else
|
|
Result = RC.getCheckInst();
|
|
}
|
|
assert(Result && "Failed to find result value");
|
|
Result->setName("wide.chk");
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Base case -- just logical-and the two conditions together.
|
|
|
|
if (InsertPt) {
|
|
makeAvailableAt(Cond0, InsertPt);
|
|
makeAvailableAt(Cond1, InsertPt);
|
|
if (InvertCondition)
|
|
Cond1 = BinaryOperator::CreateNot(Cond1, "inverted", InsertPt);
|
|
Result = BinaryOperator::CreateAnd(Cond0, Cond1, "wide.chk", InsertPt);
|
|
}
|
|
|
|
// We were not able to compute Cond0 AND Cond1 for the price of one.
|
|
return false;
|
|
}
|
|
|
|
bool GuardWideningImpl::parseRangeChecks(
|
|
Value *CheckCond, SmallVectorImpl<GuardWideningImpl::RangeCheck> &Checks,
|
|
SmallPtrSetImpl<const Value *> &Visited) {
|
|
if (!Visited.insert(CheckCond).second)
|
|
return true;
|
|
|
|
using namespace llvm::PatternMatch;
|
|
|
|
{
|
|
Value *AndLHS, *AndRHS;
|
|
if (match(CheckCond, m_And(m_Value(AndLHS), m_Value(AndRHS))))
|
|
return parseRangeChecks(AndLHS, Checks) &&
|
|
parseRangeChecks(AndRHS, Checks);
|
|
}
|
|
|
|
auto *IC = dyn_cast<ICmpInst>(CheckCond);
|
|
if (!IC || !IC->getOperand(0)->getType()->isIntegerTy() ||
|
|
(IC->getPredicate() != ICmpInst::ICMP_ULT &&
|
|
IC->getPredicate() != ICmpInst::ICMP_UGT))
|
|
return false;
|
|
|
|
const Value *CmpLHS = IC->getOperand(0), *CmpRHS = IC->getOperand(1);
|
|
if (IC->getPredicate() == ICmpInst::ICMP_UGT)
|
|
std::swap(CmpLHS, CmpRHS);
|
|
|
|
auto &DL = IC->getModule()->getDataLayout();
|
|
|
|
GuardWideningImpl::RangeCheck Check(
|
|
CmpLHS, cast<ConstantInt>(ConstantInt::getNullValue(CmpRHS->getType())),
|
|
CmpRHS, IC);
|
|
|
|
if (!isKnownNonNegative(Check.getLength(), DL))
|
|
return false;
|
|
|
|
// What we have in \c Check now is a correct interpretation of \p CheckCond.
|
|
// Try to see if we can move some constant offsets into the \c Offset field.
|
|
|
|
bool Changed;
|
|
auto &Ctx = CheckCond->getContext();
|
|
|
|
do {
|
|
Value *OpLHS;
|
|
ConstantInt *OpRHS;
|
|
Changed = false;
|
|
|
|
#ifndef NDEBUG
|
|
auto *BaseInst = dyn_cast<Instruction>(Check.getBase());
|
|
assert((!BaseInst || DT.isReachableFromEntry(BaseInst->getParent())) &&
|
|
"Unreachable instruction?");
|
|
#endif
|
|
|
|
if (match(Check.getBase(), m_Add(m_Value(OpLHS), m_ConstantInt(OpRHS)))) {
|
|
Check.setBase(OpLHS);
|
|
APInt NewOffset = Check.getOffsetValue() + OpRHS->getValue();
|
|
Check.setOffset(ConstantInt::get(Ctx, NewOffset));
|
|
Changed = true;
|
|
} else if (match(Check.getBase(),
|
|
m_Or(m_Value(OpLHS), m_ConstantInt(OpRHS)))) {
|
|
KnownBits Known = computeKnownBits(OpLHS, DL);
|
|
if ((OpRHS->getValue() & Known.Zero) == OpRHS->getValue()) {
|
|
Check.setBase(OpLHS);
|
|
APInt NewOffset = Check.getOffsetValue() + OpRHS->getValue();
|
|
Check.setOffset(ConstantInt::get(Ctx, NewOffset));
|
|
Changed = true;
|
|
}
|
|
}
|
|
} while (Changed);
|
|
|
|
Checks.push_back(Check);
|
|
return true;
|
|
}
|
|
|
|
bool GuardWideningImpl::combineRangeChecks(
|
|
SmallVectorImpl<GuardWideningImpl::RangeCheck> &Checks,
|
|
SmallVectorImpl<GuardWideningImpl::RangeCheck> &RangeChecksOut) const {
|
|
unsigned OldCount = Checks.size();
|
|
while (!Checks.empty()) {
|
|
// Pick all of the range checks with a specific base and length, and try to
|
|
// merge them.
|
|
const Value *CurrentBase = Checks.front().getBase();
|
|
const Value *CurrentLength = Checks.front().getLength();
|
|
|
|
SmallVector<GuardWideningImpl::RangeCheck, 3> CurrentChecks;
|
|
|
|
auto IsCurrentCheck = [&](GuardWideningImpl::RangeCheck &RC) {
|
|
return RC.getBase() == CurrentBase && RC.getLength() == CurrentLength;
|
|
};
|
|
|
|
copy_if(Checks, std::back_inserter(CurrentChecks), IsCurrentCheck);
|
|
erase_if(Checks, IsCurrentCheck);
|
|
|
|
assert(CurrentChecks.size() != 0 && "We know we have at least one!");
|
|
|
|
if (CurrentChecks.size() < 3) {
|
|
llvm::append_range(RangeChecksOut, CurrentChecks);
|
|
continue;
|
|
}
|
|
|
|
// CurrentChecks.size() will typically be 3 here, but so far there has been
|
|
// no need to hard-code that fact.
|
|
|
|
llvm::sort(CurrentChecks, [&](const GuardWideningImpl::RangeCheck &LHS,
|
|
const GuardWideningImpl::RangeCheck &RHS) {
|
|
return LHS.getOffsetValue().slt(RHS.getOffsetValue());
|
|
});
|
|
|
|
// Note: std::sort should not invalidate the ChecksStart iterator.
|
|
|
|
const ConstantInt *MinOffset = CurrentChecks.front().getOffset();
|
|
const ConstantInt *MaxOffset = CurrentChecks.back().getOffset();
|
|
|
|
unsigned BitWidth = MaxOffset->getValue().getBitWidth();
|
|
if ((MaxOffset->getValue() - MinOffset->getValue())
|
|
.ugt(APInt::getSignedMinValue(BitWidth)))
|
|
return false;
|
|
|
|
APInt MaxDiff = MaxOffset->getValue() - MinOffset->getValue();
|
|
const APInt &HighOffset = MaxOffset->getValue();
|
|
auto OffsetOK = [&](const GuardWideningImpl::RangeCheck &RC) {
|
|
return (HighOffset - RC.getOffsetValue()).ult(MaxDiff);
|
|
};
|
|
|
|
if (MaxDiff.isMinValue() || !all_of(drop_begin(CurrentChecks), OffsetOK))
|
|
return false;
|
|
|
|
// We have a series of f+1 checks as:
|
|
//
|
|
// I+k_0 u< L ... Chk_0
|
|
// I+k_1 u< L ... Chk_1
|
|
// ...
|
|
// I+k_f u< L ... Chk_f
|
|
//
|
|
// with forall i in [0,f]: k_f-k_i u< k_f-k_0 ... Precond_0
|
|
// k_f-k_0 u< INT_MIN+k_f ... Precond_1
|
|
// k_f != k_0 ... Precond_2
|
|
//
|
|
// Claim:
|
|
// Chk_0 AND Chk_f implies all the other checks
|
|
//
|
|
// Informal proof sketch:
|
|
//
|
|
// We will show that the integer range [I+k_0,I+k_f] does not unsigned-wrap
|
|
// (i.e. going from I+k_0 to I+k_f does not cross the -1,0 boundary) and
|
|
// thus I+k_f is the greatest unsigned value in that range.
|
|
//
|
|
// This combined with Ckh_(f+1) shows that everything in that range is u< L.
|
|
// Via Precond_0 we know that all of the indices in Chk_0 through Chk_(f+1)
|
|
// lie in [I+k_0,I+k_f], this proving our claim.
|
|
//
|
|
// To see that [I+k_0,I+k_f] is not a wrapping range, note that there are
|
|
// two possibilities: I+k_0 u< I+k_f or I+k_0 >u I+k_f (they can't be equal
|
|
// since k_0 != k_f). In the former case, [I+k_0,I+k_f] is not a wrapping
|
|
// range by definition, and the latter case is impossible:
|
|
//
|
|
// 0-----I+k_f---I+k_0----L---INT_MAX,INT_MIN------------------(-1)
|
|
// xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
|
|
//
|
|
// For Chk_0 to succeed, we'd have to have k_f-k_0 (the range highlighted
|
|
// with 'x' above) to be at least >u INT_MIN.
|
|
|
|
RangeChecksOut.emplace_back(CurrentChecks.front());
|
|
RangeChecksOut.emplace_back(CurrentChecks.back());
|
|
}
|
|
|
|
assert(RangeChecksOut.size() <= OldCount && "We pessimized!");
|
|
return RangeChecksOut.size() != OldCount;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
StringRef GuardWideningImpl::scoreTypeToString(WideningScore WS) {
|
|
switch (WS) {
|
|
case WS_IllegalOrNegative:
|
|
return "IllegalOrNegative";
|
|
case WS_Neutral:
|
|
return "Neutral";
|
|
case WS_Positive:
|
|
return "Positive";
|
|
case WS_VeryPositive:
|
|
return "VeryPositive";
|
|
}
|
|
|
|
llvm_unreachable("Fully covered switch above!");
|
|
}
|
|
#endif
|
|
|
|
PreservedAnalyses GuardWideningPass::run(Function &F,
|
|
FunctionAnalysisManager &AM) {
|
|
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
|
|
auto &LI = AM.getResult<LoopAnalysis>(F);
|
|
auto &PDT = AM.getResult<PostDominatorTreeAnalysis>(F);
|
|
if (!GuardWideningImpl(DT, &PDT, LI, DT.getRootNode(),
|
|
[](BasicBlock*) { return true; } ).run())
|
|
return PreservedAnalyses::all();
|
|
|
|
PreservedAnalyses PA;
|
|
PA.preserveSet<CFGAnalyses>();
|
|
return PA;
|
|
}
|
|
|
|
PreservedAnalyses GuardWideningPass::run(Loop &L, LoopAnalysisManager &AM,
|
|
LoopStandardAnalysisResults &AR,
|
|
LPMUpdater &U) {
|
|
BasicBlock *RootBB = L.getLoopPredecessor();
|
|
if (!RootBB)
|
|
RootBB = L.getHeader();
|
|
auto BlockFilter = [&](BasicBlock *BB) {
|
|
return BB == RootBB || L.contains(BB);
|
|
};
|
|
if (!GuardWideningImpl(AR.DT, nullptr, AR.LI, AR.DT.getNode(RootBB),
|
|
BlockFilter).run())
|
|
return PreservedAnalyses::all();
|
|
|
|
return getLoopPassPreservedAnalyses();
|
|
}
|
|
|
|
namespace {
|
|
struct GuardWideningLegacyPass : public FunctionPass {
|
|
static char ID;
|
|
|
|
GuardWideningLegacyPass() : FunctionPass(ID) {
|
|
initializeGuardWideningLegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override {
|
|
if (skipFunction(F))
|
|
return false;
|
|
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
|
|
auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
|
|
return GuardWideningImpl(DT, &PDT, LI, DT.getRootNode(),
|
|
[](BasicBlock*) { return true; } ).run();
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesCFG();
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addRequired<PostDominatorTreeWrapperPass>();
|
|
AU.addRequired<LoopInfoWrapperPass>();
|
|
}
|
|
};
|
|
|
|
/// Same as above, but restricted to a single loop at a time. Can be
|
|
/// scheduled with other loop passes w/o breaking out of LPM
|
|
struct LoopGuardWideningLegacyPass : public LoopPass {
|
|
static char ID;
|
|
|
|
LoopGuardWideningLegacyPass() : LoopPass(ID) {
|
|
initializeLoopGuardWideningLegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnLoop(Loop *L, LPPassManager &LPM) override {
|
|
if (skipLoop(L))
|
|
return false;
|
|
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
|
|
auto *PDTWP = getAnalysisIfAvailable<PostDominatorTreeWrapperPass>();
|
|
auto *PDT = PDTWP ? &PDTWP->getPostDomTree() : nullptr;
|
|
BasicBlock *RootBB = L->getLoopPredecessor();
|
|
if (!RootBB)
|
|
RootBB = L->getHeader();
|
|
auto BlockFilter = [&](BasicBlock *BB) {
|
|
return BB == RootBB || L->contains(BB);
|
|
};
|
|
return GuardWideningImpl(DT, PDT, LI,
|
|
DT.getNode(RootBB), BlockFilter).run();
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesCFG();
|
|
getLoopAnalysisUsage(AU);
|
|
AU.addPreserved<PostDominatorTreeWrapperPass>();
|
|
}
|
|
};
|
|
}
|
|
|
|
char GuardWideningLegacyPass::ID = 0;
|
|
char LoopGuardWideningLegacyPass::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(GuardWideningLegacyPass, "guard-widening", "Widen guards",
|
|
false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
|
|
INITIALIZE_PASS_END(GuardWideningLegacyPass, "guard-widening", "Widen guards",
|
|
false, false)
|
|
|
|
INITIALIZE_PASS_BEGIN(LoopGuardWideningLegacyPass, "loop-guard-widening",
|
|
"Widen guards (within a single loop, as a loop pass)",
|
|
false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
|
|
INITIALIZE_PASS_END(LoopGuardWideningLegacyPass, "loop-guard-widening",
|
|
"Widen guards (within a single loop, as a loop pass)",
|
|
false, false)
|
|
|
|
FunctionPass *llvm::createGuardWideningPass() {
|
|
return new GuardWideningLegacyPass();
|
|
}
|
|
|
|
Pass *llvm::createLoopGuardWideningPass() {
|
|
return new LoopGuardWideningLegacyPass();
|
|
}
|