mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-22 18:54:02 +01:00
cb0d7fd331
Main reason is preparation to transform AliasResult to class that contains offset for PartialAlias case. Reviewed By: asbirlea Differential Revision: https://reviews.llvm.org/D98027
608 lines
20 KiB
C++
608 lines
20 KiB
C++
//===- HexagonStoreWidening.cpp -------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
// Replace sequences of "narrow" stores to adjacent memory locations with
|
|
// a fewer "wide" stores that have the same effect.
|
|
// For example, replace:
|
|
// S4_storeirb_io %100, 0, 0 ; store-immediate-byte
|
|
// S4_storeirb_io %100, 1, 0 ; store-immediate-byte
|
|
// with
|
|
// S4_storeirh_io %100, 0, 0 ; store-immediate-halfword
|
|
// The above is the general idea. The actual cases handled by the code
|
|
// may be a bit more complex.
|
|
// The purpose of this pass is to reduce the number of outstanding stores,
|
|
// or as one could say, "reduce store queue pressure". Also, wide stores
|
|
// mean fewer stores, and since there are only two memory instructions allowed
|
|
// per packet, it also means fewer packets, and ultimately fewer cycles.
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
#include "HexagonInstrInfo.h"
|
|
#include "HexagonRegisterInfo.h"
|
|
#include "HexagonSubtarget.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/MemoryLocation.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/MC/MCInstrDesc.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <iterator>
|
|
#include <vector>
|
|
|
|
#define DEBUG_TYPE "hexagon-widen-stores"
|
|
|
|
using namespace llvm;
|
|
|
|
namespace llvm {
|
|
|
|
FunctionPass *createHexagonStoreWidening();
|
|
void initializeHexagonStoreWideningPass(PassRegistry&);
|
|
|
|
} // end namespace llvm
|
|
|
|
namespace {
|
|
|
|
struct HexagonStoreWidening : public MachineFunctionPass {
|
|
const HexagonInstrInfo *TII;
|
|
const HexagonRegisterInfo *TRI;
|
|
const MachineRegisterInfo *MRI;
|
|
AliasAnalysis *AA;
|
|
MachineFunction *MF;
|
|
|
|
public:
|
|
static char ID;
|
|
|
|
HexagonStoreWidening() : MachineFunctionPass(ID) {
|
|
initializeHexagonStoreWideningPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
|
|
StringRef getPassName() const override { return "Hexagon Store Widening"; }
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<AAResultsWrapperPass>();
|
|
AU.addPreserved<AAResultsWrapperPass>();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
static bool handledStoreType(const MachineInstr *MI);
|
|
|
|
private:
|
|
static const int MaxWideSize = 4;
|
|
|
|
using InstrGroup = std::vector<MachineInstr *>;
|
|
using InstrGroupList = std::vector<InstrGroup>;
|
|
|
|
bool instrAliased(InstrGroup &Stores, const MachineMemOperand &MMO);
|
|
bool instrAliased(InstrGroup &Stores, const MachineInstr *MI);
|
|
void createStoreGroup(MachineInstr *BaseStore, InstrGroup::iterator Begin,
|
|
InstrGroup::iterator End, InstrGroup &Group);
|
|
void createStoreGroups(MachineBasicBlock &MBB,
|
|
InstrGroupList &StoreGroups);
|
|
bool processBasicBlock(MachineBasicBlock &MBB);
|
|
bool processStoreGroup(InstrGroup &Group);
|
|
bool selectStores(InstrGroup::iterator Begin, InstrGroup::iterator End,
|
|
InstrGroup &OG, unsigned &TotalSize, unsigned MaxSize);
|
|
bool createWideStores(InstrGroup &OG, InstrGroup &NG, unsigned TotalSize);
|
|
bool replaceStores(InstrGroup &OG, InstrGroup &NG);
|
|
bool storesAreAdjacent(const MachineInstr *S1, const MachineInstr *S2);
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char HexagonStoreWidening::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(HexagonStoreWidening, "hexagon-widen-stores",
|
|
"Hexason Store Widening", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
|
|
INITIALIZE_PASS_END(HexagonStoreWidening, "hexagon-widen-stores",
|
|
"Hexagon Store Widening", false, false)
|
|
|
|
// Some local helper functions...
|
|
static unsigned getBaseAddressRegister(const MachineInstr *MI) {
|
|
const MachineOperand &MO = MI->getOperand(0);
|
|
assert(MO.isReg() && "Expecting register operand");
|
|
return MO.getReg();
|
|
}
|
|
|
|
static int64_t getStoreOffset(const MachineInstr *MI) {
|
|
unsigned OpC = MI->getOpcode();
|
|
assert(HexagonStoreWidening::handledStoreType(MI) && "Unhandled opcode");
|
|
|
|
switch (OpC) {
|
|
case Hexagon::S4_storeirb_io:
|
|
case Hexagon::S4_storeirh_io:
|
|
case Hexagon::S4_storeiri_io: {
|
|
const MachineOperand &MO = MI->getOperand(1);
|
|
assert(MO.isImm() && "Expecting immediate offset");
|
|
return MO.getImm();
|
|
}
|
|
}
|
|
dbgs() << *MI;
|
|
llvm_unreachable("Store offset calculation missing for a handled opcode");
|
|
return 0;
|
|
}
|
|
|
|
static const MachineMemOperand &getStoreTarget(const MachineInstr *MI) {
|
|
assert(!MI->memoperands_empty() && "Expecting memory operands");
|
|
return **MI->memoperands_begin();
|
|
}
|
|
|
|
// Filtering function: any stores whose opcodes are not "approved" of by
|
|
// this function will not be subjected to widening.
|
|
inline bool HexagonStoreWidening::handledStoreType(const MachineInstr *MI) {
|
|
// For now, only handle stores of immediate values.
|
|
// Also, reject stores to stack slots.
|
|
unsigned Opc = MI->getOpcode();
|
|
switch (Opc) {
|
|
case Hexagon::S4_storeirb_io:
|
|
case Hexagon::S4_storeirh_io:
|
|
case Hexagon::S4_storeiri_io:
|
|
// Base address must be a register. (Implement FI later.)
|
|
return MI->getOperand(0).isReg();
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Check if the machine memory operand MMO is aliased with any of the
|
|
// stores in the store group Stores.
|
|
bool HexagonStoreWidening::instrAliased(InstrGroup &Stores,
|
|
const MachineMemOperand &MMO) {
|
|
if (!MMO.getValue())
|
|
return true;
|
|
|
|
MemoryLocation L(MMO.getValue(), MMO.getSize(), MMO.getAAInfo());
|
|
|
|
for (auto SI : Stores) {
|
|
const MachineMemOperand &SMO = getStoreTarget(SI);
|
|
if (!SMO.getValue())
|
|
return true;
|
|
|
|
MemoryLocation SL(SMO.getValue(), SMO.getSize(), SMO.getAAInfo());
|
|
if (!AA->isNoAlias(L, SL))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Check if the machine instruction MI accesses any storage aliased with
|
|
// any store in the group Stores.
|
|
bool HexagonStoreWidening::instrAliased(InstrGroup &Stores,
|
|
const MachineInstr *MI) {
|
|
for (auto &I : MI->memoperands())
|
|
if (instrAliased(Stores, *I))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
// Inspect a machine basic block, and generate store groups out of stores
|
|
// encountered in the block.
|
|
//
|
|
// A store group is a group of stores that use the same base register,
|
|
// and which can be reordered within that group without altering the
|
|
// semantics of the program. A single store group could be widened as
|
|
// a whole, if there existed a single store instruction with the same
|
|
// semantics as the entire group. In many cases, a single store group
|
|
// may need more than one wide store.
|
|
void HexagonStoreWidening::createStoreGroups(MachineBasicBlock &MBB,
|
|
InstrGroupList &StoreGroups) {
|
|
InstrGroup AllInsns;
|
|
|
|
// Copy all instruction pointers from the basic block to a temporary
|
|
// list. This will allow operating on the list, and modifying its
|
|
// elements without affecting the basic block.
|
|
for (auto &I : MBB)
|
|
AllInsns.push_back(&I);
|
|
|
|
// Traverse all instructions in the AllInsns list, and if we encounter
|
|
// a store, then try to create a store group starting at that instruction
|
|
// i.e. a sequence of independent stores that can be widened.
|
|
for (auto I = AllInsns.begin(), E = AllInsns.end(); I != E; ++I) {
|
|
MachineInstr *MI = *I;
|
|
// Skip null pointers (processed instructions).
|
|
if (!MI || !handledStoreType(MI))
|
|
continue;
|
|
|
|
// Found a store. Try to create a store group.
|
|
InstrGroup G;
|
|
createStoreGroup(MI, I+1, E, G);
|
|
if (G.size() > 1)
|
|
StoreGroups.push_back(G);
|
|
}
|
|
}
|
|
|
|
// Create a single store group. The stores need to be independent between
|
|
// themselves, and also there cannot be other instructions between them
|
|
// that could read or modify storage being stored into.
|
|
void HexagonStoreWidening::createStoreGroup(MachineInstr *BaseStore,
|
|
InstrGroup::iterator Begin, InstrGroup::iterator End, InstrGroup &Group) {
|
|
assert(handledStoreType(BaseStore) && "Unexpected instruction");
|
|
unsigned BaseReg = getBaseAddressRegister(BaseStore);
|
|
InstrGroup Other;
|
|
|
|
Group.push_back(BaseStore);
|
|
|
|
for (auto I = Begin; I != End; ++I) {
|
|
MachineInstr *MI = *I;
|
|
if (!MI)
|
|
continue;
|
|
|
|
if (handledStoreType(MI)) {
|
|
// If this store instruction is aliased with anything already in the
|
|
// group, terminate the group now.
|
|
if (instrAliased(Group, getStoreTarget(MI)))
|
|
return;
|
|
// If this store is aliased to any of the memory instructions we have
|
|
// seen so far (that are not a part of this group), terminate the group.
|
|
if (instrAliased(Other, getStoreTarget(MI)))
|
|
return;
|
|
|
|
unsigned BR = getBaseAddressRegister(MI);
|
|
if (BR == BaseReg) {
|
|
Group.push_back(MI);
|
|
*I = nullptr;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Assume calls are aliased to everything.
|
|
if (MI->isCall() || MI->hasUnmodeledSideEffects())
|
|
return;
|
|
|
|
if (MI->mayLoadOrStore()) {
|
|
if (MI->hasOrderedMemoryRef() || instrAliased(Group, MI))
|
|
return;
|
|
Other.push_back(MI);
|
|
}
|
|
} // for
|
|
}
|
|
|
|
// Check if store instructions S1 and S2 are adjacent. More precisely,
|
|
// S2 has to access memory immediately following that accessed by S1.
|
|
bool HexagonStoreWidening::storesAreAdjacent(const MachineInstr *S1,
|
|
const MachineInstr *S2) {
|
|
if (!handledStoreType(S1) || !handledStoreType(S2))
|
|
return false;
|
|
|
|
const MachineMemOperand &S1MO = getStoreTarget(S1);
|
|
|
|
// Currently only handling immediate stores.
|
|
int Off1 = S1->getOperand(1).getImm();
|
|
int Off2 = S2->getOperand(1).getImm();
|
|
|
|
return (Off1 >= 0) ? Off1+S1MO.getSize() == unsigned(Off2)
|
|
: int(Off1+S1MO.getSize()) == Off2;
|
|
}
|
|
|
|
/// Given a sequence of adjacent stores, and a maximum size of a single wide
|
|
/// store, pick a group of stores that can be replaced by a single store
|
|
/// of size not exceeding MaxSize. The selected sequence will be recorded
|
|
/// in OG ("old group" of instructions).
|
|
/// OG should be empty on entry, and should be left empty if the function
|
|
/// fails.
|
|
bool HexagonStoreWidening::selectStores(InstrGroup::iterator Begin,
|
|
InstrGroup::iterator End, InstrGroup &OG, unsigned &TotalSize,
|
|
unsigned MaxSize) {
|
|
assert(Begin != End && "No instructions to analyze");
|
|
assert(OG.empty() && "Old group not empty on entry");
|
|
|
|
if (std::distance(Begin, End) <= 1)
|
|
return false;
|
|
|
|
MachineInstr *FirstMI = *Begin;
|
|
assert(!FirstMI->memoperands_empty() && "Expecting some memory operands");
|
|
const MachineMemOperand &FirstMMO = getStoreTarget(FirstMI);
|
|
unsigned Alignment = FirstMMO.getAlign().value();
|
|
unsigned SizeAccum = FirstMMO.getSize();
|
|
unsigned FirstOffset = getStoreOffset(FirstMI);
|
|
|
|
// The initial value of SizeAccum should always be a power of 2.
|
|
assert(isPowerOf2_32(SizeAccum) && "First store size not a power of 2");
|
|
|
|
// If the size of the first store equals to or exceeds the limit, do nothing.
|
|
if (SizeAccum >= MaxSize)
|
|
return false;
|
|
|
|
// If the size of the first store is greater than or equal to the address
|
|
// stored to, then the store cannot be made any wider.
|
|
if (SizeAccum >= Alignment)
|
|
return false;
|
|
|
|
// The offset of a store will put restrictions on how wide the store can be.
|
|
// Offsets in stores of size 2^n bytes need to have the n lowest bits be 0.
|
|
// If the first store already exhausts the offset limits, quit. Test this
|
|
// by checking if the next wider size would exceed the limit.
|
|
if ((2*SizeAccum-1) & FirstOffset)
|
|
return false;
|
|
|
|
OG.push_back(FirstMI);
|
|
MachineInstr *S1 = FirstMI;
|
|
|
|
// Pow2Num will be the largest number of elements in OG such that the sum
|
|
// of sizes of stores 0...Pow2Num-1 will be a power of 2.
|
|
unsigned Pow2Num = 1;
|
|
unsigned Pow2Size = SizeAccum;
|
|
|
|
// Be greedy: keep accumulating stores as long as they are to adjacent
|
|
// memory locations, and as long as the total number of bytes stored
|
|
// does not exceed the limit (MaxSize).
|
|
// Keep track of when the total size covered is a power of 2, since
|
|
// this is a size a single store can cover.
|
|
for (InstrGroup::iterator I = Begin + 1; I != End; ++I) {
|
|
MachineInstr *S2 = *I;
|
|
// Stores are sorted, so if S1 and S2 are not adjacent, there won't be
|
|
// any other store to fill the "hole".
|
|
if (!storesAreAdjacent(S1, S2))
|
|
break;
|
|
|
|
unsigned S2Size = getStoreTarget(S2).getSize();
|
|
if (SizeAccum + S2Size > std::min(MaxSize, Alignment))
|
|
break;
|
|
|
|
OG.push_back(S2);
|
|
SizeAccum += S2Size;
|
|
if (isPowerOf2_32(SizeAccum)) {
|
|
Pow2Num = OG.size();
|
|
Pow2Size = SizeAccum;
|
|
}
|
|
if ((2*Pow2Size-1) & FirstOffset)
|
|
break;
|
|
|
|
S1 = S2;
|
|
}
|
|
|
|
// The stores don't add up to anything that can be widened. Clean up.
|
|
if (Pow2Num <= 1) {
|
|
OG.clear();
|
|
return false;
|
|
}
|
|
|
|
// Only leave the stored being widened.
|
|
OG.resize(Pow2Num);
|
|
TotalSize = Pow2Size;
|
|
return true;
|
|
}
|
|
|
|
/// Given an "old group" OG of stores, create a "new group" NG of instructions
|
|
/// to replace them. Ideally, NG would only have a single instruction in it,
|
|
/// but that may only be possible for store-immediate.
|
|
bool HexagonStoreWidening::createWideStores(InstrGroup &OG, InstrGroup &NG,
|
|
unsigned TotalSize) {
|
|
// XXX Current limitations:
|
|
// - only expect stores of immediate values in OG,
|
|
// - only handle a TotalSize of up to 4.
|
|
|
|
if (TotalSize > 4)
|
|
return false;
|
|
|
|
unsigned Acc = 0; // Value accumulator.
|
|
unsigned Shift = 0;
|
|
|
|
for (InstrGroup::iterator I = OG.begin(), E = OG.end(); I != E; ++I) {
|
|
MachineInstr *MI = *I;
|
|
const MachineMemOperand &MMO = getStoreTarget(MI);
|
|
MachineOperand &SO = MI->getOperand(2); // Source.
|
|
assert(SO.isImm() && "Expecting an immediate operand");
|
|
|
|
unsigned NBits = MMO.getSize()*8;
|
|
unsigned Mask = (0xFFFFFFFFU >> (32-NBits));
|
|
unsigned Val = (SO.getImm() & Mask) << Shift;
|
|
Acc |= Val;
|
|
Shift += NBits;
|
|
}
|
|
|
|
MachineInstr *FirstSt = OG.front();
|
|
DebugLoc DL = OG.back()->getDebugLoc();
|
|
const MachineMemOperand &OldM = getStoreTarget(FirstSt);
|
|
MachineMemOperand *NewM =
|
|
MF->getMachineMemOperand(OldM.getPointerInfo(), OldM.getFlags(),
|
|
TotalSize, OldM.getAlign(), OldM.getAAInfo());
|
|
|
|
if (Acc < 0x10000) {
|
|
// Create mem[hw] = #Acc
|
|
unsigned WOpc = (TotalSize == 2) ? Hexagon::S4_storeirh_io :
|
|
(TotalSize == 4) ? Hexagon::S4_storeiri_io : 0;
|
|
assert(WOpc && "Unexpected size");
|
|
|
|
int Val = (TotalSize == 2) ? int16_t(Acc) : int(Acc);
|
|
const MCInstrDesc &StD = TII->get(WOpc);
|
|
MachineOperand &MR = FirstSt->getOperand(0);
|
|
int64_t Off = FirstSt->getOperand(1).getImm();
|
|
MachineInstr *StI =
|
|
BuildMI(*MF, DL, StD)
|
|
.addReg(MR.getReg(), getKillRegState(MR.isKill()), MR.getSubReg())
|
|
.addImm(Off)
|
|
.addImm(Val);
|
|
StI->addMemOperand(*MF, NewM);
|
|
NG.push_back(StI);
|
|
} else {
|
|
// Create vreg = A2_tfrsi #Acc; mem[hw] = vreg
|
|
const MCInstrDesc &TfrD = TII->get(Hexagon::A2_tfrsi);
|
|
const TargetRegisterClass *RC = TII->getRegClass(TfrD, 0, TRI, *MF);
|
|
Register VReg = MF->getRegInfo().createVirtualRegister(RC);
|
|
MachineInstr *TfrI = BuildMI(*MF, DL, TfrD, VReg)
|
|
.addImm(int(Acc));
|
|
NG.push_back(TfrI);
|
|
|
|
unsigned WOpc = (TotalSize == 2) ? Hexagon::S2_storerh_io :
|
|
(TotalSize == 4) ? Hexagon::S2_storeri_io : 0;
|
|
assert(WOpc && "Unexpected size");
|
|
|
|
const MCInstrDesc &StD = TII->get(WOpc);
|
|
MachineOperand &MR = FirstSt->getOperand(0);
|
|
int64_t Off = FirstSt->getOperand(1).getImm();
|
|
MachineInstr *StI =
|
|
BuildMI(*MF, DL, StD)
|
|
.addReg(MR.getReg(), getKillRegState(MR.isKill()), MR.getSubReg())
|
|
.addImm(Off)
|
|
.addReg(VReg, RegState::Kill);
|
|
StI->addMemOperand(*MF, NewM);
|
|
NG.push_back(StI);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Replace instructions from the old group OG with instructions from the
|
|
// new group NG. Conceptually, remove all instructions in OG, and then
|
|
// insert all instructions in NG, starting at where the first instruction
|
|
// from OG was (in the order in which they appeared in the basic block).
|
|
// (The ordering in OG does not have to match the order in the basic block.)
|
|
bool HexagonStoreWidening::replaceStores(InstrGroup &OG, InstrGroup &NG) {
|
|
LLVM_DEBUG({
|
|
dbgs() << "Replacing:\n";
|
|
for (auto I : OG)
|
|
dbgs() << " " << *I;
|
|
dbgs() << "with\n";
|
|
for (auto I : NG)
|
|
dbgs() << " " << *I;
|
|
});
|
|
|
|
MachineBasicBlock *MBB = OG.back()->getParent();
|
|
MachineBasicBlock::iterator InsertAt = MBB->end();
|
|
|
|
// Need to establish the insertion point. The best one is right before
|
|
// the first store in the OG, but in the order in which the stores occur
|
|
// in the program list. Since the ordering in OG does not correspond
|
|
// to the order in the program list, we need to do some work to find
|
|
// the insertion point.
|
|
|
|
// Create a set of all instructions in OG (for quick lookup).
|
|
SmallPtrSet<MachineInstr*, 4> InstrSet;
|
|
for (auto I : OG)
|
|
InstrSet.insert(I);
|
|
|
|
// Traverse the block, until we hit an instruction from OG.
|
|
for (auto &I : *MBB) {
|
|
if (InstrSet.count(&I)) {
|
|
InsertAt = I;
|
|
break;
|
|
}
|
|
}
|
|
|
|
assert((InsertAt != MBB->end()) && "Cannot locate any store from the group");
|
|
|
|
bool AtBBStart = false;
|
|
|
|
// InsertAt points at the first instruction that will be removed. We need
|
|
// to move it out of the way, so it remains valid after removing all the
|
|
// old stores, and so we are able to recover it back to the proper insertion
|
|
// position.
|
|
if (InsertAt != MBB->begin())
|
|
--InsertAt;
|
|
else
|
|
AtBBStart = true;
|
|
|
|
for (auto I : OG)
|
|
I->eraseFromParent();
|
|
|
|
if (!AtBBStart)
|
|
++InsertAt;
|
|
else
|
|
InsertAt = MBB->begin();
|
|
|
|
for (auto I : NG)
|
|
MBB->insert(InsertAt, I);
|
|
|
|
return true;
|
|
}
|
|
|
|
// Break up the group into smaller groups, each of which can be replaced by
|
|
// a single wide store. Widen each such smaller group and replace the old
|
|
// instructions with the widened ones.
|
|
bool HexagonStoreWidening::processStoreGroup(InstrGroup &Group) {
|
|
bool Changed = false;
|
|
InstrGroup::iterator I = Group.begin(), E = Group.end();
|
|
InstrGroup OG, NG; // Old and new groups.
|
|
unsigned CollectedSize;
|
|
|
|
while (I != E) {
|
|
OG.clear();
|
|
NG.clear();
|
|
|
|
bool Succ = selectStores(I++, E, OG, CollectedSize, MaxWideSize) &&
|
|
createWideStores(OG, NG, CollectedSize) &&
|
|
replaceStores(OG, NG);
|
|
if (!Succ)
|
|
continue;
|
|
|
|
assert(OG.size() > 1 && "Created invalid group");
|
|
assert(distance(I, E)+1 >= int(OG.size()) && "Too many elements");
|
|
I += OG.size()-1;
|
|
|
|
Changed = true;
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
// Process a single basic block: create the store groups, and replace them
|
|
// with the widened stores, if possible. Processing of each basic block
|
|
// is independent from processing of any other basic block. This transfor-
|
|
// mation could be stopped after having processed any basic block without
|
|
// any ill effects (other than not having performed widening in the unpro-
|
|
// cessed blocks). Also, the basic blocks can be processed in any order.
|
|
bool HexagonStoreWidening::processBasicBlock(MachineBasicBlock &MBB) {
|
|
InstrGroupList SGs;
|
|
bool Changed = false;
|
|
|
|
createStoreGroups(MBB, SGs);
|
|
|
|
auto Less = [] (const MachineInstr *A, const MachineInstr *B) -> bool {
|
|
return getStoreOffset(A) < getStoreOffset(B);
|
|
};
|
|
for (auto &G : SGs) {
|
|
assert(G.size() > 1 && "Store group with fewer than 2 elements");
|
|
llvm::sort(G, Less);
|
|
|
|
Changed |= processStoreGroup(G);
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool HexagonStoreWidening::runOnMachineFunction(MachineFunction &MFn) {
|
|
if (skipFunction(MFn.getFunction()))
|
|
return false;
|
|
|
|
MF = &MFn;
|
|
auto &ST = MFn.getSubtarget<HexagonSubtarget>();
|
|
TII = ST.getInstrInfo();
|
|
TRI = ST.getRegisterInfo();
|
|
MRI = &MFn.getRegInfo();
|
|
AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
|
|
|
|
bool Changed = false;
|
|
|
|
for (auto &B : MFn)
|
|
Changed |= processBasicBlock(B);
|
|
|
|
return Changed;
|
|
}
|
|
|
|
FunctionPass *llvm::createHexagonStoreWidening() {
|
|
return new HexagonStoreWidening();
|
|
}
|