mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-01 00:12:50 +01:00
cec1079024
Previously we used a const-pool load for virtually all 64-bit floating values. Actually, we can get quite a few common values (including 0.0, 1.0) via "vmov" instructions of one stripe or another. llvm-svn: 188773
10960 lines
421 KiB
C++
10960 lines
421 KiB
C++
//===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the interfaces that ARM uses to lower LLVM code into a
|
|
// selection DAG.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "arm-isel"
|
|
#include "ARMISelLowering.h"
|
|
#include "ARM.h"
|
|
#include "ARMCallingConv.h"
|
|
#include "ARMConstantPoolValue.h"
|
|
#include "ARMMachineFunctionInfo.h"
|
|
#include "ARMPerfectShuffle.h"
|
|
#include "ARMSubtarget.h"
|
|
#include "ARMTargetMachine.h"
|
|
#include "ARMTargetObjectFile.h"
|
|
#include "MCTargetDesc/ARMAddressingModes.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/CodeGen/CallingConvLower.h"
|
|
#include "llvm/CodeGen/IntrinsicLowering.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/SelectionDAG.h"
|
|
#include "llvm/IR/CallingConv.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/MC/MCSectionMachO.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumTailCalls, "Number of tail calls");
|
|
STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
|
|
STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments");
|
|
|
|
// This option should go away when tail calls fully work.
|
|
static cl::opt<bool>
|
|
EnableARMTailCalls("arm-tail-calls", cl::Hidden,
|
|
cl::desc("Generate tail calls (TEMPORARY OPTION)."),
|
|
cl::init(false));
|
|
|
|
cl::opt<bool>
|
|
EnableARMLongCalls("arm-long-calls", cl::Hidden,
|
|
cl::desc("Generate calls via indirect call instructions"),
|
|
cl::init(false));
|
|
|
|
static cl::opt<bool>
|
|
ARMInterworking("arm-interworking", cl::Hidden,
|
|
cl::desc("Enable / disable ARM interworking (for debugging only)"),
|
|
cl::init(true));
|
|
|
|
namespace {
|
|
class ARMCCState : public CCState {
|
|
public:
|
|
ARMCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
|
|
const TargetMachine &TM, SmallVectorImpl<CCValAssign> &locs,
|
|
LLVMContext &C, ParmContext PC)
|
|
: CCState(CC, isVarArg, MF, TM, locs, C) {
|
|
assert(((PC == Call) || (PC == Prologue)) &&
|
|
"ARMCCState users must specify whether their context is call"
|
|
"or prologue generation.");
|
|
CallOrPrologue = PC;
|
|
}
|
|
};
|
|
}
|
|
|
|
// The APCS parameter registers.
|
|
static const uint16_t GPRArgRegs[] = {
|
|
ARM::R0, ARM::R1, ARM::R2, ARM::R3
|
|
};
|
|
|
|
void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT,
|
|
MVT PromotedBitwiseVT) {
|
|
if (VT != PromotedLdStVT) {
|
|
setOperationAction(ISD::LOAD, VT, Promote);
|
|
AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
|
|
|
|
setOperationAction(ISD::STORE, VT, Promote);
|
|
AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
|
|
}
|
|
|
|
MVT ElemTy = VT.getVectorElementType();
|
|
if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
|
|
setOperationAction(ISD::SETCC, VT, Custom);
|
|
setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
|
|
setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
|
|
if (ElemTy == MVT::i32) {
|
|
setOperationAction(ISD::SINT_TO_FP, VT, Custom);
|
|
setOperationAction(ISD::UINT_TO_FP, VT, Custom);
|
|
setOperationAction(ISD::FP_TO_SINT, VT, Custom);
|
|
setOperationAction(ISD::FP_TO_UINT, VT, Custom);
|
|
} else {
|
|
setOperationAction(ISD::SINT_TO_FP, VT, Expand);
|
|
setOperationAction(ISD::UINT_TO_FP, VT, Expand);
|
|
setOperationAction(ISD::FP_TO_SINT, VT, Expand);
|
|
setOperationAction(ISD::FP_TO_UINT, VT, Expand);
|
|
}
|
|
setOperationAction(ISD::BUILD_VECTOR, VT, Custom);
|
|
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom);
|
|
setOperationAction(ISD::CONCAT_VECTORS, VT, Legal);
|
|
setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
|
|
setOperationAction(ISD::SELECT, VT, Expand);
|
|
setOperationAction(ISD::SELECT_CC, VT, Expand);
|
|
setOperationAction(ISD::VSELECT, VT, Expand);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
|
|
if (VT.isInteger()) {
|
|
setOperationAction(ISD::SHL, VT, Custom);
|
|
setOperationAction(ISD::SRA, VT, Custom);
|
|
setOperationAction(ISD::SRL, VT, Custom);
|
|
}
|
|
|
|
// Promote all bit-wise operations.
|
|
if (VT.isInteger() && VT != PromotedBitwiseVT) {
|
|
setOperationAction(ISD::AND, VT, Promote);
|
|
AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT);
|
|
setOperationAction(ISD::OR, VT, Promote);
|
|
AddPromotedToType (ISD::OR, VT, PromotedBitwiseVT);
|
|
setOperationAction(ISD::XOR, VT, Promote);
|
|
AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT);
|
|
}
|
|
|
|
// Neon does not support vector divide/remainder operations.
|
|
setOperationAction(ISD::SDIV, VT, Expand);
|
|
setOperationAction(ISD::UDIV, VT, Expand);
|
|
setOperationAction(ISD::FDIV, VT, Expand);
|
|
setOperationAction(ISD::SREM, VT, Expand);
|
|
setOperationAction(ISD::UREM, VT, Expand);
|
|
setOperationAction(ISD::FREM, VT, Expand);
|
|
}
|
|
|
|
void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
|
|
addRegisterClass(VT, &ARM::DPRRegClass);
|
|
addTypeForNEON(VT, MVT::f64, MVT::v2i32);
|
|
}
|
|
|
|
void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
|
|
addRegisterClass(VT, &ARM::QPRRegClass);
|
|
addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
|
|
}
|
|
|
|
static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) {
|
|
if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin())
|
|
return new TargetLoweringObjectFileMachO();
|
|
|
|
return new ARMElfTargetObjectFile();
|
|
}
|
|
|
|
ARMTargetLowering::ARMTargetLowering(TargetMachine &TM)
|
|
: TargetLowering(TM, createTLOF(TM)) {
|
|
Subtarget = &TM.getSubtarget<ARMSubtarget>();
|
|
RegInfo = TM.getRegisterInfo();
|
|
Itins = TM.getInstrItineraryData();
|
|
|
|
setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
|
|
|
|
if (Subtarget->isTargetDarwin()) {
|
|
// Uses VFP for Thumb libfuncs if available.
|
|
if (Subtarget->isThumb() && Subtarget->hasVFP2()) {
|
|
// Single-precision floating-point arithmetic.
|
|
setLibcallName(RTLIB::ADD_F32, "__addsf3vfp");
|
|
setLibcallName(RTLIB::SUB_F32, "__subsf3vfp");
|
|
setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp");
|
|
setLibcallName(RTLIB::DIV_F32, "__divsf3vfp");
|
|
|
|
// Double-precision floating-point arithmetic.
|
|
setLibcallName(RTLIB::ADD_F64, "__adddf3vfp");
|
|
setLibcallName(RTLIB::SUB_F64, "__subdf3vfp");
|
|
setLibcallName(RTLIB::MUL_F64, "__muldf3vfp");
|
|
setLibcallName(RTLIB::DIV_F64, "__divdf3vfp");
|
|
|
|
// Single-precision comparisons.
|
|
setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp");
|
|
setLibcallName(RTLIB::UNE_F32, "__nesf2vfp");
|
|
setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp");
|
|
setLibcallName(RTLIB::OLE_F32, "__lesf2vfp");
|
|
setLibcallName(RTLIB::OGE_F32, "__gesf2vfp");
|
|
setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp");
|
|
setLibcallName(RTLIB::UO_F32, "__unordsf2vfp");
|
|
setLibcallName(RTLIB::O_F32, "__unordsf2vfp");
|
|
|
|
setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
|
|
setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE);
|
|
setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
|
|
setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
|
|
setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
|
|
setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
|
|
setCmpLibcallCC(RTLIB::UO_F32, ISD::SETNE);
|
|
setCmpLibcallCC(RTLIB::O_F32, ISD::SETEQ);
|
|
|
|
// Double-precision comparisons.
|
|
setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp");
|
|
setLibcallName(RTLIB::UNE_F64, "__nedf2vfp");
|
|
setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp");
|
|
setLibcallName(RTLIB::OLE_F64, "__ledf2vfp");
|
|
setLibcallName(RTLIB::OGE_F64, "__gedf2vfp");
|
|
setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp");
|
|
setLibcallName(RTLIB::UO_F64, "__unorddf2vfp");
|
|
setLibcallName(RTLIB::O_F64, "__unorddf2vfp");
|
|
|
|
setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
|
|
setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE);
|
|
setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
|
|
setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
|
|
setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
|
|
setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
|
|
setCmpLibcallCC(RTLIB::UO_F64, ISD::SETNE);
|
|
setCmpLibcallCC(RTLIB::O_F64, ISD::SETEQ);
|
|
|
|
// Floating-point to integer conversions.
|
|
// i64 conversions are done via library routines even when generating VFP
|
|
// instructions, so use the same ones.
|
|
setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp");
|
|
setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp");
|
|
setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp");
|
|
setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp");
|
|
|
|
// Conversions between floating types.
|
|
setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp");
|
|
setLibcallName(RTLIB::FPEXT_F32_F64, "__extendsfdf2vfp");
|
|
|
|
// Integer to floating-point conversions.
|
|
// i64 conversions are done via library routines even when generating VFP
|
|
// instructions, so use the same ones.
|
|
// FIXME: There appears to be some naming inconsistency in ARM libgcc:
|
|
// e.g., __floatunsidf vs. __floatunssidfvfp.
|
|
setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp");
|
|
setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp");
|
|
setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp");
|
|
setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp");
|
|
}
|
|
}
|
|
|
|
// These libcalls are not available in 32-bit.
|
|
setLibcallName(RTLIB::SHL_I128, 0);
|
|
setLibcallName(RTLIB::SRL_I128, 0);
|
|
setLibcallName(RTLIB::SRA_I128, 0);
|
|
|
|
if (Subtarget->isAAPCS_ABI() && !Subtarget->isTargetDarwin()) {
|
|
// Double-precision floating-point arithmetic helper functions
|
|
// RTABI chapter 4.1.2, Table 2
|
|
setLibcallName(RTLIB::ADD_F64, "__aeabi_dadd");
|
|
setLibcallName(RTLIB::DIV_F64, "__aeabi_ddiv");
|
|
setLibcallName(RTLIB::MUL_F64, "__aeabi_dmul");
|
|
setLibcallName(RTLIB::SUB_F64, "__aeabi_dsub");
|
|
setLibcallCallingConv(RTLIB::ADD_F64, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::DIV_F64, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::MUL_F64, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::SUB_F64, CallingConv::ARM_AAPCS);
|
|
|
|
// Double-precision floating-point comparison helper functions
|
|
// RTABI chapter 4.1.2, Table 3
|
|
setLibcallName(RTLIB::OEQ_F64, "__aeabi_dcmpeq");
|
|
setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE);
|
|
setLibcallName(RTLIB::UNE_F64, "__aeabi_dcmpeq");
|
|
setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETEQ);
|
|
setLibcallName(RTLIB::OLT_F64, "__aeabi_dcmplt");
|
|
setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE);
|
|
setLibcallName(RTLIB::OLE_F64, "__aeabi_dcmple");
|
|
setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE);
|
|
setLibcallName(RTLIB::OGE_F64, "__aeabi_dcmpge");
|
|
setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE);
|
|
setLibcallName(RTLIB::OGT_F64, "__aeabi_dcmpgt");
|
|
setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE);
|
|
setLibcallName(RTLIB::UO_F64, "__aeabi_dcmpun");
|
|
setCmpLibcallCC(RTLIB::UO_F64, ISD::SETNE);
|
|
setLibcallName(RTLIB::O_F64, "__aeabi_dcmpun");
|
|
setCmpLibcallCC(RTLIB::O_F64, ISD::SETEQ);
|
|
setLibcallCallingConv(RTLIB::OEQ_F64, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::UNE_F64, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::OLT_F64, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::OLE_F64, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::OGE_F64, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::OGT_F64, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::UO_F64, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::O_F64, CallingConv::ARM_AAPCS);
|
|
|
|
// Single-precision floating-point arithmetic helper functions
|
|
// RTABI chapter 4.1.2, Table 4
|
|
setLibcallName(RTLIB::ADD_F32, "__aeabi_fadd");
|
|
setLibcallName(RTLIB::DIV_F32, "__aeabi_fdiv");
|
|
setLibcallName(RTLIB::MUL_F32, "__aeabi_fmul");
|
|
setLibcallName(RTLIB::SUB_F32, "__aeabi_fsub");
|
|
setLibcallCallingConv(RTLIB::ADD_F32, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::DIV_F32, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::MUL_F32, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::SUB_F32, CallingConv::ARM_AAPCS);
|
|
|
|
// Single-precision floating-point comparison helper functions
|
|
// RTABI chapter 4.1.2, Table 5
|
|
setLibcallName(RTLIB::OEQ_F32, "__aeabi_fcmpeq");
|
|
setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE);
|
|
setLibcallName(RTLIB::UNE_F32, "__aeabi_fcmpeq");
|
|
setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETEQ);
|
|
setLibcallName(RTLIB::OLT_F32, "__aeabi_fcmplt");
|
|
setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE);
|
|
setLibcallName(RTLIB::OLE_F32, "__aeabi_fcmple");
|
|
setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE);
|
|
setLibcallName(RTLIB::OGE_F32, "__aeabi_fcmpge");
|
|
setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE);
|
|
setLibcallName(RTLIB::OGT_F32, "__aeabi_fcmpgt");
|
|
setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE);
|
|
setLibcallName(RTLIB::UO_F32, "__aeabi_fcmpun");
|
|
setCmpLibcallCC(RTLIB::UO_F32, ISD::SETNE);
|
|
setLibcallName(RTLIB::O_F32, "__aeabi_fcmpun");
|
|
setCmpLibcallCC(RTLIB::O_F32, ISD::SETEQ);
|
|
setLibcallCallingConv(RTLIB::OEQ_F32, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::UNE_F32, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::OLT_F32, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::OLE_F32, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::OGE_F32, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::OGT_F32, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::UO_F32, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::O_F32, CallingConv::ARM_AAPCS);
|
|
|
|
// Floating-point to integer conversions.
|
|
// RTABI chapter 4.1.2, Table 6
|
|
setLibcallName(RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz");
|
|
setLibcallName(RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz");
|
|
setLibcallName(RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz");
|
|
setLibcallName(RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz");
|
|
setLibcallName(RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz");
|
|
setLibcallName(RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz");
|
|
setLibcallName(RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz");
|
|
setLibcallName(RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz");
|
|
setLibcallCallingConv(RTLIB::FPTOSINT_F64_I32, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::FPTOUINT_F64_I32, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::FPTOSINT_F64_I64, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::FPTOUINT_F64_I64, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::FPTOSINT_F32_I32, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::FPTOUINT_F32_I32, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::FPTOSINT_F32_I64, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::FPTOUINT_F32_I64, CallingConv::ARM_AAPCS);
|
|
|
|
// Conversions between floating types.
|
|
// RTABI chapter 4.1.2, Table 7
|
|
setLibcallName(RTLIB::FPROUND_F64_F32, "__aeabi_d2f");
|
|
setLibcallName(RTLIB::FPEXT_F32_F64, "__aeabi_f2d");
|
|
setLibcallCallingConv(RTLIB::FPROUND_F64_F32, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::FPEXT_F32_F64, CallingConv::ARM_AAPCS);
|
|
|
|
// Integer to floating-point conversions.
|
|
// RTABI chapter 4.1.2, Table 8
|
|
setLibcallName(RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d");
|
|
setLibcallName(RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d");
|
|
setLibcallName(RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d");
|
|
setLibcallName(RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d");
|
|
setLibcallName(RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f");
|
|
setLibcallName(RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f");
|
|
setLibcallName(RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f");
|
|
setLibcallName(RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f");
|
|
setLibcallCallingConv(RTLIB::SINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::UINTTOFP_I32_F64, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::SINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::UINTTOFP_I64_F64, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::SINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::UINTTOFP_I32_F32, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::SINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::UINTTOFP_I64_F32, CallingConv::ARM_AAPCS);
|
|
|
|
// Long long helper functions
|
|
// RTABI chapter 4.2, Table 9
|
|
setLibcallName(RTLIB::MUL_I64, "__aeabi_lmul");
|
|
setLibcallName(RTLIB::SHL_I64, "__aeabi_llsl");
|
|
setLibcallName(RTLIB::SRL_I64, "__aeabi_llsr");
|
|
setLibcallName(RTLIB::SRA_I64, "__aeabi_lasr");
|
|
setLibcallCallingConv(RTLIB::MUL_I64, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::SHL_I64, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::SRL_I64, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::SRA_I64, CallingConv::ARM_AAPCS);
|
|
|
|
// Integer division functions
|
|
// RTABI chapter 4.3.1
|
|
setLibcallName(RTLIB::SDIV_I8, "__aeabi_idiv");
|
|
setLibcallName(RTLIB::SDIV_I16, "__aeabi_idiv");
|
|
setLibcallName(RTLIB::SDIV_I32, "__aeabi_idiv");
|
|
setLibcallName(RTLIB::SDIV_I64, "__aeabi_ldivmod");
|
|
setLibcallName(RTLIB::UDIV_I8, "__aeabi_uidiv");
|
|
setLibcallName(RTLIB::UDIV_I16, "__aeabi_uidiv");
|
|
setLibcallName(RTLIB::UDIV_I32, "__aeabi_uidiv");
|
|
setLibcallName(RTLIB::UDIV_I64, "__aeabi_uldivmod");
|
|
setLibcallCallingConv(RTLIB::SDIV_I8, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::SDIV_I16, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::SDIV_I32, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::SDIV_I64, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::UDIV_I8, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::UDIV_I16, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::UDIV_I32, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::UDIV_I64, CallingConv::ARM_AAPCS);
|
|
|
|
// Memory operations
|
|
// RTABI chapter 4.3.4
|
|
setLibcallName(RTLIB::MEMCPY, "__aeabi_memcpy");
|
|
setLibcallName(RTLIB::MEMMOVE, "__aeabi_memmove");
|
|
setLibcallName(RTLIB::MEMSET, "__aeabi_memset");
|
|
setLibcallCallingConv(RTLIB::MEMCPY, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::MEMMOVE, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::MEMSET, CallingConv::ARM_AAPCS);
|
|
}
|
|
|
|
// Use divmod compiler-rt calls for iOS 5.0 and later.
|
|
if (Subtarget->getTargetTriple().getOS() == Triple::IOS &&
|
|
!Subtarget->getTargetTriple().isOSVersionLT(5, 0)) {
|
|
setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
|
|
setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
|
|
}
|
|
|
|
if (Subtarget->isThumb1Only())
|
|
addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
|
|
else
|
|
addRegisterClass(MVT::i32, &ARM::GPRRegClass);
|
|
if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
|
|
!Subtarget->isThumb1Only()) {
|
|
addRegisterClass(MVT::f32, &ARM::SPRRegClass);
|
|
if (!Subtarget->isFPOnlySP())
|
|
addRegisterClass(MVT::f64, &ARM::DPRRegClass);
|
|
|
|
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
|
|
}
|
|
|
|
for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
|
|
VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
|
|
for (unsigned InnerVT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
|
|
InnerVT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++InnerVT)
|
|
setTruncStoreAction((MVT::SimpleValueType)VT,
|
|
(MVT::SimpleValueType)InnerVT, Expand);
|
|
setLoadExtAction(ISD::SEXTLOAD, (MVT::SimpleValueType)VT, Expand);
|
|
setLoadExtAction(ISD::ZEXTLOAD, (MVT::SimpleValueType)VT, Expand);
|
|
setLoadExtAction(ISD::EXTLOAD, (MVT::SimpleValueType)VT, Expand);
|
|
}
|
|
|
|
setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
|
|
setOperationAction(ISD::ConstantFP, MVT::f64, Custom);
|
|
|
|
if (Subtarget->hasNEON()) {
|
|
addDRTypeForNEON(MVT::v2f32);
|
|
addDRTypeForNEON(MVT::v8i8);
|
|
addDRTypeForNEON(MVT::v4i16);
|
|
addDRTypeForNEON(MVT::v2i32);
|
|
addDRTypeForNEON(MVT::v1i64);
|
|
|
|
addQRTypeForNEON(MVT::v4f32);
|
|
addQRTypeForNEON(MVT::v2f64);
|
|
addQRTypeForNEON(MVT::v16i8);
|
|
addQRTypeForNEON(MVT::v8i16);
|
|
addQRTypeForNEON(MVT::v4i32);
|
|
addQRTypeForNEON(MVT::v2i64);
|
|
|
|
// v2f64 is legal so that QR subregs can be extracted as f64 elements, but
|
|
// neither Neon nor VFP support any arithmetic operations on it.
|
|
// The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
|
|
// supported for v4f32.
|
|
setOperationAction(ISD::FADD, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
|
|
// FIXME: Code duplication: FDIV and FREM are expanded always, see
|
|
// ARMTargetLowering::addTypeForNEON method for details.
|
|
setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FREM, MVT::v2f64, Expand);
|
|
// FIXME: Create unittest.
|
|
// In another words, find a way when "copysign" appears in DAG with vector
|
|
// operands.
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
|
|
// FIXME: Code duplication: SETCC has custom operation action, see
|
|
// ARMTargetLowering::addTypeForNEON method for details.
|
|
setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
|
|
// FIXME: Create unittest for FNEG and for FABS.
|
|
setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FABS, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
|
|
// FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
|
|
setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
|
|
setOperationAction(ISD::FMA, MVT::v2f64, Expand);
|
|
|
|
setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
|
|
setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
|
|
setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
|
|
setOperationAction(ISD::FPOWI, MVT::v4f32, Expand);
|
|
setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
|
|
setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
|
|
setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
|
|
setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
|
|
setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
|
|
setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
|
|
setOperationAction(ISD::FCEIL, MVT::v4f32, Expand);
|
|
setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand);
|
|
setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
|
|
setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
|
|
setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand);
|
|
|
|
// Mark v2f32 intrinsics.
|
|
setOperationAction(ISD::FSQRT, MVT::v2f32, Expand);
|
|
setOperationAction(ISD::FSIN, MVT::v2f32, Expand);
|
|
setOperationAction(ISD::FCOS, MVT::v2f32, Expand);
|
|
setOperationAction(ISD::FPOWI, MVT::v2f32, Expand);
|
|
setOperationAction(ISD::FPOW, MVT::v2f32, Expand);
|
|
setOperationAction(ISD::FLOG, MVT::v2f32, Expand);
|
|
setOperationAction(ISD::FLOG2, MVT::v2f32, Expand);
|
|
setOperationAction(ISD::FLOG10, MVT::v2f32, Expand);
|
|
setOperationAction(ISD::FEXP, MVT::v2f32, Expand);
|
|
setOperationAction(ISD::FEXP2, MVT::v2f32, Expand);
|
|
setOperationAction(ISD::FCEIL, MVT::v2f32, Expand);
|
|
setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand);
|
|
setOperationAction(ISD::FRINT, MVT::v2f32, Expand);
|
|
setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand);
|
|
setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand);
|
|
|
|
// Neon does not support some operations on v1i64 and v2i64 types.
|
|
setOperationAction(ISD::MUL, MVT::v1i64, Expand);
|
|
// Custom handling for some quad-vector types to detect VMULL.
|
|
setOperationAction(ISD::MUL, MVT::v8i16, Custom);
|
|
setOperationAction(ISD::MUL, MVT::v4i32, Custom);
|
|
setOperationAction(ISD::MUL, MVT::v2i64, Custom);
|
|
// Custom handling for some vector types to avoid expensive expansions
|
|
setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
|
|
setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
|
|
setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
|
|
setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
|
|
setOperationAction(ISD::SETCC, MVT::v1i64, Expand);
|
|
setOperationAction(ISD::SETCC, MVT::v2i64, Expand);
|
|
// Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
|
|
// a destination type that is wider than the source, and nor does
|
|
// it have a FP_TO_[SU]INT instruction with a narrower destination than
|
|
// source.
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
|
|
|
|
setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
|
|
setOperationAction(ISD::FP_EXTEND, MVT::v2f64, Expand);
|
|
|
|
// Custom expand long extensions to vectors.
|
|
setOperationAction(ISD::SIGN_EXTEND, MVT::v8i32, Custom);
|
|
setOperationAction(ISD::ZERO_EXTEND, MVT::v8i32, Custom);
|
|
setOperationAction(ISD::SIGN_EXTEND, MVT::v4i64, Custom);
|
|
setOperationAction(ISD::ZERO_EXTEND, MVT::v4i64, Custom);
|
|
setOperationAction(ISD::SIGN_EXTEND, MVT::v16i32, Custom);
|
|
setOperationAction(ISD::ZERO_EXTEND, MVT::v16i32, Custom);
|
|
setOperationAction(ISD::SIGN_EXTEND, MVT::v8i64, Custom);
|
|
setOperationAction(ISD::ZERO_EXTEND, MVT::v8i64, Custom);
|
|
|
|
// NEON does not have single instruction CTPOP for vectors with element
|
|
// types wider than 8-bits. However, custom lowering can leverage the
|
|
// v8i8/v16i8 vcnt instruction.
|
|
setOperationAction(ISD::CTPOP, MVT::v2i32, Custom);
|
|
setOperationAction(ISD::CTPOP, MVT::v4i32, Custom);
|
|
setOperationAction(ISD::CTPOP, MVT::v4i16, Custom);
|
|
setOperationAction(ISD::CTPOP, MVT::v8i16, Custom);
|
|
|
|
// NEON only has FMA instructions as of VFP4.
|
|
if (!Subtarget->hasVFP4()) {
|
|
setOperationAction(ISD::FMA, MVT::v2f32, Expand);
|
|
setOperationAction(ISD::FMA, MVT::v4f32, Expand);
|
|
}
|
|
|
|
setTargetDAGCombine(ISD::INTRINSIC_VOID);
|
|
setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
|
|
setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
|
|
setTargetDAGCombine(ISD::SHL);
|
|
setTargetDAGCombine(ISD::SRL);
|
|
setTargetDAGCombine(ISD::SRA);
|
|
setTargetDAGCombine(ISD::SIGN_EXTEND);
|
|
setTargetDAGCombine(ISD::ZERO_EXTEND);
|
|
setTargetDAGCombine(ISD::ANY_EXTEND);
|
|
setTargetDAGCombine(ISD::SELECT_CC);
|
|
setTargetDAGCombine(ISD::BUILD_VECTOR);
|
|
setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
|
|
setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
|
|
setTargetDAGCombine(ISD::STORE);
|
|
setTargetDAGCombine(ISD::FP_TO_SINT);
|
|
setTargetDAGCombine(ISD::FP_TO_UINT);
|
|
setTargetDAGCombine(ISD::FDIV);
|
|
|
|
// It is legal to extload from v4i8 to v4i16 or v4i32.
|
|
MVT Tys[6] = {MVT::v8i8, MVT::v4i8, MVT::v2i8,
|
|
MVT::v4i16, MVT::v2i16,
|
|
MVT::v2i32};
|
|
for (unsigned i = 0; i < 6; ++i) {
|
|
setLoadExtAction(ISD::EXTLOAD, Tys[i], Legal);
|
|
setLoadExtAction(ISD::ZEXTLOAD, Tys[i], Legal);
|
|
setLoadExtAction(ISD::SEXTLOAD, Tys[i], Legal);
|
|
}
|
|
}
|
|
|
|
// ARM and Thumb2 support UMLAL/SMLAL.
|
|
if (!Subtarget->isThumb1Only())
|
|
setTargetDAGCombine(ISD::ADDC);
|
|
|
|
|
|
computeRegisterProperties();
|
|
|
|
// ARM does not have f32 extending load.
|
|
setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
|
|
|
|
// ARM does not have i1 sign extending load.
|
|
setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
|
|
|
|
// ARM supports all 4 flavors of integer indexed load / store.
|
|
if (!Subtarget->isThumb1Only()) {
|
|
for (unsigned im = (unsigned)ISD::PRE_INC;
|
|
im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
|
|
setIndexedLoadAction(im, MVT::i1, Legal);
|
|
setIndexedLoadAction(im, MVT::i8, Legal);
|
|
setIndexedLoadAction(im, MVT::i16, Legal);
|
|
setIndexedLoadAction(im, MVT::i32, Legal);
|
|
setIndexedStoreAction(im, MVT::i1, Legal);
|
|
setIndexedStoreAction(im, MVT::i8, Legal);
|
|
setIndexedStoreAction(im, MVT::i16, Legal);
|
|
setIndexedStoreAction(im, MVT::i32, Legal);
|
|
}
|
|
}
|
|
|
|
// i64 operation support.
|
|
setOperationAction(ISD::MUL, MVT::i64, Expand);
|
|
setOperationAction(ISD::MULHU, MVT::i32, Expand);
|
|
if (Subtarget->isThumb1Only()) {
|
|
setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
|
|
setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
|
|
}
|
|
if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
|
|
|| (Subtarget->isThumb2() && !Subtarget->hasThumb2DSP()))
|
|
setOperationAction(ISD::MULHS, MVT::i32, Expand);
|
|
|
|
setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
|
|
setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
|
|
setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
|
|
setOperationAction(ISD::SRL, MVT::i64, Custom);
|
|
setOperationAction(ISD::SRA, MVT::i64, Custom);
|
|
|
|
if (!Subtarget->isThumb1Only()) {
|
|
// FIXME: We should do this for Thumb1 as well.
|
|
setOperationAction(ISD::ADDC, MVT::i32, Custom);
|
|
setOperationAction(ISD::ADDE, MVT::i32, Custom);
|
|
setOperationAction(ISD::SUBC, MVT::i32, Custom);
|
|
setOperationAction(ISD::SUBE, MVT::i32, Custom);
|
|
}
|
|
|
|
// ARM does not have ROTL.
|
|
setOperationAction(ISD::ROTL, MVT::i32, Expand);
|
|
setOperationAction(ISD::CTTZ, MVT::i32, Custom);
|
|
setOperationAction(ISD::CTPOP, MVT::i32, Expand);
|
|
if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
|
|
setOperationAction(ISD::CTLZ, MVT::i32, Expand);
|
|
|
|
// These just redirect to CTTZ and CTLZ on ARM.
|
|
setOperationAction(ISD::CTTZ_ZERO_UNDEF , MVT::i32 , Expand);
|
|
setOperationAction(ISD::CTLZ_ZERO_UNDEF , MVT::i32 , Expand);
|
|
|
|
setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
|
|
|
|
// Only ARMv6 has BSWAP.
|
|
if (!Subtarget->hasV6Ops())
|
|
setOperationAction(ISD::BSWAP, MVT::i32, Expand);
|
|
|
|
if (!(Subtarget->hasDivide() && Subtarget->isThumb2()) &&
|
|
!(Subtarget->hasDivideInARMMode() && !Subtarget->isThumb())) {
|
|
// These are expanded into libcalls if the cpu doesn't have HW divider.
|
|
setOperationAction(ISD::SDIV, MVT::i32, Expand);
|
|
setOperationAction(ISD::UDIV, MVT::i32, Expand);
|
|
}
|
|
|
|
// FIXME: Also set divmod for SREM on EABI
|
|
setOperationAction(ISD::SREM, MVT::i32, Expand);
|
|
setOperationAction(ISD::UREM, MVT::i32, Expand);
|
|
// Register based DivRem for AEABI (RTABI 4.2)
|
|
if (Subtarget->isTargetAEABI()) {
|
|
setLibcallName(RTLIB::SDIVREM_I8, "__aeabi_idivmod");
|
|
setLibcallName(RTLIB::SDIVREM_I16, "__aeabi_idivmod");
|
|
setLibcallName(RTLIB::SDIVREM_I32, "__aeabi_idivmod");
|
|
setLibcallName(RTLIB::SDIVREM_I64, "__aeabi_ldivmod");
|
|
setLibcallName(RTLIB::UDIVREM_I8, "__aeabi_uidivmod");
|
|
setLibcallName(RTLIB::UDIVREM_I16, "__aeabi_uidivmod");
|
|
setLibcallName(RTLIB::UDIVREM_I32, "__aeabi_uidivmod");
|
|
setLibcallName(RTLIB::UDIVREM_I64, "__aeabi_uldivmod");
|
|
|
|
setLibcallCallingConv(RTLIB::SDIVREM_I8, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::SDIVREM_I16, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::SDIVREM_I32, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::SDIVREM_I64, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::UDIVREM_I8, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::UDIVREM_I16, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::UDIVREM_I32, CallingConv::ARM_AAPCS);
|
|
setLibcallCallingConv(RTLIB::UDIVREM_I64, CallingConv::ARM_AAPCS);
|
|
|
|
setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
|
|
setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
|
|
} else {
|
|
setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
|
|
setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
|
|
}
|
|
|
|
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
|
|
setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
|
|
setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom);
|
|
setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
|
|
setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
|
|
|
|
setOperationAction(ISD::TRAP, MVT::Other, Legal);
|
|
|
|
// Use the default implementation.
|
|
setOperationAction(ISD::VASTART, MVT::Other, Custom);
|
|
setOperationAction(ISD::VAARG, MVT::Other, Expand);
|
|
setOperationAction(ISD::VACOPY, MVT::Other, Expand);
|
|
setOperationAction(ISD::VAEND, MVT::Other, Expand);
|
|
setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
|
|
setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
|
|
|
|
if (!Subtarget->isTargetDarwin()) {
|
|
// Non-Darwin platforms may return values in these registers via the
|
|
// personality function.
|
|
setExceptionPointerRegister(ARM::R0);
|
|
setExceptionSelectorRegister(ARM::R1);
|
|
}
|
|
|
|
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
|
|
// ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
|
|
// the default expansion.
|
|
// FIXME: This should be checking for v6k, not just v6.
|
|
if (Subtarget->hasDataBarrier() ||
|
|
(Subtarget->hasV6Ops() && !Subtarget->isThumb())) {
|
|
// membarrier needs custom lowering; the rest are legal and handled
|
|
// normally.
|
|
setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
|
|
// Custom lowering for 64-bit ops
|
|
setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i64, Custom);
|
|
setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i64, Custom);
|
|
setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i64, Custom);
|
|
setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i64, Custom);
|
|
setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i64, Custom);
|
|
setOperationAction(ISD::ATOMIC_SWAP, MVT::i64, Custom);
|
|
setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i64, Custom);
|
|
setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i64, Custom);
|
|
setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i64, Custom);
|
|
setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i64, Custom);
|
|
setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
|
|
// Automatically insert fences (dmb ist) around ATOMIC_SWAP etc.
|
|
setInsertFencesForAtomic(true);
|
|
} else {
|
|
// Set them all for expansion, which will force libcalls.
|
|
setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Expand);
|
|
setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Expand);
|
|
setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
|
|
setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
|
|
// Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
|
|
// Unordered/Monotonic case.
|
|
setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
|
|
setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
|
|
}
|
|
|
|
setOperationAction(ISD::PREFETCH, MVT::Other, Custom);
|
|
|
|
// Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
|
|
if (!Subtarget->hasV6Ops()) {
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand);
|
|
}
|
|
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
|
|
|
|
if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
|
|
!Subtarget->isThumb1Only()) {
|
|
// Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
|
|
// iff target supports vfp2.
|
|
setOperationAction(ISD::BITCAST, MVT::i64, Custom);
|
|
setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
|
|
}
|
|
|
|
// We want to custom lower some of our intrinsics.
|
|
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
|
|
if (Subtarget->isTargetDarwin()) {
|
|
setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
|
|
setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
|
|
setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
|
|
}
|
|
|
|
setOperationAction(ISD::SETCC, MVT::i32, Expand);
|
|
setOperationAction(ISD::SETCC, MVT::f32, Expand);
|
|
setOperationAction(ISD::SETCC, MVT::f64, Expand);
|
|
setOperationAction(ISD::SELECT, MVT::i32, Custom);
|
|
setOperationAction(ISD::SELECT, MVT::f32, Custom);
|
|
setOperationAction(ISD::SELECT, MVT::f64, Custom);
|
|
setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
|
|
setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
|
|
setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
|
|
|
|
setOperationAction(ISD::BRCOND, MVT::Other, Expand);
|
|
setOperationAction(ISD::BR_CC, MVT::i32, Custom);
|
|
setOperationAction(ISD::BR_CC, MVT::f32, Custom);
|
|
setOperationAction(ISD::BR_CC, MVT::f64, Custom);
|
|
setOperationAction(ISD::BR_JT, MVT::Other, Custom);
|
|
|
|
// We don't support sin/cos/fmod/copysign/pow
|
|
setOperationAction(ISD::FSIN, MVT::f64, Expand);
|
|
setOperationAction(ISD::FSIN, MVT::f32, Expand);
|
|
setOperationAction(ISD::FCOS, MVT::f32, Expand);
|
|
setOperationAction(ISD::FCOS, MVT::f64, Expand);
|
|
setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
|
|
setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
|
|
setOperationAction(ISD::FREM, MVT::f64, Expand);
|
|
setOperationAction(ISD::FREM, MVT::f32, Expand);
|
|
if (!TM.Options.UseSoftFloat && Subtarget->hasVFP2() &&
|
|
!Subtarget->isThumb1Only()) {
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
|
|
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
|
|
}
|
|
setOperationAction(ISD::FPOW, MVT::f64, Expand);
|
|
setOperationAction(ISD::FPOW, MVT::f32, Expand);
|
|
|
|
if (!Subtarget->hasVFP4()) {
|
|
setOperationAction(ISD::FMA, MVT::f64, Expand);
|
|
setOperationAction(ISD::FMA, MVT::f32, Expand);
|
|
}
|
|
|
|
// Various VFP goodness
|
|
if (!TM.Options.UseSoftFloat && !Subtarget->isThumb1Only()) {
|
|
// int <-> fp are custom expanded into bit_convert + ARMISD ops.
|
|
if (Subtarget->hasVFP2()) {
|
|
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
|
|
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
|
|
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
|
|
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
|
|
}
|
|
// Special handling for half-precision FP.
|
|
if (!Subtarget->hasFP16()) {
|
|
setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand);
|
|
setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand);
|
|
}
|
|
}
|
|
|
|
// We have target-specific dag combine patterns for the following nodes:
|
|
// ARMISD::VMOVRRD - No need to call setTargetDAGCombine
|
|
setTargetDAGCombine(ISD::ADD);
|
|
setTargetDAGCombine(ISD::SUB);
|
|
setTargetDAGCombine(ISD::MUL);
|
|
setTargetDAGCombine(ISD::AND);
|
|
setTargetDAGCombine(ISD::OR);
|
|
setTargetDAGCombine(ISD::XOR);
|
|
|
|
if (Subtarget->hasV6Ops())
|
|
setTargetDAGCombine(ISD::SRL);
|
|
|
|
setStackPointerRegisterToSaveRestore(ARM::SP);
|
|
|
|
if (TM.Options.UseSoftFloat || Subtarget->isThumb1Only() ||
|
|
!Subtarget->hasVFP2())
|
|
setSchedulingPreference(Sched::RegPressure);
|
|
else
|
|
setSchedulingPreference(Sched::Hybrid);
|
|
|
|
//// temporary - rewrite interface to use type
|
|
MaxStoresPerMemset = 8;
|
|
MaxStoresPerMemsetOptSize = Subtarget->isTargetDarwin() ? 8 : 4;
|
|
MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores
|
|
MaxStoresPerMemcpyOptSize = Subtarget->isTargetDarwin() ? 4 : 2;
|
|
MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores
|
|
MaxStoresPerMemmoveOptSize = Subtarget->isTargetDarwin() ? 4 : 2;
|
|
|
|
// On ARM arguments smaller than 4 bytes are extended, so all arguments
|
|
// are at least 4 bytes aligned.
|
|
setMinStackArgumentAlignment(4);
|
|
|
|
// Prefer likely predicted branches to selects on out-of-order cores.
|
|
PredictableSelectIsExpensive = Subtarget->isLikeA9();
|
|
|
|
setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
|
|
}
|
|
|
|
// FIXME: It might make sense to define the representative register class as the
|
|
// nearest super-register that has a non-null superset. For example, DPR_VFP2 is
|
|
// a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
|
|
// SPR's representative would be DPR_VFP2. This should work well if register
|
|
// pressure tracking were modified such that a register use would increment the
|
|
// pressure of the register class's representative and all of it's super
|
|
// classes' representatives transitively. We have not implemented this because
|
|
// of the difficulty prior to coalescing of modeling operand register classes
|
|
// due to the common occurrence of cross class copies and subregister insertions
|
|
// and extractions.
|
|
std::pair<const TargetRegisterClass*, uint8_t>
|
|
ARMTargetLowering::findRepresentativeClass(MVT VT) const{
|
|
const TargetRegisterClass *RRC = 0;
|
|
uint8_t Cost = 1;
|
|
switch (VT.SimpleTy) {
|
|
default:
|
|
return TargetLowering::findRepresentativeClass(VT);
|
|
// Use DPR as representative register class for all floating point
|
|
// and vector types. Since there are 32 SPR registers and 32 DPR registers so
|
|
// the cost is 1 for both f32 and f64.
|
|
case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
|
|
case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
|
|
RRC = &ARM::DPRRegClass;
|
|
// When NEON is used for SP, only half of the register file is available
|
|
// because operations that define both SP and DP results will be constrained
|
|
// to the VFP2 class (D0-D15). We currently model this constraint prior to
|
|
// coalescing by double-counting the SP regs. See the FIXME above.
|
|
if (Subtarget->useNEONForSinglePrecisionFP())
|
|
Cost = 2;
|
|
break;
|
|
case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
|
|
case MVT::v4f32: case MVT::v2f64:
|
|
RRC = &ARM::DPRRegClass;
|
|
Cost = 2;
|
|
break;
|
|
case MVT::v4i64:
|
|
RRC = &ARM::DPRRegClass;
|
|
Cost = 4;
|
|
break;
|
|
case MVT::v8i64:
|
|
RRC = &ARM::DPRRegClass;
|
|
Cost = 8;
|
|
break;
|
|
}
|
|
return std::make_pair(RRC, Cost);
|
|
}
|
|
|
|
const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
|
|
switch (Opcode) {
|
|
default: return 0;
|
|
case ARMISD::Wrapper: return "ARMISD::Wrapper";
|
|
case ARMISD::WrapperDYN: return "ARMISD::WrapperDYN";
|
|
case ARMISD::WrapperPIC: return "ARMISD::WrapperPIC";
|
|
case ARMISD::WrapperJT: return "ARMISD::WrapperJT";
|
|
case ARMISD::CALL: return "ARMISD::CALL";
|
|
case ARMISD::CALL_PRED: return "ARMISD::CALL_PRED";
|
|
case ARMISD::CALL_NOLINK: return "ARMISD::CALL_NOLINK";
|
|
case ARMISD::tCALL: return "ARMISD::tCALL";
|
|
case ARMISD::BRCOND: return "ARMISD::BRCOND";
|
|
case ARMISD::BR_JT: return "ARMISD::BR_JT";
|
|
case ARMISD::BR2_JT: return "ARMISD::BR2_JT";
|
|
case ARMISD::RET_FLAG: return "ARMISD::RET_FLAG";
|
|
case ARMISD::PIC_ADD: return "ARMISD::PIC_ADD";
|
|
case ARMISD::CMP: return "ARMISD::CMP";
|
|
case ARMISD::CMN: return "ARMISD::CMN";
|
|
case ARMISD::CMPZ: return "ARMISD::CMPZ";
|
|
case ARMISD::CMPFP: return "ARMISD::CMPFP";
|
|
case ARMISD::CMPFPw0: return "ARMISD::CMPFPw0";
|
|
case ARMISD::BCC_i64: return "ARMISD::BCC_i64";
|
|
case ARMISD::FMSTAT: return "ARMISD::FMSTAT";
|
|
|
|
case ARMISD::CMOV: return "ARMISD::CMOV";
|
|
|
|
case ARMISD::RBIT: return "ARMISD::RBIT";
|
|
|
|
case ARMISD::FTOSI: return "ARMISD::FTOSI";
|
|
case ARMISD::FTOUI: return "ARMISD::FTOUI";
|
|
case ARMISD::SITOF: return "ARMISD::SITOF";
|
|
case ARMISD::UITOF: return "ARMISD::UITOF";
|
|
|
|
case ARMISD::SRL_FLAG: return "ARMISD::SRL_FLAG";
|
|
case ARMISD::SRA_FLAG: return "ARMISD::SRA_FLAG";
|
|
case ARMISD::RRX: return "ARMISD::RRX";
|
|
|
|
case ARMISD::ADDC: return "ARMISD::ADDC";
|
|
case ARMISD::ADDE: return "ARMISD::ADDE";
|
|
case ARMISD::SUBC: return "ARMISD::SUBC";
|
|
case ARMISD::SUBE: return "ARMISD::SUBE";
|
|
|
|
case ARMISD::VMOVRRD: return "ARMISD::VMOVRRD";
|
|
case ARMISD::VMOVDRR: return "ARMISD::VMOVDRR";
|
|
|
|
case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
|
|
case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP";
|
|
|
|
case ARMISD::TC_RETURN: return "ARMISD::TC_RETURN";
|
|
|
|
case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
|
|
|
|
case ARMISD::DYN_ALLOC: return "ARMISD::DYN_ALLOC";
|
|
|
|
case ARMISD::MEMBARRIER: return "ARMISD::MEMBARRIER";
|
|
case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
|
|
|
|
case ARMISD::PRELOAD: return "ARMISD::PRELOAD";
|
|
|
|
case ARMISD::VCEQ: return "ARMISD::VCEQ";
|
|
case ARMISD::VCEQZ: return "ARMISD::VCEQZ";
|
|
case ARMISD::VCGE: return "ARMISD::VCGE";
|
|
case ARMISD::VCGEZ: return "ARMISD::VCGEZ";
|
|
case ARMISD::VCLEZ: return "ARMISD::VCLEZ";
|
|
case ARMISD::VCGEU: return "ARMISD::VCGEU";
|
|
case ARMISD::VCGT: return "ARMISD::VCGT";
|
|
case ARMISD::VCGTZ: return "ARMISD::VCGTZ";
|
|
case ARMISD::VCLTZ: return "ARMISD::VCLTZ";
|
|
case ARMISD::VCGTU: return "ARMISD::VCGTU";
|
|
case ARMISD::VTST: return "ARMISD::VTST";
|
|
|
|
case ARMISD::VSHL: return "ARMISD::VSHL";
|
|
case ARMISD::VSHRs: return "ARMISD::VSHRs";
|
|
case ARMISD::VSHRu: return "ARMISD::VSHRu";
|
|
case ARMISD::VSHLLs: return "ARMISD::VSHLLs";
|
|
case ARMISD::VSHLLu: return "ARMISD::VSHLLu";
|
|
case ARMISD::VSHLLi: return "ARMISD::VSHLLi";
|
|
case ARMISD::VSHRN: return "ARMISD::VSHRN";
|
|
case ARMISD::VRSHRs: return "ARMISD::VRSHRs";
|
|
case ARMISD::VRSHRu: return "ARMISD::VRSHRu";
|
|
case ARMISD::VRSHRN: return "ARMISD::VRSHRN";
|
|
case ARMISD::VQSHLs: return "ARMISD::VQSHLs";
|
|
case ARMISD::VQSHLu: return "ARMISD::VQSHLu";
|
|
case ARMISD::VQSHLsu: return "ARMISD::VQSHLsu";
|
|
case ARMISD::VQSHRNs: return "ARMISD::VQSHRNs";
|
|
case ARMISD::VQSHRNu: return "ARMISD::VQSHRNu";
|
|
case ARMISD::VQSHRNsu: return "ARMISD::VQSHRNsu";
|
|
case ARMISD::VQRSHRNs: return "ARMISD::VQRSHRNs";
|
|
case ARMISD::VQRSHRNu: return "ARMISD::VQRSHRNu";
|
|
case ARMISD::VQRSHRNsu: return "ARMISD::VQRSHRNsu";
|
|
case ARMISD::VGETLANEu: return "ARMISD::VGETLANEu";
|
|
case ARMISD::VGETLANEs: return "ARMISD::VGETLANEs";
|
|
case ARMISD::VMOVIMM: return "ARMISD::VMOVIMM";
|
|
case ARMISD::VMVNIMM: return "ARMISD::VMVNIMM";
|
|
case ARMISD::VMOVFPIMM: return "ARMISD::VMOVFPIMM";
|
|
case ARMISD::VDUP: return "ARMISD::VDUP";
|
|
case ARMISD::VDUPLANE: return "ARMISD::VDUPLANE";
|
|
case ARMISD::VEXT: return "ARMISD::VEXT";
|
|
case ARMISD::VREV64: return "ARMISD::VREV64";
|
|
case ARMISD::VREV32: return "ARMISD::VREV32";
|
|
case ARMISD::VREV16: return "ARMISD::VREV16";
|
|
case ARMISD::VZIP: return "ARMISD::VZIP";
|
|
case ARMISD::VUZP: return "ARMISD::VUZP";
|
|
case ARMISD::VTRN: return "ARMISD::VTRN";
|
|
case ARMISD::VTBL1: return "ARMISD::VTBL1";
|
|
case ARMISD::VTBL2: return "ARMISD::VTBL2";
|
|
case ARMISD::VMULLs: return "ARMISD::VMULLs";
|
|
case ARMISD::VMULLu: return "ARMISD::VMULLu";
|
|
case ARMISD::UMLAL: return "ARMISD::UMLAL";
|
|
case ARMISD::SMLAL: return "ARMISD::SMLAL";
|
|
case ARMISD::BUILD_VECTOR: return "ARMISD::BUILD_VECTOR";
|
|
case ARMISD::FMAX: return "ARMISD::FMAX";
|
|
case ARMISD::FMIN: return "ARMISD::FMIN";
|
|
case ARMISD::BFI: return "ARMISD::BFI";
|
|
case ARMISD::VORRIMM: return "ARMISD::VORRIMM";
|
|
case ARMISD::VBICIMM: return "ARMISD::VBICIMM";
|
|
case ARMISD::VBSL: return "ARMISD::VBSL";
|
|
case ARMISD::VLD2DUP: return "ARMISD::VLD2DUP";
|
|
case ARMISD::VLD3DUP: return "ARMISD::VLD3DUP";
|
|
case ARMISD::VLD4DUP: return "ARMISD::VLD4DUP";
|
|
case ARMISD::VLD1_UPD: return "ARMISD::VLD1_UPD";
|
|
case ARMISD::VLD2_UPD: return "ARMISD::VLD2_UPD";
|
|
case ARMISD::VLD3_UPD: return "ARMISD::VLD3_UPD";
|
|
case ARMISD::VLD4_UPD: return "ARMISD::VLD4_UPD";
|
|
case ARMISD::VLD2LN_UPD: return "ARMISD::VLD2LN_UPD";
|
|
case ARMISD::VLD3LN_UPD: return "ARMISD::VLD3LN_UPD";
|
|
case ARMISD::VLD4LN_UPD: return "ARMISD::VLD4LN_UPD";
|
|
case ARMISD::VLD2DUP_UPD: return "ARMISD::VLD2DUP_UPD";
|
|
case ARMISD::VLD3DUP_UPD: return "ARMISD::VLD3DUP_UPD";
|
|
case ARMISD::VLD4DUP_UPD: return "ARMISD::VLD4DUP_UPD";
|
|
case ARMISD::VST1_UPD: return "ARMISD::VST1_UPD";
|
|
case ARMISD::VST2_UPD: return "ARMISD::VST2_UPD";
|
|
case ARMISD::VST3_UPD: return "ARMISD::VST3_UPD";
|
|
case ARMISD::VST4_UPD: return "ARMISD::VST4_UPD";
|
|
case ARMISD::VST2LN_UPD: return "ARMISD::VST2LN_UPD";
|
|
case ARMISD::VST3LN_UPD: return "ARMISD::VST3LN_UPD";
|
|
case ARMISD::VST4LN_UPD: return "ARMISD::VST4LN_UPD";
|
|
|
|
case ARMISD::ATOMADD64_DAG: return "ATOMADD64_DAG";
|
|
case ARMISD::ATOMSUB64_DAG: return "ATOMSUB64_DAG";
|
|
case ARMISD::ATOMOR64_DAG: return "ATOMOR64_DAG";
|
|
case ARMISD::ATOMXOR64_DAG: return "ATOMXOR64_DAG";
|
|
case ARMISD::ATOMAND64_DAG: return "ATOMAND64_DAG";
|
|
case ARMISD::ATOMNAND64_DAG: return "ATOMNAND64_DAG";
|
|
case ARMISD::ATOMSWAP64_DAG: return "ATOMSWAP64_DAG";
|
|
case ARMISD::ATOMCMPXCHG64_DAG: return "ATOMCMPXCHG64_DAG";
|
|
case ARMISD::ATOMMIN64_DAG: return "ATOMMIN64_DAG";
|
|
case ARMISD::ATOMUMIN64_DAG: return "ATOMUMIN64_DAG";
|
|
case ARMISD::ATOMMAX64_DAG: return "ATOMMAX64_DAG";
|
|
case ARMISD::ATOMUMAX64_DAG: return "ATOMUMAX64_DAG";
|
|
}
|
|
}
|
|
|
|
EVT ARMTargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
|
|
if (!VT.isVector()) return getPointerTy();
|
|
return VT.changeVectorElementTypeToInteger();
|
|
}
|
|
|
|
/// getRegClassFor - Return the register class that should be used for the
|
|
/// specified value type.
|
|
const TargetRegisterClass *ARMTargetLowering::getRegClassFor(MVT VT) const {
|
|
// Map v4i64 to QQ registers but do not make the type legal. Similarly map
|
|
// v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
|
|
// load / store 4 to 8 consecutive D registers.
|
|
if (Subtarget->hasNEON()) {
|
|
if (VT == MVT::v4i64)
|
|
return &ARM::QQPRRegClass;
|
|
if (VT == MVT::v8i64)
|
|
return &ARM::QQQQPRRegClass;
|
|
}
|
|
return TargetLowering::getRegClassFor(VT);
|
|
}
|
|
|
|
// Create a fast isel object.
|
|
FastISel *
|
|
ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
|
|
const TargetLibraryInfo *libInfo) const {
|
|
return ARM::createFastISel(funcInfo, libInfo);
|
|
}
|
|
|
|
/// getMaximalGlobalOffset - Returns the maximal possible offset which can
|
|
/// be used for loads / stores from the global.
|
|
unsigned ARMTargetLowering::getMaximalGlobalOffset() const {
|
|
return (Subtarget->isThumb1Only() ? 127 : 4095);
|
|
}
|
|
|
|
Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
|
|
unsigned NumVals = N->getNumValues();
|
|
if (!NumVals)
|
|
return Sched::RegPressure;
|
|
|
|
for (unsigned i = 0; i != NumVals; ++i) {
|
|
EVT VT = N->getValueType(i);
|
|
if (VT == MVT::Glue || VT == MVT::Other)
|
|
continue;
|
|
if (VT.isFloatingPoint() || VT.isVector())
|
|
return Sched::ILP;
|
|
}
|
|
|
|
if (!N->isMachineOpcode())
|
|
return Sched::RegPressure;
|
|
|
|
// Load are scheduled for latency even if there instruction itinerary
|
|
// is not available.
|
|
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
|
|
const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
|
|
|
|
if (MCID.getNumDefs() == 0)
|
|
return Sched::RegPressure;
|
|
if (!Itins->isEmpty() &&
|
|
Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
|
|
return Sched::ILP;
|
|
|
|
return Sched::RegPressure;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Lowering Code
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
|
|
static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
|
|
switch (CC) {
|
|
default: llvm_unreachable("Unknown condition code!");
|
|
case ISD::SETNE: return ARMCC::NE;
|
|
case ISD::SETEQ: return ARMCC::EQ;
|
|
case ISD::SETGT: return ARMCC::GT;
|
|
case ISD::SETGE: return ARMCC::GE;
|
|
case ISD::SETLT: return ARMCC::LT;
|
|
case ISD::SETLE: return ARMCC::LE;
|
|
case ISD::SETUGT: return ARMCC::HI;
|
|
case ISD::SETUGE: return ARMCC::HS;
|
|
case ISD::SETULT: return ARMCC::LO;
|
|
case ISD::SETULE: return ARMCC::LS;
|
|
}
|
|
}
|
|
|
|
/// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
|
|
static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
|
|
ARMCC::CondCodes &CondCode2) {
|
|
CondCode2 = ARMCC::AL;
|
|
switch (CC) {
|
|
default: llvm_unreachable("Unknown FP condition!");
|
|
case ISD::SETEQ:
|
|
case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
|
|
case ISD::SETGT:
|
|
case ISD::SETOGT: CondCode = ARMCC::GT; break;
|
|
case ISD::SETGE:
|
|
case ISD::SETOGE: CondCode = ARMCC::GE; break;
|
|
case ISD::SETOLT: CondCode = ARMCC::MI; break;
|
|
case ISD::SETOLE: CondCode = ARMCC::LS; break;
|
|
case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
|
|
case ISD::SETO: CondCode = ARMCC::VC; break;
|
|
case ISD::SETUO: CondCode = ARMCC::VS; break;
|
|
case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
|
|
case ISD::SETUGT: CondCode = ARMCC::HI; break;
|
|
case ISD::SETUGE: CondCode = ARMCC::PL; break;
|
|
case ISD::SETLT:
|
|
case ISD::SETULT: CondCode = ARMCC::LT; break;
|
|
case ISD::SETLE:
|
|
case ISD::SETULE: CondCode = ARMCC::LE; break;
|
|
case ISD::SETNE:
|
|
case ISD::SETUNE: CondCode = ARMCC::NE; break;
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Calling Convention Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ARMGenCallingConv.inc"
|
|
|
|
/// CCAssignFnForNode - Selects the correct CCAssignFn for a the
|
|
/// given CallingConvention value.
|
|
CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
|
|
bool Return,
|
|
bool isVarArg) const {
|
|
switch (CC) {
|
|
default:
|
|
llvm_unreachable("Unsupported calling convention");
|
|
case CallingConv::Fast:
|
|
if (Subtarget->hasVFP2() && !isVarArg) {
|
|
if (!Subtarget->isAAPCS_ABI())
|
|
return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
|
|
// For AAPCS ABI targets, just use VFP variant of the calling convention.
|
|
return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
|
|
}
|
|
// Fallthrough
|
|
case CallingConv::C: {
|
|
// Use target triple & subtarget features to do actual dispatch.
|
|
if (!Subtarget->isAAPCS_ABI())
|
|
return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
|
|
else if (Subtarget->hasVFP2() &&
|
|
getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
|
|
!isVarArg)
|
|
return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
|
|
return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
|
|
}
|
|
case CallingConv::ARM_AAPCS_VFP:
|
|
if (!isVarArg)
|
|
return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
|
|
// Fallthrough
|
|
case CallingConv::ARM_AAPCS:
|
|
return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
|
|
case CallingConv::ARM_APCS:
|
|
return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
|
|
case CallingConv::GHC:
|
|
return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
|
|
}
|
|
}
|
|
|
|
/// LowerCallResult - Lower the result values of a call into the
|
|
/// appropriate copies out of appropriate physical registers.
|
|
SDValue
|
|
ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
SDLoc dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals,
|
|
bool isThisReturn, SDValue ThisVal) const {
|
|
|
|
// Assign locations to each value returned by this call.
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
|
|
getTargetMachine(), RVLocs, *DAG.getContext(), Call);
|
|
CCInfo.AnalyzeCallResult(Ins,
|
|
CCAssignFnForNode(CallConv, /* Return*/ true,
|
|
isVarArg));
|
|
|
|
// Copy all of the result registers out of their specified physreg.
|
|
for (unsigned i = 0; i != RVLocs.size(); ++i) {
|
|
CCValAssign VA = RVLocs[i];
|
|
|
|
// Pass 'this' value directly from the argument to return value, to avoid
|
|
// reg unit interference
|
|
if (i == 0 && isThisReturn) {
|
|
assert(!VA.needsCustom() && VA.getLocVT() == MVT::i32 &&
|
|
"unexpected return calling convention register assignment");
|
|
InVals.push_back(ThisVal);
|
|
continue;
|
|
}
|
|
|
|
SDValue Val;
|
|
if (VA.needsCustom()) {
|
|
// Handle f64 or half of a v2f64.
|
|
SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
|
|
InFlag);
|
|
Chain = Lo.getValue(1);
|
|
InFlag = Lo.getValue(2);
|
|
VA = RVLocs[++i]; // skip ahead to next loc
|
|
SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
|
|
InFlag);
|
|
Chain = Hi.getValue(1);
|
|
InFlag = Hi.getValue(2);
|
|
Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
|
|
|
|
if (VA.getLocVT() == MVT::v2f64) {
|
|
SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
|
|
Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
|
|
DAG.getConstant(0, MVT::i32));
|
|
|
|
VA = RVLocs[++i]; // skip ahead to next loc
|
|
Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
|
|
Chain = Lo.getValue(1);
|
|
InFlag = Lo.getValue(2);
|
|
VA = RVLocs[++i]; // skip ahead to next loc
|
|
Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
|
|
Chain = Hi.getValue(1);
|
|
InFlag = Hi.getValue(2);
|
|
Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
|
|
Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
|
|
DAG.getConstant(1, MVT::i32));
|
|
}
|
|
} else {
|
|
Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
|
|
InFlag);
|
|
Chain = Val.getValue(1);
|
|
InFlag = Val.getValue(2);
|
|
}
|
|
|
|
switch (VA.getLocInfo()) {
|
|
default: llvm_unreachable("Unknown loc info!");
|
|
case CCValAssign::Full: break;
|
|
case CCValAssign::BCvt:
|
|
Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
|
|
break;
|
|
}
|
|
|
|
InVals.push_back(Val);
|
|
}
|
|
|
|
return Chain;
|
|
}
|
|
|
|
/// LowerMemOpCallTo - Store the argument to the stack.
|
|
SDValue
|
|
ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
|
|
SDValue StackPtr, SDValue Arg,
|
|
SDLoc dl, SelectionDAG &DAG,
|
|
const CCValAssign &VA,
|
|
ISD::ArgFlagsTy Flags) const {
|
|
unsigned LocMemOffset = VA.getLocMemOffset();
|
|
SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
|
|
PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
|
|
return DAG.getStore(Chain, dl, Arg, PtrOff,
|
|
MachinePointerInfo::getStack(LocMemOffset),
|
|
false, false, 0);
|
|
}
|
|
|
|
void ARMTargetLowering::PassF64ArgInRegs(SDLoc dl, SelectionDAG &DAG,
|
|
SDValue Chain, SDValue &Arg,
|
|
RegsToPassVector &RegsToPass,
|
|
CCValAssign &VA, CCValAssign &NextVA,
|
|
SDValue &StackPtr,
|
|
SmallVectorImpl<SDValue> &MemOpChains,
|
|
ISD::ArgFlagsTy Flags) const {
|
|
|
|
SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
|
|
DAG.getVTList(MVT::i32, MVT::i32), Arg);
|
|
RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd));
|
|
|
|
if (NextVA.isRegLoc())
|
|
RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1)));
|
|
else {
|
|
assert(NextVA.isMemLoc());
|
|
if (StackPtr.getNode() == 0)
|
|
StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
|
|
|
|
MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1),
|
|
dl, DAG, NextVA,
|
|
Flags));
|
|
}
|
|
}
|
|
|
|
/// LowerCall - Lowering a call into a callseq_start <-
|
|
/// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
|
|
/// nodes.
|
|
SDValue
|
|
ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
|
|
SmallVectorImpl<SDValue> &InVals) const {
|
|
SelectionDAG &DAG = CLI.DAG;
|
|
SDLoc &dl = CLI.DL;
|
|
SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
|
|
SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
|
|
SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
|
|
SDValue Chain = CLI.Chain;
|
|
SDValue Callee = CLI.Callee;
|
|
bool &isTailCall = CLI.IsTailCall;
|
|
CallingConv::ID CallConv = CLI.CallConv;
|
|
bool doesNotRet = CLI.DoesNotReturn;
|
|
bool isVarArg = CLI.IsVarArg;
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
bool isStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
|
|
bool isThisReturn = false;
|
|
bool isSibCall = false;
|
|
// Disable tail calls if they're not supported.
|
|
if (!EnableARMTailCalls && !Subtarget->supportsTailCall())
|
|
isTailCall = false;
|
|
if (isTailCall) {
|
|
// Check if it's really possible to do a tail call.
|
|
isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
|
|
isVarArg, isStructRet, MF.getFunction()->hasStructRetAttr(),
|
|
Outs, OutVals, Ins, DAG);
|
|
// We don't support GuaranteedTailCallOpt for ARM, only automatically
|
|
// detected sibcalls.
|
|
if (isTailCall) {
|
|
++NumTailCalls;
|
|
isSibCall = true;
|
|
}
|
|
}
|
|
|
|
// Analyze operands of the call, assigning locations to each operand.
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
|
|
getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
|
|
CCInfo.AnalyzeCallOperands(Outs,
|
|
CCAssignFnForNode(CallConv, /* Return*/ false,
|
|
isVarArg));
|
|
|
|
// Get a count of how many bytes are to be pushed on the stack.
|
|
unsigned NumBytes = CCInfo.getNextStackOffset();
|
|
|
|
// For tail calls, memory operands are available in our caller's stack.
|
|
if (isSibCall)
|
|
NumBytes = 0;
|
|
|
|
// Adjust the stack pointer for the new arguments...
|
|
// These operations are automatically eliminated by the prolog/epilog pass
|
|
if (!isSibCall)
|
|
Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true),
|
|
dl);
|
|
|
|
SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy());
|
|
|
|
RegsToPassVector RegsToPass;
|
|
SmallVector<SDValue, 8> MemOpChains;
|
|
|
|
// Walk the register/memloc assignments, inserting copies/loads. In the case
|
|
// of tail call optimization, arguments are handled later.
|
|
for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
|
|
i != e;
|
|
++i, ++realArgIdx) {
|
|
CCValAssign &VA = ArgLocs[i];
|
|
SDValue Arg = OutVals[realArgIdx];
|
|
ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
|
|
bool isByVal = Flags.isByVal();
|
|
|
|
// Promote the value if needed.
|
|
switch (VA.getLocInfo()) {
|
|
default: llvm_unreachable("Unknown loc info!");
|
|
case CCValAssign::Full: break;
|
|
case CCValAssign::SExt:
|
|
Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
|
|
break;
|
|
case CCValAssign::ZExt:
|
|
Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
|
|
break;
|
|
case CCValAssign::AExt:
|
|
Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
|
|
break;
|
|
case CCValAssign::BCvt:
|
|
Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
|
|
break;
|
|
}
|
|
|
|
// f64 and v2f64 might be passed in i32 pairs and must be split into pieces
|
|
if (VA.needsCustom()) {
|
|
if (VA.getLocVT() == MVT::v2f64) {
|
|
SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
|
|
DAG.getConstant(0, MVT::i32));
|
|
SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
|
|
DAG.getConstant(1, MVT::i32));
|
|
|
|
PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
|
|
VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
|
|
|
|
VA = ArgLocs[++i]; // skip ahead to next loc
|
|
if (VA.isRegLoc()) {
|
|
PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
|
|
VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
|
|
} else {
|
|
assert(VA.isMemLoc());
|
|
|
|
MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
|
|
dl, DAG, VA, Flags));
|
|
}
|
|
} else {
|
|
PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
|
|
StackPtr, MemOpChains, Flags);
|
|
}
|
|
} else if (VA.isRegLoc()) {
|
|
if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i32) {
|
|
assert(VA.getLocVT() == MVT::i32 &&
|
|
"unexpected calling convention register assignment");
|
|
assert(!Ins.empty() && Ins[0].VT == MVT::i32 &&
|
|
"unexpected use of 'returned'");
|
|
isThisReturn = true;
|
|
}
|
|
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
|
|
} else if (isByVal) {
|
|
assert(VA.isMemLoc());
|
|
unsigned offset = 0;
|
|
|
|
// True if this byval aggregate will be split between registers
|
|
// and memory.
|
|
unsigned ByValArgsCount = CCInfo.getInRegsParamsCount();
|
|
unsigned CurByValIdx = CCInfo.getInRegsParamsProceed();
|
|
|
|
if (CurByValIdx < ByValArgsCount) {
|
|
|
|
unsigned RegBegin, RegEnd;
|
|
CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd);
|
|
|
|
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
|
unsigned int i, j;
|
|
for (i = 0, j = RegBegin; j < RegEnd; i++, j++) {
|
|
SDValue Const = DAG.getConstant(4*i, MVT::i32);
|
|
SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
|
|
SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
|
|
MachinePointerInfo(),
|
|
false, false, false, 0);
|
|
MemOpChains.push_back(Load.getValue(1));
|
|
RegsToPass.push_back(std::make_pair(j, Load));
|
|
}
|
|
|
|
// If parameter size outsides register area, "offset" value
|
|
// helps us to calculate stack slot for remained part properly.
|
|
offset = RegEnd - RegBegin;
|
|
|
|
CCInfo.nextInRegsParam();
|
|
}
|
|
|
|
if (Flags.getByValSize() > 4*offset) {
|
|
unsigned LocMemOffset = VA.getLocMemOffset();
|
|
SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset);
|
|
SDValue Dst = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr,
|
|
StkPtrOff);
|
|
SDValue SrcOffset = DAG.getIntPtrConstant(4*offset);
|
|
SDValue Src = DAG.getNode(ISD::ADD, dl, getPointerTy(), Arg, SrcOffset);
|
|
SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset,
|
|
MVT::i32);
|
|
SDValue AlignNode = DAG.getConstant(Flags.getByValAlign(), MVT::i32);
|
|
|
|
SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
|
|
MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
|
|
Ops, array_lengthof(Ops)));
|
|
}
|
|
} else if (!isSibCall) {
|
|
assert(VA.isMemLoc());
|
|
|
|
MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
|
|
dl, DAG, VA, Flags));
|
|
}
|
|
}
|
|
|
|
if (!MemOpChains.empty())
|
|
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
|
|
&MemOpChains[0], MemOpChains.size());
|
|
|
|
// Build a sequence of copy-to-reg nodes chained together with token chain
|
|
// and flag operands which copy the outgoing args into the appropriate regs.
|
|
SDValue InFlag;
|
|
// Tail call byval lowering might overwrite argument registers so in case of
|
|
// tail call optimization the copies to registers are lowered later.
|
|
if (!isTailCall)
|
|
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
|
|
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
|
|
RegsToPass[i].second, InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
|
|
// For tail calls lower the arguments to the 'real' stack slot.
|
|
if (isTailCall) {
|
|
// Force all the incoming stack arguments to be loaded from the stack
|
|
// before any new outgoing arguments are stored to the stack, because the
|
|
// outgoing stack slots may alias the incoming argument stack slots, and
|
|
// the alias isn't otherwise explicit. This is slightly more conservative
|
|
// than necessary, because it means that each store effectively depends
|
|
// on every argument instead of just those arguments it would clobber.
|
|
|
|
// Do not flag preceding copytoreg stuff together with the following stuff.
|
|
InFlag = SDValue();
|
|
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
|
|
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
|
|
RegsToPass[i].second, InFlag);
|
|
InFlag = Chain.getValue(1);
|
|
}
|
|
InFlag = SDValue();
|
|
}
|
|
|
|
// If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
|
|
// direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
|
|
// node so that legalize doesn't hack it.
|
|
bool isDirect = false;
|
|
bool isARMFunc = false;
|
|
bool isLocalARMFunc = false;
|
|
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
|
|
|
|
if (EnableARMLongCalls) {
|
|
assert (getTargetMachine().getRelocationModel() == Reloc::Static
|
|
&& "long-calls with non-static relocation model!");
|
|
// Handle a global address or an external symbol. If it's not one of
|
|
// those, the target's already in a register, so we don't need to do
|
|
// anything extra.
|
|
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
|
|
const GlobalValue *GV = G->getGlobal();
|
|
// Create a constant pool entry for the callee address
|
|
unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
|
|
ARMConstantPoolValue *CPV =
|
|
ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
|
|
|
|
// Get the address of the callee into a register
|
|
SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
|
|
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
|
|
Callee = DAG.getLoad(getPointerTy(), dl,
|
|
DAG.getEntryNode(), CPAddr,
|
|
MachinePointerInfo::getConstantPool(),
|
|
false, false, false, 0);
|
|
} else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
|
|
const char *Sym = S->getSymbol();
|
|
|
|
// Create a constant pool entry for the callee address
|
|
unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
|
|
ARMConstantPoolValue *CPV =
|
|
ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
|
|
ARMPCLabelIndex, 0);
|
|
// Get the address of the callee into a register
|
|
SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
|
|
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
|
|
Callee = DAG.getLoad(getPointerTy(), dl,
|
|
DAG.getEntryNode(), CPAddr,
|
|
MachinePointerInfo::getConstantPool(),
|
|
false, false, false, 0);
|
|
}
|
|
} else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
|
|
const GlobalValue *GV = G->getGlobal();
|
|
isDirect = true;
|
|
bool isExt = GV->isDeclaration() || GV->isWeakForLinker();
|
|
bool isStub = (isExt && Subtarget->isTargetDarwin()) &&
|
|
getTargetMachine().getRelocationModel() != Reloc::Static;
|
|
isARMFunc = !Subtarget->isThumb() || isStub;
|
|
// ARM call to a local ARM function is predicable.
|
|
isLocalARMFunc = !Subtarget->isThumb() && (!isExt || !ARMInterworking);
|
|
// tBX takes a register source operand.
|
|
if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
|
|
unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
|
|
ARMConstantPoolValue *CPV =
|
|
ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 4);
|
|
SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
|
|
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
|
|
Callee = DAG.getLoad(getPointerTy(), dl,
|
|
DAG.getEntryNode(), CPAddr,
|
|
MachinePointerInfo::getConstantPool(),
|
|
false, false, false, 0);
|
|
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
|
|
Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
|
|
getPointerTy(), Callee, PICLabel);
|
|
} else {
|
|
// On ELF targets for PIC code, direct calls should go through the PLT
|
|
unsigned OpFlags = 0;
|
|
if (Subtarget->isTargetELF() &&
|
|
getTargetMachine().getRelocationModel() == Reloc::PIC_)
|
|
OpFlags = ARMII::MO_PLT;
|
|
Callee = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), 0, OpFlags);
|
|
}
|
|
} else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
|
|
isDirect = true;
|
|
bool isStub = Subtarget->isTargetDarwin() &&
|
|
getTargetMachine().getRelocationModel() != Reloc::Static;
|
|
isARMFunc = !Subtarget->isThumb() || isStub;
|
|
// tBX takes a register source operand.
|
|
const char *Sym = S->getSymbol();
|
|
if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
|
|
unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
|
|
ARMConstantPoolValue *CPV =
|
|
ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
|
|
ARMPCLabelIndex, 4);
|
|
SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4);
|
|
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
|
|
Callee = DAG.getLoad(getPointerTy(), dl,
|
|
DAG.getEntryNode(), CPAddr,
|
|
MachinePointerInfo::getConstantPool(),
|
|
false, false, false, 0);
|
|
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
|
|
Callee = DAG.getNode(ARMISD::PIC_ADD, dl,
|
|
getPointerTy(), Callee, PICLabel);
|
|
} else {
|
|
unsigned OpFlags = 0;
|
|
// On ELF targets for PIC code, direct calls should go through the PLT
|
|
if (Subtarget->isTargetELF() &&
|
|
getTargetMachine().getRelocationModel() == Reloc::PIC_)
|
|
OpFlags = ARMII::MO_PLT;
|
|
Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy(), OpFlags);
|
|
}
|
|
}
|
|
|
|
// FIXME: handle tail calls differently.
|
|
unsigned CallOpc;
|
|
bool HasMinSizeAttr = MF.getFunction()->getAttributes().
|
|
hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize);
|
|
if (Subtarget->isThumb()) {
|
|
if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
|
|
CallOpc = ARMISD::CALL_NOLINK;
|
|
else
|
|
CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
|
|
} else {
|
|
if (!isDirect && !Subtarget->hasV5TOps())
|
|
CallOpc = ARMISD::CALL_NOLINK;
|
|
else if (doesNotRet && isDirect && Subtarget->hasRAS() &&
|
|
// Emit regular call when code size is the priority
|
|
!HasMinSizeAttr)
|
|
// "mov lr, pc; b _foo" to avoid confusing the RSP
|
|
CallOpc = ARMISD::CALL_NOLINK;
|
|
else
|
|
CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
|
|
}
|
|
|
|
std::vector<SDValue> Ops;
|
|
Ops.push_back(Chain);
|
|
Ops.push_back(Callee);
|
|
|
|
// Add argument registers to the end of the list so that they are known live
|
|
// into the call.
|
|
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
|
|
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
|
|
RegsToPass[i].second.getValueType()));
|
|
|
|
// Add a register mask operand representing the call-preserved registers.
|
|
const uint32_t *Mask;
|
|
const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
|
|
const ARMBaseRegisterInfo *ARI = static_cast<const ARMBaseRegisterInfo*>(TRI);
|
|
if (isThisReturn) {
|
|
// For 'this' returns, use the R0-preserving mask if applicable
|
|
Mask = ARI->getThisReturnPreservedMask(CallConv);
|
|
if (!Mask) {
|
|
// Set isThisReturn to false if the calling convention is not one that
|
|
// allows 'returned' to be modeled in this way, so LowerCallResult does
|
|
// not try to pass 'this' straight through
|
|
isThisReturn = false;
|
|
Mask = ARI->getCallPreservedMask(CallConv);
|
|
}
|
|
} else
|
|
Mask = ARI->getCallPreservedMask(CallConv);
|
|
|
|
assert(Mask && "Missing call preserved mask for calling convention");
|
|
Ops.push_back(DAG.getRegisterMask(Mask));
|
|
|
|
if (InFlag.getNode())
|
|
Ops.push_back(InFlag);
|
|
|
|
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
if (isTailCall)
|
|
return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size());
|
|
|
|
// Returns a chain and a flag for retval copy to use.
|
|
Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
|
|
InFlag = Chain.getValue(1);
|
|
|
|
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
|
|
DAG.getIntPtrConstant(0, true), InFlag, dl);
|
|
if (!Ins.empty())
|
|
InFlag = Chain.getValue(1);
|
|
|
|
// Handle result values, copying them out of physregs into vregs that we
|
|
// return.
|
|
return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
|
|
InVals, isThisReturn,
|
|
isThisReturn ? OutVals[0] : SDValue());
|
|
}
|
|
|
|
/// HandleByVal - Every parameter *after* a byval parameter is passed
|
|
/// on the stack. Remember the next parameter register to allocate,
|
|
/// and then confiscate the rest of the parameter registers to insure
|
|
/// this.
|
|
void
|
|
ARMTargetLowering::HandleByVal(
|
|
CCState *State, unsigned &size, unsigned Align) const {
|
|
unsigned reg = State->AllocateReg(GPRArgRegs, 4);
|
|
assert((State->getCallOrPrologue() == Prologue ||
|
|
State->getCallOrPrologue() == Call) &&
|
|
"unhandled ParmContext");
|
|
|
|
// For in-prologue parameters handling, we also introduce stack offset
|
|
// for byval registers: see CallingConvLower.cpp, CCState::HandleByVal.
|
|
// This behaviour outsides AAPCS rules (5.5 Parameters Passing) of how
|
|
// NSAA should be evaluted (NSAA means "next stacked argument address").
|
|
// So: NextStackOffset = NSAAOffset + SizeOfByValParamsStoredInRegs.
|
|
// Then: NSAAOffset = NextStackOffset - SizeOfByValParamsStoredInRegs.
|
|
unsigned NSAAOffset = State->getNextStackOffset();
|
|
if (State->getCallOrPrologue() != Call) {
|
|
for (unsigned i = 0, e = State->getInRegsParamsCount(); i != e; ++i) {
|
|
unsigned RB, RE;
|
|
State->getInRegsParamInfo(i, RB, RE);
|
|
assert(NSAAOffset >= (RE-RB)*4 &&
|
|
"Stack offset for byval regs doesn't introduced anymore?");
|
|
NSAAOffset -= (RE-RB)*4;
|
|
}
|
|
}
|
|
if ((ARM::R0 <= reg) && (reg <= ARM::R3)) {
|
|
if (Subtarget->isAAPCS_ABI() && Align > 4) {
|
|
unsigned AlignInRegs = Align / 4;
|
|
unsigned Waste = (ARM::R4 - reg) % AlignInRegs;
|
|
for (unsigned i = 0; i < Waste; ++i)
|
|
reg = State->AllocateReg(GPRArgRegs, 4);
|
|
}
|
|
if (reg != 0) {
|
|
unsigned excess = 4 * (ARM::R4 - reg);
|
|
|
|
// Special case when NSAA != SP and parameter size greater than size of
|
|
// all remained GPR regs. In that case we can't split parameter, we must
|
|
// send it to stack. We also must set NCRN to R4, so waste all
|
|
// remained registers.
|
|
if (Subtarget->isAAPCS_ABI() && NSAAOffset != 0 && size > excess) {
|
|
while (State->AllocateReg(GPRArgRegs, 4))
|
|
;
|
|
return;
|
|
}
|
|
|
|
// First register for byval parameter is the first register that wasn't
|
|
// allocated before this method call, so it would be "reg".
|
|
// If parameter is small enough to be saved in range [reg, r4), then
|
|
// the end (first after last) register would be reg + param-size-in-regs,
|
|
// else parameter would be splitted between registers and stack,
|
|
// end register would be r4 in this case.
|
|
unsigned ByValRegBegin = reg;
|
|
unsigned ByValRegEnd = (size < excess) ? reg + size/4 : (unsigned)ARM::R4;
|
|
State->addInRegsParamInfo(ByValRegBegin, ByValRegEnd);
|
|
// Note, first register is allocated in the beginning of function already,
|
|
// allocate remained amount of registers we need.
|
|
for (unsigned i = reg+1; i != ByValRegEnd; ++i)
|
|
State->AllocateReg(GPRArgRegs, 4);
|
|
// At a call site, a byval parameter that is split between
|
|
// registers and memory needs its size truncated here. In a
|
|
// function prologue, such byval parameters are reassembled in
|
|
// memory, and are not truncated.
|
|
if (State->getCallOrPrologue() == Call) {
|
|
// Make remained size equal to 0 in case, when
|
|
// the whole structure may be stored into registers.
|
|
if (size < excess)
|
|
size = 0;
|
|
else
|
|
size -= excess;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// MatchingStackOffset - Return true if the given stack call argument is
|
|
/// already available in the same position (relatively) of the caller's
|
|
/// incoming argument stack.
|
|
static
|
|
bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
|
|
MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
|
|
const TargetInstrInfo *TII) {
|
|
unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
|
|
int FI = INT_MAX;
|
|
if (Arg.getOpcode() == ISD::CopyFromReg) {
|
|
unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
|
|
if (!TargetRegisterInfo::isVirtualRegister(VR))
|
|
return false;
|
|
MachineInstr *Def = MRI->getVRegDef(VR);
|
|
if (!Def)
|
|
return false;
|
|
if (!Flags.isByVal()) {
|
|
if (!TII->isLoadFromStackSlot(Def, FI))
|
|
return false;
|
|
} else {
|
|
return false;
|
|
}
|
|
} else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
|
|
if (Flags.isByVal())
|
|
// ByVal argument is passed in as a pointer but it's now being
|
|
// dereferenced. e.g.
|
|
// define @foo(%struct.X* %A) {
|
|
// tail call @bar(%struct.X* byval %A)
|
|
// }
|
|
return false;
|
|
SDValue Ptr = Ld->getBasePtr();
|
|
FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
|
|
if (!FINode)
|
|
return false;
|
|
FI = FINode->getIndex();
|
|
} else
|
|
return false;
|
|
|
|
assert(FI != INT_MAX);
|
|
if (!MFI->isFixedObjectIndex(FI))
|
|
return false;
|
|
return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
|
|
}
|
|
|
|
/// IsEligibleForTailCallOptimization - Check whether the call is eligible
|
|
/// for tail call optimization. Targets which want to do tail call
|
|
/// optimization should implement this function.
|
|
bool
|
|
ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
|
|
CallingConv::ID CalleeCC,
|
|
bool isVarArg,
|
|
bool isCalleeStructRet,
|
|
bool isCallerStructRet,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals,
|
|
const SmallVectorImpl<ISD::InputArg> &Ins,
|
|
SelectionDAG& DAG) const {
|
|
const Function *CallerF = DAG.getMachineFunction().getFunction();
|
|
CallingConv::ID CallerCC = CallerF->getCallingConv();
|
|
bool CCMatch = CallerCC == CalleeCC;
|
|
|
|
// Look for obvious safe cases to perform tail call optimization that do not
|
|
// require ABI changes. This is what gcc calls sibcall.
|
|
|
|
// Do not sibcall optimize vararg calls unless the call site is not passing
|
|
// any arguments.
|
|
if (isVarArg && !Outs.empty())
|
|
return false;
|
|
|
|
// Also avoid sibcall optimization if either caller or callee uses struct
|
|
// return semantics.
|
|
if (isCalleeStructRet || isCallerStructRet)
|
|
return false;
|
|
|
|
// FIXME: Completely disable sibcall for Thumb1 since Thumb1RegisterInfo::
|
|
// emitEpilogue is not ready for them. Thumb tail calls also use t2B, as
|
|
// the Thumb1 16-bit unconditional branch doesn't have sufficient relocation
|
|
// support in the assembler and linker to be used. This would need to be
|
|
// fixed to fully support tail calls in Thumb1.
|
|
//
|
|
// Doing this is tricky, since the LDM/POP instruction on Thumb doesn't take
|
|
// LR. This means if we need to reload LR, it takes an extra instructions,
|
|
// which outweighs the value of the tail call; but here we don't know yet
|
|
// whether LR is going to be used. Probably the right approach is to
|
|
// generate the tail call here and turn it back into CALL/RET in
|
|
// emitEpilogue if LR is used.
|
|
|
|
// Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
|
|
// but we need to make sure there are enough registers; the only valid
|
|
// registers are the 4 used for parameters. We don't currently do this
|
|
// case.
|
|
if (Subtarget->isThumb1Only())
|
|
return false;
|
|
|
|
// If the calling conventions do not match, then we'd better make sure the
|
|
// results are returned in the same way as what the caller expects.
|
|
if (!CCMatch) {
|
|
SmallVector<CCValAssign, 16> RVLocs1;
|
|
ARMCCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(),
|
|
getTargetMachine(), RVLocs1, *DAG.getContext(), Call);
|
|
CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
|
|
|
|
SmallVector<CCValAssign, 16> RVLocs2;
|
|
ARMCCState CCInfo2(CallerCC, false, DAG.getMachineFunction(),
|
|
getTargetMachine(), RVLocs2, *DAG.getContext(), Call);
|
|
CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
|
|
|
|
if (RVLocs1.size() != RVLocs2.size())
|
|
return false;
|
|
for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
|
|
if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
|
|
return false;
|
|
if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
|
|
return false;
|
|
if (RVLocs1[i].isRegLoc()) {
|
|
if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
|
|
return false;
|
|
} else {
|
|
if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If Caller's vararg or byval argument has been split between registers and
|
|
// stack, do not perform tail call, since part of the argument is in caller's
|
|
// local frame.
|
|
const ARMFunctionInfo *AFI_Caller = DAG.getMachineFunction().
|
|
getInfo<ARMFunctionInfo>();
|
|
if (AFI_Caller->getArgRegsSaveSize())
|
|
return false;
|
|
|
|
// If the callee takes no arguments then go on to check the results of the
|
|
// call.
|
|
if (!Outs.empty()) {
|
|
// Check if stack adjustment is needed. For now, do not do this if any
|
|
// argument is passed on the stack.
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
ARMCCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(),
|
|
getTargetMachine(), ArgLocs, *DAG.getContext(), Call);
|
|
CCInfo.AnalyzeCallOperands(Outs,
|
|
CCAssignFnForNode(CalleeCC, false, isVarArg));
|
|
if (CCInfo.getNextStackOffset()) {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
|
|
// Check if the arguments are already laid out in the right way as
|
|
// the caller's fixed stack objects.
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
const MachineRegisterInfo *MRI = &MF.getRegInfo();
|
|
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
|
|
for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
|
|
i != e;
|
|
++i, ++realArgIdx) {
|
|
CCValAssign &VA = ArgLocs[i];
|
|
EVT RegVT = VA.getLocVT();
|
|
SDValue Arg = OutVals[realArgIdx];
|
|
ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
|
|
if (VA.getLocInfo() == CCValAssign::Indirect)
|
|
return false;
|
|
if (VA.needsCustom()) {
|
|
// f64 and vector types are split into multiple registers or
|
|
// register/stack-slot combinations. The types will not match
|
|
// the registers; give up on memory f64 refs until we figure
|
|
// out what to do about this.
|
|
if (!VA.isRegLoc())
|
|
return false;
|
|
if (!ArgLocs[++i].isRegLoc())
|
|
return false;
|
|
if (RegVT == MVT::v2f64) {
|
|
if (!ArgLocs[++i].isRegLoc())
|
|
return false;
|
|
if (!ArgLocs[++i].isRegLoc())
|
|
return false;
|
|
}
|
|
} else if (!VA.isRegLoc()) {
|
|
if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
|
|
MFI, MRI, TII))
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
|
|
MachineFunction &MF, bool isVarArg,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
LLVMContext &Context) const {
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(), RVLocs, Context);
|
|
return CCInfo.CheckReturn(Outs, CCAssignFnForNode(CallConv, /*Return=*/true,
|
|
isVarArg));
|
|
}
|
|
|
|
SDValue
|
|
ARMTargetLowering::LowerReturn(SDValue Chain,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::OutputArg> &Outs,
|
|
const SmallVectorImpl<SDValue> &OutVals,
|
|
SDLoc dl, SelectionDAG &DAG) const {
|
|
|
|
// CCValAssign - represent the assignment of the return value to a location.
|
|
SmallVector<CCValAssign, 16> RVLocs;
|
|
|
|
// CCState - Info about the registers and stack slots.
|
|
ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
|
|
getTargetMachine(), RVLocs, *DAG.getContext(), Call);
|
|
|
|
// Analyze outgoing return values.
|
|
CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
|
|
isVarArg));
|
|
|
|
SDValue Flag;
|
|
SmallVector<SDValue, 4> RetOps;
|
|
RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
|
|
|
|
// Copy the result values into the output registers.
|
|
for (unsigned i = 0, realRVLocIdx = 0;
|
|
i != RVLocs.size();
|
|
++i, ++realRVLocIdx) {
|
|
CCValAssign &VA = RVLocs[i];
|
|
assert(VA.isRegLoc() && "Can only return in registers!");
|
|
|
|
SDValue Arg = OutVals[realRVLocIdx];
|
|
|
|
switch (VA.getLocInfo()) {
|
|
default: llvm_unreachable("Unknown loc info!");
|
|
case CCValAssign::Full: break;
|
|
case CCValAssign::BCvt:
|
|
Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
|
|
break;
|
|
}
|
|
|
|
if (VA.needsCustom()) {
|
|
if (VA.getLocVT() == MVT::v2f64) {
|
|
// Extract the first half and return it in two registers.
|
|
SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
|
|
DAG.getConstant(0, MVT::i32));
|
|
SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
|
|
DAG.getVTList(MVT::i32, MVT::i32), Half);
|
|
|
|
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag);
|
|
Flag = Chain.getValue(1);
|
|
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
|
|
VA = RVLocs[++i]; // skip ahead to next loc
|
|
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
|
|
HalfGPRs.getValue(1), Flag);
|
|
Flag = Chain.getValue(1);
|
|
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
|
|
VA = RVLocs[++i]; // skip ahead to next loc
|
|
|
|
// Extract the 2nd half and fall through to handle it as an f64 value.
|
|
Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
|
|
DAG.getConstant(1, MVT::i32));
|
|
}
|
|
// Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is
|
|
// available.
|
|
SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
|
|
DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1);
|
|
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag);
|
|
Flag = Chain.getValue(1);
|
|
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
|
|
VA = RVLocs[++i]; // skip ahead to next loc
|
|
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1),
|
|
Flag);
|
|
} else
|
|
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
|
|
|
|
// Guarantee that all emitted copies are
|
|
// stuck together, avoiding something bad.
|
|
Flag = Chain.getValue(1);
|
|
RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
|
|
}
|
|
|
|
// Update chain and glue.
|
|
RetOps[0] = Chain;
|
|
if (Flag.getNode())
|
|
RetOps.push_back(Flag);
|
|
|
|
return DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other,
|
|
RetOps.data(), RetOps.size());
|
|
}
|
|
|
|
bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
|
|
if (N->getNumValues() != 1)
|
|
return false;
|
|
if (!N->hasNUsesOfValue(1, 0))
|
|
return false;
|
|
|
|
SDValue TCChain = Chain;
|
|
SDNode *Copy = *N->use_begin();
|
|
if (Copy->getOpcode() == ISD::CopyToReg) {
|
|
// If the copy has a glue operand, we conservatively assume it isn't safe to
|
|
// perform a tail call.
|
|
if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
|
|
return false;
|
|
TCChain = Copy->getOperand(0);
|
|
} else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
|
|
SDNode *VMov = Copy;
|
|
// f64 returned in a pair of GPRs.
|
|
SmallPtrSet<SDNode*, 2> Copies;
|
|
for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
|
|
UI != UE; ++UI) {
|
|
if (UI->getOpcode() != ISD::CopyToReg)
|
|
return false;
|
|
Copies.insert(*UI);
|
|
}
|
|
if (Copies.size() > 2)
|
|
return false;
|
|
|
|
for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
|
|
UI != UE; ++UI) {
|
|
SDValue UseChain = UI->getOperand(0);
|
|
if (Copies.count(UseChain.getNode()))
|
|
// Second CopyToReg
|
|
Copy = *UI;
|
|
else
|
|
// First CopyToReg
|
|
TCChain = UseChain;
|
|
}
|
|
} else if (Copy->getOpcode() == ISD::BITCAST) {
|
|
// f32 returned in a single GPR.
|
|
if (!Copy->hasOneUse())
|
|
return false;
|
|
Copy = *Copy->use_begin();
|
|
if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
|
|
return false;
|
|
TCChain = Copy->getOperand(0);
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
bool HasRet = false;
|
|
for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
|
|
UI != UE; ++UI) {
|
|
if (UI->getOpcode() != ARMISD::RET_FLAG)
|
|
return false;
|
|
HasRet = true;
|
|
}
|
|
|
|
if (!HasRet)
|
|
return false;
|
|
|
|
Chain = TCChain;
|
|
return true;
|
|
}
|
|
|
|
bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
|
|
if (!EnableARMTailCalls && !Subtarget->supportsTailCall())
|
|
return false;
|
|
|
|
if (!CI->isTailCall())
|
|
return false;
|
|
|
|
return !Subtarget->isThumb1Only();
|
|
}
|
|
|
|
// ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
|
|
// their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
|
|
// one of the above mentioned nodes. It has to be wrapped because otherwise
|
|
// Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
|
|
// be used to form addressing mode. These wrapped nodes will be selected
|
|
// into MOVi.
|
|
static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
|
|
EVT PtrVT = Op.getValueType();
|
|
// FIXME there is no actual debug info here
|
|
SDLoc dl(Op);
|
|
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
|
|
SDValue Res;
|
|
if (CP->isMachineConstantPoolEntry())
|
|
Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
|
|
CP->getAlignment());
|
|
else
|
|
Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
|
|
CP->getAlignment());
|
|
return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
|
|
}
|
|
|
|
unsigned ARMTargetLowering::getJumpTableEncoding() const {
|
|
return MachineJumpTableInfo::EK_Inline;
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
|
|
unsigned ARMPCLabelIndex = 0;
|
|
SDLoc DL(Op);
|
|
EVT PtrVT = getPointerTy();
|
|
const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
|
|
Reloc::Model RelocM = getTargetMachine().getRelocationModel();
|
|
SDValue CPAddr;
|
|
if (RelocM == Reloc::Static) {
|
|
CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
|
|
} else {
|
|
unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
|
|
ARMPCLabelIndex = AFI->createPICLabelUId();
|
|
ARMConstantPoolValue *CPV =
|
|
ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
|
|
ARMCP::CPBlockAddress, PCAdj);
|
|
CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
|
|
}
|
|
CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
|
|
SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
|
|
MachinePointerInfo::getConstantPool(),
|
|
false, false, false, 0);
|
|
if (RelocM == Reloc::Static)
|
|
return Result;
|
|
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
|
|
return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
|
|
}
|
|
|
|
// Lower ISD::GlobalTLSAddress using the "general dynamic" model
|
|
SDValue
|
|
ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc dl(GA);
|
|
EVT PtrVT = getPointerTy();
|
|
unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
|
|
unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
|
|
ARMConstantPoolValue *CPV =
|
|
ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
|
|
ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
|
|
SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
|
|
Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
|
|
Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
|
|
MachinePointerInfo::getConstantPool(),
|
|
false, false, false, 0);
|
|
SDValue Chain = Argument.getValue(1);
|
|
|
|
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
|
|
Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
|
|
|
|
// call __tls_get_addr.
|
|
ArgListTy Args;
|
|
ArgListEntry Entry;
|
|
Entry.Node = Argument;
|
|
Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
|
|
Args.push_back(Entry);
|
|
// FIXME: is there useful debug info available here?
|
|
TargetLowering::CallLoweringInfo CLI(Chain,
|
|
(Type *) Type::getInt32Ty(*DAG.getContext()),
|
|
false, false, false, false,
|
|
0, CallingConv::C, /*isTailCall=*/false,
|
|
/*doesNotRet=*/false, /*isReturnValueUsed=*/true,
|
|
DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl);
|
|
std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
|
|
return CallResult.first;
|
|
}
|
|
|
|
// Lower ISD::GlobalTLSAddress using the "initial exec" or
|
|
// "local exec" model.
|
|
SDValue
|
|
ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
|
|
SelectionDAG &DAG,
|
|
TLSModel::Model model) const {
|
|
const GlobalValue *GV = GA->getGlobal();
|
|
SDLoc dl(GA);
|
|
SDValue Offset;
|
|
SDValue Chain = DAG.getEntryNode();
|
|
EVT PtrVT = getPointerTy();
|
|
// Get the Thread Pointer
|
|
SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
|
|
|
|
if (model == TLSModel::InitialExec) {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
|
|
unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
|
|
// Initial exec model.
|
|
unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
|
|
ARMConstantPoolValue *CPV =
|
|
ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
|
|
ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
|
|
true);
|
|
Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
|
|
Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
|
|
Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
|
|
MachinePointerInfo::getConstantPool(),
|
|
false, false, false, 0);
|
|
Chain = Offset.getValue(1);
|
|
|
|
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
|
|
Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
|
|
|
|
Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
|
|
MachinePointerInfo::getConstantPool(),
|
|
false, false, false, 0);
|
|
} else {
|
|
// local exec model
|
|
assert(model == TLSModel::LocalExec);
|
|
ARMConstantPoolValue *CPV =
|
|
ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
|
|
Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
|
|
Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
|
|
Offset = DAG.getLoad(PtrVT, dl, Chain, Offset,
|
|
MachinePointerInfo::getConstantPool(),
|
|
false, false, false, 0);
|
|
}
|
|
|
|
// The address of the thread local variable is the add of the thread
|
|
// pointer with the offset of the variable.
|
|
return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
|
|
}
|
|
|
|
SDValue
|
|
ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
|
|
// TODO: implement the "local dynamic" model
|
|
assert(Subtarget->isTargetELF() &&
|
|
"TLS not implemented for non-ELF targets");
|
|
GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
|
|
|
|
TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
|
|
|
|
switch (model) {
|
|
case TLSModel::GeneralDynamic:
|
|
case TLSModel::LocalDynamic:
|
|
return LowerToTLSGeneralDynamicModel(GA, DAG);
|
|
case TLSModel::InitialExec:
|
|
case TLSModel::LocalExec:
|
|
return LowerToTLSExecModels(GA, DAG, model);
|
|
}
|
|
llvm_unreachable("bogus TLS model");
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
EVT PtrVT = getPointerTy();
|
|
SDLoc dl(Op);
|
|
const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
|
|
if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
|
|
bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility();
|
|
ARMConstantPoolValue *CPV =
|
|
ARMConstantPoolConstant::Create(GV,
|
|
UseGOTOFF ? ARMCP::GOTOFF : ARMCP::GOT);
|
|
SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
|
|
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
|
|
SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
|
|
CPAddr,
|
|
MachinePointerInfo::getConstantPool(),
|
|
false, false, false, 0);
|
|
SDValue Chain = Result.getValue(1);
|
|
SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT);
|
|
Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT);
|
|
if (!UseGOTOFF)
|
|
Result = DAG.getLoad(PtrVT, dl, Chain, Result,
|
|
MachinePointerInfo::getGOT(),
|
|
false, false, false, 0);
|
|
return Result;
|
|
}
|
|
|
|
// If we have T2 ops, we can materialize the address directly via movt/movw
|
|
// pair. This is always cheaper.
|
|
if (Subtarget->useMovt()) {
|
|
++NumMovwMovt;
|
|
// FIXME: Once remat is capable of dealing with instructions with register
|
|
// operands, expand this into two nodes.
|
|
return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
|
|
DAG.getTargetGlobalAddress(GV, dl, PtrVT));
|
|
} else {
|
|
SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
|
|
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
|
|
return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
|
|
MachinePointerInfo::getConstantPool(),
|
|
false, false, false, 0);
|
|
}
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
EVT PtrVT = getPointerTy();
|
|
SDLoc dl(Op);
|
|
const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
|
|
Reloc::Model RelocM = getTargetMachine().getRelocationModel();
|
|
|
|
// FIXME: Enable this for static codegen when tool issues are fixed. Also
|
|
// update ARMFastISel::ARMMaterializeGV.
|
|
if (Subtarget->useMovt() && RelocM != Reloc::Static) {
|
|
++NumMovwMovt;
|
|
// FIXME: Once remat is capable of dealing with instructions with register
|
|
// operands, expand this into two nodes.
|
|
if (RelocM == Reloc::Static)
|
|
return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
|
|
DAG.getTargetGlobalAddress(GV, dl, PtrVT));
|
|
|
|
unsigned Wrapper = (RelocM == Reloc::PIC_)
|
|
? ARMISD::WrapperPIC : ARMISD::WrapperDYN;
|
|
SDValue Result = DAG.getNode(Wrapper, dl, PtrVT,
|
|
DAG.getTargetGlobalAddress(GV, dl, PtrVT));
|
|
if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
|
|
Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
|
|
MachinePointerInfo::getGOT(),
|
|
false, false, false, 0);
|
|
return Result;
|
|
}
|
|
|
|
unsigned ARMPCLabelIndex = 0;
|
|
SDValue CPAddr;
|
|
if (RelocM == Reloc::Static) {
|
|
CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
|
|
} else {
|
|
ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
|
|
ARMPCLabelIndex = AFI->createPICLabelUId();
|
|
unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8);
|
|
ARMConstantPoolValue *CPV =
|
|
ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue,
|
|
PCAdj);
|
|
CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
|
|
}
|
|
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
|
|
|
|
SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
|
|
MachinePointerInfo::getConstantPool(),
|
|
false, false, false, 0);
|
|
SDValue Chain = Result.getValue(1);
|
|
|
|
if (RelocM == Reloc::PIC_) {
|
|
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
|
|
Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
|
|
}
|
|
|
|
if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
|
|
Result = DAG.getLoad(PtrVT, dl, Chain, Result, MachinePointerInfo::getGOT(),
|
|
false, false, false, 0);
|
|
|
|
return Result;
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
assert(Subtarget->isTargetELF() &&
|
|
"GLOBAL OFFSET TABLE not implemented for non-ELF targets");
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
|
|
unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
|
|
EVT PtrVT = getPointerTy();
|
|
SDLoc dl(Op);
|
|
unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
|
|
ARMConstantPoolValue *CPV =
|
|
ARMConstantPoolSymbol::Create(*DAG.getContext(), "_GLOBAL_OFFSET_TABLE_",
|
|
ARMPCLabelIndex, PCAdj);
|
|
SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
|
|
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
|
|
SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
|
|
MachinePointerInfo::getConstantPool(),
|
|
false, false, false, 0);
|
|
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
|
|
return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
|
|
}
|
|
|
|
SDValue
|
|
ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
|
|
SDLoc dl(Op);
|
|
SDValue Val = DAG.getConstant(0, MVT::i32);
|
|
return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
|
|
DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
|
|
Op.getOperand(1), Val);
|
|
}
|
|
|
|
SDValue
|
|
ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
|
|
SDLoc dl(Op);
|
|
return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
|
|
Op.getOperand(1), DAG.getConstant(0, MVT::i32));
|
|
}
|
|
|
|
SDValue
|
|
ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
|
|
const ARMSubtarget *Subtarget) const {
|
|
unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
|
|
SDLoc dl(Op);
|
|
switch (IntNo) {
|
|
default: return SDValue(); // Don't custom lower most intrinsics.
|
|
case Intrinsic::arm_thread_pointer: {
|
|
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
|
return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
|
|
}
|
|
case Intrinsic::eh_sjlj_lsda: {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
|
|
unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
|
|
EVT PtrVT = getPointerTy();
|
|
Reloc::Model RelocM = getTargetMachine().getRelocationModel();
|
|
SDValue CPAddr;
|
|
unsigned PCAdj = (RelocM != Reloc::PIC_)
|
|
? 0 : (Subtarget->isThumb() ? 4 : 8);
|
|
ARMConstantPoolValue *CPV =
|
|
ARMConstantPoolConstant::Create(MF.getFunction(), ARMPCLabelIndex,
|
|
ARMCP::CPLSDA, PCAdj);
|
|
CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
|
|
CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
|
|
SDValue Result =
|
|
DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr,
|
|
MachinePointerInfo::getConstantPool(),
|
|
false, false, false, 0);
|
|
|
|
if (RelocM == Reloc::PIC_) {
|
|
SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32);
|
|
Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
|
|
}
|
|
return Result;
|
|
}
|
|
case Intrinsic::arm_neon_vmulls:
|
|
case Intrinsic::arm_neon_vmullu: {
|
|
unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
|
|
? ARMISD::VMULLs : ARMISD::VMULLu;
|
|
return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
|
|
Op.getOperand(1), Op.getOperand(2));
|
|
}
|
|
}
|
|
}
|
|
|
|
static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
|
|
const ARMSubtarget *Subtarget) {
|
|
// FIXME: handle "fence singlethread" more efficiently.
|
|
SDLoc dl(Op);
|
|
if (!Subtarget->hasDataBarrier()) {
|
|
// Some ARMv6 cpus can support data barriers with an mcr instruction.
|
|
// Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
|
|
// here.
|
|
assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
|
|
"Unexpected ISD::MEMBARRIER encountered. Should be libcall!");
|
|
return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
|
|
DAG.getConstant(0, MVT::i32));
|
|
}
|
|
|
|
ConstantSDNode *OrdN = cast<ConstantSDNode>(Op.getOperand(1));
|
|
AtomicOrdering Ord = static_cast<AtomicOrdering>(OrdN->getZExtValue());
|
|
unsigned Domain = ARM_MB::ISH;
|
|
if (Subtarget->isSwift() && Ord == Release) {
|
|
// Swift happens to implement ISHST barriers in a way that's compatible with
|
|
// Release semantics but weaker than ISH so we'd be fools not to use
|
|
// it. Beware: other processors probably don't!
|
|
Domain = ARM_MB::ISHST;
|
|
}
|
|
|
|
return DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
|
|
DAG.getConstant(Domain, MVT::i32));
|
|
}
|
|
|
|
static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
|
|
const ARMSubtarget *Subtarget) {
|
|
// ARM pre v5TE and Thumb1 does not have preload instructions.
|
|
if (!(Subtarget->isThumb2() ||
|
|
(!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
|
|
// Just preserve the chain.
|
|
return Op.getOperand(0);
|
|
|
|
SDLoc dl(Op);
|
|
unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
|
|
if (!isRead &&
|
|
(!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
|
|
// ARMv7 with MP extension has PLDW.
|
|
return Op.getOperand(0);
|
|
|
|
unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
|
|
if (Subtarget->isThumb()) {
|
|
// Invert the bits.
|
|
isRead = ~isRead & 1;
|
|
isData = ~isData & 1;
|
|
}
|
|
|
|
return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
|
|
Op.getOperand(1), DAG.getConstant(isRead, MVT::i32),
|
|
DAG.getConstant(isData, MVT::i32));
|
|
}
|
|
|
|
static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
|
|
|
|
// vastart just stores the address of the VarArgsFrameIndex slot into the
|
|
// memory location argument.
|
|
SDLoc dl(Op);
|
|
EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
|
|
SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
|
|
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
|
|
return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
|
|
MachinePointerInfo(SV), false, false, 0);
|
|
}
|
|
|
|
SDValue
|
|
ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
|
|
SDValue &Root, SelectionDAG &DAG,
|
|
SDLoc dl) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
|
|
|
|
const TargetRegisterClass *RC;
|
|
if (AFI->isThumb1OnlyFunction())
|
|
RC = &ARM::tGPRRegClass;
|
|
else
|
|
RC = &ARM::GPRRegClass;
|
|
|
|
// Transform the arguments stored in physical registers into virtual ones.
|
|
unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
|
|
SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
|
|
|
|
SDValue ArgValue2;
|
|
if (NextVA.isMemLoc()) {
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
|
|
|
|
// Create load node to retrieve arguments from the stack.
|
|
SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
|
|
ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN,
|
|
MachinePointerInfo::getFixedStack(FI),
|
|
false, false, false, 0);
|
|
} else {
|
|
Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
|
|
ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
|
|
}
|
|
|
|
return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
|
|
}
|
|
|
|
void
|
|
ARMTargetLowering::computeRegArea(CCState &CCInfo, MachineFunction &MF,
|
|
unsigned InRegsParamRecordIdx,
|
|
unsigned ArgSize,
|
|
unsigned &ArgRegsSize,
|
|
unsigned &ArgRegsSaveSize)
|
|
const {
|
|
unsigned NumGPRs;
|
|
if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) {
|
|
unsigned RBegin, REnd;
|
|
CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd);
|
|
NumGPRs = REnd - RBegin;
|
|
} else {
|
|
unsigned int firstUnalloced;
|
|
firstUnalloced = CCInfo.getFirstUnallocated(GPRArgRegs,
|
|
sizeof(GPRArgRegs) /
|
|
sizeof(GPRArgRegs[0]));
|
|
NumGPRs = (firstUnalloced <= 3) ? (4 - firstUnalloced) : 0;
|
|
}
|
|
|
|
unsigned Align = MF.getTarget().getFrameLowering()->getStackAlignment();
|
|
ArgRegsSize = NumGPRs * 4;
|
|
|
|
// If parameter is split between stack and GPRs...
|
|
if (NumGPRs && Align == 8 &&
|
|
(ArgRegsSize < ArgSize ||
|
|
InRegsParamRecordIdx >= CCInfo.getInRegsParamsCount())) {
|
|
// Add padding for part of param recovered from GPRs, so
|
|
// its last byte must be at address K*8 - 1.
|
|
// We need to do it, since remained (stack) part of parameter has
|
|
// stack alignment, and we need to "attach" "GPRs head" without gaps
|
|
// to it:
|
|
// Stack:
|
|
// |---- 8 bytes block ----| |---- 8 bytes block ----| |---- 8 bytes...
|
|
// [ [padding] [GPRs head] ] [ Tail passed via stack ....
|
|
//
|
|
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
|
|
unsigned Padding =
|
|
((ArgRegsSize + AFI->getArgRegsSaveSize() + Align - 1) & ~(Align-1)) -
|
|
(ArgRegsSize + AFI->getArgRegsSaveSize());
|
|
ArgRegsSaveSize = ArgRegsSize + Padding;
|
|
} else
|
|
// We don't need to extend regs save size for byval parameters if they
|
|
// are passed via GPRs only.
|
|
ArgRegsSaveSize = ArgRegsSize;
|
|
}
|
|
|
|
// The remaining GPRs hold either the beginning of variable-argument
|
|
// data, or the beginning of an aggregate passed by value (usually
|
|
// byval). Either way, we allocate stack slots adjacent to the data
|
|
// provided by our caller, and store the unallocated registers there.
|
|
// If this is a variadic function, the va_list pointer will begin with
|
|
// these values; otherwise, this reassembles a (byval) structure that
|
|
// was split between registers and memory.
|
|
// Return: The frame index registers were stored into.
|
|
int
|
|
ARMTargetLowering::StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG,
|
|
SDLoc dl, SDValue &Chain,
|
|
const Value *OrigArg,
|
|
unsigned InRegsParamRecordIdx,
|
|
unsigned OffsetFromOrigArg,
|
|
unsigned ArgOffset,
|
|
unsigned ArgSize,
|
|
bool ForceMutable) const {
|
|
|
|
// Currently, two use-cases possible:
|
|
// Case #1. Non var-args function, and we meet first byval parameter.
|
|
// Setup first unallocated register as first byval register;
|
|
// eat all remained registers
|
|
// (these two actions are performed by HandleByVal method).
|
|
// Then, here, we initialize stack frame with
|
|
// "store-reg" instructions.
|
|
// Case #2. Var-args function, that doesn't contain byval parameters.
|
|
// The same: eat all remained unallocated registers,
|
|
// initialize stack frame.
|
|
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
|
|
unsigned firstRegToSaveIndex, lastRegToSaveIndex;
|
|
unsigned RBegin, REnd;
|
|
if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) {
|
|
CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd);
|
|
firstRegToSaveIndex = RBegin - ARM::R0;
|
|
lastRegToSaveIndex = REnd - ARM::R0;
|
|
} else {
|
|
firstRegToSaveIndex = CCInfo.getFirstUnallocated
|
|
(GPRArgRegs, array_lengthof(GPRArgRegs));
|
|
lastRegToSaveIndex = 4;
|
|
}
|
|
|
|
unsigned ArgRegsSize, ArgRegsSaveSize;
|
|
computeRegArea(CCInfo, MF, InRegsParamRecordIdx, ArgSize,
|
|
ArgRegsSize, ArgRegsSaveSize);
|
|
|
|
// Store any by-val regs to their spots on the stack so that they may be
|
|
// loaded by deferencing the result of formal parameter pointer or va_next.
|
|
// Note: once stack area for byval/varargs registers
|
|
// was initialized, it can't be initialized again.
|
|
if (ArgRegsSaveSize) {
|
|
|
|
unsigned Padding = ArgRegsSaveSize - ArgRegsSize;
|
|
|
|
if (Padding) {
|
|
assert(AFI->getStoredByValParamsPadding() == 0 &&
|
|
"The only parameter may be padded.");
|
|
AFI->setStoredByValParamsPadding(Padding);
|
|
}
|
|
|
|
int FrameIndex = MFI->CreateFixedObject(
|
|
ArgRegsSaveSize,
|
|
Padding + ArgOffset,
|
|
false);
|
|
SDValue FIN = DAG.getFrameIndex(FrameIndex, getPointerTy());
|
|
|
|
SmallVector<SDValue, 4> MemOps;
|
|
for (unsigned i = 0; firstRegToSaveIndex < lastRegToSaveIndex;
|
|
++firstRegToSaveIndex, ++i) {
|
|
const TargetRegisterClass *RC;
|
|
if (AFI->isThumb1OnlyFunction())
|
|
RC = &ARM::tGPRRegClass;
|
|
else
|
|
RC = &ARM::GPRRegClass;
|
|
|
|
unsigned VReg = MF.addLiveIn(GPRArgRegs[firstRegToSaveIndex], RC);
|
|
SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
|
|
SDValue Store =
|
|
DAG.getStore(Val.getValue(1), dl, Val, FIN,
|
|
MachinePointerInfo(OrigArg, OffsetFromOrigArg + 4*i),
|
|
false, false, 0);
|
|
MemOps.push_back(Store);
|
|
FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN,
|
|
DAG.getConstant(4, getPointerTy()));
|
|
}
|
|
|
|
AFI->setArgRegsSaveSize(ArgRegsSaveSize + AFI->getArgRegsSaveSize());
|
|
|
|
if (!MemOps.empty())
|
|
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
|
|
&MemOps[0], MemOps.size());
|
|
return FrameIndex;
|
|
} else
|
|
// This will point to the next argument passed via stack.
|
|
return MFI->CreateFixedObject(
|
|
4, AFI->getStoredByValParamsPadding() + ArgOffset, !ForceMutable);
|
|
}
|
|
|
|
// Setup stack frame, the va_list pointer will start from.
|
|
void
|
|
ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
|
|
SDLoc dl, SDValue &Chain,
|
|
unsigned ArgOffset,
|
|
bool ForceMutable) const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
|
|
|
|
// Try to store any remaining integer argument regs
|
|
// to their spots on the stack so that they may be loaded by deferencing
|
|
// the result of va_next.
|
|
// If there is no regs to be stored, just point address after last
|
|
// argument passed via stack.
|
|
int FrameIndex =
|
|
StoreByValRegs(CCInfo, DAG, dl, Chain, 0, CCInfo.getInRegsParamsCount(),
|
|
0, ArgOffset, 0, ForceMutable);
|
|
|
|
AFI->setVarArgsFrameIndex(FrameIndex);
|
|
}
|
|
|
|
SDValue
|
|
ARMTargetLowering::LowerFormalArguments(SDValue Chain,
|
|
CallingConv::ID CallConv, bool isVarArg,
|
|
const SmallVectorImpl<ISD::InputArg>
|
|
&Ins,
|
|
SDLoc dl, SelectionDAG &DAG,
|
|
SmallVectorImpl<SDValue> &InVals)
|
|
const {
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
|
|
ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
|
|
|
|
// Assign locations to all of the incoming arguments.
|
|
SmallVector<CCValAssign, 16> ArgLocs;
|
|
ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
|
|
getTargetMachine(), ArgLocs, *DAG.getContext(), Prologue);
|
|
CCInfo.AnalyzeFormalArguments(Ins,
|
|
CCAssignFnForNode(CallConv, /* Return*/ false,
|
|
isVarArg));
|
|
|
|
SmallVector<SDValue, 16> ArgValues;
|
|
int lastInsIndex = -1;
|
|
SDValue ArgValue;
|
|
Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
|
|
unsigned CurArgIdx = 0;
|
|
|
|
// Initially ArgRegsSaveSize is zero.
|
|
// Then we increase this value each time we meet byval parameter.
|
|
// We also increase this value in case of varargs function.
|
|
AFI->setArgRegsSaveSize(0);
|
|
|
|
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
|
|
CCValAssign &VA = ArgLocs[i];
|
|
std::advance(CurOrigArg, Ins[VA.getValNo()].OrigArgIndex - CurArgIdx);
|
|
CurArgIdx = Ins[VA.getValNo()].OrigArgIndex;
|
|
// Arguments stored in registers.
|
|
if (VA.isRegLoc()) {
|
|
EVT RegVT = VA.getLocVT();
|
|
|
|
if (VA.needsCustom()) {
|
|
// f64 and vector types are split up into multiple registers or
|
|
// combinations of registers and stack slots.
|
|
if (VA.getLocVT() == MVT::v2f64) {
|
|
SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
|
|
Chain, DAG, dl);
|
|
VA = ArgLocs[++i]; // skip ahead to next loc
|
|
SDValue ArgValue2;
|
|
if (VA.isMemLoc()) {
|
|
int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
|
|
SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
|
|
ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN,
|
|
MachinePointerInfo::getFixedStack(FI),
|
|
false, false, false, 0);
|
|
} else {
|
|
ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
|
|
Chain, DAG, dl);
|
|
}
|
|
ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
|
|
ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
|
|
ArgValue, ArgValue1, DAG.getIntPtrConstant(0));
|
|
ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
|
|
ArgValue, ArgValue2, DAG.getIntPtrConstant(1));
|
|
} else
|
|
ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
|
|
|
|
} else {
|
|
const TargetRegisterClass *RC;
|
|
|
|
if (RegVT == MVT::f32)
|
|
RC = &ARM::SPRRegClass;
|
|
else if (RegVT == MVT::f64)
|
|
RC = &ARM::DPRRegClass;
|
|
else if (RegVT == MVT::v2f64)
|
|
RC = &ARM::QPRRegClass;
|
|
else if (RegVT == MVT::i32)
|
|
RC = AFI->isThumb1OnlyFunction() ?
|
|
(const TargetRegisterClass*)&ARM::tGPRRegClass :
|
|
(const TargetRegisterClass*)&ARM::GPRRegClass;
|
|
else
|
|
llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
|
|
|
|
// Transform the arguments in physical registers into virtual ones.
|
|
unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
|
|
ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
|
|
}
|
|
|
|
// If this is an 8 or 16-bit value, it is really passed promoted
|
|
// to 32 bits. Insert an assert[sz]ext to capture this, then
|
|
// truncate to the right size.
|
|
switch (VA.getLocInfo()) {
|
|
default: llvm_unreachable("Unknown loc info!");
|
|
case CCValAssign::Full: break;
|
|
case CCValAssign::BCvt:
|
|
ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
|
|
break;
|
|
case CCValAssign::SExt:
|
|
ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
|
|
DAG.getValueType(VA.getValVT()));
|
|
ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
|
|
break;
|
|
case CCValAssign::ZExt:
|
|
ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
|
|
DAG.getValueType(VA.getValVT()));
|
|
ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
|
|
break;
|
|
}
|
|
|
|
InVals.push_back(ArgValue);
|
|
|
|
} else { // VA.isRegLoc()
|
|
|
|
// sanity check
|
|
assert(VA.isMemLoc());
|
|
assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
|
|
|
|
int index = ArgLocs[i].getValNo();
|
|
|
|
// Some Ins[] entries become multiple ArgLoc[] entries.
|
|
// Process them only once.
|
|
if (index != lastInsIndex)
|
|
{
|
|
ISD::ArgFlagsTy Flags = Ins[index].Flags;
|
|
// FIXME: For now, all byval parameter objects are marked mutable.
|
|
// This can be changed with more analysis.
|
|
// In case of tail call optimization mark all arguments mutable.
|
|
// Since they could be overwritten by lowering of arguments in case of
|
|
// a tail call.
|
|
if (Flags.isByVal()) {
|
|
unsigned CurByValIndex = CCInfo.getInRegsParamsProceed();
|
|
int FrameIndex = StoreByValRegs(
|
|
CCInfo, DAG, dl, Chain, CurOrigArg,
|
|
CurByValIndex,
|
|
Ins[VA.getValNo()].PartOffset,
|
|
VA.getLocMemOffset(),
|
|
Flags.getByValSize(),
|
|
true /*force mutable frames*/);
|
|
InVals.push_back(DAG.getFrameIndex(FrameIndex, getPointerTy()));
|
|
CCInfo.nextInRegsParam();
|
|
} else {
|
|
unsigned FIOffset = VA.getLocMemOffset() +
|
|
AFI->getStoredByValParamsPadding();
|
|
int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
|
|
FIOffset, true);
|
|
|
|
// Create load nodes to retrieve arguments from the stack.
|
|
SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
|
|
InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
|
|
MachinePointerInfo::getFixedStack(FI),
|
|
false, false, false, 0));
|
|
}
|
|
lastInsIndex = index;
|
|
}
|
|
}
|
|
}
|
|
|
|
// varargs
|
|
if (isVarArg)
|
|
VarArgStyleRegisters(CCInfo, DAG, dl, Chain,
|
|
CCInfo.getNextStackOffset());
|
|
|
|
return Chain;
|
|
}
|
|
|
|
/// isFloatingPointZero - Return true if this is +0.0.
|
|
static bool isFloatingPointZero(SDValue Op) {
|
|
if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
|
|
return CFP->getValueAPF().isPosZero();
|
|
else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
|
|
// Maybe this has already been legalized into the constant pool?
|
|
if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
|
|
SDValue WrapperOp = Op.getOperand(1).getOperand(0);
|
|
if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
|
|
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
|
|
return CFP->getValueAPF().isPosZero();
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Returns appropriate ARM CMP (cmp) and corresponding condition code for
|
|
/// the given operands.
|
|
SDValue
|
|
ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
|
|
SDValue &ARMcc, SelectionDAG &DAG,
|
|
SDLoc dl) const {
|
|
if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
|
|
unsigned C = RHSC->getZExtValue();
|
|
if (!isLegalICmpImmediate(C)) {
|
|
// Constant does not fit, try adjusting it by one?
|
|
switch (CC) {
|
|
default: break;
|
|
case ISD::SETLT:
|
|
case ISD::SETGE:
|
|
if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
|
|
CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
|
|
RHS = DAG.getConstant(C-1, MVT::i32);
|
|
}
|
|
break;
|
|
case ISD::SETULT:
|
|
case ISD::SETUGE:
|
|
if (C != 0 && isLegalICmpImmediate(C-1)) {
|
|
CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
|
|
RHS = DAG.getConstant(C-1, MVT::i32);
|
|
}
|
|
break;
|
|
case ISD::SETLE:
|
|
case ISD::SETGT:
|
|
if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
|
|
CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
|
|
RHS = DAG.getConstant(C+1, MVT::i32);
|
|
}
|
|
break;
|
|
case ISD::SETULE:
|
|
case ISD::SETUGT:
|
|
if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
|
|
CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
|
|
RHS = DAG.getConstant(C+1, MVT::i32);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
|
|
ARMISD::NodeType CompareType;
|
|
switch (CondCode) {
|
|
default:
|
|
CompareType = ARMISD::CMP;
|
|
break;
|
|
case ARMCC::EQ:
|
|
case ARMCC::NE:
|
|
// Uses only Z Flag
|
|
CompareType = ARMISD::CMPZ;
|
|
break;
|
|
}
|
|
ARMcc = DAG.getConstant(CondCode, MVT::i32);
|
|
return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
|
|
}
|
|
|
|
/// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
|
|
SDValue
|
|
ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
|
|
SDLoc dl) const {
|
|
SDValue Cmp;
|
|
if (!isFloatingPointZero(RHS))
|
|
Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
|
|
else
|
|
Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
|
|
return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
|
|
}
|
|
|
|
/// duplicateCmp - Glue values can have only one use, so this function
|
|
/// duplicates a comparison node.
|
|
SDValue
|
|
ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
|
|
unsigned Opc = Cmp.getOpcode();
|
|
SDLoc DL(Cmp);
|
|
if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
|
|
return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
|
|
|
|
assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
|
|
Cmp = Cmp.getOperand(0);
|
|
Opc = Cmp.getOpcode();
|
|
if (Opc == ARMISD::CMPFP)
|
|
Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
|
|
else {
|
|
assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
|
|
Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
|
|
}
|
|
return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
|
|
SDValue Cond = Op.getOperand(0);
|
|
SDValue SelectTrue = Op.getOperand(1);
|
|
SDValue SelectFalse = Op.getOperand(2);
|
|
SDLoc dl(Op);
|
|
|
|
// Convert:
|
|
//
|
|
// (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
|
|
// (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
|
|
//
|
|
if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
|
|
const ConstantSDNode *CMOVTrue =
|
|
dyn_cast<ConstantSDNode>(Cond.getOperand(0));
|
|
const ConstantSDNode *CMOVFalse =
|
|
dyn_cast<ConstantSDNode>(Cond.getOperand(1));
|
|
|
|
if (CMOVTrue && CMOVFalse) {
|
|
unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
|
|
unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
|
|
|
|
SDValue True;
|
|
SDValue False;
|
|
if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
|
|
True = SelectTrue;
|
|
False = SelectFalse;
|
|
} else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
|
|
True = SelectFalse;
|
|
False = SelectTrue;
|
|
}
|
|
|
|
if (True.getNode() && False.getNode()) {
|
|
EVT VT = Op.getValueType();
|
|
SDValue ARMcc = Cond.getOperand(2);
|
|
SDValue CCR = Cond.getOperand(3);
|
|
SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
|
|
assert(True.getValueType() == VT);
|
|
return DAG.getNode(ARMISD::CMOV, dl, VT, True, False, ARMcc, CCR, Cmp);
|
|
}
|
|
}
|
|
}
|
|
|
|
// ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
|
|
// undefined bits before doing a full-word comparison with zero.
|
|
Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
|
|
DAG.getConstant(1, Cond.getValueType()));
|
|
|
|
return DAG.getSelectCC(dl, Cond,
|
|
DAG.getConstant(0, Cond.getValueType()),
|
|
SelectTrue, SelectFalse, ISD::SETNE);
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
|
|
EVT VT = Op.getValueType();
|
|
SDValue LHS = Op.getOperand(0);
|
|
SDValue RHS = Op.getOperand(1);
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
|
|
SDValue TrueVal = Op.getOperand(2);
|
|
SDValue FalseVal = Op.getOperand(3);
|
|
SDLoc dl(Op);
|
|
|
|
if (LHS.getValueType() == MVT::i32) {
|
|
SDValue ARMcc;
|
|
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
|
|
SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
|
|
return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,Cmp);
|
|
}
|
|
|
|
ARMCC::CondCodes CondCode, CondCode2;
|
|
FPCCToARMCC(CC, CondCode, CondCode2);
|
|
|
|
SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
|
|
SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
|
|
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
|
|
SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal,
|
|
ARMcc, CCR, Cmp);
|
|
if (CondCode2 != ARMCC::AL) {
|
|
SDValue ARMcc2 = DAG.getConstant(CondCode2, MVT::i32);
|
|
// FIXME: Needs another CMP because flag can have but one use.
|
|
SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
|
|
Result = DAG.getNode(ARMISD::CMOV, dl, VT,
|
|
Result, TrueVal, ARMcc2, CCR, Cmp2);
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
/// canChangeToInt - Given the fp compare operand, return true if it is suitable
|
|
/// to morph to an integer compare sequence.
|
|
static bool canChangeToInt(SDValue Op, bool &SeenZero,
|
|
const ARMSubtarget *Subtarget) {
|
|
SDNode *N = Op.getNode();
|
|
if (!N->hasOneUse())
|
|
// Otherwise it requires moving the value from fp to integer registers.
|
|
return false;
|
|
if (!N->getNumValues())
|
|
return false;
|
|
EVT VT = Op.getValueType();
|
|
if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
|
|
// f32 case is generally profitable. f64 case only makes sense when vcmpe +
|
|
// vmrs are very slow, e.g. cortex-a8.
|
|
return false;
|
|
|
|
if (isFloatingPointZero(Op)) {
|
|
SeenZero = true;
|
|
return true;
|
|
}
|
|
return ISD::isNormalLoad(N);
|
|
}
|
|
|
|
static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
|
|
if (isFloatingPointZero(Op))
|
|
return DAG.getConstant(0, MVT::i32);
|
|
|
|
if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
|
|
return DAG.getLoad(MVT::i32, SDLoc(Op),
|
|
Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
|
|
Ld->isVolatile(), Ld->isNonTemporal(),
|
|
Ld->isInvariant(), Ld->getAlignment());
|
|
|
|
llvm_unreachable("Unknown VFP cmp argument!");
|
|
}
|
|
|
|
static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
|
|
SDValue &RetVal1, SDValue &RetVal2) {
|
|
if (isFloatingPointZero(Op)) {
|
|
RetVal1 = DAG.getConstant(0, MVT::i32);
|
|
RetVal2 = DAG.getConstant(0, MVT::i32);
|
|
return;
|
|
}
|
|
|
|
if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
|
|
SDValue Ptr = Ld->getBasePtr();
|
|
RetVal1 = DAG.getLoad(MVT::i32, SDLoc(Op),
|
|
Ld->getChain(), Ptr,
|
|
Ld->getPointerInfo(),
|
|
Ld->isVolatile(), Ld->isNonTemporal(),
|
|
Ld->isInvariant(), Ld->getAlignment());
|
|
|
|
EVT PtrType = Ptr.getValueType();
|
|
unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
|
|
SDValue NewPtr = DAG.getNode(ISD::ADD, SDLoc(Op),
|
|
PtrType, Ptr, DAG.getConstant(4, PtrType));
|
|
RetVal2 = DAG.getLoad(MVT::i32, SDLoc(Op),
|
|
Ld->getChain(), NewPtr,
|
|
Ld->getPointerInfo().getWithOffset(4),
|
|
Ld->isVolatile(), Ld->isNonTemporal(),
|
|
Ld->isInvariant(), NewAlign);
|
|
return;
|
|
}
|
|
|
|
llvm_unreachable("Unknown VFP cmp argument!");
|
|
}
|
|
|
|
/// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
|
|
/// f32 and even f64 comparisons to integer ones.
|
|
SDValue
|
|
ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
|
|
SDValue Chain = Op.getOperand(0);
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
|
|
SDValue LHS = Op.getOperand(2);
|
|
SDValue RHS = Op.getOperand(3);
|
|
SDValue Dest = Op.getOperand(4);
|
|
SDLoc dl(Op);
|
|
|
|
bool LHSSeenZero = false;
|
|
bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
|
|
bool RHSSeenZero = false;
|
|
bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
|
|
if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
|
|
// If unsafe fp math optimization is enabled and there are no other uses of
|
|
// the CMP operands, and the condition code is EQ or NE, we can optimize it
|
|
// to an integer comparison.
|
|
if (CC == ISD::SETOEQ)
|
|
CC = ISD::SETEQ;
|
|
else if (CC == ISD::SETUNE)
|
|
CC = ISD::SETNE;
|
|
|
|
SDValue Mask = DAG.getConstant(0x7fffffff, MVT::i32);
|
|
SDValue ARMcc;
|
|
if (LHS.getValueType() == MVT::f32) {
|
|
LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
|
|
bitcastf32Toi32(LHS, DAG), Mask);
|
|
RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
|
|
bitcastf32Toi32(RHS, DAG), Mask);
|
|
SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
|
|
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
|
|
return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
|
|
Chain, Dest, ARMcc, CCR, Cmp);
|
|
}
|
|
|
|
SDValue LHS1, LHS2;
|
|
SDValue RHS1, RHS2;
|
|
expandf64Toi32(LHS, DAG, LHS1, LHS2);
|
|
expandf64Toi32(RHS, DAG, RHS1, RHS2);
|
|
LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
|
|
RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
|
|
ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
|
|
ARMcc = DAG.getConstant(CondCode, MVT::i32);
|
|
SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
|
|
return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops, 7);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
|
|
SDValue Chain = Op.getOperand(0);
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
|
|
SDValue LHS = Op.getOperand(2);
|
|
SDValue RHS = Op.getOperand(3);
|
|
SDValue Dest = Op.getOperand(4);
|
|
SDLoc dl(Op);
|
|
|
|
if (LHS.getValueType() == MVT::i32) {
|
|
SDValue ARMcc;
|
|
SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
|
|
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
|
|
return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
|
|
Chain, Dest, ARMcc, CCR, Cmp);
|
|
}
|
|
|
|
assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
|
|
|
|
if (getTargetMachine().Options.UnsafeFPMath &&
|
|
(CC == ISD::SETEQ || CC == ISD::SETOEQ ||
|
|
CC == ISD::SETNE || CC == ISD::SETUNE)) {
|
|
SDValue Result = OptimizeVFPBrcond(Op, DAG);
|
|
if (Result.getNode())
|
|
return Result;
|
|
}
|
|
|
|
ARMCC::CondCodes CondCode, CondCode2;
|
|
FPCCToARMCC(CC, CondCode, CondCode2);
|
|
|
|
SDValue ARMcc = DAG.getConstant(CondCode, MVT::i32);
|
|
SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
|
|
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
|
|
SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
|
|
SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
|
|
SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
|
|
if (CondCode2 != ARMCC::AL) {
|
|
ARMcc = DAG.getConstant(CondCode2, MVT::i32);
|
|
SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
|
|
Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5);
|
|
}
|
|
return Res;
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
|
|
SDValue Chain = Op.getOperand(0);
|
|
SDValue Table = Op.getOperand(1);
|
|
SDValue Index = Op.getOperand(2);
|
|
SDLoc dl(Op);
|
|
|
|
EVT PTy = getPointerTy();
|
|
JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
|
|
ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>();
|
|
SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy);
|
|
SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
|
|
Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId);
|
|
Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy));
|
|
SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
|
|
if (Subtarget->isThumb2()) {
|
|
// Thumb2 uses a two-level jump. That is, it jumps into the jump table
|
|
// which does another jump to the destination. This also makes it easier
|
|
// to translate it to TBB / TBH later.
|
|
// FIXME: This might not work if the function is extremely large.
|
|
return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
|
|
Addr, Op.getOperand(2), JTI, UId);
|
|
}
|
|
if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
|
|
Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
|
|
MachinePointerInfo::getJumpTable(),
|
|
false, false, false, 0);
|
|
Chain = Addr.getValue(1);
|
|
Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
|
|
return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
|
|
} else {
|
|
Addr = DAG.getLoad(PTy, dl, Chain, Addr,
|
|
MachinePointerInfo::getJumpTable(),
|
|
false, false, false, 0);
|
|
Chain = Addr.getValue(1);
|
|
return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId);
|
|
}
|
|
}
|
|
|
|
static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
|
|
EVT VT = Op.getValueType();
|
|
SDLoc dl(Op);
|
|
|
|
if (Op.getValueType().getVectorElementType() == MVT::i32) {
|
|
if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
|
|
return Op;
|
|
return DAG.UnrollVectorOp(Op.getNode());
|
|
}
|
|
|
|
assert(Op.getOperand(0).getValueType() == MVT::v4f32 &&
|
|
"Invalid type for custom lowering!");
|
|
if (VT != MVT::v4i16)
|
|
return DAG.UnrollVectorOp(Op.getNode());
|
|
|
|
Op = DAG.getNode(Op.getOpcode(), dl, MVT::v4i32, Op.getOperand(0));
|
|
return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
|
|
}
|
|
|
|
static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
|
|
EVT VT = Op.getValueType();
|
|
if (VT.isVector())
|
|
return LowerVectorFP_TO_INT(Op, DAG);
|
|
|
|
SDLoc dl(Op);
|
|
unsigned Opc;
|
|
|
|
switch (Op.getOpcode()) {
|
|
default: llvm_unreachable("Invalid opcode!");
|
|
case ISD::FP_TO_SINT:
|
|
Opc = ARMISD::FTOSI;
|
|
break;
|
|
case ISD::FP_TO_UINT:
|
|
Opc = ARMISD::FTOUI;
|
|
break;
|
|
}
|
|
Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0));
|
|
return DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
|
|
}
|
|
|
|
static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
|
|
EVT VT = Op.getValueType();
|
|
SDLoc dl(Op);
|
|
|
|
if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
|
|
if (VT.getVectorElementType() == MVT::f32)
|
|
return Op;
|
|
return DAG.UnrollVectorOp(Op.getNode());
|
|
}
|
|
|
|
assert(Op.getOperand(0).getValueType() == MVT::v4i16 &&
|
|
"Invalid type for custom lowering!");
|
|
if (VT != MVT::v4f32)
|
|
return DAG.UnrollVectorOp(Op.getNode());
|
|
|
|
unsigned CastOpc;
|
|
unsigned Opc;
|
|
switch (Op.getOpcode()) {
|
|
default: llvm_unreachable("Invalid opcode!");
|
|
case ISD::SINT_TO_FP:
|
|
CastOpc = ISD::SIGN_EXTEND;
|
|
Opc = ISD::SINT_TO_FP;
|
|
break;
|
|
case ISD::UINT_TO_FP:
|
|
CastOpc = ISD::ZERO_EXTEND;
|
|
Opc = ISD::UINT_TO_FP;
|
|
break;
|
|
}
|
|
|
|
Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
|
|
return DAG.getNode(Opc, dl, VT, Op);
|
|
}
|
|
|
|
static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
|
|
EVT VT = Op.getValueType();
|
|
if (VT.isVector())
|
|
return LowerVectorINT_TO_FP(Op, DAG);
|
|
|
|
SDLoc dl(Op);
|
|
unsigned Opc;
|
|
|
|
switch (Op.getOpcode()) {
|
|
default: llvm_unreachable("Invalid opcode!");
|
|
case ISD::SINT_TO_FP:
|
|
Opc = ARMISD::SITOF;
|
|
break;
|
|
case ISD::UINT_TO_FP:
|
|
Opc = ARMISD::UITOF;
|
|
break;
|
|
}
|
|
|
|
Op = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op.getOperand(0));
|
|
return DAG.getNode(Opc, dl, VT, Op);
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
|
|
// Implement fcopysign with a fabs and a conditional fneg.
|
|
SDValue Tmp0 = Op.getOperand(0);
|
|
SDValue Tmp1 = Op.getOperand(1);
|
|
SDLoc dl(Op);
|
|
EVT VT = Op.getValueType();
|
|
EVT SrcVT = Tmp1.getValueType();
|
|
bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
|
|
Tmp0.getOpcode() == ARMISD::VMOVDRR;
|
|
bool UseNEON = !InGPR && Subtarget->hasNEON();
|
|
|
|
if (UseNEON) {
|
|
// Use VBSL to copy the sign bit.
|
|
unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
|
|
SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
|
|
DAG.getTargetConstant(EncodedVal, MVT::i32));
|
|
EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
|
|
if (VT == MVT::f64)
|
|
Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
|
|
DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
|
|
DAG.getConstant(32, MVT::i32));
|
|
else /*if (VT == MVT::f32)*/
|
|
Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
|
|
if (SrcVT == MVT::f32) {
|
|
Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
|
|
if (VT == MVT::f64)
|
|
Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
|
|
DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
|
|
DAG.getConstant(32, MVT::i32));
|
|
} else if (VT == MVT::f32)
|
|
Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
|
|
DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
|
|
DAG.getConstant(32, MVT::i32));
|
|
Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
|
|
Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
|
|
|
|
SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
|
|
MVT::i32);
|
|
AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
|
|
SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
|
|
DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
|
|
|
|
SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
|
|
DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
|
|
DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
|
|
if (VT == MVT::f32) {
|
|
Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
|
|
Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
|
|
DAG.getConstant(0, MVT::i32));
|
|
} else {
|
|
Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
|
|
}
|
|
|
|
return Res;
|
|
}
|
|
|
|
// Bitcast operand 1 to i32.
|
|
if (SrcVT == MVT::f64)
|
|
Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
|
|
&Tmp1, 1).getValue(1);
|
|
Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
|
|
|
|
// Or in the signbit with integer operations.
|
|
SDValue Mask1 = DAG.getConstant(0x80000000, MVT::i32);
|
|
SDValue Mask2 = DAG.getConstant(0x7fffffff, MVT::i32);
|
|
Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
|
|
if (VT == MVT::f32) {
|
|
Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
|
|
DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
|
|
return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
|
|
DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
|
|
}
|
|
|
|
// f64: Or the high part with signbit and then combine two parts.
|
|
Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
|
|
&Tmp0, 1);
|
|
SDValue Lo = Tmp0.getValue(0);
|
|
SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
|
|
Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
|
|
return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
MFI->setReturnAddressIsTaken(true);
|
|
|
|
EVT VT = Op.getValueType();
|
|
SDLoc dl(Op);
|
|
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
|
|
if (Depth) {
|
|
SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
|
|
SDValue Offset = DAG.getConstant(4, MVT::i32);
|
|
return DAG.getLoad(VT, dl, DAG.getEntryNode(),
|
|
DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
|
|
MachinePointerInfo(), false, false, false, 0);
|
|
}
|
|
|
|
// Return LR, which contains the return address. Mark it an implicit live-in.
|
|
unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
|
|
return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
|
|
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
|
|
MFI->setFrameAddressIsTaken(true);
|
|
|
|
EVT VT = Op.getValueType();
|
|
SDLoc dl(Op); // FIXME probably not meaningful
|
|
unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
|
|
unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin())
|
|
? ARM::R7 : ARM::R11;
|
|
SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
|
|
while (Depth--)
|
|
FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
|
|
MachinePointerInfo(),
|
|
false, false, false, 0);
|
|
return FrameAddr;
|
|
}
|
|
|
|
/// Custom Expand long vector extensions, where size(DestVec) > 2*size(SrcVec),
|
|
/// and size(DestVec) > 128-bits.
|
|
/// This is achieved by doing the one extension from the SrcVec, splitting the
|
|
/// result, extending these parts, and then concatenating these into the
|
|
/// destination.
|
|
static SDValue ExpandVectorExtension(SDNode *N, SelectionDAG &DAG) {
|
|
SDValue Op = N->getOperand(0);
|
|
EVT SrcVT = Op.getValueType();
|
|
EVT DestVT = N->getValueType(0);
|
|
|
|
assert(DestVT.getSizeInBits() > 128 &&
|
|
"Custom sext/zext expansion needs >128-bit vector.");
|
|
// If this is a normal length extension, use the default expansion.
|
|
if (SrcVT.getSizeInBits()*4 != DestVT.getSizeInBits() &&
|
|
SrcVT.getSizeInBits()*8 != DestVT.getSizeInBits())
|
|
return SDValue();
|
|
|
|
SDLoc dl(N);
|
|
unsigned SrcEltSize = SrcVT.getVectorElementType().getSizeInBits();
|
|
unsigned DestEltSize = DestVT.getVectorElementType().getSizeInBits();
|
|
unsigned NumElts = SrcVT.getVectorNumElements();
|
|
LLVMContext &Ctx = *DAG.getContext();
|
|
SDValue Mid, SplitLo, SplitHi, ExtLo, ExtHi;
|
|
|
|
EVT MidVT = EVT::getVectorVT(Ctx, EVT::getIntegerVT(Ctx, SrcEltSize*2),
|
|
NumElts);
|
|
EVT SplitVT = EVT::getVectorVT(Ctx, EVT::getIntegerVT(Ctx, SrcEltSize*2),
|
|
NumElts/2);
|
|
EVT ExtVT = EVT::getVectorVT(Ctx, EVT::getIntegerVT(Ctx, DestEltSize),
|
|
NumElts/2);
|
|
|
|
Mid = DAG.getNode(N->getOpcode(), dl, MidVT, Op);
|
|
SplitLo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SplitVT, Mid,
|
|
DAG.getIntPtrConstant(0));
|
|
SplitHi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, SplitVT, Mid,
|
|
DAG.getIntPtrConstant(NumElts/2));
|
|
ExtLo = DAG.getNode(N->getOpcode(), dl, ExtVT, SplitLo);
|
|
ExtHi = DAG.getNode(N->getOpcode(), dl, ExtVT, SplitHi);
|
|
return DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, ExtLo, ExtHi);
|
|
}
|
|
|
|
/// ExpandBITCAST - If the target supports VFP, this function is called to
|
|
/// expand a bit convert where either the source or destination type is i64 to
|
|
/// use a VMOVDRR or VMOVRRD node. This should not be done when the non-i64
|
|
/// operand type is illegal (e.g., v2f32 for a target that doesn't support
|
|
/// vectors), since the legalizer won't know what to do with that.
|
|
static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) {
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
SDLoc dl(N);
|
|
SDValue Op = N->getOperand(0);
|
|
|
|
// This function is only supposed to be called for i64 types, either as the
|
|
// source or destination of the bit convert.
|
|
EVT SrcVT = Op.getValueType();
|
|
EVT DstVT = N->getValueType(0);
|
|
assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
|
|
"ExpandBITCAST called for non-i64 type");
|
|
|
|
// Turn i64->f64 into VMOVDRR.
|
|
if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
|
|
SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
|
|
DAG.getConstant(0, MVT::i32));
|
|
SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
|
|
DAG.getConstant(1, MVT::i32));
|
|
return DAG.getNode(ISD::BITCAST, dl, DstVT,
|
|
DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
|
|
}
|
|
|
|
// Turn f64->i64 into VMOVRRD.
|
|
if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
|
|
SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
|
|
DAG.getVTList(MVT::i32, MVT::i32), &Op, 1);
|
|
// Merge the pieces into a single i64 value.
|
|
return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// getZeroVector - Returns a vector of specified type with all zero elements.
|
|
/// Zero vectors are used to represent vector negation and in those cases
|
|
/// will be implemented with the NEON VNEG instruction. However, VNEG does
|
|
/// not support i64 elements, so sometimes the zero vectors will need to be
|
|
/// explicitly constructed. Regardless, use a canonical VMOV to create the
|
|
/// zero vector.
|
|
static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, SDLoc dl) {
|
|
assert(VT.isVector() && "Expected a vector type");
|
|
// The canonical modified immediate encoding of a zero vector is....0!
|
|
SDValue EncodedVal = DAG.getTargetConstant(0, MVT::i32);
|
|
EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
|
|
SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
|
|
return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
|
|
}
|
|
|
|
/// LowerShiftRightParts - Lower SRA_PARTS, which returns two
|
|
/// i32 values and take a 2 x i32 value to shift plus a shift amount.
|
|
SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
assert(Op.getNumOperands() == 3 && "Not a double-shift!");
|
|
EVT VT = Op.getValueType();
|
|
unsigned VTBits = VT.getSizeInBits();
|
|
SDLoc dl(Op);
|
|
SDValue ShOpLo = Op.getOperand(0);
|
|
SDValue ShOpHi = Op.getOperand(1);
|
|
SDValue ShAmt = Op.getOperand(2);
|
|
SDValue ARMcc;
|
|
unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
|
|
|
|
assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
|
|
|
|
SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
|
|
DAG.getConstant(VTBits, MVT::i32), ShAmt);
|
|
SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
|
|
SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
|
|
DAG.getConstant(VTBits, MVT::i32));
|
|
SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
|
|
SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
|
|
SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
|
|
|
|
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
|
|
SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
|
|
ARMcc, DAG, dl);
|
|
SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
|
|
SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
|
|
CCR, Cmp);
|
|
|
|
SDValue Ops[2] = { Lo, Hi };
|
|
return DAG.getMergeValues(Ops, 2, dl);
|
|
}
|
|
|
|
/// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
|
|
/// i32 values and take a 2 x i32 value to shift plus a shift amount.
|
|
SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
assert(Op.getNumOperands() == 3 && "Not a double-shift!");
|
|
EVT VT = Op.getValueType();
|
|
unsigned VTBits = VT.getSizeInBits();
|
|
SDLoc dl(Op);
|
|
SDValue ShOpLo = Op.getOperand(0);
|
|
SDValue ShOpHi = Op.getOperand(1);
|
|
SDValue ShAmt = Op.getOperand(2);
|
|
SDValue ARMcc;
|
|
|
|
assert(Op.getOpcode() == ISD::SHL_PARTS);
|
|
SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
|
|
DAG.getConstant(VTBits, MVT::i32), ShAmt);
|
|
SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
|
|
SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
|
|
DAG.getConstant(VTBits, MVT::i32));
|
|
SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
|
|
SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
|
|
|
|
SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
|
|
SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
|
|
SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE,
|
|
ARMcc, DAG, dl);
|
|
SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
|
|
SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
|
|
CCR, Cmp);
|
|
|
|
SDValue Ops[2] = { Lo, Hi };
|
|
return DAG.getMergeValues(Ops, 2, dl);
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
// The rounding mode is in bits 23:22 of the FPSCR.
|
|
// The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
|
|
// The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
|
|
// so that the shift + and get folded into a bitfield extract.
|
|
SDLoc dl(Op);
|
|
SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
|
|
DAG.getConstant(Intrinsic::arm_get_fpscr,
|
|
MVT::i32));
|
|
SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
|
|
DAG.getConstant(1U << 22, MVT::i32));
|
|
SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
|
|
DAG.getConstant(22, MVT::i32));
|
|
return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
|
|
DAG.getConstant(3, MVT::i32));
|
|
}
|
|
|
|
static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
|
|
const ARMSubtarget *ST) {
|
|
EVT VT = N->getValueType(0);
|
|
SDLoc dl(N);
|
|
|
|
if (!ST->hasV6T2Ops())
|
|
return SDValue();
|
|
|
|
SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0));
|
|
return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
|
|
}
|
|
|
|
/// getCTPOP16BitCounts - Returns a v8i8/v16i8 vector containing the bit-count
|
|
/// for each 16-bit element from operand, repeated. The basic idea is to
|
|
/// leverage vcnt to get the 8-bit counts, gather and add the results.
|
|
///
|
|
/// Trace for v4i16:
|
|
/// input = [v0 v1 v2 v3 ] (vi 16-bit element)
|
|
/// cast: N0 = [w0 w1 w2 w3 w4 w5 w6 w7] (v0 = [w0 w1], wi 8-bit element)
|
|
/// vcnt: N1 = [b0 b1 b2 b3 b4 b5 b6 b7] (bi = bit-count of 8-bit element wi)
|
|
/// vrev: N2 = [b1 b0 b3 b2 b5 b4 b7 b6]
|
|
/// [b0 b1 b2 b3 b4 b5 b6 b7]
|
|
/// +[b1 b0 b3 b2 b5 b4 b7 b6]
|
|
/// N3=N1+N2 = [k0 k0 k1 k1 k2 k2 k3 k3] (k0 = b0+b1 = bit-count of 16-bit v0,
|
|
/// vuzp: = [k0 k1 k2 k3 k0 k1 k2 k3] each ki is 8-bits)
|
|
static SDValue getCTPOP16BitCounts(SDNode *N, SelectionDAG &DAG) {
|
|
EVT VT = N->getValueType(0);
|
|
SDLoc DL(N);
|
|
|
|
EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
|
|
SDValue N0 = DAG.getNode(ISD::BITCAST, DL, VT8Bit, N->getOperand(0));
|
|
SDValue N1 = DAG.getNode(ISD::CTPOP, DL, VT8Bit, N0);
|
|
SDValue N2 = DAG.getNode(ARMISD::VREV16, DL, VT8Bit, N1);
|
|
SDValue N3 = DAG.getNode(ISD::ADD, DL, VT8Bit, N1, N2);
|
|
return DAG.getNode(ARMISD::VUZP, DL, VT8Bit, N3, N3);
|
|
}
|
|
|
|
/// lowerCTPOP16BitElements - Returns a v4i16/v8i16 vector containing the
|
|
/// bit-count for each 16-bit element from the operand. We need slightly
|
|
/// different sequencing for v4i16 and v8i16 to stay within NEON's available
|
|
/// 64/128-bit registers.
|
|
///
|
|
/// Trace for v4i16:
|
|
/// input = [v0 v1 v2 v3 ] (vi 16-bit element)
|
|
/// v8i8: BitCounts = [k0 k1 k2 k3 k0 k1 k2 k3 ] (ki is the bit-count of vi)
|
|
/// v8i16:Extended = [k0 k1 k2 k3 k0 k1 k2 k3 ]
|
|
/// v4i16:Extracted = [k0 k1 k2 k3 ]
|
|
static SDValue lowerCTPOP16BitElements(SDNode *N, SelectionDAG &DAG) {
|
|
EVT VT = N->getValueType(0);
|
|
SDLoc DL(N);
|
|
|
|
SDValue BitCounts = getCTPOP16BitCounts(N, DAG);
|
|
if (VT.is64BitVector()) {
|
|
SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, BitCounts);
|
|
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, Extended,
|
|
DAG.getIntPtrConstant(0));
|
|
} else {
|
|
SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8,
|
|
BitCounts, DAG.getIntPtrConstant(0));
|
|
return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, Extracted);
|
|
}
|
|
}
|
|
|
|
/// lowerCTPOP32BitElements - Returns a v2i32/v4i32 vector containing the
|
|
/// bit-count for each 32-bit element from the operand. The idea here is
|
|
/// to split the vector into 16-bit elements, leverage the 16-bit count
|
|
/// routine, and then combine the results.
|
|
///
|
|
/// Trace for v2i32 (v4i32 similar with Extracted/Extended exchanged):
|
|
/// input = [v0 v1 ] (vi: 32-bit elements)
|
|
/// Bitcast = [w0 w1 w2 w3 ] (wi: 16-bit elements, v0 = [w0 w1])
|
|
/// Counts16 = [k0 k1 k2 k3 ] (ki: 16-bit elements, bit-count of wi)
|
|
/// vrev: N0 = [k1 k0 k3 k2 ]
|
|
/// [k0 k1 k2 k3 ]
|
|
/// N1 =+[k1 k0 k3 k2 ]
|
|
/// [k0 k2 k1 k3 ]
|
|
/// N2 =+[k1 k3 k0 k2 ]
|
|
/// [k0 k2 k1 k3 ]
|
|
/// Extended =+[k1 k3 k0 k2 ]
|
|
/// [k0 k2 ]
|
|
/// Extracted=+[k1 k3 ]
|
|
///
|
|
static SDValue lowerCTPOP32BitElements(SDNode *N, SelectionDAG &DAG) {
|
|
EVT VT = N->getValueType(0);
|
|
SDLoc DL(N);
|
|
|
|
EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16;
|
|
|
|
SDValue Bitcast = DAG.getNode(ISD::BITCAST, DL, VT16Bit, N->getOperand(0));
|
|
SDValue Counts16 = lowerCTPOP16BitElements(Bitcast.getNode(), DAG);
|
|
SDValue N0 = DAG.getNode(ARMISD::VREV32, DL, VT16Bit, Counts16);
|
|
SDValue N1 = DAG.getNode(ISD::ADD, DL, VT16Bit, Counts16, N0);
|
|
SDValue N2 = DAG.getNode(ARMISD::VUZP, DL, VT16Bit, N1, N1);
|
|
|
|
if (VT.is64BitVector()) {
|
|
SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, N2);
|
|
return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i32, Extended,
|
|
DAG.getIntPtrConstant(0));
|
|
} else {
|
|
SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, N2,
|
|
DAG.getIntPtrConstant(0));
|
|
return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, Extracted);
|
|
}
|
|
}
|
|
|
|
static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG,
|
|
const ARMSubtarget *ST) {
|
|
EVT VT = N->getValueType(0);
|
|
|
|
assert(ST->hasNEON() && "Custom ctpop lowering requires NEON.");
|
|
assert((VT == MVT::v2i32 || VT == MVT::v4i32 ||
|
|
VT == MVT::v4i16 || VT == MVT::v8i16) &&
|
|
"Unexpected type for custom ctpop lowering");
|
|
|
|
if (VT.getVectorElementType() == MVT::i32)
|
|
return lowerCTPOP32BitElements(N, DAG);
|
|
else
|
|
return lowerCTPOP16BitElements(N, DAG);
|
|
}
|
|
|
|
static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
|
|
const ARMSubtarget *ST) {
|
|
EVT VT = N->getValueType(0);
|
|
SDLoc dl(N);
|
|
|
|
if (!VT.isVector())
|
|
return SDValue();
|
|
|
|
// Lower vector shifts on NEON to use VSHL.
|
|
assert(ST->hasNEON() && "unexpected vector shift");
|
|
|
|
// Left shifts translate directly to the vshiftu intrinsic.
|
|
if (N->getOpcode() == ISD::SHL)
|
|
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
|
|
DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32),
|
|
N->getOperand(0), N->getOperand(1));
|
|
|
|
assert((N->getOpcode() == ISD::SRA ||
|
|
N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
|
|
|
|
// NEON uses the same intrinsics for both left and right shifts. For
|
|
// right shifts, the shift amounts are negative, so negate the vector of
|
|
// shift amounts.
|
|
EVT ShiftVT = N->getOperand(1).getValueType();
|
|
SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
|
|
getZeroVector(ShiftVT, DAG, dl),
|
|
N->getOperand(1));
|
|
Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
|
|
Intrinsic::arm_neon_vshifts :
|
|
Intrinsic::arm_neon_vshiftu);
|
|
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
|
|
DAG.getConstant(vshiftInt, MVT::i32),
|
|
N->getOperand(0), NegatedCount);
|
|
}
|
|
|
|
static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
|
|
const ARMSubtarget *ST) {
|
|
EVT VT = N->getValueType(0);
|
|
SDLoc dl(N);
|
|
|
|
// We can get here for a node like i32 = ISD::SHL i32, i64
|
|
if (VT != MVT::i64)
|
|
return SDValue();
|
|
|
|
assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
|
|
"Unknown shift to lower!");
|
|
|
|
// We only lower SRA, SRL of 1 here, all others use generic lowering.
|
|
if (!isa<ConstantSDNode>(N->getOperand(1)) ||
|
|
cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1)
|
|
return SDValue();
|
|
|
|
// If we are in thumb mode, we don't have RRX.
|
|
if (ST->isThumb1Only()) return SDValue();
|
|
|
|
// Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr.
|
|
SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
|
|
DAG.getConstant(0, MVT::i32));
|
|
SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
|
|
DAG.getConstant(1, MVT::i32));
|
|
|
|
// First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
|
|
// captures the result into a carry flag.
|
|
unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
|
|
Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), &Hi, 1);
|
|
|
|
// The low part is an ARMISD::RRX operand, which shifts the carry in.
|
|
Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
|
|
|
|
// Merge the pieces into a single i64 value.
|
|
return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
|
|
}
|
|
|
|
static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
|
|
SDValue TmpOp0, TmpOp1;
|
|
bool Invert = false;
|
|
bool Swap = false;
|
|
unsigned Opc = 0;
|
|
|
|
SDValue Op0 = Op.getOperand(0);
|
|
SDValue Op1 = Op.getOperand(1);
|
|
SDValue CC = Op.getOperand(2);
|
|
EVT VT = Op.getValueType();
|
|
ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
|
|
SDLoc dl(Op);
|
|
|
|
if (Op.getOperand(1).getValueType().isFloatingPoint()) {
|
|
switch (SetCCOpcode) {
|
|
default: llvm_unreachable("Illegal FP comparison");
|
|
case ISD::SETUNE:
|
|
case ISD::SETNE: Invert = true; // Fallthrough
|
|
case ISD::SETOEQ:
|
|
case ISD::SETEQ: Opc = ARMISD::VCEQ; break;
|
|
case ISD::SETOLT:
|
|
case ISD::SETLT: Swap = true; // Fallthrough
|
|
case ISD::SETOGT:
|
|
case ISD::SETGT: Opc = ARMISD::VCGT; break;
|
|
case ISD::SETOLE:
|
|
case ISD::SETLE: Swap = true; // Fallthrough
|
|
case ISD::SETOGE:
|
|
case ISD::SETGE: Opc = ARMISD::VCGE; break;
|
|
case ISD::SETUGE: Swap = true; // Fallthrough
|
|
case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
|
|
case ISD::SETUGT: Swap = true; // Fallthrough
|
|
case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
|
|
case ISD::SETUEQ: Invert = true; // Fallthrough
|
|
case ISD::SETONE:
|
|
// Expand this to (OLT | OGT).
|
|
TmpOp0 = Op0;
|
|
TmpOp1 = Op1;
|
|
Opc = ISD::OR;
|
|
Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
|
|
Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1);
|
|
break;
|
|
case ISD::SETUO: Invert = true; // Fallthrough
|
|
case ISD::SETO:
|
|
// Expand this to (OLT | OGE).
|
|
TmpOp0 = Op0;
|
|
TmpOp1 = Op1;
|
|
Opc = ISD::OR;
|
|
Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0);
|
|
Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1);
|
|
break;
|
|
}
|
|
} else {
|
|
// Integer comparisons.
|
|
switch (SetCCOpcode) {
|
|
default: llvm_unreachable("Illegal integer comparison");
|
|
case ISD::SETNE: Invert = true;
|
|
case ISD::SETEQ: Opc = ARMISD::VCEQ; break;
|
|
case ISD::SETLT: Swap = true;
|
|
case ISD::SETGT: Opc = ARMISD::VCGT; break;
|
|
case ISD::SETLE: Swap = true;
|
|
case ISD::SETGE: Opc = ARMISD::VCGE; break;
|
|
case ISD::SETULT: Swap = true;
|
|
case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
|
|
case ISD::SETULE: Swap = true;
|
|
case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
|
|
}
|
|
|
|
// Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
|
|
if (Opc == ARMISD::VCEQ) {
|
|
|
|
SDValue AndOp;
|
|
if (ISD::isBuildVectorAllZeros(Op1.getNode()))
|
|
AndOp = Op0;
|
|
else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
|
|
AndOp = Op1;
|
|
|
|
// Ignore bitconvert.
|
|
if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
|
|
AndOp = AndOp.getOperand(0);
|
|
|
|
if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
|
|
Opc = ARMISD::VTST;
|
|
Op0 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(0));
|
|
Op1 = DAG.getNode(ISD::BITCAST, dl, VT, AndOp.getOperand(1));
|
|
Invert = !Invert;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Swap)
|
|
std::swap(Op0, Op1);
|
|
|
|
// If one of the operands is a constant vector zero, attempt to fold the
|
|
// comparison to a specialized compare-against-zero form.
|
|
SDValue SingleOp;
|
|
if (ISD::isBuildVectorAllZeros(Op1.getNode()))
|
|
SingleOp = Op0;
|
|
else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
|
|
if (Opc == ARMISD::VCGE)
|
|
Opc = ARMISD::VCLEZ;
|
|
else if (Opc == ARMISD::VCGT)
|
|
Opc = ARMISD::VCLTZ;
|
|
SingleOp = Op1;
|
|
}
|
|
|
|
SDValue Result;
|
|
if (SingleOp.getNode()) {
|
|
switch (Opc) {
|
|
case ARMISD::VCEQ:
|
|
Result = DAG.getNode(ARMISD::VCEQZ, dl, VT, SingleOp); break;
|
|
case ARMISD::VCGE:
|
|
Result = DAG.getNode(ARMISD::VCGEZ, dl, VT, SingleOp); break;
|
|
case ARMISD::VCLEZ:
|
|
Result = DAG.getNode(ARMISD::VCLEZ, dl, VT, SingleOp); break;
|
|
case ARMISD::VCGT:
|
|
Result = DAG.getNode(ARMISD::VCGTZ, dl, VT, SingleOp); break;
|
|
case ARMISD::VCLTZ:
|
|
Result = DAG.getNode(ARMISD::VCLTZ, dl, VT, SingleOp); break;
|
|
default:
|
|
Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
|
|
}
|
|
} else {
|
|
Result = DAG.getNode(Opc, dl, VT, Op0, Op1);
|
|
}
|
|
|
|
if (Invert)
|
|
Result = DAG.getNOT(dl, Result, VT);
|
|
|
|
return Result;
|
|
}
|
|
|
|
/// isNEONModifiedImm - Check if the specified splat value corresponds to a
|
|
/// valid vector constant for a NEON instruction with a "modified immediate"
|
|
/// operand (e.g., VMOV). If so, return the encoded value.
|
|
static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
|
|
unsigned SplatBitSize, SelectionDAG &DAG,
|
|
EVT &VT, bool is128Bits, NEONModImmType type) {
|
|
unsigned OpCmode, Imm;
|
|
|
|
// SplatBitSize is set to the smallest size that splats the vector, so a
|
|
// zero vector will always have SplatBitSize == 8. However, NEON modified
|
|
// immediate instructions others than VMOV do not support the 8-bit encoding
|
|
// of a zero vector, and the default encoding of zero is supposed to be the
|
|
// 32-bit version.
|
|
if (SplatBits == 0)
|
|
SplatBitSize = 32;
|
|
|
|
switch (SplatBitSize) {
|
|
case 8:
|
|
if (type != VMOVModImm)
|
|
return SDValue();
|
|
// Any 1-byte value is OK. Op=0, Cmode=1110.
|
|
assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
|
|
OpCmode = 0xe;
|
|
Imm = SplatBits;
|
|
VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
|
|
break;
|
|
|
|
case 16:
|
|
// NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
|
|
VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
|
|
if ((SplatBits & ~0xff) == 0) {
|
|
// Value = 0x00nn: Op=x, Cmode=100x.
|
|
OpCmode = 0x8;
|
|
Imm = SplatBits;
|
|
break;
|
|
}
|
|
if ((SplatBits & ~0xff00) == 0) {
|
|
// Value = 0xnn00: Op=x, Cmode=101x.
|
|
OpCmode = 0xa;
|
|
Imm = SplatBits >> 8;
|
|
break;
|
|
}
|
|
return SDValue();
|
|
|
|
case 32:
|
|
// NEON's 32-bit VMOV supports splat values where:
|
|
// * only one byte is nonzero, or
|
|
// * the least significant byte is 0xff and the second byte is nonzero, or
|
|
// * the least significant 2 bytes are 0xff and the third is nonzero.
|
|
VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
|
|
if ((SplatBits & ~0xff) == 0) {
|
|
// Value = 0x000000nn: Op=x, Cmode=000x.
|
|
OpCmode = 0;
|
|
Imm = SplatBits;
|
|
break;
|
|
}
|
|
if ((SplatBits & ~0xff00) == 0) {
|
|
// Value = 0x0000nn00: Op=x, Cmode=001x.
|
|
OpCmode = 0x2;
|
|
Imm = SplatBits >> 8;
|
|
break;
|
|
}
|
|
if ((SplatBits & ~0xff0000) == 0) {
|
|
// Value = 0x00nn0000: Op=x, Cmode=010x.
|
|
OpCmode = 0x4;
|
|
Imm = SplatBits >> 16;
|
|
break;
|
|
}
|
|
if ((SplatBits & ~0xff000000) == 0) {
|
|
// Value = 0xnn000000: Op=x, Cmode=011x.
|
|
OpCmode = 0x6;
|
|
Imm = SplatBits >> 24;
|
|
break;
|
|
}
|
|
|
|
// cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
|
|
if (type == OtherModImm) return SDValue();
|
|
|
|
if ((SplatBits & ~0xffff) == 0 &&
|
|
((SplatBits | SplatUndef) & 0xff) == 0xff) {
|
|
// Value = 0x0000nnff: Op=x, Cmode=1100.
|
|
OpCmode = 0xc;
|
|
Imm = SplatBits >> 8;
|
|
SplatBits |= 0xff;
|
|
break;
|
|
}
|
|
|
|
if ((SplatBits & ~0xffffff) == 0 &&
|
|
((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
|
|
// Value = 0x00nnffff: Op=x, Cmode=1101.
|
|
OpCmode = 0xd;
|
|
Imm = SplatBits >> 16;
|
|
SplatBits |= 0xffff;
|
|
break;
|
|
}
|
|
|
|
// Note: there are a few 32-bit splat values (specifically: 00ffff00,
|
|
// ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
|
|
// VMOV.I32. A (very) minor optimization would be to replicate the value
|
|
// and fall through here to test for a valid 64-bit splat. But, then the
|
|
// caller would also need to check and handle the change in size.
|
|
return SDValue();
|
|
|
|
case 64: {
|
|
if (type != VMOVModImm)
|
|
return SDValue();
|
|
// NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
|
|
uint64_t BitMask = 0xff;
|
|
uint64_t Val = 0;
|
|
unsigned ImmMask = 1;
|
|
Imm = 0;
|
|
for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
|
|
if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
|
|
Val |= BitMask;
|
|
Imm |= ImmMask;
|
|
} else if ((SplatBits & BitMask) != 0) {
|
|
return SDValue();
|
|
}
|
|
BitMask <<= 8;
|
|
ImmMask <<= 1;
|
|
}
|
|
// Op=1, Cmode=1110.
|
|
OpCmode = 0x1e;
|
|
SplatBits = Val;
|
|
VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
llvm_unreachable("unexpected size for isNEONModifiedImm");
|
|
}
|
|
|
|
unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
|
|
return DAG.getTargetConstant(EncodedVal, MVT::i32);
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
|
|
const ARMSubtarget *ST) const {
|
|
if (!ST->hasVFP3())
|
|
return SDValue();
|
|
|
|
bool IsDouble = Op.getValueType() == MVT::f64;
|
|
ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
|
|
|
|
// Try splatting with a VMOV.f32...
|
|
APFloat FPVal = CFP->getValueAPF();
|
|
int ImmVal = IsDouble ? ARM_AM::getFP64Imm(FPVal) : ARM_AM::getFP32Imm(FPVal);
|
|
|
|
if (ImmVal != -1) {
|
|
if (IsDouble || !ST->useNEONForSinglePrecisionFP()) {
|
|
// We have code in place to select a valid ConstantFP already, no need to
|
|
// do any mangling.
|
|
return Op;
|
|
}
|
|
|
|
// It's a float and we are trying to use NEON operations where
|
|
// possible. Lower it to a splat followed by an extract.
|
|
SDLoc DL(Op);
|
|
SDValue NewVal = DAG.getTargetConstant(ImmVal, MVT::i32);
|
|
SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
|
|
NewVal);
|
|
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
|
|
DAG.getConstant(0, MVT::i32));
|
|
}
|
|
|
|
// The rest of our options are NEON only, make sure that's allowed before
|
|
// proceeding..
|
|
if (!ST->hasNEON() || (!IsDouble && !ST->useNEONForSinglePrecisionFP()))
|
|
return SDValue();
|
|
|
|
EVT VMovVT;
|
|
uint64_t iVal = FPVal.bitcastToAPInt().getZExtValue();
|
|
|
|
// It wouldn't really be worth bothering for doubles except for one very
|
|
// important value, which does happen to match: 0.0. So make sure we don't do
|
|
// anything stupid.
|
|
if (IsDouble && (iVal & 0xffffffff) != (iVal >> 32))
|
|
return SDValue();
|
|
|
|
// Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
|
|
SDValue NewVal = isNEONModifiedImm(iVal & 0xffffffffU, 0, 32, DAG, VMovVT,
|
|
false, VMOVModImm);
|
|
if (NewVal != SDValue()) {
|
|
SDLoc DL(Op);
|
|
SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
|
|
NewVal);
|
|
if (IsDouble)
|
|
return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
|
|
|
|
// It's a float: cast and extract a vector element.
|
|
SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
|
|
VecConstant);
|
|
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
|
|
DAG.getConstant(0, MVT::i32));
|
|
}
|
|
|
|
// Finally, try a VMVN.i32
|
|
NewVal = isNEONModifiedImm(~iVal & 0xffffffffU, 0, 32, DAG, VMovVT,
|
|
false, VMVNModImm);
|
|
if (NewVal != SDValue()) {
|
|
SDLoc DL(Op);
|
|
SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
|
|
|
|
if (IsDouble)
|
|
return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
|
|
|
|
// It's a float: cast and extract a vector element.
|
|
SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
|
|
VecConstant);
|
|
return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
|
|
DAG.getConstant(0, MVT::i32));
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// check if an VEXT instruction can handle the shuffle mask when the
|
|
// vector sources of the shuffle are the same.
|
|
static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
|
|
// Assume that the first shuffle index is not UNDEF. Fail if it is.
|
|
if (M[0] < 0)
|
|
return false;
|
|
|
|
Imm = M[0];
|
|
|
|
// If this is a VEXT shuffle, the immediate value is the index of the first
|
|
// element. The other shuffle indices must be the successive elements after
|
|
// the first one.
|
|
unsigned ExpectedElt = Imm;
|
|
for (unsigned i = 1; i < NumElts; ++i) {
|
|
// Increment the expected index. If it wraps around, just follow it
|
|
// back to index zero and keep going.
|
|
++ExpectedElt;
|
|
if (ExpectedElt == NumElts)
|
|
ExpectedElt = 0;
|
|
|
|
if (M[i] < 0) continue; // ignore UNDEF indices
|
|
if (ExpectedElt != static_cast<unsigned>(M[i]))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
static bool isVEXTMask(ArrayRef<int> M, EVT VT,
|
|
bool &ReverseVEXT, unsigned &Imm) {
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
ReverseVEXT = false;
|
|
|
|
// Assume that the first shuffle index is not UNDEF. Fail if it is.
|
|
if (M[0] < 0)
|
|
return false;
|
|
|
|
Imm = M[0];
|
|
|
|
// If this is a VEXT shuffle, the immediate value is the index of the first
|
|
// element. The other shuffle indices must be the successive elements after
|
|
// the first one.
|
|
unsigned ExpectedElt = Imm;
|
|
for (unsigned i = 1; i < NumElts; ++i) {
|
|
// Increment the expected index. If it wraps around, it may still be
|
|
// a VEXT but the source vectors must be swapped.
|
|
ExpectedElt += 1;
|
|
if (ExpectedElt == NumElts * 2) {
|
|
ExpectedElt = 0;
|
|
ReverseVEXT = true;
|
|
}
|
|
|
|
if (M[i] < 0) continue; // ignore UNDEF indices
|
|
if (ExpectedElt != static_cast<unsigned>(M[i]))
|
|
return false;
|
|
}
|
|
|
|
// Adjust the index value if the source operands will be swapped.
|
|
if (ReverseVEXT)
|
|
Imm -= NumElts;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// isVREVMask - Check if a vector shuffle corresponds to a VREV
|
|
/// instruction with the specified blocksize. (The order of the elements
|
|
/// within each block of the vector is reversed.)
|
|
static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
|
|
assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
|
|
"Only possible block sizes for VREV are: 16, 32, 64");
|
|
|
|
unsigned EltSz = VT.getVectorElementType().getSizeInBits();
|
|
if (EltSz == 64)
|
|
return false;
|
|
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
unsigned BlockElts = M[0] + 1;
|
|
// If the first shuffle index is UNDEF, be optimistic.
|
|
if (M[0] < 0)
|
|
BlockElts = BlockSize / EltSz;
|
|
|
|
if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
|
|
return false;
|
|
|
|
for (unsigned i = 0; i < NumElts; ++i) {
|
|
if (M[i] < 0) continue; // ignore UNDEF indices
|
|
if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
|
|
// We can handle <8 x i8> vector shuffles. If the index in the mask is out of
|
|
// range, then 0 is placed into the resulting vector. So pretty much any mask
|
|
// of 8 elements can work here.
|
|
return VT == MVT::v8i8 && M.size() == 8;
|
|
}
|
|
|
|
static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
|
|
unsigned EltSz = VT.getVectorElementType().getSizeInBits();
|
|
if (EltSz == 64)
|
|
return false;
|
|
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
WhichResult = (M[0] == 0 ? 0 : 1);
|
|
for (unsigned i = 0; i < NumElts; i += 2) {
|
|
if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
|
|
(M[i+1] >= 0 && (unsigned) M[i+1] != i + NumElts + WhichResult))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
|
|
/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
|
|
/// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
|
|
static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
|
|
unsigned EltSz = VT.getVectorElementType().getSizeInBits();
|
|
if (EltSz == 64)
|
|
return false;
|
|
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
WhichResult = (M[0] == 0 ? 0 : 1);
|
|
for (unsigned i = 0; i < NumElts; i += 2) {
|
|
if ((M[i] >= 0 && (unsigned) M[i] != i + WhichResult) ||
|
|
(M[i+1] >= 0 && (unsigned) M[i+1] != i + WhichResult))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
|
|
unsigned EltSz = VT.getVectorElementType().getSizeInBits();
|
|
if (EltSz == 64)
|
|
return false;
|
|
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
WhichResult = (M[0] == 0 ? 0 : 1);
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
if (M[i] < 0) continue; // ignore UNDEF indices
|
|
if ((unsigned) M[i] != 2 * i + WhichResult)
|
|
return false;
|
|
}
|
|
|
|
// VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
|
|
if (VT.is64BitVector() && EltSz == 32)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
|
|
/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
|
|
/// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
|
|
static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
|
|
unsigned EltSz = VT.getVectorElementType().getSizeInBits();
|
|
if (EltSz == 64)
|
|
return false;
|
|
|
|
unsigned Half = VT.getVectorNumElements() / 2;
|
|
WhichResult = (M[0] == 0 ? 0 : 1);
|
|
for (unsigned j = 0; j != 2; ++j) {
|
|
unsigned Idx = WhichResult;
|
|
for (unsigned i = 0; i != Half; ++i) {
|
|
int MIdx = M[i + j * Half];
|
|
if (MIdx >= 0 && (unsigned) MIdx != Idx)
|
|
return false;
|
|
Idx += 2;
|
|
}
|
|
}
|
|
|
|
// VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
|
|
if (VT.is64BitVector() && EltSz == 32)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
|
|
unsigned EltSz = VT.getVectorElementType().getSizeInBits();
|
|
if (EltSz == 64)
|
|
return false;
|
|
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
WhichResult = (M[0] == 0 ? 0 : 1);
|
|
unsigned Idx = WhichResult * NumElts / 2;
|
|
for (unsigned i = 0; i != NumElts; i += 2) {
|
|
if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
|
|
(M[i+1] >= 0 && (unsigned) M[i+1] != Idx + NumElts))
|
|
return false;
|
|
Idx += 1;
|
|
}
|
|
|
|
// VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
|
|
if (VT.is64BitVector() && EltSz == 32)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
|
|
/// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
|
|
/// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
|
|
static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
|
|
unsigned EltSz = VT.getVectorElementType().getSizeInBits();
|
|
if (EltSz == 64)
|
|
return false;
|
|
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
WhichResult = (M[0] == 0 ? 0 : 1);
|
|
unsigned Idx = WhichResult * NumElts / 2;
|
|
for (unsigned i = 0; i != NumElts; i += 2) {
|
|
if ((M[i] >= 0 && (unsigned) M[i] != Idx) ||
|
|
(M[i+1] >= 0 && (unsigned) M[i+1] != Idx))
|
|
return false;
|
|
Idx += 1;
|
|
}
|
|
|
|
// VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
|
|
if (VT.is64BitVector() && EltSz == 32)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// \return true if this is a reverse operation on an vector.
|
|
static bool isReverseMask(ArrayRef<int> M, EVT VT) {
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
// Make sure the mask has the right size.
|
|
if (NumElts != M.size())
|
|
return false;
|
|
|
|
// Look for <15, ..., 3, -1, 1, 0>.
|
|
for (unsigned i = 0; i != NumElts; ++i)
|
|
if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
// If N is an integer constant that can be moved into a register in one
|
|
// instruction, return an SDValue of such a constant (will become a MOV
|
|
// instruction). Otherwise return null.
|
|
static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
|
|
const ARMSubtarget *ST, SDLoc dl) {
|
|
uint64_t Val;
|
|
if (!isa<ConstantSDNode>(N))
|
|
return SDValue();
|
|
Val = cast<ConstantSDNode>(N)->getZExtValue();
|
|
|
|
if (ST->isThumb1Only()) {
|
|
if (Val <= 255 || ~Val <= 255)
|
|
return DAG.getConstant(Val, MVT::i32);
|
|
} else {
|
|
if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
|
|
return DAG.getConstant(Val, MVT::i32);
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
// If this is a case we can't handle, return null and let the default
|
|
// expansion code take care of it.
|
|
SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
|
|
const ARMSubtarget *ST) const {
|
|
BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
|
|
SDLoc dl(Op);
|
|
EVT VT = Op.getValueType();
|
|
|
|
APInt SplatBits, SplatUndef;
|
|
unsigned SplatBitSize;
|
|
bool HasAnyUndefs;
|
|
if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
|
|
if (SplatBitSize <= 64) {
|
|
// Check if an immediate VMOV works.
|
|
EVT VmovVT;
|
|
SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
|
|
SplatUndef.getZExtValue(), SplatBitSize,
|
|
DAG, VmovVT, VT.is128BitVector(),
|
|
VMOVModImm);
|
|
if (Val.getNode()) {
|
|
SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
|
|
return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
|
|
}
|
|
|
|
// Try an immediate VMVN.
|
|
uint64_t NegatedImm = (~SplatBits).getZExtValue();
|
|
Val = isNEONModifiedImm(NegatedImm,
|
|
SplatUndef.getZExtValue(), SplatBitSize,
|
|
DAG, VmovVT, VT.is128BitVector(),
|
|
VMVNModImm);
|
|
if (Val.getNode()) {
|
|
SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
|
|
return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
|
|
}
|
|
|
|
// Use vmov.f32 to materialize other v2f32 and v4f32 splats.
|
|
if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
|
|
int ImmVal = ARM_AM::getFP32Imm(SplatBits);
|
|
if (ImmVal != -1) {
|
|
SDValue Val = DAG.getTargetConstant(ImmVal, MVT::i32);
|
|
return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Scan through the operands to see if only one value is used.
|
|
//
|
|
// As an optimisation, even if more than one value is used it may be more
|
|
// profitable to splat with one value then change some lanes.
|
|
//
|
|
// Heuristically we decide to do this if the vector has a "dominant" value,
|
|
// defined as splatted to more than half of the lanes.
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
bool isOnlyLowElement = true;
|
|
bool usesOnlyOneValue = true;
|
|
bool hasDominantValue = false;
|
|
bool isConstant = true;
|
|
|
|
// Map of the number of times a particular SDValue appears in the
|
|
// element list.
|
|
DenseMap<SDValue, unsigned> ValueCounts;
|
|
SDValue Value;
|
|
for (unsigned i = 0; i < NumElts; ++i) {
|
|
SDValue V = Op.getOperand(i);
|
|
if (V.getOpcode() == ISD::UNDEF)
|
|
continue;
|
|
if (i > 0)
|
|
isOnlyLowElement = false;
|
|
if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
|
|
isConstant = false;
|
|
|
|
ValueCounts.insert(std::make_pair(V, 0));
|
|
unsigned &Count = ValueCounts[V];
|
|
|
|
// Is this value dominant? (takes up more than half of the lanes)
|
|
if (++Count > (NumElts / 2)) {
|
|
hasDominantValue = true;
|
|
Value = V;
|
|
}
|
|
}
|
|
if (ValueCounts.size() != 1)
|
|
usesOnlyOneValue = false;
|
|
if (!Value.getNode() && ValueCounts.size() > 0)
|
|
Value = ValueCounts.begin()->first;
|
|
|
|
if (ValueCounts.size() == 0)
|
|
return DAG.getUNDEF(VT);
|
|
|
|
// Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
|
|
// Keep going if we are hitting this case.
|
|
if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode()))
|
|
return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
|
|
|
|
unsigned EltSize = VT.getVectorElementType().getSizeInBits();
|
|
|
|
// Use VDUP for non-constant splats. For f32 constant splats, reduce to
|
|
// i32 and try again.
|
|
if (hasDominantValue && EltSize <= 32) {
|
|
if (!isConstant) {
|
|
SDValue N;
|
|
|
|
// If we are VDUPing a value that comes directly from a vector, that will
|
|
// cause an unnecessary move to and from a GPR, where instead we could
|
|
// just use VDUPLANE. We can only do this if the lane being extracted
|
|
// is at a constant index, as the VDUP from lane instructions only have
|
|
// constant-index forms.
|
|
if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
|
|
isa<ConstantSDNode>(Value->getOperand(1))) {
|
|
// We need to create a new undef vector to use for the VDUPLANE if the
|
|
// size of the vector from which we get the value is different than the
|
|
// size of the vector that we need to create. We will insert the element
|
|
// such that the register coalescer will remove unnecessary copies.
|
|
if (VT != Value->getOperand(0).getValueType()) {
|
|
ConstantSDNode *constIndex;
|
|
constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1));
|
|
assert(constIndex && "The index is not a constant!");
|
|
unsigned index = constIndex->getAPIntValue().getLimitedValue() %
|
|
VT.getVectorNumElements();
|
|
N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
|
|
DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT),
|
|
Value, DAG.getConstant(index, MVT::i32)),
|
|
DAG.getConstant(index, MVT::i32));
|
|
} else
|
|
N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
|
|
Value->getOperand(0), Value->getOperand(1));
|
|
} else
|
|
N = DAG.getNode(ARMISD::VDUP, dl, VT, Value);
|
|
|
|
if (!usesOnlyOneValue) {
|
|
// The dominant value was splatted as 'N', but we now have to insert
|
|
// all differing elements.
|
|
for (unsigned I = 0; I < NumElts; ++I) {
|
|
if (Op.getOperand(I) == Value)
|
|
continue;
|
|
SmallVector<SDValue, 3> Ops;
|
|
Ops.push_back(N);
|
|
Ops.push_back(Op.getOperand(I));
|
|
Ops.push_back(DAG.getConstant(I, MVT::i32));
|
|
N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, &Ops[0], 3);
|
|
}
|
|
}
|
|
return N;
|
|
}
|
|
if (VT.getVectorElementType().isFloatingPoint()) {
|
|
SmallVector<SDValue, 8> Ops;
|
|
for (unsigned i = 0; i < NumElts; ++i)
|
|
Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
|
|
Op.getOperand(i)));
|
|
EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
|
|
SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, &Ops[0], NumElts);
|
|
Val = LowerBUILD_VECTOR(Val, DAG, ST);
|
|
if (Val.getNode())
|
|
return DAG.getNode(ISD::BITCAST, dl, VT, Val);
|
|
}
|
|
if (usesOnlyOneValue) {
|
|
SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
|
|
if (isConstant && Val.getNode())
|
|
return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
|
|
}
|
|
}
|
|
|
|
// If all elements are constants and the case above didn't get hit, fall back
|
|
// to the default expansion, which will generate a load from the constant
|
|
// pool.
|
|
if (isConstant)
|
|
return SDValue();
|
|
|
|
// Empirical tests suggest this is rarely worth it for vectors of length <= 2.
|
|
if (NumElts >= 4) {
|
|
SDValue shuffle = ReconstructShuffle(Op, DAG);
|
|
if (shuffle != SDValue())
|
|
return shuffle;
|
|
}
|
|
|
|
// Vectors with 32- or 64-bit elements can be built by directly assigning
|
|
// the subregisters. Lower it to an ARMISD::BUILD_VECTOR so the operands
|
|
// will be legalized.
|
|
if (EltSize >= 32) {
|
|
// Do the expansion with floating-point types, since that is what the VFP
|
|
// registers are defined to use, and since i64 is not legal.
|
|
EVT EltVT = EVT::getFloatingPointVT(EltSize);
|
|
EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
|
|
SmallVector<SDValue, 8> Ops;
|
|
for (unsigned i = 0; i < NumElts; ++i)
|
|
Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
|
|
SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
|
|
return DAG.getNode(ISD::BITCAST, dl, VT, Val);
|
|
}
|
|
|
|
// If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
|
|
// know the default expansion would otherwise fall back on something even
|
|
// worse. For a vector with one or two non-undef values, that's
|
|
// scalar_to_vector for the elements followed by a shuffle (provided the
|
|
// shuffle is valid for the target) and materialization element by element
|
|
// on the stack followed by a load for everything else.
|
|
if (!isConstant && !usesOnlyOneValue) {
|
|
SDValue Vec = DAG.getUNDEF(VT);
|
|
for (unsigned i = 0 ; i < NumElts; ++i) {
|
|
SDValue V = Op.getOperand(i);
|
|
if (V.getOpcode() == ISD::UNDEF)
|
|
continue;
|
|
SDValue LaneIdx = DAG.getConstant(i, MVT::i32);
|
|
Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
|
|
}
|
|
return Vec;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
// Gather data to see if the operation can be modelled as a
|
|
// shuffle in combination with VEXTs.
|
|
SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
|
|
SelectionDAG &DAG) const {
|
|
SDLoc dl(Op);
|
|
EVT VT = Op.getValueType();
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
|
|
SmallVector<SDValue, 2> SourceVecs;
|
|
SmallVector<unsigned, 2> MinElts;
|
|
SmallVector<unsigned, 2> MaxElts;
|
|
|
|
for (unsigned i = 0; i < NumElts; ++i) {
|
|
SDValue V = Op.getOperand(i);
|
|
if (V.getOpcode() == ISD::UNDEF)
|
|
continue;
|
|
else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
|
|
// A shuffle can only come from building a vector from various
|
|
// elements of other vectors.
|
|
return SDValue();
|
|
} else if (V.getOperand(0).getValueType().getVectorElementType() !=
|
|
VT.getVectorElementType()) {
|
|
// This code doesn't know how to handle shuffles where the vector
|
|
// element types do not match (this happens because type legalization
|
|
// promotes the return type of EXTRACT_VECTOR_ELT).
|
|
// FIXME: It might be appropriate to extend this code to handle
|
|
// mismatched types.
|
|
return SDValue();
|
|
}
|
|
|
|
// Record this extraction against the appropriate vector if possible...
|
|
SDValue SourceVec = V.getOperand(0);
|
|
// If the element number isn't a constant, we can't effectively
|
|
// analyze what's going on.
|
|
if (!isa<ConstantSDNode>(V.getOperand(1)))
|
|
return SDValue();
|
|
unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
|
|
bool FoundSource = false;
|
|
for (unsigned j = 0; j < SourceVecs.size(); ++j) {
|
|
if (SourceVecs[j] == SourceVec) {
|
|
if (MinElts[j] > EltNo)
|
|
MinElts[j] = EltNo;
|
|
if (MaxElts[j] < EltNo)
|
|
MaxElts[j] = EltNo;
|
|
FoundSource = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Or record a new source if not...
|
|
if (!FoundSource) {
|
|
SourceVecs.push_back(SourceVec);
|
|
MinElts.push_back(EltNo);
|
|
MaxElts.push_back(EltNo);
|
|
}
|
|
}
|
|
|
|
// Currently only do something sane when at most two source vectors
|
|
// involved.
|
|
if (SourceVecs.size() > 2)
|
|
return SDValue();
|
|
|
|
SDValue ShuffleSrcs[2] = {DAG.getUNDEF(VT), DAG.getUNDEF(VT) };
|
|
int VEXTOffsets[2] = {0, 0};
|
|
|
|
// This loop extracts the usage patterns of the source vectors
|
|
// and prepares appropriate SDValues for a shuffle if possible.
|
|
for (unsigned i = 0; i < SourceVecs.size(); ++i) {
|
|
if (SourceVecs[i].getValueType() == VT) {
|
|
// No VEXT necessary
|
|
ShuffleSrcs[i] = SourceVecs[i];
|
|
VEXTOffsets[i] = 0;
|
|
continue;
|
|
} else if (SourceVecs[i].getValueType().getVectorNumElements() < NumElts) {
|
|
// It probably isn't worth padding out a smaller vector just to
|
|
// break it down again in a shuffle.
|
|
return SDValue();
|
|
}
|
|
|
|
// Since only 64-bit and 128-bit vectors are legal on ARM and
|
|
// we've eliminated the other cases...
|
|
assert(SourceVecs[i].getValueType().getVectorNumElements() == 2*NumElts &&
|
|
"unexpected vector sizes in ReconstructShuffle");
|
|
|
|
if (MaxElts[i] - MinElts[i] >= NumElts) {
|
|
// Span too large for a VEXT to cope
|
|
return SDValue();
|
|
}
|
|
|
|
if (MinElts[i] >= NumElts) {
|
|
// The extraction can just take the second half
|
|
VEXTOffsets[i] = NumElts;
|
|
ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
|
|
SourceVecs[i],
|
|
DAG.getIntPtrConstant(NumElts));
|
|
} else if (MaxElts[i] < NumElts) {
|
|
// The extraction can just take the first half
|
|
VEXTOffsets[i] = 0;
|
|
ShuffleSrcs[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
|
|
SourceVecs[i],
|
|
DAG.getIntPtrConstant(0));
|
|
} else {
|
|
// An actual VEXT is needed
|
|
VEXTOffsets[i] = MinElts[i];
|
|
SDValue VEXTSrc1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
|
|
SourceVecs[i],
|
|
DAG.getIntPtrConstant(0));
|
|
SDValue VEXTSrc2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, VT,
|
|
SourceVecs[i],
|
|
DAG.getIntPtrConstant(NumElts));
|
|
ShuffleSrcs[i] = DAG.getNode(ARMISD::VEXT, dl, VT, VEXTSrc1, VEXTSrc2,
|
|
DAG.getConstant(VEXTOffsets[i], MVT::i32));
|
|
}
|
|
}
|
|
|
|
SmallVector<int, 8> Mask;
|
|
|
|
for (unsigned i = 0; i < NumElts; ++i) {
|
|
SDValue Entry = Op.getOperand(i);
|
|
if (Entry.getOpcode() == ISD::UNDEF) {
|
|
Mask.push_back(-1);
|
|
continue;
|
|
}
|
|
|
|
SDValue ExtractVec = Entry.getOperand(0);
|
|
int ExtractElt = cast<ConstantSDNode>(Op.getOperand(i)
|
|
.getOperand(1))->getSExtValue();
|
|
if (ExtractVec == SourceVecs[0]) {
|
|
Mask.push_back(ExtractElt - VEXTOffsets[0]);
|
|
} else {
|
|
Mask.push_back(ExtractElt + NumElts - VEXTOffsets[1]);
|
|
}
|
|
}
|
|
|
|
// Final check before we try to produce nonsense...
|
|
if (isShuffleMaskLegal(Mask, VT))
|
|
return DAG.getVectorShuffle(VT, dl, ShuffleSrcs[0], ShuffleSrcs[1],
|
|
&Mask[0]);
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// isShuffleMaskLegal - Targets can use this to indicate that they only
|
|
/// support *some* VECTOR_SHUFFLE operations, those with specific masks.
|
|
/// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
|
|
/// are assumed to be legal.
|
|
bool
|
|
ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
|
|
EVT VT) const {
|
|
if (VT.getVectorNumElements() == 4 &&
|
|
(VT.is128BitVector() || VT.is64BitVector())) {
|
|
unsigned PFIndexes[4];
|
|
for (unsigned i = 0; i != 4; ++i) {
|
|
if (M[i] < 0)
|
|
PFIndexes[i] = 8;
|
|
else
|
|
PFIndexes[i] = M[i];
|
|
}
|
|
|
|
// Compute the index in the perfect shuffle table.
|
|
unsigned PFTableIndex =
|
|
PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
|
|
unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
|
|
unsigned Cost = (PFEntry >> 30);
|
|
|
|
if (Cost <= 4)
|
|
return true;
|
|
}
|
|
|
|
bool ReverseVEXT;
|
|
unsigned Imm, WhichResult;
|
|
|
|
unsigned EltSize = VT.getVectorElementType().getSizeInBits();
|
|
return (EltSize >= 32 ||
|
|
ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
|
|
isVREVMask(M, VT, 64) ||
|
|
isVREVMask(M, VT, 32) ||
|
|
isVREVMask(M, VT, 16) ||
|
|
isVEXTMask(M, VT, ReverseVEXT, Imm) ||
|
|
isVTBLMask(M, VT) ||
|
|
isVTRNMask(M, VT, WhichResult) ||
|
|
isVUZPMask(M, VT, WhichResult) ||
|
|
isVZIPMask(M, VT, WhichResult) ||
|
|
isVTRN_v_undef_Mask(M, VT, WhichResult) ||
|
|
isVUZP_v_undef_Mask(M, VT, WhichResult) ||
|
|
isVZIP_v_undef_Mask(M, VT, WhichResult) ||
|
|
((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(M, VT)));
|
|
}
|
|
|
|
/// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
|
|
/// the specified operations to build the shuffle.
|
|
static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
|
|
SDValue RHS, SelectionDAG &DAG,
|
|
SDLoc dl) {
|
|
unsigned OpNum = (PFEntry >> 26) & 0x0F;
|
|
unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
|
|
unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
|
|
|
|
enum {
|
|
OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
|
|
OP_VREV,
|
|
OP_VDUP0,
|
|
OP_VDUP1,
|
|
OP_VDUP2,
|
|
OP_VDUP3,
|
|
OP_VEXT1,
|
|
OP_VEXT2,
|
|
OP_VEXT3,
|
|
OP_VUZPL, // VUZP, left result
|
|
OP_VUZPR, // VUZP, right result
|
|
OP_VZIPL, // VZIP, left result
|
|
OP_VZIPR, // VZIP, right result
|
|
OP_VTRNL, // VTRN, left result
|
|
OP_VTRNR // VTRN, right result
|
|
};
|
|
|
|
if (OpNum == OP_COPY) {
|
|
if (LHSID == (1*9+2)*9+3) return LHS;
|
|
assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
|
|
return RHS;
|
|
}
|
|
|
|
SDValue OpLHS, OpRHS;
|
|
OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
|
|
OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
|
|
EVT VT = OpLHS.getValueType();
|
|
|
|
switch (OpNum) {
|
|
default: llvm_unreachable("Unknown shuffle opcode!");
|
|
case OP_VREV:
|
|
// VREV divides the vector in half and swaps within the half.
|
|
if (VT.getVectorElementType() == MVT::i32 ||
|
|
VT.getVectorElementType() == MVT::f32)
|
|
return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
|
|
// vrev <4 x i16> -> VREV32
|
|
if (VT.getVectorElementType() == MVT::i16)
|
|
return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
|
|
// vrev <4 x i8> -> VREV16
|
|
assert(VT.getVectorElementType() == MVT::i8);
|
|
return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
|
|
case OP_VDUP0:
|
|
case OP_VDUP1:
|
|
case OP_VDUP2:
|
|
case OP_VDUP3:
|
|
return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
|
|
OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32));
|
|
case OP_VEXT1:
|
|
case OP_VEXT2:
|
|
case OP_VEXT3:
|
|
return DAG.getNode(ARMISD::VEXT, dl, VT,
|
|
OpLHS, OpRHS,
|
|
DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32));
|
|
case OP_VUZPL:
|
|
case OP_VUZPR:
|
|
return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
|
|
OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
|
|
case OP_VZIPL:
|
|
case OP_VZIPR:
|
|
return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
|
|
OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
|
|
case OP_VTRNL:
|
|
case OP_VTRNR:
|
|
return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
|
|
OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
|
|
}
|
|
}
|
|
|
|
static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
|
|
ArrayRef<int> ShuffleMask,
|
|
SelectionDAG &DAG) {
|
|
// Check to see if we can use the VTBL instruction.
|
|
SDValue V1 = Op.getOperand(0);
|
|
SDValue V2 = Op.getOperand(1);
|
|
SDLoc DL(Op);
|
|
|
|
SmallVector<SDValue, 8> VTBLMask;
|
|
for (ArrayRef<int>::iterator
|
|
I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
|
|
VTBLMask.push_back(DAG.getConstant(*I, MVT::i32));
|
|
|
|
if (V2.getNode()->getOpcode() == ISD::UNDEF)
|
|
return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
|
|
DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
|
|
&VTBLMask[0], 8));
|
|
|
|
return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
|
|
DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8,
|
|
&VTBLMask[0], 8));
|
|
}
|
|
|
|
static SDValue LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op,
|
|
SelectionDAG &DAG) {
|
|
SDLoc DL(Op);
|
|
SDValue OpLHS = Op.getOperand(0);
|
|
EVT VT = OpLHS.getValueType();
|
|
|
|
assert((VT == MVT::v8i16 || VT == MVT::v16i8) &&
|
|
"Expect an v8i16/v16i8 type");
|
|
OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, OpLHS);
|
|
// For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now,
|
|
// extract the first 8 bytes into the top double word and the last 8 bytes
|
|
// into the bottom double word. The v8i16 case is similar.
|
|
unsigned ExtractNum = (VT == MVT::v16i8) ? 8 : 4;
|
|
return DAG.getNode(ARMISD::VEXT, DL, VT, OpLHS, OpLHS,
|
|
DAG.getConstant(ExtractNum, MVT::i32));
|
|
}
|
|
|
|
static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
|
|
SDValue V1 = Op.getOperand(0);
|
|
SDValue V2 = Op.getOperand(1);
|
|
SDLoc dl(Op);
|
|
EVT VT = Op.getValueType();
|
|
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
|
|
|
|
// Convert shuffles that are directly supported on NEON to target-specific
|
|
// DAG nodes, instead of keeping them as shuffles and matching them again
|
|
// during code selection. This is more efficient and avoids the possibility
|
|
// of inconsistencies between legalization and selection.
|
|
// FIXME: floating-point vectors should be canonicalized to integer vectors
|
|
// of the same time so that they get CSEd properly.
|
|
ArrayRef<int> ShuffleMask = SVN->getMask();
|
|
|
|
unsigned EltSize = VT.getVectorElementType().getSizeInBits();
|
|
if (EltSize <= 32) {
|
|
if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
|
|
int Lane = SVN->getSplatIndex();
|
|
// If this is undef splat, generate it via "just" vdup, if possible.
|
|
if (Lane == -1) Lane = 0;
|
|
|
|
// Test if V1 is a SCALAR_TO_VECTOR.
|
|
if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
|
|
return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
|
|
}
|
|
// Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
|
|
// (and probably will turn into a SCALAR_TO_VECTOR once legalization
|
|
// reaches it).
|
|
if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
|
|
!isa<ConstantSDNode>(V1.getOperand(0))) {
|
|
bool IsScalarToVector = true;
|
|
for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
|
|
if (V1.getOperand(i).getOpcode() != ISD::UNDEF) {
|
|
IsScalarToVector = false;
|
|
break;
|
|
}
|
|
if (IsScalarToVector)
|
|
return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
|
|
}
|
|
return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
|
|
DAG.getConstant(Lane, MVT::i32));
|
|
}
|
|
|
|
bool ReverseVEXT;
|
|
unsigned Imm;
|
|
if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
|
|
if (ReverseVEXT)
|
|
std::swap(V1, V2);
|
|
return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
|
|
DAG.getConstant(Imm, MVT::i32));
|
|
}
|
|
|
|
if (isVREVMask(ShuffleMask, VT, 64))
|
|
return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
|
|
if (isVREVMask(ShuffleMask, VT, 32))
|
|
return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
|
|
if (isVREVMask(ShuffleMask, VT, 16))
|
|
return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
|
|
|
|
if (V2->getOpcode() == ISD::UNDEF &&
|
|
isSingletonVEXTMask(ShuffleMask, VT, Imm)) {
|
|
return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1,
|
|
DAG.getConstant(Imm, MVT::i32));
|
|
}
|
|
|
|
// Check for Neon shuffles that modify both input vectors in place.
|
|
// If both results are used, i.e., if there are two shuffles with the same
|
|
// source operands and with masks corresponding to both results of one of
|
|
// these operations, DAG memoization will ensure that a single node is
|
|
// used for both shuffles.
|
|
unsigned WhichResult;
|
|
if (isVTRNMask(ShuffleMask, VT, WhichResult))
|
|
return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
|
|
V1, V2).getValue(WhichResult);
|
|
if (isVUZPMask(ShuffleMask, VT, WhichResult))
|
|
return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
|
|
V1, V2).getValue(WhichResult);
|
|
if (isVZIPMask(ShuffleMask, VT, WhichResult))
|
|
return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
|
|
V1, V2).getValue(WhichResult);
|
|
|
|
if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
|
|
return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
|
|
V1, V1).getValue(WhichResult);
|
|
if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
|
|
return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
|
|
V1, V1).getValue(WhichResult);
|
|
if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
|
|
return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
|
|
V1, V1).getValue(WhichResult);
|
|
}
|
|
|
|
// If the shuffle is not directly supported and it has 4 elements, use
|
|
// the PerfectShuffle-generated table to synthesize it from other shuffles.
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
if (NumElts == 4) {
|
|
unsigned PFIndexes[4];
|
|
for (unsigned i = 0; i != 4; ++i) {
|
|
if (ShuffleMask[i] < 0)
|
|
PFIndexes[i] = 8;
|
|
else
|
|
PFIndexes[i] = ShuffleMask[i];
|
|
}
|
|
|
|
// Compute the index in the perfect shuffle table.
|
|
unsigned PFTableIndex =
|
|
PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
|
|
unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
|
|
unsigned Cost = (PFEntry >> 30);
|
|
|
|
if (Cost <= 4)
|
|
return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
|
|
}
|
|
|
|
// Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
|
|
if (EltSize >= 32) {
|
|
// Do the expansion with floating-point types, since that is what the VFP
|
|
// registers are defined to use, and since i64 is not legal.
|
|
EVT EltVT = EVT::getFloatingPointVT(EltSize);
|
|
EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
|
|
V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
|
|
V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
|
|
SmallVector<SDValue, 8> Ops;
|
|
for (unsigned i = 0; i < NumElts; ++i) {
|
|
if (ShuffleMask[i] < 0)
|
|
Ops.push_back(DAG.getUNDEF(EltVT));
|
|
else
|
|
Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
|
|
ShuffleMask[i] < (int)NumElts ? V1 : V2,
|
|
DAG.getConstant(ShuffleMask[i] & (NumElts-1),
|
|
MVT::i32)));
|
|
}
|
|
SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, &Ops[0],NumElts);
|
|
return DAG.getNode(ISD::BITCAST, dl, VT, Val);
|
|
}
|
|
|
|
if ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(ShuffleMask, VT))
|
|
return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op, DAG);
|
|
|
|
if (VT == MVT::v8i8) {
|
|
SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG);
|
|
if (NewOp.getNode())
|
|
return NewOp;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
|
|
// INSERT_VECTOR_ELT is legal only for immediate indexes.
|
|
SDValue Lane = Op.getOperand(2);
|
|
if (!isa<ConstantSDNode>(Lane))
|
|
return SDValue();
|
|
|
|
return Op;
|
|
}
|
|
|
|
static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
|
|
// EXTRACT_VECTOR_ELT is legal only for immediate indexes.
|
|
SDValue Lane = Op.getOperand(1);
|
|
if (!isa<ConstantSDNode>(Lane))
|
|
return SDValue();
|
|
|
|
SDValue Vec = Op.getOperand(0);
|
|
if (Op.getValueType() == MVT::i32 &&
|
|
Vec.getValueType().getVectorElementType().getSizeInBits() < 32) {
|
|
SDLoc dl(Op);
|
|
return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
|
|
}
|
|
|
|
return Op;
|
|
}
|
|
|
|
static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
|
|
// The only time a CONCAT_VECTORS operation can have legal types is when
|
|
// two 64-bit vectors are concatenated to a 128-bit vector.
|
|
assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
|
|
"unexpected CONCAT_VECTORS");
|
|
SDLoc dl(Op);
|
|
SDValue Val = DAG.getUNDEF(MVT::v2f64);
|
|
SDValue Op0 = Op.getOperand(0);
|
|
SDValue Op1 = Op.getOperand(1);
|
|
if (Op0.getOpcode() != ISD::UNDEF)
|
|
Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
|
|
DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
|
|
DAG.getIntPtrConstant(0));
|
|
if (Op1.getOpcode() != ISD::UNDEF)
|
|
Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
|
|
DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
|
|
DAG.getIntPtrConstant(1));
|
|
return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
|
|
}
|
|
|
|
/// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
|
|
/// element has been zero/sign-extended, depending on the isSigned parameter,
|
|
/// from an integer type half its size.
|
|
static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
|
|
bool isSigned) {
|
|
// A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
|
|
EVT VT = N->getValueType(0);
|
|
if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
|
|
SDNode *BVN = N->getOperand(0).getNode();
|
|
if (BVN->getValueType(0) != MVT::v4i32 ||
|
|
BVN->getOpcode() != ISD::BUILD_VECTOR)
|
|
return false;
|
|
unsigned LoElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
|
|
unsigned HiElt = 1 - LoElt;
|
|
ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
|
|
ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
|
|
ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
|
|
ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
|
|
if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
|
|
return false;
|
|
if (isSigned) {
|
|
if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
|
|
Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
|
|
return true;
|
|
} else {
|
|
if (Hi0->isNullValue() && Hi1->isNullValue())
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
if (N->getOpcode() != ISD::BUILD_VECTOR)
|
|
return false;
|
|
|
|
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
|
|
SDNode *Elt = N->getOperand(i).getNode();
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
|
|
unsigned EltSize = VT.getVectorElementType().getSizeInBits();
|
|
unsigned HalfSize = EltSize / 2;
|
|
if (isSigned) {
|
|
if (!isIntN(HalfSize, C->getSExtValue()))
|
|
return false;
|
|
} else {
|
|
if (!isUIntN(HalfSize, C->getZExtValue()))
|
|
return false;
|
|
}
|
|
continue;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// isSignExtended - Check if a node is a vector value that is sign-extended
|
|
/// or a constant BUILD_VECTOR with sign-extended elements.
|
|
static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
|
|
if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
|
|
return true;
|
|
if (isExtendedBUILD_VECTOR(N, DAG, true))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// isZeroExtended - Check if a node is a vector value that is zero-extended
|
|
/// or a constant BUILD_VECTOR with zero-extended elements.
|
|
static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
|
|
if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
|
|
return true;
|
|
if (isExtendedBUILD_VECTOR(N, DAG, false))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static EVT getExtensionTo64Bits(const EVT &OrigVT) {
|
|
if (OrigVT.getSizeInBits() >= 64)
|
|
return OrigVT;
|
|
|
|
assert(OrigVT.isSimple() && "Expecting a simple value type");
|
|
|
|
MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
|
|
switch (OrigSimpleTy) {
|
|
default: llvm_unreachable("Unexpected Vector Type");
|
|
case MVT::v2i8:
|
|
case MVT::v2i16:
|
|
return MVT::v2i32;
|
|
case MVT::v4i8:
|
|
return MVT::v4i16;
|
|
}
|
|
}
|
|
|
|
/// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
|
|
/// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
|
|
/// We insert the required extension here to get the vector to fill a D register.
|
|
static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG,
|
|
const EVT &OrigTy,
|
|
const EVT &ExtTy,
|
|
unsigned ExtOpcode) {
|
|
// The vector originally had a size of OrigTy. It was then extended to ExtTy.
|
|
// We expect the ExtTy to be 128-bits total. If the OrigTy is less than
|
|
// 64-bits we need to insert a new extension so that it will be 64-bits.
|
|
assert(ExtTy.is128BitVector() && "Unexpected extension size");
|
|
if (OrigTy.getSizeInBits() >= 64)
|
|
return N;
|
|
|
|
// Must extend size to at least 64 bits to be used as an operand for VMULL.
|
|
EVT NewVT = getExtensionTo64Bits(OrigTy);
|
|
|
|
return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
|
|
}
|
|
|
|
/// SkipLoadExtensionForVMULL - return a load of the original vector size that
|
|
/// does not do any sign/zero extension. If the original vector is less
|
|
/// than 64 bits, an appropriate extension will be added after the load to
|
|
/// reach a total size of 64 bits. We have to add the extension separately
|
|
/// because ARM does not have a sign/zero extending load for vectors.
|
|
static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) {
|
|
EVT ExtendedTy = getExtensionTo64Bits(LD->getMemoryVT());
|
|
|
|
// The load already has the right type.
|
|
if (ExtendedTy == LD->getMemoryVT())
|
|
return DAG.getLoad(LD->getMemoryVT(), SDLoc(LD), LD->getChain(),
|
|
LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
|
|
LD->isNonTemporal(), LD->isInvariant(),
|
|
LD->getAlignment());
|
|
|
|
// We need to create a zextload/sextload. We cannot just create a load
|
|
// followed by a zext/zext node because LowerMUL is also run during normal
|
|
// operation legalization where we can't create illegal types.
|
|
return DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), ExtendedTy,
|
|
LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(),
|
|
LD->getMemoryVT(), LD->isVolatile(),
|
|
LD->isNonTemporal(), LD->getAlignment());
|
|
}
|
|
|
|
/// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
|
|
/// extending load, or BUILD_VECTOR with extended elements, return the
|
|
/// unextended value. The unextended vector should be 64 bits so that it can
|
|
/// be used as an operand to a VMULL instruction. If the original vector size
|
|
/// before extension is less than 64 bits we add a an extension to resize
|
|
/// the vector to 64 bits.
|
|
static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) {
|
|
if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
|
|
return AddRequiredExtensionForVMULL(N->getOperand(0), DAG,
|
|
N->getOperand(0)->getValueType(0),
|
|
N->getValueType(0),
|
|
N->getOpcode());
|
|
|
|
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
|
|
return SkipLoadExtensionForVMULL(LD, DAG);
|
|
|
|
// Otherwise, the value must be a BUILD_VECTOR. For v2i64, it will
|
|
// have been legalized as a BITCAST from v4i32.
|
|
if (N->getOpcode() == ISD::BITCAST) {
|
|
SDNode *BVN = N->getOperand(0).getNode();
|
|
assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
|
|
BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
|
|
unsigned LowElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
|
|
return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), MVT::v2i32,
|
|
BVN->getOperand(LowElt), BVN->getOperand(LowElt+2));
|
|
}
|
|
// Construct a new BUILD_VECTOR with elements truncated to half the size.
|
|
assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
|
|
EVT VT = N->getValueType(0);
|
|
unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
MVT TruncVT = MVT::getIntegerVT(EltSize);
|
|
SmallVector<SDValue, 8> Ops;
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
|
|
const APInt &CInt = C->getAPIntValue();
|
|
// Element types smaller than 32 bits are not legal, so use i32 elements.
|
|
// The values are implicitly truncated so sext vs. zext doesn't matter.
|
|
Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), MVT::i32));
|
|
}
|
|
return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N),
|
|
MVT::getVectorVT(TruncVT, NumElts), Ops.data(), NumElts);
|
|
}
|
|
|
|
static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
|
|
unsigned Opcode = N->getOpcode();
|
|
if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
|
|
SDNode *N0 = N->getOperand(0).getNode();
|
|
SDNode *N1 = N->getOperand(1).getNode();
|
|
return N0->hasOneUse() && N1->hasOneUse() &&
|
|
isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
|
|
unsigned Opcode = N->getOpcode();
|
|
if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
|
|
SDNode *N0 = N->getOperand(0).getNode();
|
|
SDNode *N1 = N->getOperand(1).getNode();
|
|
return N0->hasOneUse() && N1->hasOneUse() &&
|
|
isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
|
|
// Multiplications are only custom-lowered for 128-bit vectors so that
|
|
// VMULL can be detected. Otherwise v2i64 multiplications are not legal.
|
|
EVT VT = Op.getValueType();
|
|
assert(VT.is128BitVector() && VT.isInteger() &&
|
|
"unexpected type for custom-lowering ISD::MUL");
|
|
SDNode *N0 = Op.getOperand(0).getNode();
|
|
SDNode *N1 = Op.getOperand(1).getNode();
|
|
unsigned NewOpc = 0;
|
|
bool isMLA = false;
|
|
bool isN0SExt = isSignExtended(N0, DAG);
|
|
bool isN1SExt = isSignExtended(N1, DAG);
|
|
if (isN0SExt && isN1SExt)
|
|
NewOpc = ARMISD::VMULLs;
|
|
else {
|
|
bool isN0ZExt = isZeroExtended(N0, DAG);
|
|
bool isN1ZExt = isZeroExtended(N1, DAG);
|
|
if (isN0ZExt && isN1ZExt)
|
|
NewOpc = ARMISD::VMULLu;
|
|
else if (isN1SExt || isN1ZExt) {
|
|
// Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
|
|
// into (s/zext A * s/zext C) + (s/zext B * s/zext C)
|
|
if (isN1SExt && isAddSubSExt(N0, DAG)) {
|
|
NewOpc = ARMISD::VMULLs;
|
|
isMLA = true;
|
|
} else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
|
|
NewOpc = ARMISD::VMULLu;
|
|
isMLA = true;
|
|
} else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
|
|
std::swap(N0, N1);
|
|
NewOpc = ARMISD::VMULLu;
|
|
isMLA = true;
|
|
}
|
|
}
|
|
|
|
if (!NewOpc) {
|
|
if (VT == MVT::v2i64)
|
|
// Fall through to expand this. It is not legal.
|
|
return SDValue();
|
|
else
|
|
// Other vector multiplications are legal.
|
|
return Op;
|
|
}
|
|
}
|
|
|
|
// Legalize to a VMULL instruction.
|
|
SDLoc DL(Op);
|
|
SDValue Op0;
|
|
SDValue Op1 = SkipExtensionForVMULL(N1, DAG);
|
|
if (!isMLA) {
|
|
Op0 = SkipExtensionForVMULL(N0, DAG);
|
|
assert(Op0.getValueType().is64BitVector() &&
|
|
Op1.getValueType().is64BitVector() &&
|
|
"unexpected types for extended operands to VMULL");
|
|
return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
|
|
}
|
|
|
|
// Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
|
|
// isel lowering to take advantage of no-stall back to back vmul + vmla.
|
|
// vmull q0, d4, d6
|
|
// vmlal q0, d5, d6
|
|
// is faster than
|
|
// vaddl q0, d4, d5
|
|
// vmovl q1, d6
|
|
// vmul q0, q0, q1
|
|
SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG);
|
|
SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG);
|
|
EVT Op1VT = Op1.getValueType();
|
|
return DAG.getNode(N0->getOpcode(), DL, VT,
|
|
DAG.getNode(NewOpc, DL, VT,
|
|
DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
|
|
DAG.getNode(NewOpc, DL, VT,
|
|
DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
|
|
}
|
|
|
|
static SDValue
|
|
LowerSDIV_v4i8(SDValue X, SDValue Y, SDLoc dl, SelectionDAG &DAG) {
|
|
// Convert to float
|
|
// float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
|
|
// float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
|
|
X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
|
|
Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
|
|
X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
|
|
Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
|
|
// Get reciprocal estimate.
|
|
// float4 recip = vrecpeq_f32(yf);
|
|
Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
|
|
DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), Y);
|
|
// Because char has a smaller range than uchar, we can actually get away
|
|
// without any newton steps. This requires that we use a weird bias
|
|
// of 0xb000, however (again, this has been exhaustively tested).
|
|
// float4 result = as_float4(as_int4(xf*recip) + 0xb000);
|
|
X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
|
|
X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
|
|
Y = DAG.getConstant(0xb000, MVT::i32);
|
|
Y = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Y, Y, Y, Y);
|
|
X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
|
|
X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
|
|
// Convert back to short.
|
|
X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
|
|
X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
|
|
return X;
|
|
}
|
|
|
|
static SDValue
|
|
LowerSDIV_v4i16(SDValue N0, SDValue N1, SDLoc dl, SelectionDAG &DAG) {
|
|
SDValue N2;
|
|
// Convert to float.
|
|
// float4 yf = vcvt_f32_s32(vmovl_s16(y));
|
|
// float4 xf = vcvt_f32_s32(vmovl_s16(x));
|
|
N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
|
|
N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
|
|
N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
|
|
N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
|
|
|
|
// Use reciprocal estimate and one refinement step.
|
|
// float4 recip = vrecpeq_f32(yf);
|
|
// recip *= vrecpsq_f32(yf, recip);
|
|
N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
|
|
DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), N1);
|
|
N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
|
|
DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
|
|
N1, N2);
|
|
N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
|
|
// Because short has a smaller range than ushort, we can actually get away
|
|
// with only a single newton step. This requires that we use a weird bias
|
|
// of 89, however (again, this has been exhaustively tested).
|
|
// float4 result = as_float4(as_int4(xf*recip) + 0x89);
|
|
N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
|
|
N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
|
|
N1 = DAG.getConstant(0x89, MVT::i32);
|
|
N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
|
|
N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
|
|
N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
|
|
// Convert back to integer and return.
|
|
// return vmovn_s32(vcvt_s32_f32(result));
|
|
N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
|
|
N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
|
|
return N0;
|
|
}
|
|
|
|
static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
|
|
EVT VT = Op.getValueType();
|
|
assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
|
|
"unexpected type for custom-lowering ISD::SDIV");
|
|
|
|
SDLoc dl(Op);
|
|
SDValue N0 = Op.getOperand(0);
|
|
SDValue N1 = Op.getOperand(1);
|
|
SDValue N2, N3;
|
|
|
|
if (VT == MVT::v8i8) {
|
|
N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
|
|
N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
|
|
|
|
N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
|
|
DAG.getIntPtrConstant(4));
|
|
N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
|
|
DAG.getIntPtrConstant(4));
|
|
N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
|
|
DAG.getIntPtrConstant(0));
|
|
N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
|
|
DAG.getIntPtrConstant(0));
|
|
|
|
N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
|
|
N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
|
|
|
|
N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
|
|
N0 = LowerCONCAT_VECTORS(N0, DAG);
|
|
|
|
N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
|
|
return N0;
|
|
}
|
|
return LowerSDIV_v4i16(N0, N1, dl, DAG);
|
|
}
|
|
|
|
static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
|
|
EVT VT = Op.getValueType();
|
|
assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
|
|
"unexpected type for custom-lowering ISD::UDIV");
|
|
|
|
SDLoc dl(Op);
|
|
SDValue N0 = Op.getOperand(0);
|
|
SDValue N1 = Op.getOperand(1);
|
|
SDValue N2, N3;
|
|
|
|
if (VT == MVT::v8i8) {
|
|
N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
|
|
N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
|
|
|
|
N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
|
|
DAG.getIntPtrConstant(4));
|
|
N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
|
|
DAG.getIntPtrConstant(4));
|
|
N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
|
|
DAG.getIntPtrConstant(0));
|
|
N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
|
|
DAG.getIntPtrConstant(0));
|
|
|
|
N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
|
|
N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
|
|
|
|
N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
|
|
N0 = LowerCONCAT_VECTORS(N0, DAG);
|
|
|
|
N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
|
|
DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, MVT::i32),
|
|
N0);
|
|
return N0;
|
|
}
|
|
|
|
// v4i16 sdiv ... Convert to float.
|
|
// float4 yf = vcvt_f32_s32(vmovl_u16(y));
|
|
// float4 xf = vcvt_f32_s32(vmovl_u16(x));
|
|
N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
|
|
N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
|
|
N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
|
|
SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
|
|
|
|
// Use reciprocal estimate and two refinement steps.
|
|
// float4 recip = vrecpeq_f32(yf);
|
|
// recip *= vrecpsq_f32(yf, recip);
|
|
// recip *= vrecpsq_f32(yf, recip);
|
|
N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
|
|
DAG.getConstant(Intrinsic::arm_neon_vrecpe, MVT::i32), BN1);
|
|
N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
|
|
DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
|
|
BN1, N2);
|
|
N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
|
|
N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
|
|
DAG.getConstant(Intrinsic::arm_neon_vrecps, MVT::i32),
|
|
BN1, N2);
|
|
N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
|
|
// Simply multiplying by the reciprocal estimate can leave us a few ulps
|
|
// too low, so we add 2 ulps (exhaustive testing shows that this is enough,
|
|
// and that it will never cause us to return an answer too large).
|
|
// float4 result = as_float4(as_int4(xf*recip) + 2);
|
|
N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
|
|
N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
|
|
N1 = DAG.getConstant(2, MVT::i32);
|
|
N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
|
|
N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
|
|
N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
|
|
// Convert back to integer and return.
|
|
// return vmovn_u32(vcvt_s32_f32(result));
|
|
N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
|
|
N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
|
|
return N0;
|
|
}
|
|
|
|
static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
|
|
EVT VT = Op.getNode()->getValueType(0);
|
|
SDVTList VTs = DAG.getVTList(VT, MVT::i32);
|
|
|
|
unsigned Opc;
|
|
bool ExtraOp = false;
|
|
switch (Op.getOpcode()) {
|
|
default: llvm_unreachable("Invalid code");
|
|
case ISD::ADDC: Opc = ARMISD::ADDC; break;
|
|
case ISD::ADDE: Opc = ARMISD::ADDE; ExtraOp = true; break;
|
|
case ISD::SUBC: Opc = ARMISD::SUBC; break;
|
|
case ISD::SUBE: Opc = ARMISD::SUBE; ExtraOp = true; break;
|
|
}
|
|
|
|
if (!ExtraOp)
|
|
return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
|
|
Op.getOperand(1));
|
|
return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
|
|
Op.getOperand(1), Op.getOperand(2));
|
|
}
|
|
|
|
static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
|
|
// Monotonic load/store is legal for all targets
|
|
if (cast<AtomicSDNode>(Op)->getOrdering() <= Monotonic)
|
|
return Op;
|
|
|
|
// Aquire/Release load/store is not legal for targets without a
|
|
// dmb or equivalent available.
|
|
return SDValue();
|
|
}
|
|
|
|
static void
|
|
ReplaceATOMIC_OP_64(SDNode *Node, SmallVectorImpl<SDValue>& Results,
|
|
SelectionDAG &DAG, unsigned NewOp) {
|
|
SDLoc dl(Node);
|
|
assert (Node->getValueType(0) == MVT::i64 &&
|
|
"Only know how to expand i64 atomics");
|
|
|
|
SmallVector<SDValue, 6> Ops;
|
|
Ops.push_back(Node->getOperand(0)); // Chain
|
|
Ops.push_back(Node->getOperand(1)); // Ptr
|
|
// Low part of Val1
|
|
Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
|
|
Node->getOperand(2), DAG.getIntPtrConstant(0)));
|
|
// High part of Val1
|
|
Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
|
|
Node->getOperand(2), DAG.getIntPtrConstant(1)));
|
|
if (NewOp == ARMISD::ATOMCMPXCHG64_DAG) {
|
|
// High part of Val1
|
|
Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
|
|
Node->getOperand(3), DAG.getIntPtrConstant(0)));
|
|
// High part of Val2
|
|
Ops.push_back(DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32,
|
|
Node->getOperand(3), DAG.getIntPtrConstant(1)));
|
|
}
|
|
SDVTList Tys = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
|
|
SDValue Result =
|
|
DAG.getMemIntrinsicNode(NewOp, dl, Tys, Ops.data(), Ops.size(), MVT::i64,
|
|
cast<MemSDNode>(Node)->getMemOperand());
|
|
SDValue OpsF[] = { Result.getValue(0), Result.getValue(1) };
|
|
Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, OpsF, 2));
|
|
Results.push_back(Result.getValue(2));
|
|
}
|
|
|
|
static void ReplaceREADCYCLECOUNTER(SDNode *N,
|
|
SmallVectorImpl<SDValue> &Results,
|
|
SelectionDAG &DAG,
|
|
const ARMSubtarget *Subtarget) {
|
|
SDLoc DL(N);
|
|
SDValue Cycles32, OutChain;
|
|
|
|
if (Subtarget->hasPerfMon()) {
|
|
// Under Power Management extensions, the cycle-count is:
|
|
// mrc p15, #0, <Rt>, c9, c13, #0
|
|
SDValue Ops[] = { N->getOperand(0), // Chain
|
|
DAG.getConstant(Intrinsic::arm_mrc, MVT::i32),
|
|
DAG.getConstant(15, MVT::i32),
|
|
DAG.getConstant(0, MVT::i32),
|
|
DAG.getConstant(9, MVT::i32),
|
|
DAG.getConstant(13, MVT::i32),
|
|
DAG.getConstant(0, MVT::i32)
|
|
};
|
|
|
|
Cycles32 = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
|
|
DAG.getVTList(MVT::i32, MVT::Other), &Ops[0],
|
|
array_lengthof(Ops));
|
|
OutChain = Cycles32.getValue(1);
|
|
} else {
|
|
// Intrinsic is defined to return 0 on unsupported platforms. Technically
|
|
// there are older ARM CPUs that have implementation-specific ways of
|
|
// obtaining this information (FIXME!).
|
|
Cycles32 = DAG.getConstant(0, MVT::i32);
|
|
OutChain = DAG.getEntryNode();
|
|
}
|
|
|
|
|
|
SDValue Cycles64 = DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64,
|
|
Cycles32, DAG.getConstant(0, MVT::i32));
|
|
Results.push_back(Cycles64);
|
|
Results.push_back(OutChain);
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
|
|
switch (Op.getOpcode()) {
|
|
default: llvm_unreachable("Don't know how to custom lower this!");
|
|
case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
|
|
case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
|
|
case ISD::GlobalAddress:
|
|
return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) :
|
|
LowerGlobalAddressELF(Op, DAG);
|
|
case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
|
|
case ISD::SELECT: return LowerSELECT(Op, DAG);
|
|
case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
|
|
case ISD::BR_CC: return LowerBR_CC(Op, DAG);
|
|
case ISD::BR_JT: return LowerBR_JT(Op, DAG);
|
|
case ISD::VASTART: return LowerVASTART(Op, DAG);
|
|
case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG, Subtarget);
|
|
case ISD::PREFETCH: return LowerPREFETCH(Op, DAG, Subtarget);
|
|
case ISD::SINT_TO_FP:
|
|
case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG);
|
|
case ISD::FP_TO_SINT:
|
|
case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG);
|
|
case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG);
|
|
case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
|
|
case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
|
|
case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG);
|
|
case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
|
|
case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
|
|
case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
|
|
Subtarget);
|
|
case ISD::BITCAST: return ExpandBITCAST(Op.getNode(), DAG);
|
|
case ISD::SHL:
|
|
case ISD::SRL:
|
|
case ISD::SRA: return LowerShift(Op.getNode(), DAG, Subtarget);
|
|
case ISD::SHL_PARTS: return LowerShiftLeftParts(Op, DAG);
|
|
case ISD::SRL_PARTS:
|
|
case ISD::SRA_PARTS: return LowerShiftRightParts(Op, DAG);
|
|
case ISD::CTTZ: return LowerCTTZ(Op.getNode(), DAG, Subtarget);
|
|
case ISD::CTPOP: return LowerCTPOP(Op.getNode(), DAG, Subtarget);
|
|
case ISD::SETCC: return LowerVSETCC(Op, DAG);
|
|
case ISD::ConstantFP: return LowerConstantFP(Op, DAG, Subtarget);
|
|
case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG, Subtarget);
|
|
case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
|
|
case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
|
|
case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
|
|
case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
|
|
case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
|
|
case ISD::MUL: return LowerMUL(Op, DAG);
|
|
case ISD::SDIV: return LowerSDIV(Op, DAG);
|
|
case ISD::UDIV: return LowerUDIV(Op, DAG);
|
|
case ISD::ADDC:
|
|
case ISD::ADDE:
|
|
case ISD::SUBC:
|
|
case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
|
|
case ISD::ATOMIC_LOAD:
|
|
case ISD::ATOMIC_STORE: return LowerAtomicLoadStore(Op, DAG);
|
|
case ISD::SDIVREM:
|
|
case ISD::UDIVREM: return LowerDivRem(Op, DAG);
|
|
}
|
|
}
|
|
|
|
/// ReplaceNodeResults - Replace the results of node with an illegal result
|
|
/// type with new values built out of custom code.
|
|
void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
|
|
SmallVectorImpl<SDValue>&Results,
|
|
SelectionDAG &DAG) const {
|
|
SDValue Res;
|
|
switch (N->getOpcode()) {
|
|
default:
|
|
llvm_unreachable("Don't know how to custom expand this!");
|
|
case ISD::BITCAST:
|
|
Res = ExpandBITCAST(N, DAG);
|
|
break;
|
|
case ISD::SIGN_EXTEND:
|
|
case ISD::ZERO_EXTEND:
|
|
Res = ExpandVectorExtension(N, DAG);
|
|
break;
|
|
case ISD::SRL:
|
|
case ISD::SRA:
|
|
Res = Expand64BitShift(N, DAG, Subtarget);
|
|
break;
|
|
case ISD::READCYCLECOUNTER:
|
|
ReplaceREADCYCLECOUNTER(N, Results, DAG, Subtarget);
|
|
return;
|
|
case ISD::ATOMIC_LOAD_ADD:
|
|
ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMADD64_DAG);
|
|
return;
|
|
case ISD::ATOMIC_LOAD_AND:
|
|
ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMAND64_DAG);
|
|
return;
|
|
case ISD::ATOMIC_LOAD_NAND:
|
|
ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMNAND64_DAG);
|
|
return;
|
|
case ISD::ATOMIC_LOAD_OR:
|
|
ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMOR64_DAG);
|
|
return;
|
|
case ISD::ATOMIC_LOAD_SUB:
|
|
ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSUB64_DAG);
|
|
return;
|
|
case ISD::ATOMIC_LOAD_XOR:
|
|
ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMXOR64_DAG);
|
|
return;
|
|
case ISD::ATOMIC_SWAP:
|
|
ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMSWAP64_DAG);
|
|
return;
|
|
case ISD::ATOMIC_CMP_SWAP:
|
|
ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMCMPXCHG64_DAG);
|
|
return;
|
|
case ISD::ATOMIC_LOAD_MIN:
|
|
ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMMIN64_DAG);
|
|
return;
|
|
case ISD::ATOMIC_LOAD_UMIN:
|
|
ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMUMIN64_DAG);
|
|
return;
|
|
case ISD::ATOMIC_LOAD_MAX:
|
|
ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMMAX64_DAG);
|
|
return;
|
|
case ISD::ATOMIC_LOAD_UMAX:
|
|
ReplaceATOMIC_OP_64(N, Results, DAG, ARMISD::ATOMUMAX64_DAG);
|
|
return;
|
|
}
|
|
if (Res.getNode())
|
|
Results.push_back(Res);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ARM Scheduler Hooks
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
MachineBasicBlock *
|
|
ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI,
|
|
MachineBasicBlock *BB,
|
|
unsigned Size) const {
|
|
unsigned dest = MI->getOperand(0).getReg();
|
|
unsigned ptr = MI->getOperand(1).getReg();
|
|
unsigned oldval = MI->getOperand(2).getReg();
|
|
unsigned newval = MI->getOperand(3).getReg();
|
|
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
|
|
DebugLoc dl = MI->getDebugLoc();
|
|
bool isThumb2 = Subtarget->isThumb2();
|
|
|
|
MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
|
|
unsigned scratch = MRI.createVirtualRegister(isThumb2 ?
|
|
(const TargetRegisterClass*)&ARM::rGPRRegClass :
|
|
(const TargetRegisterClass*)&ARM::GPRRegClass);
|
|
|
|
if (isThumb2) {
|
|
MRI.constrainRegClass(dest, &ARM::rGPRRegClass);
|
|
MRI.constrainRegClass(oldval, &ARM::rGPRRegClass);
|
|
MRI.constrainRegClass(newval, &ARM::rGPRRegClass);
|
|
}
|
|
|
|
unsigned ldrOpc, strOpc;
|
|
switch (Size) {
|
|
default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
|
|
case 1:
|
|
ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
|
|
strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
|
|
break;
|
|
case 2:
|
|
ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
|
|
strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
|
|
break;
|
|
case 4:
|
|
ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
|
|
strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
|
|
break;
|
|
}
|
|
|
|
MachineFunction *MF = BB->getParent();
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
MachineFunction::iterator It = BB;
|
|
++It; // insert the new blocks after the current block
|
|
|
|
MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MF->insert(It, loop1MBB);
|
|
MF->insert(It, loop2MBB);
|
|
MF->insert(It, exitMBB);
|
|
|
|
// Transfer the remainder of BB and its successor edges to exitMBB.
|
|
exitMBB->splice(exitMBB->begin(), BB,
|
|
llvm::next(MachineBasicBlock::iterator(MI)),
|
|
BB->end());
|
|
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
|
|
|
|
// thisMBB:
|
|
// ...
|
|
// fallthrough --> loop1MBB
|
|
BB->addSuccessor(loop1MBB);
|
|
|
|
// loop1MBB:
|
|
// ldrex dest, [ptr]
|
|
// cmp dest, oldval
|
|
// bne exitMBB
|
|
BB = loop1MBB;
|
|
MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
|
|
if (ldrOpc == ARM::t2LDREX)
|
|
MIB.addImm(0);
|
|
AddDefaultPred(MIB);
|
|
AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
|
|
.addReg(dest).addReg(oldval));
|
|
BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
|
|
.addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
|
|
BB->addSuccessor(loop2MBB);
|
|
BB->addSuccessor(exitMBB);
|
|
|
|
// loop2MBB:
|
|
// strex scratch, newval, [ptr]
|
|
// cmp scratch, #0
|
|
// bne loop1MBB
|
|
BB = loop2MBB;
|
|
MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval).addReg(ptr);
|
|
if (strOpc == ARM::t2STREX)
|
|
MIB.addImm(0);
|
|
AddDefaultPred(MIB);
|
|
AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
|
|
.addReg(scratch).addImm(0));
|
|
BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
|
|
.addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
|
|
BB->addSuccessor(loop1MBB);
|
|
BB->addSuccessor(exitMBB);
|
|
|
|
// exitMBB:
|
|
// ...
|
|
BB = exitMBB;
|
|
|
|
MI->eraseFromParent(); // The instruction is gone now.
|
|
|
|
return BB;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
|
|
unsigned Size, unsigned BinOpcode) const {
|
|
// This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
|
|
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
|
|
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
MachineFunction *MF = BB->getParent();
|
|
MachineFunction::iterator It = BB;
|
|
++It;
|
|
|
|
unsigned dest = MI->getOperand(0).getReg();
|
|
unsigned ptr = MI->getOperand(1).getReg();
|
|
unsigned incr = MI->getOperand(2).getReg();
|
|
DebugLoc dl = MI->getDebugLoc();
|
|
bool isThumb2 = Subtarget->isThumb2();
|
|
|
|
MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
|
|
if (isThumb2) {
|
|
MRI.constrainRegClass(dest, &ARM::rGPRRegClass);
|
|
MRI.constrainRegClass(ptr, &ARM::rGPRRegClass);
|
|
}
|
|
|
|
unsigned ldrOpc, strOpc;
|
|
switch (Size) {
|
|
default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
|
|
case 1:
|
|
ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
|
|
strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
|
|
break;
|
|
case 2:
|
|
ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
|
|
strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
|
|
break;
|
|
case 4:
|
|
ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
|
|
strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
|
|
break;
|
|
}
|
|
|
|
MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MF->insert(It, loopMBB);
|
|
MF->insert(It, exitMBB);
|
|
|
|
// Transfer the remainder of BB and its successor edges to exitMBB.
|
|
exitMBB->splice(exitMBB->begin(), BB,
|
|
llvm::next(MachineBasicBlock::iterator(MI)),
|
|
BB->end());
|
|
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
|
|
|
|
const TargetRegisterClass *TRC = isThumb2 ?
|
|
(const TargetRegisterClass*)&ARM::rGPRRegClass :
|
|
(const TargetRegisterClass*)&ARM::GPRRegClass;
|
|
unsigned scratch = MRI.createVirtualRegister(TRC);
|
|
unsigned scratch2 = (!BinOpcode) ? incr : MRI.createVirtualRegister(TRC);
|
|
|
|
// thisMBB:
|
|
// ...
|
|
// fallthrough --> loopMBB
|
|
BB->addSuccessor(loopMBB);
|
|
|
|
// loopMBB:
|
|
// ldrex dest, ptr
|
|
// <binop> scratch2, dest, incr
|
|
// strex scratch, scratch2, ptr
|
|
// cmp scratch, #0
|
|
// bne- loopMBB
|
|
// fallthrough --> exitMBB
|
|
BB = loopMBB;
|
|
MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
|
|
if (ldrOpc == ARM::t2LDREX)
|
|
MIB.addImm(0);
|
|
AddDefaultPred(MIB);
|
|
if (BinOpcode) {
|
|
// operand order needs to go the other way for NAND
|
|
if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr)
|
|
AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
|
|
addReg(incr).addReg(dest)).addReg(0);
|
|
else
|
|
AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2).
|
|
addReg(dest).addReg(incr)).addReg(0);
|
|
}
|
|
|
|
MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
|
|
if (strOpc == ARM::t2STREX)
|
|
MIB.addImm(0);
|
|
AddDefaultPred(MIB);
|
|
AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
|
|
.addReg(scratch).addImm(0));
|
|
BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
|
|
.addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
|
|
|
|
BB->addSuccessor(loopMBB);
|
|
BB->addSuccessor(exitMBB);
|
|
|
|
// exitMBB:
|
|
// ...
|
|
BB = exitMBB;
|
|
|
|
MI->eraseFromParent(); // The instruction is gone now.
|
|
|
|
return BB;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
ARMTargetLowering::EmitAtomicBinaryMinMax(MachineInstr *MI,
|
|
MachineBasicBlock *BB,
|
|
unsigned Size,
|
|
bool signExtend,
|
|
ARMCC::CondCodes Cond) const {
|
|
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
|
|
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
MachineFunction *MF = BB->getParent();
|
|
MachineFunction::iterator It = BB;
|
|
++It;
|
|
|
|
unsigned dest = MI->getOperand(0).getReg();
|
|
unsigned ptr = MI->getOperand(1).getReg();
|
|
unsigned incr = MI->getOperand(2).getReg();
|
|
unsigned oldval = dest;
|
|
DebugLoc dl = MI->getDebugLoc();
|
|
bool isThumb2 = Subtarget->isThumb2();
|
|
|
|
MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
|
|
if (isThumb2) {
|
|
MRI.constrainRegClass(dest, &ARM::rGPRRegClass);
|
|
MRI.constrainRegClass(ptr, &ARM::rGPRRegClass);
|
|
}
|
|
|
|
unsigned ldrOpc, strOpc, extendOpc;
|
|
switch (Size) {
|
|
default: llvm_unreachable("unsupported size for AtomicCmpSwap!");
|
|
case 1:
|
|
ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB;
|
|
strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB;
|
|
extendOpc = isThumb2 ? ARM::t2SXTB : ARM::SXTB;
|
|
break;
|
|
case 2:
|
|
ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH;
|
|
strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH;
|
|
extendOpc = isThumb2 ? ARM::t2SXTH : ARM::SXTH;
|
|
break;
|
|
case 4:
|
|
ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX;
|
|
strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX;
|
|
extendOpc = 0;
|
|
break;
|
|
}
|
|
|
|
MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MF->insert(It, loopMBB);
|
|
MF->insert(It, exitMBB);
|
|
|
|
// Transfer the remainder of BB and its successor edges to exitMBB.
|
|
exitMBB->splice(exitMBB->begin(), BB,
|
|
llvm::next(MachineBasicBlock::iterator(MI)),
|
|
BB->end());
|
|
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
|
|
|
|
const TargetRegisterClass *TRC = isThumb2 ?
|
|
(const TargetRegisterClass*)&ARM::rGPRRegClass :
|
|
(const TargetRegisterClass*)&ARM::GPRRegClass;
|
|
unsigned scratch = MRI.createVirtualRegister(TRC);
|
|
unsigned scratch2 = MRI.createVirtualRegister(TRC);
|
|
|
|
// thisMBB:
|
|
// ...
|
|
// fallthrough --> loopMBB
|
|
BB->addSuccessor(loopMBB);
|
|
|
|
// loopMBB:
|
|
// ldrex dest, ptr
|
|
// (sign extend dest, if required)
|
|
// cmp dest, incr
|
|
// cmov.cond scratch2, incr, dest
|
|
// strex scratch, scratch2, ptr
|
|
// cmp scratch, #0
|
|
// bne- loopMBB
|
|
// fallthrough --> exitMBB
|
|
BB = loopMBB;
|
|
MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr);
|
|
if (ldrOpc == ARM::t2LDREX)
|
|
MIB.addImm(0);
|
|
AddDefaultPred(MIB);
|
|
|
|
// Sign extend the value, if necessary.
|
|
if (signExtend && extendOpc) {
|
|
oldval = MRI.createVirtualRegister(&ARM::GPRRegClass);
|
|
AddDefaultPred(BuildMI(BB, dl, TII->get(extendOpc), oldval)
|
|
.addReg(dest)
|
|
.addImm(0));
|
|
}
|
|
|
|
// Build compare and cmov instructions.
|
|
AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
|
|
.addReg(oldval).addReg(incr));
|
|
BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr), scratch2)
|
|
.addReg(incr).addReg(oldval).addImm(Cond).addReg(ARM::CPSR);
|
|
|
|
MIB = BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2).addReg(ptr);
|
|
if (strOpc == ARM::t2STREX)
|
|
MIB.addImm(0);
|
|
AddDefaultPred(MIB);
|
|
AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
|
|
.addReg(scratch).addImm(0));
|
|
BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
|
|
.addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
|
|
|
|
BB->addSuccessor(loopMBB);
|
|
BB->addSuccessor(exitMBB);
|
|
|
|
// exitMBB:
|
|
// ...
|
|
BB = exitMBB;
|
|
|
|
MI->eraseFromParent(); // The instruction is gone now.
|
|
|
|
return BB;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
ARMTargetLowering::EmitAtomicBinary64(MachineInstr *MI, MachineBasicBlock *BB,
|
|
unsigned Op1, unsigned Op2,
|
|
bool NeedsCarry, bool IsCmpxchg,
|
|
bool IsMinMax, ARMCC::CondCodes CC) const {
|
|
// This also handles ATOMIC_SWAP, indicated by Op1==0.
|
|
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
|
|
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
MachineFunction *MF = BB->getParent();
|
|
MachineFunction::iterator It = BB;
|
|
++It;
|
|
|
|
unsigned destlo = MI->getOperand(0).getReg();
|
|
unsigned desthi = MI->getOperand(1).getReg();
|
|
unsigned ptr = MI->getOperand(2).getReg();
|
|
unsigned vallo = MI->getOperand(3).getReg();
|
|
unsigned valhi = MI->getOperand(4).getReg();
|
|
DebugLoc dl = MI->getDebugLoc();
|
|
bool isThumb2 = Subtarget->isThumb2();
|
|
|
|
MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
|
|
if (isThumb2) {
|
|
MRI.constrainRegClass(destlo, &ARM::rGPRRegClass);
|
|
MRI.constrainRegClass(desthi, &ARM::rGPRRegClass);
|
|
MRI.constrainRegClass(ptr, &ARM::rGPRRegClass);
|
|
}
|
|
|
|
MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *contBB = 0, *cont2BB = 0;
|
|
if (IsCmpxchg || IsMinMax)
|
|
contBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
if (IsCmpxchg)
|
|
cont2BB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
|
|
MF->insert(It, loopMBB);
|
|
if (IsCmpxchg || IsMinMax) MF->insert(It, contBB);
|
|
if (IsCmpxchg) MF->insert(It, cont2BB);
|
|
MF->insert(It, exitMBB);
|
|
|
|
// Transfer the remainder of BB and its successor edges to exitMBB.
|
|
exitMBB->splice(exitMBB->begin(), BB,
|
|
llvm::next(MachineBasicBlock::iterator(MI)),
|
|
BB->end());
|
|
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
|
|
|
|
const TargetRegisterClass *TRC = isThumb2 ?
|
|
(const TargetRegisterClass*)&ARM::tGPRRegClass :
|
|
(const TargetRegisterClass*)&ARM::GPRRegClass;
|
|
unsigned storesuccess = MRI.createVirtualRegister(TRC);
|
|
|
|
// thisMBB:
|
|
// ...
|
|
// fallthrough --> loopMBB
|
|
BB->addSuccessor(loopMBB);
|
|
|
|
// loopMBB:
|
|
// ldrexd r2, r3, ptr
|
|
// <binopa> r0, r2, incr
|
|
// <binopb> r1, r3, incr
|
|
// strexd storesuccess, r0, r1, ptr
|
|
// cmp storesuccess, #0
|
|
// bne- loopMBB
|
|
// fallthrough --> exitMBB
|
|
BB = loopMBB;
|
|
|
|
// Load
|
|
if (isThumb2) {
|
|
AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2LDREXD))
|
|
.addReg(destlo, RegState::Define)
|
|
.addReg(desthi, RegState::Define)
|
|
.addReg(ptr));
|
|
} else {
|
|
unsigned GPRPair0 = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
|
|
AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::LDREXD))
|
|
.addReg(GPRPair0, RegState::Define).addReg(ptr));
|
|
// Copy r2/r3 into dest. (This copy will normally be coalesced.)
|
|
BuildMI(BB, dl, TII->get(TargetOpcode::COPY), destlo)
|
|
.addReg(GPRPair0, 0, ARM::gsub_0);
|
|
BuildMI(BB, dl, TII->get(TargetOpcode::COPY), desthi)
|
|
.addReg(GPRPair0, 0, ARM::gsub_1);
|
|
}
|
|
|
|
unsigned StoreLo, StoreHi;
|
|
if (IsCmpxchg) {
|
|
// Add early exit
|
|
for (unsigned i = 0; i < 2; i++) {
|
|
AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr :
|
|
ARM::CMPrr))
|
|
.addReg(i == 0 ? destlo : desthi)
|
|
.addReg(i == 0 ? vallo : valhi));
|
|
BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
|
|
.addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
|
|
BB->addSuccessor(exitMBB);
|
|
BB->addSuccessor(i == 0 ? contBB : cont2BB);
|
|
BB = (i == 0 ? contBB : cont2BB);
|
|
}
|
|
|
|
// Copy to physregs for strexd
|
|
StoreLo = MI->getOperand(5).getReg();
|
|
StoreHi = MI->getOperand(6).getReg();
|
|
} else if (Op1) {
|
|
// Perform binary operation
|
|
unsigned tmpRegLo = MRI.createVirtualRegister(TRC);
|
|
AddDefaultPred(BuildMI(BB, dl, TII->get(Op1), tmpRegLo)
|
|
.addReg(destlo).addReg(vallo))
|
|
.addReg(NeedsCarry ? ARM::CPSR : 0, getDefRegState(NeedsCarry));
|
|
unsigned tmpRegHi = MRI.createVirtualRegister(TRC);
|
|
AddDefaultPred(BuildMI(BB, dl, TII->get(Op2), tmpRegHi)
|
|
.addReg(desthi).addReg(valhi))
|
|
.addReg(IsMinMax ? ARM::CPSR : 0, getDefRegState(IsMinMax));
|
|
|
|
StoreLo = tmpRegLo;
|
|
StoreHi = tmpRegHi;
|
|
} else {
|
|
// Copy to physregs for strexd
|
|
StoreLo = vallo;
|
|
StoreHi = valhi;
|
|
}
|
|
if (IsMinMax) {
|
|
// Compare and branch to exit block.
|
|
BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
|
|
.addMBB(exitMBB).addImm(CC).addReg(ARM::CPSR);
|
|
BB->addSuccessor(exitMBB);
|
|
BB->addSuccessor(contBB);
|
|
BB = contBB;
|
|
StoreLo = vallo;
|
|
StoreHi = valhi;
|
|
}
|
|
|
|
// Store
|
|
if (isThumb2) {
|
|
AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2STREXD), storesuccess)
|
|
.addReg(StoreLo).addReg(StoreHi).addReg(ptr));
|
|
} else {
|
|
// Marshal a pair...
|
|
unsigned StorePair = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
|
|
unsigned UndefPair = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
|
|
unsigned r1 = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
|
|
BuildMI(BB, dl, TII->get(TargetOpcode::IMPLICIT_DEF), UndefPair);
|
|
BuildMI(BB, dl, TII->get(TargetOpcode::INSERT_SUBREG), r1)
|
|
.addReg(UndefPair)
|
|
.addReg(StoreLo)
|
|
.addImm(ARM::gsub_0);
|
|
BuildMI(BB, dl, TII->get(TargetOpcode::INSERT_SUBREG), StorePair)
|
|
.addReg(r1)
|
|
.addReg(StoreHi)
|
|
.addImm(ARM::gsub_1);
|
|
|
|
// ...and store it
|
|
AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::STREXD), storesuccess)
|
|
.addReg(StorePair).addReg(ptr));
|
|
}
|
|
// Cmp+jump
|
|
AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
|
|
.addReg(storesuccess).addImm(0));
|
|
BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
|
|
.addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
|
|
|
|
BB->addSuccessor(loopMBB);
|
|
BB->addSuccessor(exitMBB);
|
|
|
|
// exitMBB:
|
|
// ...
|
|
BB = exitMBB;
|
|
|
|
MI->eraseFromParent(); // The instruction is gone now.
|
|
|
|
return BB;
|
|
}
|
|
|
|
/// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
|
|
/// registers the function context.
|
|
void ARMTargetLowering::
|
|
SetupEntryBlockForSjLj(MachineInstr *MI, MachineBasicBlock *MBB,
|
|
MachineBasicBlock *DispatchBB, int FI) const {
|
|
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
|
|
DebugLoc dl = MI->getDebugLoc();
|
|
MachineFunction *MF = MBB->getParent();
|
|
MachineRegisterInfo *MRI = &MF->getRegInfo();
|
|
MachineConstantPool *MCP = MF->getConstantPool();
|
|
ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
|
|
const Function *F = MF->getFunction();
|
|
|
|
bool isThumb = Subtarget->isThumb();
|
|
bool isThumb2 = Subtarget->isThumb2();
|
|
|
|
unsigned PCLabelId = AFI->createPICLabelUId();
|
|
unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
|
|
ARMConstantPoolValue *CPV =
|
|
ARMConstantPoolMBB::Create(F->getContext(), DispatchBB, PCLabelId, PCAdj);
|
|
unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
|
|
|
|
const TargetRegisterClass *TRC = isThumb ?
|
|
(const TargetRegisterClass*)&ARM::tGPRRegClass :
|
|
(const TargetRegisterClass*)&ARM::GPRRegClass;
|
|
|
|
// Grab constant pool and fixed stack memory operands.
|
|
MachineMemOperand *CPMMO =
|
|
MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(),
|
|
MachineMemOperand::MOLoad, 4, 4);
|
|
|
|
MachineMemOperand *FIMMOSt =
|
|
MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
|
|
MachineMemOperand::MOStore, 4, 4);
|
|
|
|
// Load the address of the dispatch MBB into the jump buffer.
|
|
if (isThumb2) {
|
|
// Incoming value: jbuf
|
|
// ldr.n r5, LCPI1_1
|
|
// orr r5, r5, #1
|
|
// add r5, pc
|
|
// str r5, [$jbuf, #+4] ; &jbuf[1]
|
|
unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
|
|
AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
|
|
.addConstantPoolIndex(CPI)
|
|
.addMemOperand(CPMMO));
|
|
// Set the low bit because of thumb mode.
|
|
unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
|
|
AddDefaultCC(
|
|
AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
|
|
.addReg(NewVReg1, RegState::Kill)
|
|
.addImm(0x01)));
|
|
unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
|
|
BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
|
|
.addReg(NewVReg2, RegState::Kill)
|
|
.addImm(PCLabelId);
|
|
AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
|
|
.addReg(NewVReg3, RegState::Kill)
|
|
.addFrameIndex(FI)
|
|
.addImm(36) // &jbuf[1] :: pc
|
|
.addMemOperand(FIMMOSt));
|
|
} else if (isThumb) {
|
|
// Incoming value: jbuf
|
|
// ldr.n r1, LCPI1_4
|
|
// add r1, pc
|
|
// mov r2, #1
|
|
// orrs r1, r2
|
|
// add r2, $jbuf, #+4 ; &jbuf[1]
|
|
// str r1, [r2]
|
|
unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
|
|
AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
|
|
.addConstantPoolIndex(CPI)
|
|
.addMemOperand(CPMMO));
|
|
unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
|
|
BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
|
|
.addReg(NewVReg1, RegState::Kill)
|
|
.addImm(PCLabelId);
|
|
// Set the low bit because of thumb mode.
|
|
unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
|
|
AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
|
|
.addReg(ARM::CPSR, RegState::Define)
|
|
.addImm(1));
|
|
unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
|
|
AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
|
|
.addReg(ARM::CPSR, RegState::Define)
|
|
.addReg(NewVReg2, RegState::Kill)
|
|
.addReg(NewVReg3, RegState::Kill));
|
|
unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
|
|
AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tADDrSPi), NewVReg5)
|
|
.addFrameIndex(FI)
|
|
.addImm(36)); // &jbuf[1] :: pc
|
|
AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
|
|
.addReg(NewVReg4, RegState::Kill)
|
|
.addReg(NewVReg5, RegState::Kill)
|
|
.addImm(0)
|
|
.addMemOperand(FIMMOSt));
|
|
} else {
|
|
// Incoming value: jbuf
|
|
// ldr r1, LCPI1_1
|
|
// add r1, pc, r1
|
|
// str r1, [$jbuf, #+4] ; &jbuf[1]
|
|
unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
|
|
AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12), NewVReg1)
|
|
.addConstantPoolIndex(CPI)
|
|
.addImm(0)
|
|
.addMemOperand(CPMMO));
|
|
unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
|
|
AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
|
|
.addReg(NewVReg1, RegState::Kill)
|
|
.addImm(PCLabelId));
|
|
AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
|
|
.addReg(NewVReg2, RegState::Kill)
|
|
.addFrameIndex(FI)
|
|
.addImm(36) // &jbuf[1] :: pc
|
|
.addMemOperand(FIMMOSt));
|
|
}
|
|
}
|
|
|
|
MachineBasicBlock *ARMTargetLowering::
|
|
EmitSjLjDispatchBlock(MachineInstr *MI, MachineBasicBlock *MBB) const {
|
|
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
|
|
DebugLoc dl = MI->getDebugLoc();
|
|
MachineFunction *MF = MBB->getParent();
|
|
MachineRegisterInfo *MRI = &MF->getRegInfo();
|
|
ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
|
|
MachineFrameInfo *MFI = MF->getFrameInfo();
|
|
int FI = MFI->getFunctionContextIndex();
|
|
|
|
const TargetRegisterClass *TRC = Subtarget->isThumb() ?
|
|
(const TargetRegisterClass*)&ARM::tGPRRegClass :
|
|
(const TargetRegisterClass*)&ARM::GPRnopcRegClass;
|
|
|
|
// Get a mapping of the call site numbers to all of the landing pads they're
|
|
// associated with.
|
|
DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2> > CallSiteNumToLPad;
|
|
unsigned MaxCSNum = 0;
|
|
MachineModuleInfo &MMI = MF->getMMI();
|
|
for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E;
|
|
++BB) {
|
|
if (!BB->isLandingPad()) continue;
|
|
|
|
// FIXME: We should assert that the EH_LABEL is the first MI in the landing
|
|
// pad.
|
|
for (MachineBasicBlock::iterator
|
|
II = BB->begin(), IE = BB->end(); II != IE; ++II) {
|
|
if (!II->isEHLabel()) continue;
|
|
|
|
MCSymbol *Sym = II->getOperand(0).getMCSymbol();
|
|
if (!MMI.hasCallSiteLandingPad(Sym)) continue;
|
|
|
|
SmallVectorImpl<unsigned> &CallSiteIdxs = MMI.getCallSiteLandingPad(Sym);
|
|
for (SmallVectorImpl<unsigned>::iterator
|
|
CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
|
|
CSI != CSE; ++CSI) {
|
|
CallSiteNumToLPad[*CSI].push_back(BB);
|
|
MaxCSNum = std::max(MaxCSNum, *CSI);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Get an ordered list of the machine basic blocks for the jump table.
|
|
std::vector<MachineBasicBlock*> LPadList;
|
|
SmallPtrSet<MachineBasicBlock*, 64> InvokeBBs;
|
|
LPadList.reserve(CallSiteNumToLPad.size());
|
|
for (unsigned I = 1; I <= MaxCSNum; ++I) {
|
|
SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
|
|
for (SmallVectorImpl<MachineBasicBlock*>::iterator
|
|
II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
|
|
LPadList.push_back(*II);
|
|
InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
|
|
}
|
|
}
|
|
|
|
assert(!LPadList.empty() &&
|
|
"No landing pad destinations for the dispatch jump table!");
|
|
|
|
// Create the jump table and associated information.
|
|
MachineJumpTableInfo *JTI =
|
|
MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
|
|
unsigned MJTI = JTI->createJumpTableIndex(LPadList);
|
|
unsigned UId = AFI->createJumpTableUId();
|
|
Reloc::Model RelocM = getTargetMachine().getRelocationModel();
|
|
|
|
// Create the MBBs for the dispatch code.
|
|
|
|
// Shove the dispatch's address into the return slot in the function context.
|
|
MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
|
|
DispatchBB->setIsLandingPad();
|
|
|
|
MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
|
|
unsigned trap_opcode;
|
|
if (Subtarget->isThumb())
|
|
trap_opcode = ARM::tTRAP;
|
|
else
|
|
trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
|
|
|
|
BuildMI(TrapBB, dl, TII->get(trap_opcode));
|
|
DispatchBB->addSuccessor(TrapBB);
|
|
|
|
MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
|
|
DispatchBB->addSuccessor(DispContBB);
|
|
|
|
// Insert and MBBs.
|
|
MF->insert(MF->end(), DispatchBB);
|
|
MF->insert(MF->end(), DispContBB);
|
|
MF->insert(MF->end(), TrapBB);
|
|
|
|
// Insert code into the entry block that creates and registers the function
|
|
// context.
|
|
SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
|
|
|
|
MachineMemOperand *FIMMOLd =
|
|
MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
|
|
MachineMemOperand::MOLoad |
|
|
MachineMemOperand::MOVolatile, 4, 4);
|
|
|
|
MachineInstrBuilder MIB;
|
|
MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
|
|
|
|
const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
|
|
const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
|
|
|
|
// Add a register mask with no preserved registers. This results in all
|
|
// registers being marked as clobbered.
|
|
MIB.addRegMask(RI.getNoPreservedMask());
|
|
|
|
unsigned NumLPads = LPadList.size();
|
|
if (Subtarget->isThumb2()) {
|
|
unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
|
|
AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
|
|
.addFrameIndex(FI)
|
|
.addImm(4)
|
|
.addMemOperand(FIMMOLd));
|
|
|
|
if (NumLPads < 256) {
|
|
AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
|
|
.addReg(NewVReg1)
|
|
.addImm(LPadList.size()));
|
|
} else {
|
|
unsigned VReg1 = MRI->createVirtualRegister(TRC);
|
|
AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
|
|
.addImm(NumLPads & 0xFFFF));
|
|
|
|
unsigned VReg2 = VReg1;
|
|
if ((NumLPads & 0xFFFF0000) != 0) {
|
|
VReg2 = MRI->createVirtualRegister(TRC);
|
|
AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
|
|
.addReg(VReg1)
|
|
.addImm(NumLPads >> 16));
|
|
}
|
|
|
|
AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
|
|
.addReg(NewVReg1)
|
|
.addReg(VReg2));
|
|
}
|
|
|
|
BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
|
|
.addMBB(TrapBB)
|
|
.addImm(ARMCC::HI)
|
|
.addReg(ARM::CPSR);
|
|
|
|
unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
|
|
AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT),NewVReg3)
|
|
.addJumpTableIndex(MJTI)
|
|
.addImm(UId));
|
|
|
|
unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
|
|
AddDefaultCC(
|
|
AddDefaultPred(
|
|
BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
|
|
.addReg(NewVReg3, RegState::Kill)
|
|
.addReg(NewVReg1)
|
|
.addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
|
|
|
|
BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
|
|
.addReg(NewVReg4, RegState::Kill)
|
|
.addReg(NewVReg1)
|
|
.addJumpTableIndex(MJTI)
|
|
.addImm(UId);
|
|
} else if (Subtarget->isThumb()) {
|
|
unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
|
|
AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
|
|
.addFrameIndex(FI)
|
|
.addImm(1)
|
|
.addMemOperand(FIMMOLd));
|
|
|
|
if (NumLPads < 256) {
|
|
AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
|
|
.addReg(NewVReg1)
|
|
.addImm(NumLPads));
|
|
} else {
|
|
MachineConstantPool *ConstantPool = MF->getConstantPool();
|
|
Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
|
|
const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
|
|
|
|
// MachineConstantPool wants an explicit alignment.
|
|
unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty);
|
|
if (Align == 0)
|
|
Align = getDataLayout()->getTypeAllocSize(C->getType());
|
|
unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
|
|
|
|
unsigned VReg1 = MRI->createVirtualRegister(TRC);
|
|
AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
|
|
.addReg(VReg1, RegState::Define)
|
|
.addConstantPoolIndex(Idx));
|
|
AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
|
|
.addReg(NewVReg1)
|
|
.addReg(VReg1));
|
|
}
|
|
|
|
BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
|
|
.addMBB(TrapBB)
|
|
.addImm(ARMCC::HI)
|
|
.addReg(ARM::CPSR);
|
|
|
|
unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
|
|
AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
|
|
.addReg(ARM::CPSR, RegState::Define)
|
|
.addReg(NewVReg1)
|
|
.addImm(2));
|
|
|
|
unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
|
|
AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
|
|
.addJumpTableIndex(MJTI)
|
|
.addImm(UId));
|
|
|
|
unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
|
|
AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
|
|
.addReg(ARM::CPSR, RegState::Define)
|
|
.addReg(NewVReg2, RegState::Kill)
|
|
.addReg(NewVReg3));
|
|
|
|
MachineMemOperand *JTMMOLd =
|
|
MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
|
|
MachineMemOperand::MOLoad, 4, 4);
|
|
|
|
unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
|
|
AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
|
|
.addReg(NewVReg4, RegState::Kill)
|
|
.addImm(0)
|
|
.addMemOperand(JTMMOLd));
|
|
|
|
unsigned NewVReg6 = NewVReg5;
|
|
if (RelocM == Reloc::PIC_) {
|
|
NewVReg6 = MRI->createVirtualRegister(TRC);
|
|
AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
|
|
.addReg(ARM::CPSR, RegState::Define)
|
|
.addReg(NewVReg5, RegState::Kill)
|
|
.addReg(NewVReg3));
|
|
}
|
|
|
|
BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
|
|
.addReg(NewVReg6, RegState::Kill)
|
|
.addJumpTableIndex(MJTI)
|
|
.addImm(UId);
|
|
} else {
|
|
unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
|
|
AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
|
|
.addFrameIndex(FI)
|
|
.addImm(4)
|
|
.addMemOperand(FIMMOLd));
|
|
|
|
if (NumLPads < 256) {
|
|
AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
|
|
.addReg(NewVReg1)
|
|
.addImm(NumLPads));
|
|
} else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
|
|
unsigned VReg1 = MRI->createVirtualRegister(TRC);
|
|
AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
|
|
.addImm(NumLPads & 0xFFFF));
|
|
|
|
unsigned VReg2 = VReg1;
|
|
if ((NumLPads & 0xFFFF0000) != 0) {
|
|
VReg2 = MRI->createVirtualRegister(TRC);
|
|
AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
|
|
.addReg(VReg1)
|
|
.addImm(NumLPads >> 16));
|
|
}
|
|
|
|
AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
|
|
.addReg(NewVReg1)
|
|
.addReg(VReg2));
|
|
} else {
|
|
MachineConstantPool *ConstantPool = MF->getConstantPool();
|
|
Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
|
|
const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
|
|
|
|
// MachineConstantPool wants an explicit alignment.
|
|
unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty);
|
|
if (Align == 0)
|
|
Align = getDataLayout()->getTypeAllocSize(C->getType());
|
|
unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
|
|
|
|
unsigned VReg1 = MRI->createVirtualRegister(TRC);
|
|
AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
|
|
.addReg(VReg1, RegState::Define)
|
|
.addConstantPoolIndex(Idx)
|
|
.addImm(0));
|
|
AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
|
|
.addReg(NewVReg1)
|
|
.addReg(VReg1, RegState::Kill));
|
|
}
|
|
|
|
BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
|
|
.addMBB(TrapBB)
|
|
.addImm(ARMCC::HI)
|
|
.addReg(ARM::CPSR);
|
|
|
|
unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
|
|
AddDefaultCC(
|
|
AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
|
|
.addReg(NewVReg1)
|
|
.addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
|
|
unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
|
|
AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
|
|
.addJumpTableIndex(MJTI)
|
|
.addImm(UId));
|
|
|
|
MachineMemOperand *JTMMOLd =
|
|
MF->getMachineMemOperand(MachinePointerInfo::getJumpTable(),
|
|
MachineMemOperand::MOLoad, 4, 4);
|
|
unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
|
|
AddDefaultPred(
|
|
BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
|
|
.addReg(NewVReg3, RegState::Kill)
|
|
.addReg(NewVReg4)
|
|
.addImm(0)
|
|
.addMemOperand(JTMMOLd));
|
|
|
|
if (RelocM == Reloc::PIC_) {
|
|
BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
|
|
.addReg(NewVReg5, RegState::Kill)
|
|
.addReg(NewVReg4)
|
|
.addJumpTableIndex(MJTI)
|
|
.addImm(UId);
|
|
} else {
|
|
BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr))
|
|
.addReg(NewVReg5, RegState::Kill)
|
|
.addJumpTableIndex(MJTI)
|
|
.addImm(UId);
|
|
}
|
|
}
|
|
|
|
// Add the jump table entries as successors to the MBB.
|
|
SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs;
|
|
for (std::vector<MachineBasicBlock*>::iterator
|
|
I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
|
|
MachineBasicBlock *CurMBB = *I;
|
|
if (SeenMBBs.insert(CurMBB))
|
|
DispContBB->addSuccessor(CurMBB);
|
|
}
|
|
|
|
// N.B. the order the invoke BBs are processed in doesn't matter here.
|
|
const uint16_t *SavedRegs = RI.getCalleeSavedRegs(MF);
|
|
SmallVector<MachineBasicBlock*, 64> MBBLPads;
|
|
for (SmallPtrSet<MachineBasicBlock*, 64>::iterator
|
|
I = InvokeBBs.begin(), E = InvokeBBs.end(); I != E; ++I) {
|
|
MachineBasicBlock *BB = *I;
|
|
|
|
// Remove the landing pad successor from the invoke block and replace it
|
|
// with the new dispatch block.
|
|
SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
|
|
BB->succ_end());
|
|
while (!Successors.empty()) {
|
|
MachineBasicBlock *SMBB = Successors.pop_back_val();
|
|
if (SMBB->isLandingPad()) {
|
|
BB->removeSuccessor(SMBB);
|
|
MBBLPads.push_back(SMBB);
|
|
}
|
|
}
|
|
|
|
BB->addSuccessor(DispatchBB);
|
|
|
|
// Find the invoke call and mark all of the callee-saved registers as
|
|
// 'implicit defined' so that they're spilled. This prevents code from
|
|
// moving instructions to before the EH block, where they will never be
|
|
// executed.
|
|
for (MachineBasicBlock::reverse_iterator
|
|
II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
|
|
if (!II->isCall()) continue;
|
|
|
|
DenseMap<unsigned, bool> DefRegs;
|
|
for (MachineInstr::mop_iterator
|
|
OI = II->operands_begin(), OE = II->operands_end();
|
|
OI != OE; ++OI) {
|
|
if (!OI->isReg()) continue;
|
|
DefRegs[OI->getReg()] = true;
|
|
}
|
|
|
|
MachineInstrBuilder MIB(*MF, &*II);
|
|
|
|
for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
|
|
unsigned Reg = SavedRegs[i];
|
|
if (Subtarget->isThumb2() &&
|
|
!ARM::tGPRRegClass.contains(Reg) &&
|
|
!ARM::hGPRRegClass.contains(Reg))
|
|
continue;
|
|
if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
|
|
continue;
|
|
if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
|
|
continue;
|
|
if (!DefRegs[Reg])
|
|
MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
|
|
}
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Mark all former landing pads as non-landing pads. The dispatch is the only
|
|
// landing pad now.
|
|
for (SmallVectorImpl<MachineBasicBlock*>::iterator
|
|
I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
|
|
(*I)->setIsLandingPad(false);
|
|
|
|
// The instruction is gone now.
|
|
MI->eraseFromParent();
|
|
|
|
return MBB;
|
|
}
|
|
|
|
static
|
|
MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
|
|
for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
|
|
E = MBB->succ_end(); I != E; ++I)
|
|
if (*I != Succ)
|
|
return *I;
|
|
llvm_unreachable("Expecting a BB with two successors!");
|
|
}
|
|
|
|
MachineBasicBlock *ARMTargetLowering::
|
|
EmitStructByval(MachineInstr *MI, MachineBasicBlock *BB) const {
|
|
// This pseudo instruction has 3 operands: dst, src, size
|
|
// We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
|
|
// Otherwise, we will generate unrolled scalar copies.
|
|
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
MachineFunction::iterator It = BB;
|
|
++It;
|
|
|
|
unsigned dest = MI->getOperand(0).getReg();
|
|
unsigned src = MI->getOperand(1).getReg();
|
|
unsigned SizeVal = MI->getOperand(2).getImm();
|
|
unsigned Align = MI->getOperand(3).getImm();
|
|
DebugLoc dl = MI->getDebugLoc();
|
|
|
|
bool isThumb2 = Subtarget->isThumb2();
|
|
MachineFunction *MF = BB->getParent();
|
|
MachineRegisterInfo &MRI = MF->getRegInfo();
|
|
unsigned ldrOpc, strOpc, UnitSize = 0;
|
|
|
|
const TargetRegisterClass *TRC = isThumb2 ?
|
|
(const TargetRegisterClass*)&ARM::tGPRRegClass :
|
|
(const TargetRegisterClass*)&ARM::GPRRegClass;
|
|
const TargetRegisterClass *TRC_Vec = 0;
|
|
|
|
if (Align & 1) {
|
|
ldrOpc = isThumb2 ? ARM::t2LDRB_POST : ARM::LDRB_POST_IMM;
|
|
strOpc = isThumb2 ? ARM::t2STRB_POST : ARM::STRB_POST_IMM;
|
|
UnitSize = 1;
|
|
} else if (Align & 2) {
|
|
ldrOpc = isThumb2 ? ARM::t2LDRH_POST : ARM::LDRH_POST;
|
|
strOpc = isThumb2 ? ARM::t2STRH_POST : ARM::STRH_POST;
|
|
UnitSize = 2;
|
|
} else {
|
|
// Check whether we can use NEON instructions.
|
|
if (!MF->getFunction()->getAttributes().
|
|
hasAttribute(AttributeSet::FunctionIndex,
|
|
Attribute::NoImplicitFloat) &&
|
|
Subtarget->hasNEON()) {
|
|
if ((Align % 16 == 0) && SizeVal >= 16) {
|
|
ldrOpc = ARM::VLD1q32wb_fixed;
|
|
strOpc = ARM::VST1q32wb_fixed;
|
|
UnitSize = 16;
|
|
TRC_Vec = (const TargetRegisterClass*)&ARM::DPairRegClass;
|
|
}
|
|
else if ((Align % 8 == 0) && SizeVal >= 8) {
|
|
ldrOpc = ARM::VLD1d32wb_fixed;
|
|
strOpc = ARM::VST1d32wb_fixed;
|
|
UnitSize = 8;
|
|
TRC_Vec = (const TargetRegisterClass*)&ARM::DPRRegClass;
|
|
}
|
|
}
|
|
// Can't use NEON instructions.
|
|
if (UnitSize == 0) {
|
|
ldrOpc = isThumb2 ? ARM::t2LDR_POST : ARM::LDR_POST_IMM;
|
|
strOpc = isThumb2 ? ARM::t2STR_POST : ARM::STR_POST_IMM;
|
|
UnitSize = 4;
|
|
}
|
|
}
|
|
|
|
unsigned BytesLeft = SizeVal % UnitSize;
|
|
unsigned LoopSize = SizeVal - BytesLeft;
|
|
|
|
if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
|
|
// Use LDR and STR to copy.
|
|
// [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
|
|
// [destOut] = STR_POST(scratch, destIn, UnitSize)
|
|
unsigned srcIn = src;
|
|
unsigned destIn = dest;
|
|
for (unsigned i = 0; i < LoopSize; i+=UnitSize) {
|
|
unsigned scratch = MRI.createVirtualRegister(UnitSize >= 8 ? TRC_Vec:TRC);
|
|
unsigned srcOut = MRI.createVirtualRegister(TRC);
|
|
unsigned destOut = MRI.createVirtualRegister(TRC);
|
|
if (UnitSize >= 8) {
|
|
AddDefaultPred(BuildMI(*BB, MI, dl,
|
|
TII->get(ldrOpc), scratch)
|
|
.addReg(srcOut, RegState::Define).addReg(srcIn).addImm(0));
|
|
|
|
AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
|
|
.addReg(destIn).addImm(0).addReg(scratch));
|
|
} else if (isThumb2) {
|
|
AddDefaultPred(BuildMI(*BB, MI, dl,
|
|
TII->get(ldrOpc), scratch)
|
|
.addReg(srcOut, RegState::Define).addReg(srcIn).addImm(UnitSize));
|
|
|
|
AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
|
|
.addReg(scratch).addReg(destIn)
|
|
.addImm(UnitSize));
|
|
} else {
|
|
AddDefaultPred(BuildMI(*BB, MI, dl,
|
|
TII->get(ldrOpc), scratch)
|
|
.addReg(srcOut, RegState::Define).addReg(srcIn).addReg(0)
|
|
.addImm(UnitSize));
|
|
|
|
AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
|
|
.addReg(scratch).addReg(destIn)
|
|
.addReg(0).addImm(UnitSize));
|
|
}
|
|
srcIn = srcOut;
|
|
destIn = destOut;
|
|
}
|
|
|
|
// Handle the leftover bytes with LDRB and STRB.
|
|
// [scratch, srcOut] = LDRB_POST(srcIn, 1)
|
|
// [destOut] = STRB_POST(scratch, destIn, 1)
|
|
ldrOpc = isThumb2 ? ARM::t2LDRB_POST : ARM::LDRB_POST_IMM;
|
|
strOpc = isThumb2 ? ARM::t2STRB_POST : ARM::STRB_POST_IMM;
|
|
for (unsigned i = 0; i < BytesLeft; i++) {
|
|
unsigned scratch = MRI.createVirtualRegister(TRC);
|
|
unsigned srcOut = MRI.createVirtualRegister(TRC);
|
|
unsigned destOut = MRI.createVirtualRegister(TRC);
|
|
if (isThumb2) {
|
|
AddDefaultPred(BuildMI(*BB, MI, dl,
|
|
TII->get(ldrOpc),scratch)
|
|
.addReg(srcOut, RegState::Define).addReg(srcIn).addImm(1));
|
|
|
|
AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
|
|
.addReg(scratch).addReg(destIn)
|
|
.addReg(0).addImm(1));
|
|
} else {
|
|
AddDefaultPred(BuildMI(*BB, MI, dl,
|
|
TII->get(ldrOpc),scratch)
|
|
.addReg(srcOut, RegState::Define).addReg(srcIn)
|
|
.addReg(0).addImm(1));
|
|
|
|
AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(strOpc), destOut)
|
|
.addReg(scratch).addReg(destIn)
|
|
.addReg(0).addImm(1));
|
|
}
|
|
srcIn = srcOut;
|
|
destIn = destOut;
|
|
}
|
|
MI->eraseFromParent(); // The instruction is gone now.
|
|
return BB;
|
|
}
|
|
|
|
// Expand the pseudo op to a loop.
|
|
// thisMBB:
|
|
// ...
|
|
// movw varEnd, # --> with thumb2
|
|
// movt varEnd, #
|
|
// ldrcp varEnd, idx --> without thumb2
|
|
// fallthrough --> loopMBB
|
|
// loopMBB:
|
|
// PHI varPhi, varEnd, varLoop
|
|
// PHI srcPhi, src, srcLoop
|
|
// PHI destPhi, dst, destLoop
|
|
// [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
|
|
// [destLoop] = STR_POST(scratch, destPhi, UnitSize)
|
|
// subs varLoop, varPhi, #UnitSize
|
|
// bne loopMBB
|
|
// fallthrough --> exitMBB
|
|
// exitMBB:
|
|
// epilogue to handle left-over bytes
|
|
// [scratch, srcOut] = LDRB_POST(srcLoop, 1)
|
|
// [destOut] = STRB_POST(scratch, destLoop, 1)
|
|
MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
|
|
MF->insert(It, loopMBB);
|
|
MF->insert(It, exitMBB);
|
|
|
|
// Transfer the remainder of BB and its successor edges to exitMBB.
|
|
exitMBB->splice(exitMBB->begin(), BB,
|
|
llvm::next(MachineBasicBlock::iterator(MI)),
|
|
BB->end());
|
|
exitMBB->transferSuccessorsAndUpdatePHIs(BB);
|
|
|
|
// Load an immediate to varEnd.
|
|
unsigned varEnd = MRI.createVirtualRegister(TRC);
|
|
if (isThumb2) {
|
|
unsigned VReg1 = varEnd;
|
|
if ((LoopSize & 0xFFFF0000) != 0)
|
|
VReg1 = MRI.createVirtualRegister(TRC);
|
|
AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2MOVi16), VReg1)
|
|
.addImm(LoopSize & 0xFFFF));
|
|
|
|
if ((LoopSize & 0xFFFF0000) != 0)
|
|
AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2MOVTi16), varEnd)
|
|
.addReg(VReg1)
|
|
.addImm(LoopSize >> 16));
|
|
} else {
|
|
MachineConstantPool *ConstantPool = MF->getConstantPool();
|
|
Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
|
|
const Constant *C = ConstantInt::get(Int32Ty, LoopSize);
|
|
|
|
// MachineConstantPool wants an explicit alignment.
|
|
unsigned Align = getDataLayout()->getPrefTypeAlignment(Int32Ty);
|
|
if (Align == 0)
|
|
Align = getDataLayout()->getTypeAllocSize(C->getType());
|
|
unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
|
|
|
|
AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::LDRcp))
|
|
.addReg(varEnd, RegState::Define)
|
|
.addConstantPoolIndex(Idx)
|
|
.addImm(0));
|
|
}
|
|
BB->addSuccessor(loopMBB);
|
|
|
|
// Generate the loop body:
|
|
// varPhi = PHI(varLoop, varEnd)
|
|
// srcPhi = PHI(srcLoop, src)
|
|
// destPhi = PHI(destLoop, dst)
|
|
MachineBasicBlock *entryBB = BB;
|
|
BB = loopMBB;
|
|
unsigned varLoop = MRI.createVirtualRegister(TRC);
|
|
unsigned varPhi = MRI.createVirtualRegister(TRC);
|
|
unsigned srcLoop = MRI.createVirtualRegister(TRC);
|
|
unsigned srcPhi = MRI.createVirtualRegister(TRC);
|
|
unsigned destLoop = MRI.createVirtualRegister(TRC);
|
|
unsigned destPhi = MRI.createVirtualRegister(TRC);
|
|
|
|
BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi)
|
|
.addReg(varLoop).addMBB(loopMBB)
|
|
.addReg(varEnd).addMBB(entryBB);
|
|
BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi)
|
|
.addReg(srcLoop).addMBB(loopMBB)
|
|
.addReg(src).addMBB(entryBB);
|
|
BuildMI(BB, dl, TII->get(ARM::PHI), destPhi)
|
|
.addReg(destLoop).addMBB(loopMBB)
|
|
.addReg(dest).addMBB(entryBB);
|
|
|
|
// [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
|
|
// [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
|
|
unsigned scratch = MRI.createVirtualRegister(UnitSize >= 8 ? TRC_Vec:TRC);
|
|
if (UnitSize >= 8) {
|
|
AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), scratch)
|
|
.addReg(srcLoop, RegState::Define).addReg(srcPhi).addImm(0));
|
|
|
|
AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), destLoop)
|
|
.addReg(destPhi).addImm(0).addReg(scratch));
|
|
} else if (isThumb2) {
|
|
AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), scratch)
|
|
.addReg(srcLoop, RegState::Define).addReg(srcPhi).addImm(UnitSize));
|
|
|
|
AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), destLoop)
|
|
.addReg(scratch).addReg(destPhi)
|
|
.addImm(UnitSize));
|
|
} else {
|
|
AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), scratch)
|
|
.addReg(srcLoop, RegState::Define).addReg(srcPhi).addReg(0)
|
|
.addImm(UnitSize));
|
|
|
|
AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), destLoop)
|
|
.addReg(scratch).addReg(destPhi)
|
|
.addReg(0).addImm(UnitSize));
|
|
}
|
|
|
|
// Decrement loop variable by UnitSize.
|
|
MachineInstrBuilder MIB = BuildMI(BB, dl,
|
|
TII->get(isThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
|
|
AddDefaultCC(AddDefaultPred(MIB.addReg(varPhi).addImm(UnitSize)));
|
|
MIB->getOperand(5).setReg(ARM::CPSR);
|
|
MIB->getOperand(5).setIsDef(true);
|
|
|
|
BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
|
|
.addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
|
|
|
|
// loopMBB can loop back to loopMBB or fall through to exitMBB.
|
|
BB->addSuccessor(loopMBB);
|
|
BB->addSuccessor(exitMBB);
|
|
|
|
// Add epilogue to handle BytesLeft.
|
|
BB = exitMBB;
|
|
MachineInstr *StartOfExit = exitMBB->begin();
|
|
ldrOpc = isThumb2 ? ARM::t2LDRB_POST : ARM::LDRB_POST_IMM;
|
|
strOpc = isThumb2 ? ARM::t2STRB_POST : ARM::STRB_POST_IMM;
|
|
|
|
// [scratch, srcOut] = LDRB_POST(srcLoop, 1)
|
|
// [destOut] = STRB_POST(scratch, destLoop, 1)
|
|
unsigned srcIn = srcLoop;
|
|
unsigned destIn = destLoop;
|
|
for (unsigned i = 0; i < BytesLeft; i++) {
|
|
unsigned scratch = MRI.createVirtualRegister(TRC);
|
|
unsigned srcOut = MRI.createVirtualRegister(TRC);
|
|
unsigned destOut = MRI.createVirtualRegister(TRC);
|
|
if (isThumb2) {
|
|
AddDefaultPred(BuildMI(*BB, StartOfExit, dl,
|
|
TII->get(ldrOpc),scratch)
|
|
.addReg(srcOut, RegState::Define).addReg(srcIn).addImm(1));
|
|
|
|
AddDefaultPred(BuildMI(*BB, StartOfExit, dl, TII->get(strOpc), destOut)
|
|
.addReg(scratch).addReg(destIn)
|
|
.addImm(1));
|
|
} else {
|
|
AddDefaultPred(BuildMI(*BB, StartOfExit, dl,
|
|
TII->get(ldrOpc),scratch)
|
|
.addReg(srcOut, RegState::Define).addReg(srcIn).addReg(0).addImm(1));
|
|
|
|
AddDefaultPred(BuildMI(*BB, StartOfExit, dl, TII->get(strOpc), destOut)
|
|
.addReg(scratch).addReg(destIn)
|
|
.addReg(0).addImm(1));
|
|
}
|
|
srcIn = srcOut;
|
|
destIn = destOut;
|
|
}
|
|
|
|
MI->eraseFromParent(); // The instruction is gone now.
|
|
return BB;
|
|
}
|
|
|
|
MachineBasicBlock *
|
|
ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
|
|
MachineBasicBlock *BB) const {
|
|
const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
|
|
DebugLoc dl = MI->getDebugLoc();
|
|
bool isThumb2 = Subtarget->isThumb2();
|
|
switch (MI->getOpcode()) {
|
|
default: {
|
|
MI->dump();
|
|
llvm_unreachable("Unexpected instr type to insert");
|
|
}
|
|
// The Thumb2 pre-indexed stores have the same MI operands, they just
|
|
// define them differently in the .td files from the isel patterns, so
|
|
// they need pseudos.
|
|
case ARM::t2STR_preidx:
|
|
MI->setDesc(TII->get(ARM::t2STR_PRE));
|
|
return BB;
|
|
case ARM::t2STRB_preidx:
|
|
MI->setDesc(TII->get(ARM::t2STRB_PRE));
|
|
return BB;
|
|
case ARM::t2STRH_preidx:
|
|
MI->setDesc(TII->get(ARM::t2STRH_PRE));
|
|
return BB;
|
|
|
|
case ARM::STRi_preidx:
|
|
case ARM::STRBi_preidx: {
|
|
unsigned NewOpc = MI->getOpcode() == ARM::STRi_preidx ?
|
|
ARM::STR_PRE_IMM : ARM::STRB_PRE_IMM;
|
|
// Decode the offset.
|
|
unsigned Offset = MI->getOperand(4).getImm();
|
|
bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
|
|
Offset = ARM_AM::getAM2Offset(Offset);
|
|
if (isSub)
|
|
Offset = -Offset;
|
|
|
|
MachineMemOperand *MMO = *MI->memoperands_begin();
|
|
BuildMI(*BB, MI, dl, TII->get(NewOpc))
|
|
.addOperand(MI->getOperand(0)) // Rn_wb
|
|
.addOperand(MI->getOperand(1)) // Rt
|
|
.addOperand(MI->getOperand(2)) // Rn
|
|
.addImm(Offset) // offset (skip GPR==zero_reg)
|
|
.addOperand(MI->getOperand(5)) // pred
|
|
.addOperand(MI->getOperand(6))
|
|
.addMemOperand(MMO);
|
|
MI->eraseFromParent();
|
|
return BB;
|
|
}
|
|
case ARM::STRr_preidx:
|
|
case ARM::STRBr_preidx:
|
|
case ARM::STRH_preidx: {
|
|
unsigned NewOpc;
|
|
switch (MI->getOpcode()) {
|
|
default: llvm_unreachable("unexpected opcode!");
|
|
case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
|
|
case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
|
|
case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
|
|
}
|
|
MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
|
|
for (unsigned i = 0; i < MI->getNumOperands(); ++i)
|
|
MIB.addOperand(MI->getOperand(i));
|
|
MI->eraseFromParent();
|
|
return BB;
|
|
}
|
|
case ARM::ATOMIC_LOAD_ADD_I8:
|
|
return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
|
|
case ARM::ATOMIC_LOAD_ADD_I16:
|
|
return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
|
|
case ARM::ATOMIC_LOAD_ADD_I32:
|
|
return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr);
|
|
|
|
case ARM::ATOMIC_LOAD_AND_I8:
|
|
return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
|
|
case ARM::ATOMIC_LOAD_AND_I16:
|
|
return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
|
|
case ARM::ATOMIC_LOAD_AND_I32:
|
|
return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
|
|
|
|
case ARM::ATOMIC_LOAD_OR_I8:
|
|
return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
|
|
case ARM::ATOMIC_LOAD_OR_I16:
|
|
return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
|
|
case ARM::ATOMIC_LOAD_OR_I32:
|
|
return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
|
|
|
|
case ARM::ATOMIC_LOAD_XOR_I8:
|
|
return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
|
|
case ARM::ATOMIC_LOAD_XOR_I16:
|
|
return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
|
|
case ARM::ATOMIC_LOAD_XOR_I32:
|
|
return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr);
|
|
|
|
case ARM::ATOMIC_LOAD_NAND_I8:
|
|
return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
|
|
case ARM::ATOMIC_LOAD_NAND_I16:
|
|
return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
|
|
case ARM::ATOMIC_LOAD_NAND_I32:
|
|
return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr);
|
|
|
|
case ARM::ATOMIC_LOAD_SUB_I8:
|
|
return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
|
|
case ARM::ATOMIC_LOAD_SUB_I16:
|
|
return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
|
|
case ARM::ATOMIC_LOAD_SUB_I32:
|
|
return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr);
|
|
|
|
case ARM::ATOMIC_LOAD_MIN_I8:
|
|
return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::LT);
|
|
case ARM::ATOMIC_LOAD_MIN_I16:
|
|
return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::LT);
|
|
case ARM::ATOMIC_LOAD_MIN_I32:
|
|
return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::LT);
|
|
|
|
case ARM::ATOMIC_LOAD_MAX_I8:
|
|
return EmitAtomicBinaryMinMax(MI, BB, 1, true, ARMCC::GT);
|
|
case ARM::ATOMIC_LOAD_MAX_I16:
|
|
return EmitAtomicBinaryMinMax(MI, BB, 2, true, ARMCC::GT);
|
|
case ARM::ATOMIC_LOAD_MAX_I32:
|
|
return EmitAtomicBinaryMinMax(MI, BB, 4, true, ARMCC::GT);
|
|
|
|
case ARM::ATOMIC_LOAD_UMIN_I8:
|
|
return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::LO);
|
|
case ARM::ATOMIC_LOAD_UMIN_I16:
|
|
return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::LO);
|
|
case ARM::ATOMIC_LOAD_UMIN_I32:
|
|
return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::LO);
|
|
|
|
case ARM::ATOMIC_LOAD_UMAX_I8:
|
|
return EmitAtomicBinaryMinMax(MI, BB, 1, false, ARMCC::HI);
|
|
case ARM::ATOMIC_LOAD_UMAX_I16:
|
|
return EmitAtomicBinaryMinMax(MI, BB, 2, false, ARMCC::HI);
|
|
case ARM::ATOMIC_LOAD_UMAX_I32:
|
|
return EmitAtomicBinaryMinMax(MI, BB, 4, false, ARMCC::HI);
|
|
|
|
case ARM::ATOMIC_SWAP_I8: return EmitAtomicBinary(MI, BB, 1, 0);
|
|
case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0);
|
|
case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0);
|
|
|
|
case ARM::ATOMIC_CMP_SWAP_I8: return EmitAtomicCmpSwap(MI, BB, 1);
|
|
case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2);
|
|
case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4);
|
|
|
|
|
|
case ARM::ATOMADD6432:
|
|
return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr,
|
|
isThumb2 ? ARM::t2ADCrr : ARM::ADCrr,
|
|
/*NeedsCarry*/ true);
|
|
case ARM::ATOMSUB6432:
|
|
return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
|
|
isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
|
|
/*NeedsCarry*/ true);
|
|
case ARM::ATOMOR6432:
|
|
return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr,
|
|
isThumb2 ? ARM::t2ORRrr : ARM::ORRrr);
|
|
case ARM::ATOMXOR6432:
|
|
return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2EORrr : ARM::EORrr,
|
|
isThumb2 ? ARM::t2EORrr : ARM::EORrr);
|
|
case ARM::ATOMAND6432:
|
|
return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr,
|
|
isThumb2 ? ARM::t2ANDrr : ARM::ANDrr);
|
|
case ARM::ATOMSWAP6432:
|
|
return EmitAtomicBinary64(MI, BB, 0, 0, false);
|
|
case ARM::ATOMCMPXCHG6432:
|
|
return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
|
|
isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
|
|
/*NeedsCarry*/ false, /*IsCmpxchg*/true);
|
|
case ARM::ATOMMIN6432:
|
|
return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
|
|
isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
|
|
/*NeedsCarry*/ true, /*IsCmpxchg*/false,
|
|
/*IsMinMax*/ true, ARMCC::LT);
|
|
case ARM::ATOMMAX6432:
|
|
return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
|
|
isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
|
|
/*NeedsCarry*/ true, /*IsCmpxchg*/false,
|
|
/*IsMinMax*/ true, ARMCC::GE);
|
|
case ARM::ATOMUMIN6432:
|
|
return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
|
|
isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
|
|
/*NeedsCarry*/ true, /*IsCmpxchg*/false,
|
|
/*IsMinMax*/ true, ARMCC::LO);
|
|
case ARM::ATOMUMAX6432:
|
|
return EmitAtomicBinary64(MI, BB, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr,
|
|
isThumb2 ? ARM::t2SBCrr : ARM::SBCrr,
|
|
/*NeedsCarry*/ true, /*IsCmpxchg*/false,
|
|
/*IsMinMax*/ true, ARMCC::HS);
|
|
|
|
case ARM::tMOVCCr_pseudo: {
|
|
// To "insert" a SELECT_CC instruction, we actually have to insert the
|
|
// diamond control-flow pattern. The incoming instruction knows the
|
|
// destination vreg to set, the condition code register to branch on, the
|
|
// true/false values to select between, and a branch opcode to use.
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
MachineFunction::iterator It = BB;
|
|
++It;
|
|
|
|
// thisMBB:
|
|
// ...
|
|
// TrueVal = ...
|
|
// cmpTY ccX, r1, r2
|
|
// bCC copy1MBB
|
|
// fallthrough --> copy0MBB
|
|
MachineBasicBlock *thisMBB = BB;
|
|
MachineFunction *F = BB->getParent();
|
|
MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
|
|
F->insert(It, copy0MBB);
|
|
F->insert(It, sinkMBB);
|
|
|
|
// Transfer the remainder of BB and its successor edges to sinkMBB.
|
|
sinkMBB->splice(sinkMBB->begin(), BB,
|
|
llvm::next(MachineBasicBlock::iterator(MI)),
|
|
BB->end());
|
|
sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
|
|
|
|
BB->addSuccessor(copy0MBB);
|
|
BB->addSuccessor(sinkMBB);
|
|
|
|
BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
|
|
.addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
|
|
|
|
// copy0MBB:
|
|
// %FalseValue = ...
|
|
// # fallthrough to sinkMBB
|
|
BB = copy0MBB;
|
|
|
|
// Update machine-CFG edges
|
|
BB->addSuccessor(sinkMBB);
|
|
|
|
// sinkMBB:
|
|
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
|
|
// ...
|
|
BB = sinkMBB;
|
|
BuildMI(*BB, BB->begin(), dl,
|
|
TII->get(ARM::PHI), MI->getOperand(0).getReg())
|
|
.addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
|
|
.addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
|
|
|
|
MI->eraseFromParent(); // The pseudo instruction is gone now.
|
|
return BB;
|
|
}
|
|
|
|
case ARM::BCCi64:
|
|
case ARM::BCCZi64: {
|
|
// If there is an unconditional branch to the other successor, remove it.
|
|
BB->erase(llvm::next(MachineBasicBlock::iterator(MI)), BB->end());
|
|
|
|
// Compare both parts that make up the double comparison separately for
|
|
// equality.
|
|
bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
|
|
|
|
unsigned LHS1 = MI->getOperand(1).getReg();
|
|
unsigned LHS2 = MI->getOperand(2).getReg();
|
|
if (RHSisZero) {
|
|
AddDefaultPred(BuildMI(BB, dl,
|
|
TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
|
|
.addReg(LHS1).addImm(0));
|
|
BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
|
|
.addReg(LHS2).addImm(0)
|
|
.addImm(ARMCC::EQ).addReg(ARM::CPSR);
|
|
} else {
|
|
unsigned RHS1 = MI->getOperand(3).getReg();
|
|
unsigned RHS2 = MI->getOperand(4).getReg();
|
|
AddDefaultPred(BuildMI(BB, dl,
|
|
TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
|
|
.addReg(LHS1).addReg(RHS1));
|
|
BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
|
|
.addReg(LHS2).addReg(RHS2)
|
|
.addImm(ARMCC::EQ).addReg(ARM::CPSR);
|
|
}
|
|
|
|
MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
|
|
MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
|
|
if (MI->getOperand(0).getImm() == ARMCC::NE)
|
|
std::swap(destMBB, exitMBB);
|
|
|
|
BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
|
|
.addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
|
|
if (isThumb2)
|
|
AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2B)).addMBB(exitMBB));
|
|
else
|
|
BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
|
|
|
|
MI->eraseFromParent(); // The pseudo instruction is gone now.
|
|
return BB;
|
|
}
|
|
|
|
case ARM::Int_eh_sjlj_setjmp:
|
|
case ARM::Int_eh_sjlj_setjmp_nofp:
|
|
case ARM::tInt_eh_sjlj_setjmp:
|
|
case ARM::t2Int_eh_sjlj_setjmp:
|
|
case ARM::t2Int_eh_sjlj_setjmp_nofp:
|
|
EmitSjLjDispatchBlock(MI, BB);
|
|
return BB;
|
|
|
|
case ARM::ABS:
|
|
case ARM::t2ABS: {
|
|
// To insert an ABS instruction, we have to insert the
|
|
// diamond control-flow pattern. The incoming instruction knows the
|
|
// source vreg to test against 0, the destination vreg to set,
|
|
// the condition code register to branch on, the
|
|
// true/false values to select between, and a branch opcode to use.
|
|
// It transforms
|
|
// V1 = ABS V0
|
|
// into
|
|
// V2 = MOVS V0
|
|
// BCC (branch to SinkBB if V0 >= 0)
|
|
// RSBBB: V3 = RSBri V2, 0 (compute ABS if V2 < 0)
|
|
// SinkBB: V1 = PHI(V2, V3)
|
|
const BasicBlock *LLVM_BB = BB->getBasicBlock();
|
|
MachineFunction::iterator BBI = BB;
|
|
++BBI;
|
|
MachineFunction *Fn = BB->getParent();
|
|
MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
|
|
MachineBasicBlock *SinkBB = Fn->CreateMachineBasicBlock(LLVM_BB);
|
|
Fn->insert(BBI, RSBBB);
|
|
Fn->insert(BBI, SinkBB);
|
|
|
|
unsigned int ABSSrcReg = MI->getOperand(1).getReg();
|
|
unsigned int ABSDstReg = MI->getOperand(0).getReg();
|
|
bool isThumb2 = Subtarget->isThumb2();
|
|
MachineRegisterInfo &MRI = Fn->getRegInfo();
|
|
// In Thumb mode S must not be specified if source register is the SP or
|
|
// PC and if destination register is the SP, so restrict register class
|
|
unsigned NewRsbDstReg = MRI.createVirtualRegister(isThumb2 ?
|
|
(const TargetRegisterClass*)&ARM::rGPRRegClass :
|
|
(const TargetRegisterClass*)&ARM::GPRRegClass);
|
|
|
|
// Transfer the remainder of BB and its successor edges to sinkMBB.
|
|
SinkBB->splice(SinkBB->begin(), BB,
|
|
llvm::next(MachineBasicBlock::iterator(MI)),
|
|
BB->end());
|
|
SinkBB->transferSuccessorsAndUpdatePHIs(BB);
|
|
|
|
BB->addSuccessor(RSBBB);
|
|
BB->addSuccessor(SinkBB);
|
|
|
|
// fall through to SinkMBB
|
|
RSBBB->addSuccessor(SinkBB);
|
|
|
|
// insert a cmp at the end of BB
|
|
AddDefaultPred(BuildMI(BB, dl,
|
|
TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
|
|
.addReg(ABSSrcReg).addImm(0));
|
|
|
|
// insert a bcc with opposite CC to ARMCC::MI at the end of BB
|
|
BuildMI(BB, dl,
|
|
TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
|
|
.addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
|
|
|
|
// insert rsbri in RSBBB
|
|
// Note: BCC and rsbri will be converted into predicated rsbmi
|
|
// by if-conversion pass
|
|
BuildMI(*RSBBB, RSBBB->begin(), dl,
|
|
TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
|
|
.addReg(ABSSrcReg, RegState::Kill)
|
|
.addImm(0).addImm((unsigned)ARMCC::AL).addReg(0).addReg(0);
|
|
|
|
// insert PHI in SinkBB,
|
|
// reuse ABSDstReg to not change uses of ABS instruction
|
|
BuildMI(*SinkBB, SinkBB->begin(), dl,
|
|
TII->get(ARM::PHI), ABSDstReg)
|
|
.addReg(NewRsbDstReg).addMBB(RSBBB)
|
|
.addReg(ABSSrcReg).addMBB(BB);
|
|
|
|
// remove ABS instruction
|
|
MI->eraseFromParent();
|
|
|
|
// return last added BB
|
|
return SinkBB;
|
|
}
|
|
case ARM::COPY_STRUCT_BYVAL_I32:
|
|
++NumLoopByVals;
|
|
return EmitStructByval(MI, BB);
|
|
}
|
|
}
|
|
|
|
void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
|
|
SDNode *Node) const {
|
|
if (!MI->hasPostISelHook()) {
|
|
assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
|
|
"Pseudo flag-setting opcodes must be marked with 'hasPostISelHook'");
|
|
return;
|
|
}
|
|
|
|
const MCInstrDesc *MCID = &MI->getDesc();
|
|
// Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
|
|
// RSC. Coming out of isel, they have an implicit CPSR def, but the optional
|
|
// operand is still set to noreg. If needed, set the optional operand's
|
|
// register to CPSR, and remove the redundant implicit def.
|
|
//
|
|
// e.g. ADCS (..., CPSR<imp-def>) -> ADC (... opt:CPSR<def>).
|
|
|
|
// Rename pseudo opcodes.
|
|
unsigned NewOpc = convertAddSubFlagsOpcode(MI->getOpcode());
|
|
if (NewOpc) {
|
|
const ARMBaseInstrInfo *TII =
|
|
static_cast<const ARMBaseInstrInfo*>(getTargetMachine().getInstrInfo());
|
|
MCID = &TII->get(NewOpc);
|
|
|
|
assert(MCID->getNumOperands() == MI->getDesc().getNumOperands() + 1 &&
|
|
"converted opcode should be the same except for cc_out");
|
|
|
|
MI->setDesc(*MCID);
|
|
|
|
// Add the optional cc_out operand
|
|
MI->addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
|
|
}
|
|
unsigned ccOutIdx = MCID->getNumOperands() - 1;
|
|
|
|
// Any ARM instruction that sets the 's' bit should specify an optional
|
|
// "cc_out" operand in the last operand position.
|
|
if (!MI->hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
|
|
assert(!NewOpc && "Optional cc_out operand required");
|
|
return;
|
|
}
|
|
// Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
|
|
// since we already have an optional CPSR def.
|
|
bool definesCPSR = false;
|
|
bool deadCPSR = false;
|
|
for (unsigned i = MCID->getNumOperands(), e = MI->getNumOperands();
|
|
i != e; ++i) {
|
|
const MachineOperand &MO = MI->getOperand(i);
|
|
if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
|
|
definesCPSR = true;
|
|
if (MO.isDead())
|
|
deadCPSR = true;
|
|
MI->RemoveOperand(i);
|
|
break;
|
|
}
|
|
}
|
|
if (!definesCPSR) {
|
|
assert(!NewOpc && "Optional cc_out operand required");
|
|
return;
|
|
}
|
|
assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
|
|
if (deadCPSR) {
|
|
assert(!MI->getOperand(ccOutIdx).getReg() &&
|
|
"expect uninitialized optional cc_out operand");
|
|
return;
|
|
}
|
|
|
|
// If this instruction was defined with an optional CPSR def and its dag node
|
|
// had a live implicit CPSR def, then activate the optional CPSR def.
|
|
MachineOperand &MO = MI->getOperand(ccOutIdx);
|
|
MO.setReg(ARM::CPSR);
|
|
MO.setIsDef(true);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ARM Optimization Hooks
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Helper function that checks if N is a null or all ones constant.
|
|
static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
|
|
if (!C)
|
|
return false;
|
|
return AllOnes ? C->isAllOnesValue() : C->isNullValue();
|
|
}
|
|
|
|
// Return true if N is conditionally 0 or all ones.
|
|
// Detects these expressions where cc is an i1 value:
|
|
//
|
|
// (select cc 0, y) [AllOnes=0]
|
|
// (select cc y, 0) [AllOnes=0]
|
|
// (zext cc) [AllOnes=0]
|
|
// (sext cc) [AllOnes=0/1]
|
|
// (select cc -1, y) [AllOnes=1]
|
|
// (select cc y, -1) [AllOnes=1]
|
|
//
|
|
// Invert is set when N is the null/all ones constant when CC is false.
|
|
// OtherOp is set to the alternative value of N.
|
|
static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes,
|
|
SDValue &CC, bool &Invert,
|
|
SDValue &OtherOp,
|
|
SelectionDAG &DAG) {
|
|
switch (N->getOpcode()) {
|
|
default: return false;
|
|
case ISD::SELECT: {
|
|
CC = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
SDValue N2 = N->getOperand(2);
|
|
if (isZeroOrAllOnes(N1, AllOnes)) {
|
|
Invert = false;
|
|
OtherOp = N2;
|
|
return true;
|
|
}
|
|
if (isZeroOrAllOnes(N2, AllOnes)) {
|
|
Invert = true;
|
|
OtherOp = N1;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
case ISD::ZERO_EXTEND:
|
|
// (zext cc) can never be the all ones value.
|
|
if (AllOnes)
|
|
return false;
|
|
// Fall through.
|
|
case ISD::SIGN_EXTEND: {
|
|
EVT VT = N->getValueType(0);
|
|
CC = N->getOperand(0);
|
|
if (CC.getValueType() != MVT::i1)
|
|
return false;
|
|
Invert = !AllOnes;
|
|
if (AllOnes)
|
|
// When looking for an AllOnes constant, N is an sext, and the 'other'
|
|
// value is 0.
|
|
OtherOp = DAG.getConstant(0, VT);
|
|
else if (N->getOpcode() == ISD::ZERO_EXTEND)
|
|
// When looking for a 0 constant, N can be zext or sext.
|
|
OtherOp = DAG.getConstant(1, VT);
|
|
else
|
|
OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Combine a constant select operand into its use:
|
|
//
|
|
// (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
|
|
// (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
|
|
// (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) [AllOnes=1]
|
|
// (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
|
|
// (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
|
|
//
|
|
// The transform is rejected if the select doesn't have a constant operand that
|
|
// is null, or all ones when AllOnes is set.
|
|
//
|
|
// Also recognize sext/zext from i1:
|
|
//
|
|
// (add (zext cc), x) -> (select cc (add x, 1), x)
|
|
// (add (sext cc), x) -> (select cc (add x, -1), x)
|
|
//
|
|
// These transformations eventually create predicated instructions.
|
|
//
|
|
// @param N The node to transform.
|
|
// @param Slct The N operand that is a select.
|
|
// @param OtherOp The other N operand (x above).
|
|
// @param DCI Context.
|
|
// @param AllOnes Require the select constant to be all ones instead of null.
|
|
// @returns The new node, or SDValue() on failure.
|
|
static
|
|
SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
bool AllOnes = false) {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
EVT VT = N->getValueType(0);
|
|
SDValue NonConstantVal;
|
|
SDValue CCOp;
|
|
bool SwapSelectOps;
|
|
if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
|
|
NonConstantVal, DAG))
|
|
return SDValue();
|
|
|
|
// Slct is now know to be the desired identity constant when CC is true.
|
|
SDValue TrueVal = OtherOp;
|
|
SDValue FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
|
|
OtherOp, NonConstantVal);
|
|
// Unless SwapSelectOps says CC should be false.
|
|
if (SwapSelectOps)
|
|
std::swap(TrueVal, FalseVal);
|
|
|
|
return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
|
|
CCOp, TrueVal, FalseVal);
|
|
}
|
|
|
|
// Attempt combineSelectAndUse on each operand of a commutative operator N.
|
|
static
|
|
SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
if (N0.getNode()->hasOneUse()) {
|
|
SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes);
|
|
if (Result.getNode())
|
|
return Result;
|
|
}
|
|
if (N1.getNode()->hasOneUse()) {
|
|
SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes);
|
|
if (Result.getNode())
|
|
return Result;
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
// AddCombineToVPADDL- For pair-wise add on neon, use the vpaddl instruction
|
|
// (only after legalization).
|
|
static SDValue AddCombineToVPADDL(SDNode *N, SDValue N0, SDValue N1,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const ARMSubtarget *Subtarget) {
|
|
|
|
// Only perform optimization if after legalize, and if NEON is available. We
|
|
// also expected both operands to be BUILD_VECTORs.
|
|
if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
|
|
|| N0.getOpcode() != ISD::BUILD_VECTOR
|
|
|| N1.getOpcode() != ISD::BUILD_VECTOR)
|
|
return SDValue();
|
|
|
|
// Check output type since VPADDL operand elements can only be 8, 16, or 32.
|
|
EVT VT = N->getValueType(0);
|
|
if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
|
|
return SDValue();
|
|
|
|
// Check that the vector operands are of the right form.
|
|
// N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
|
|
// operands, where N is the size of the formed vector.
|
|
// Each EXTRACT_VECTOR should have the same input vector and odd or even
|
|
// index such that we have a pair wise add pattern.
|
|
|
|
// Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
|
|
if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
|
|
return SDValue();
|
|
SDValue Vec = N0->getOperand(0)->getOperand(0);
|
|
SDNode *V = Vec.getNode();
|
|
unsigned nextIndex = 0;
|
|
|
|
// For each operands to the ADD which are BUILD_VECTORs,
|
|
// check to see if each of their operands are an EXTRACT_VECTOR with
|
|
// the same vector and appropriate index.
|
|
for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
|
|
if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
|
|
&& N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
|
|
|
|
SDValue ExtVec0 = N0->getOperand(i);
|
|
SDValue ExtVec1 = N1->getOperand(i);
|
|
|
|
// First operand is the vector, verify its the same.
|
|
if (V != ExtVec0->getOperand(0).getNode() ||
|
|
V != ExtVec1->getOperand(0).getNode())
|
|
return SDValue();
|
|
|
|
// Second is the constant, verify its correct.
|
|
ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
|
|
ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
|
|
|
|
// For the constant, we want to see all the even or all the odd.
|
|
if (!C0 || !C1 || C0->getZExtValue() != nextIndex
|
|
|| C1->getZExtValue() != nextIndex+1)
|
|
return SDValue();
|
|
|
|
// Increment index.
|
|
nextIndex+=2;
|
|
} else
|
|
return SDValue();
|
|
}
|
|
|
|
// Create VPADDL node.
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
|
|
// Build operand list.
|
|
SmallVector<SDValue, 8> Ops;
|
|
Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls,
|
|
TLI.getPointerTy()));
|
|
|
|
// Input is the vector.
|
|
Ops.push_back(Vec);
|
|
|
|
// Get widened type and narrowed type.
|
|
MVT widenType;
|
|
unsigned numElem = VT.getVectorNumElements();
|
|
switch (VT.getVectorElementType().getSimpleVT().SimpleTy) {
|
|
case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
|
|
case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
|
|
case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
|
|
default:
|
|
llvm_unreachable("Invalid vector element type for padd optimization.");
|
|
}
|
|
|
|
SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N),
|
|
widenType, &Ops[0], Ops.size());
|
|
return DAG.getNode(ISD::TRUNCATE, SDLoc(N), VT, tmp);
|
|
}
|
|
|
|
static SDValue findMUL_LOHI(SDValue V) {
|
|
if (V->getOpcode() == ISD::UMUL_LOHI ||
|
|
V->getOpcode() == ISD::SMUL_LOHI)
|
|
return V;
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue AddCombineTo64bitMLAL(SDNode *AddcNode,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const ARMSubtarget *Subtarget) {
|
|
|
|
if (Subtarget->isThumb1Only()) return SDValue();
|
|
|
|
// Only perform the checks after legalize when the pattern is available.
|
|
if (DCI.isBeforeLegalize()) return SDValue();
|
|
|
|
// Look for multiply add opportunities.
|
|
// The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
|
|
// each add nodes consumes a value from ISD::UMUL_LOHI and there is
|
|
// a glue link from the first add to the second add.
|
|
// If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
|
|
// a S/UMLAL instruction.
|
|
// loAdd UMUL_LOHI
|
|
// \ / :lo \ :hi
|
|
// \ / \ [no multiline comment]
|
|
// ADDC | hiAdd
|
|
// \ :glue / /
|
|
// \ / /
|
|
// ADDE
|
|
//
|
|
assert(AddcNode->getOpcode() == ISD::ADDC && "Expect an ADDC");
|
|
SDValue AddcOp0 = AddcNode->getOperand(0);
|
|
SDValue AddcOp1 = AddcNode->getOperand(1);
|
|
|
|
// Check if the two operands are from the same mul_lohi node.
|
|
if (AddcOp0.getNode() == AddcOp1.getNode())
|
|
return SDValue();
|
|
|
|
assert(AddcNode->getNumValues() == 2 &&
|
|
AddcNode->getValueType(0) == MVT::i32 &&
|
|
"Expect ADDC with two result values. First: i32");
|
|
|
|
// Check that we have a glued ADDC node.
|
|
if (AddcNode->getValueType(1) != MVT::Glue)
|
|
return SDValue();
|
|
|
|
// Check that the ADDC adds the low result of the S/UMUL_LOHI.
|
|
if (AddcOp0->getOpcode() != ISD::UMUL_LOHI &&
|
|
AddcOp0->getOpcode() != ISD::SMUL_LOHI &&
|
|
AddcOp1->getOpcode() != ISD::UMUL_LOHI &&
|
|
AddcOp1->getOpcode() != ISD::SMUL_LOHI)
|
|
return SDValue();
|
|
|
|
// Look for the glued ADDE.
|
|
SDNode* AddeNode = AddcNode->getGluedUser();
|
|
if (AddeNode == NULL)
|
|
return SDValue();
|
|
|
|
// Make sure it is really an ADDE.
|
|
if (AddeNode->getOpcode() != ISD::ADDE)
|
|
return SDValue();
|
|
|
|
assert(AddeNode->getNumOperands() == 3 &&
|
|
AddeNode->getOperand(2).getValueType() == MVT::Glue &&
|
|
"ADDE node has the wrong inputs");
|
|
|
|
// Check for the triangle shape.
|
|
SDValue AddeOp0 = AddeNode->getOperand(0);
|
|
SDValue AddeOp1 = AddeNode->getOperand(1);
|
|
|
|
// Make sure that the ADDE operands are not coming from the same node.
|
|
if (AddeOp0.getNode() == AddeOp1.getNode())
|
|
return SDValue();
|
|
|
|
// Find the MUL_LOHI node walking up ADDE's operands.
|
|
bool IsLeftOperandMUL = false;
|
|
SDValue MULOp = findMUL_LOHI(AddeOp0);
|
|
if (MULOp == SDValue())
|
|
MULOp = findMUL_LOHI(AddeOp1);
|
|
else
|
|
IsLeftOperandMUL = true;
|
|
if (MULOp == SDValue())
|
|
return SDValue();
|
|
|
|
// Figure out the right opcode.
|
|
unsigned Opc = MULOp->getOpcode();
|
|
unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL;
|
|
|
|
// Figure out the high and low input values to the MLAL node.
|
|
SDValue* HiMul = &MULOp;
|
|
SDValue* HiAdd = NULL;
|
|
SDValue* LoMul = NULL;
|
|
SDValue* LowAdd = NULL;
|
|
|
|
if (IsLeftOperandMUL)
|
|
HiAdd = &AddeOp1;
|
|
else
|
|
HiAdd = &AddeOp0;
|
|
|
|
|
|
if (AddcOp0->getOpcode() == Opc) {
|
|
LoMul = &AddcOp0;
|
|
LowAdd = &AddcOp1;
|
|
}
|
|
if (AddcOp1->getOpcode() == Opc) {
|
|
LoMul = &AddcOp1;
|
|
LowAdd = &AddcOp0;
|
|
}
|
|
|
|
if (LoMul == NULL)
|
|
return SDValue();
|
|
|
|
if (LoMul->getNode() != HiMul->getNode())
|
|
return SDValue();
|
|
|
|
// Create the merged node.
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
|
|
// Build operand list.
|
|
SmallVector<SDValue, 8> Ops;
|
|
Ops.push_back(LoMul->getOperand(0));
|
|
Ops.push_back(LoMul->getOperand(1));
|
|
Ops.push_back(*LowAdd);
|
|
Ops.push_back(*HiAdd);
|
|
|
|
SDValue MLALNode = DAG.getNode(FinalOpc, SDLoc(AddcNode),
|
|
DAG.getVTList(MVT::i32, MVT::i32),
|
|
&Ops[0], Ops.size());
|
|
|
|
// Replace the ADDs' nodes uses by the MLA node's values.
|
|
SDValue HiMLALResult(MLALNode.getNode(), 1);
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult);
|
|
|
|
SDValue LoMLALResult(MLALNode.getNode(), 0);
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult);
|
|
|
|
// Return original node to notify the driver to stop replacing.
|
|
SDValue resNode(AddcNode, 0);
|
|
return resNode;
|
|
}
|
|
|
|
/// PerformADDCCombine - Target-specific dag combine transform from
|
|
/// ISD::ADDC, ISD::ADDE, and ISD::MUL_LOHI to MLAL.
|
|
static SDValue PerformADDCCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const ARMSubtarget *Subtarget) {
|
|
|
|
return AddCombineTo64bitMLAL(N, DCI, Subtarget);
|
|
|
|
}
|
|
|
|
/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
|
|
/// operands N0 and N1. This is a helper for PerformADDCombine that is
|
|
/// called with the default operands, and if that fails, with commuted
|
|
/// operands.
|
|
static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const ARMSubtarget *Subtarget){
|
|
|
|
// Attempt to create vpaddl for this add.
|
|
SDValue Result = AddCombineToVPADDL(N, N0, N1, DCI, Subtarget);
|
|
if (Result.getNode())
|
|
return Result;
|
|
|
|
// fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
|
|
if (N0.getNode()->hasOneUse()) {
|
|
SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
|
|
if (Result.getNode()) return Result;
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
|
|
///
|
|
static SDValue PerformADDCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const ARMSubtarget *Subtarget) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
|
|
// First try with the default operand order.
|
|
SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget);
|
|
if (Result.getNode())
|
|
return Result;
|
|
|
|
// If that didn't work, try again with the operands commuted.
|
|
return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
|
|
}
|
|
|
|
/// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
|
|
///
|
|
static SDValue PerformSUBCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
|
|
// fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
|
|
if (N1.getNode()->hasOneUse()) {
|
|
SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
|
|
if (Result.getNode()) return Result;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// PerformVMULCombine
|
|
/// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
|
|
/// special multiplier accumulator forwarding.
|
|
/// vmul d3, d0, d2
|
|
/// vmla d3, d1, d2
|
|
/// is faster than
|
|
/// vadd d3, d0, d1
|
|
/// vmul d3, d3, d2
|
|
static SDValue PerformVMULCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const ARMSubtarget *Subtarget) {
|
|
if (!Subtarget->hasVMLxForwarding())
|
|
return SDValue();
|
|
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDValue N0 = N->getOperand(0);
|
|
SDValue N1 = N->getOperand(1);
|
|
unsigned Opcode = N0.getOpcode();
|
|
if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
|
|
Opcode != ISD::FADD && Opcode != ISD::FSUB) {
|
|
Opcode = N1.getOpcode();
|
|
if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
|
|
Opcode != ISD::FADD && Opcode != ISD::FSUB)
|
|
return SDValue();
|
|
std::swap(N0, N1);
|
|
}
|
|
|
|
EVT VT = N->getValueType(0);
|
|
SDLoc DL(N);
|
|
SDValue N00 = N0->getOperand(0);
|
|
SDValue N01 = N0->getOperand(1);
|
|
return DAG.getNode(Opcode, DL, VT,
|
|
DAG.getNode(ISD::MUL, DL, VT, N00, N1),
|
|
DAG.getNode(ISD::MUL, DL, VT, N01, N1));
|
|
}
|
|
|
|
static SDValue PerformMULCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const ARMSubtarget *Subtarget) {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
|
|
if (Subtarget->isThumb1Only())
|
|
return SDValue();
|
|
|
|
if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
|
|
return SDValue();
|
|
|
|
EVT VT = N->getValueType(0);
|
|
if (VT.is64BitVector() || VT.is128BitVector())
|
|
return PerformVMULCombine(N, DCI, Subtarget);
|
|
if (VT != MVT::i32)
|
|
return SDValue();
|
|
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
|
|
if (!C)
|
|
return SDValue();
|
|
|
|
int64_t MulAmt = C->getSExtValue();
|
|
unsigned ShiftAmt = countTrailingZeros<uint64_t>(MulAmt);
|
|
|
|
ShiftAmt = ShiftAmt & (32 - 1);
|
|
SDValue V = N->getOperand(0);
|
|
SDLoc DL(N);
|
|
|
|
SDValue Res;
|
|
MulAmt >>= ShiftAmt;
|
|
|
|
if (MulAmt >= 0) {
|
|
if (isPowerOf2_32(MulAmt - 1)) {
|
|
// (mul x, 2^N + 1) => (add (shl x, N), x)
|
|
Res = DAG.getNode(ISD::ADD, DL, VT,
|
|
V,
|
|
DAG.getNode(ISD::SHL, DL, VT,
|
|
V,
|
|
DAG.getConstant(Log2_32(MulAmt - 1),
|
|
MVT::i32)));
|
|
} else if (isPowerOf2_32(MulAmt + 1)) {
|
|
// (mul x, 2^N - 1) => (sub (shl x, N), x)
|
|
Res = DAG.getNode(ISD::SUB, DL, VT,
|
|
DAG.getNode(ISD::SHL, DL, VT,
|
|
V,
|
|
DAG.getConstant(Log2_32(MulAmt + 1),
|
|
MVT::i32)),
|
|
V);
|
|
} else
|
|
return SDValue();
|
|
} else {
|
|
uint64_t MulAmtAbs = -MulAmt;
|
|
if (isPowerOf2_32(MulAmtAbs + 1)) {
|
|
// (mul x, -(2^N - 1)) => (sub x, (shl x, N))
|
|
Res = DAG.getNode(ISD::SUB, DL, VT,
|
|
V,
|
|
DAG.getNode(ISD::SHL, DL, VT,
|
|
V,
|
|
DAG.getConstant(Log2_32(MulAmtAbs + 1),
|
|
MVT::i32)));
|
|
} else if (isPowerOf2_32(MulAmtAbs - 1)) {
|
|
// (mul x, -(2^N + 1)) => - (add (shl x, N), x)
|
|
Res = DAG.getNode(ISD::ADD, DL, VT,
|
|
V,
|
|
DAG.getNode(ISD::SHL, DL, VT,
|
|
V,
|
|
DAG.getConstant(Log2_32(MulAmtAbs-1),
|
|
MVT::i32)));
|
|
Res = DAG.getNode(ISD::SUB, DL, VT,
|
|
DAG.getConstant(0, MVT::i32),Res);
|
|
|
|
} else
|
|
return SDValue();
|
|
}
|
|
|
|
if (ShiftAmt != 0)
|
|
Res = DAG.getNode(ISD::SHL, DL, VT,
|
|
Res, DAG.getConstant(ShiftAmt, MVT::i32));
|
|
|
|
// Do not add new nodes to DAG combiner worklist.
|
|
DCI.CombineTo(N, Res, false);
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue PerformANDCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const ARMSubtarget *Subtarget) {
|
|
|
|
// Attempt to use immediate-form VBIC
|
|
BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
|
|
SDLoc dl(N);
|
|
EVT VT = N->getValueType(0);
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
|
|
if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
|
|
return SDValue();
|
|
|
|
APInt SplatBits, SplatUndef;
|
|
unsigned SplatBitSize;
|
|
bool HasAnyUndefs;
|
|
if (BVN &&
|
|
BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
|
|
if (SplatBitSize <= 64) {
|
|
EVT VbicVT;
|
|
SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
|
|
SplatUndef.getZExtValue(), SplatBitSize,
|
|
DAG, VbicVT, VT.is128BitVector(),
|
|
OtherModImm);
|
|
if (Val.getNode()) {
|
|
SDValue Input =
|
|
DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
|
|
SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
|
|
return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!Subtarget->isThumb1Only()) {
|
|
// fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
|
|
SDValue Result = combineSelectAndUseCommutative(N, true, DCI);
|
|
if (Result.getNode())
|
|
return Result;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// PerformORCombine - Target-specific dag combine xforms for ISD::OR
|
|
static SDValue PerformORCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const ARMSubtarget *Subtarget) {
|
|
// Attempt to use immediate-form VORR
|
|
BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
|
|
SDLoc dl(N);
|
|
EVT VT = N->getValueType(0);
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
|
|
if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
|
|
return SDValue();
|
|
|
|
APInt SplatBits, SplatUndef;
|
|
unsigned SplatBitSize;
|
|
bool HasAnyUndefs;
|
|
if (BVN && Subtarget->hasNEON() &&
|
|
BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
|
|
if (SplatBitSize <= 64) {
|
|
EVT VorrVT;
|
|
SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
|
|
SplatUndef.getZExtValue(), SplatBitSize,
|
|
DAG, VorrVT, VT.is128BitVector(),
|
|
OtherModImm);
|
|
if (Val.getNode()) {
|
|
SDValue Input =
|
|
DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
|
|
SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
|
|
return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!Subtarget->isThumb1Only()) {
|
|
// fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
|
|
SDValue Result = combineSelectAndUseCommutative(N, false, DCI);
|
|
if (Result.getNode())
|
|
return Result;
|
|
}
|
|
|
|
// The code below optimizes (or (and X, Y), Z).
|
|
// The AND operand needs to have a single user to make these optimizations
|
|
// profitable.
|
|
SDValue N0 = N->getOperand(0);
|
|
if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
|
|
return SDValue();
|
|
SDValue N1 = N->getOperand(1);
|
|
|
|
// (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
|
|
if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
|
|
DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
|
|
APInt SplatUndef;
|
|
unsigned SplatBitSize;
|
|
bool HasAnyUndefs;
|
|
|
|
APInt SplatBits0, SplatBits1;
|
|
BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
|
|
BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
|
|
// Ensure that the second operand of both ands are constants
|
|
if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
|
|
HasAnyUndefs) && !HasAnyUndefs) {
|
|
if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
|
|
HasAnyUndefs) && !HasAnyUndefs) {
|
|
// Ensure that the bit width of the constants are the same and that
|
|
// the splat arguments are logical inverses as per the pattern we
|
|
// are trying to simplify.
|
|
if (SplatBits0.getBitWidth() == SplatBits1.getBitWidth() &&
|
|
SplatBits0 == ~SplatBits1) {
|
|
// Canonicalize the vector type to make instruction selection
|
|
// simpler.
|
|
EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
|
|
SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
|
|
N0->getOperand(1),
|
|
N0->getOperand(0),
|
|
N1->getOperand(0));
|
|
return DAG.getNode(ISD::BITCAST, dl, VT, Result);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
|
|
// reasonable.
|
|
|
|
// BFI is only available on V6T2+
|
|
if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
|
|
return SDValue();
|
|
|
|
SDLoc DL(N);
|
|
// 1) or (and A, mask), val => ARMbfi A, val, mask
|
|
// iff (val & mask) == val
|
|
//
|
|
// 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
|
|
// 2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
|
|
// && mask == ~mask2
|
|
// 2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
|
|
// && ~mask == mask2
|
|
// (i.e., copy a bitfield value into another bitfield of the same width)
|
|
|
|
if (VT != MVT::i32)
|
|
return SDValue();
|
|
|
|
SDValue N00 = N0.getOperand(0);
|
|
|
|
// The value and the mask need to be constants so we can verify this is
|
|
// actually a bitfield set. If the mask is 0xffff, we can do better
|
|
// via a movt instruction, so don't use BFI in that case.
|
|
SDValue MaskOp = N0.getOperand(1);
|
|
ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
|
|
if (!MaskC)
|
|
return SDValue();
|
|
unsigned Mask = MaskC->getZExtValue();
|
|
if (Mask == 0xffff)
|
|
return SDValue();
|
|
SDValue Res;
|
|
// Case (1): or (and A, mask), val => ARMbfi A, val, mask
|
|
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
|
|
if (N1C) {
|
|
unsigned Val = N1C->getZExtValue();
|
|
if ((Val & ~Mask) != Val)
|
|
return SDValue();
|
|
|
|
if (ARM::isBitFieldInvertedMask(Mask)) {
|
|
Val >>= countTrailingZeros(~Mask);
|
|
|
|
Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
|
|
DAG.getConstant(Val, MVT::i32),
|
|
DAG.getConstant(Mask, MVT::i32));
|
|
|
|
// Do not add new nodes to DAG combiner worklist.
|
|
DCI.CombineTo(N, Res, false);
|
|
return SDValue();
|
|
}
|
|
} else if (N1.getOpcode() == ISD::AND) {
|
|
// case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
|
|
ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
|
|
if (!N11C)
|
|
return SDValue();
|
|
unsigned Mask2 = N11C->getZExtValue();
|
|
|
|
// Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
|
|
// as is to match.
|
|
if (ARM::isBitFieldInvertedMask(Mask) &&
|
|
(Mask == ~Mask2)) {
|
|
// The pack halfword instruction works better for masks that fit it,
|
|
// so use that when it's available.
|
|
if (Subtarget->hasT2ExtractPack() &&
|
|
(Mask == 0xffff || Mask == 0xffff0000))
|
|
return SDValue();
|
|
// 2a
|
|
unsigned amt = countTrailingZeros(Mask2);
|
|
Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
|
|
DAG.getConstant(amt, MVT::i32));
|
|
Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
|
|
DAG.getConstant(Mask, MVT::i32));
|
|
// Do not add new nodes to DAG combiner worklist.
|
|
DCI.CombineTo(N, Res, false);
|
|
return SDValue();
|
|
} else if (ARM::isBitFieldInvertedMask(~Mask) &&
|
|
(~Mask == Mask2)) {
|
|
// The pack halfword instruction works better for masks that fit it,
|
|
// so use that when it's available.
|
|
if (Subtarget->hasT2ExtractPack() &&
|
|
(Mask2 == 0xffff || Mask2 == 0xffff0000))
|
|
return SDValue();
|
|
// 2b
|
|
unsigned lsb = countTrailingZeros(Mask);
|
|
Res = DAG.getNode(ISD::SRL, DL, VT, N00,
|
|
DAG.getConstant(lsb, MVT::i32));
|
|
Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
|
|
DAG.getConstant(Mask2, MVT::i32));
|
|
// Do not add new nodes to DAG combiner worklist.
|
|
DCI.CombineTo(N, Res, false);
|
|
return SDValue();
|
|
}
|
|
}
|
|
|
|
if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
|
|
N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
|
|
ARM::isBitFieldInvertedMask(~Mask)) {
|
|
// Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
|
|
// where lsb(mask) == #shamt and masked bits of B are known zero.
|
|
SDValue ShAmt = N00.getOperand(1);
|
|
unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
|
|
unsigned LSB = countTrailingZeros(Mask);
|
|
if (ShAmtC != LSB)
|
|
return SDValue();
|
|
|
|
Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
|
|
DAG.getConstant(~Mask, MVT::i32));
|
|
|
|
// Do not add new nodes to DAG combiner worklist.
|
|
DCI.CombineTo(N, Res, false);
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
static SDValue PerformXORCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const ARMSubtarget *Subtarget) {
|
|
EVT VT = N->getValueType(0);
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
|
|
if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
|
|
return SDValue();
|
|
|
|
if (!Subtarget->isThumb1Only()) {
|
|
// fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
|
|
SDValue Result = combineSelectAndUseCommutative(N, false, DCI);
|
|
if (Result.getNode())
|
|
return Result;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// PerformBFICombine - (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
|
|
/// the bits being cleared by the AND are not demanded by the BFI.
|
|
static SDValue PerformBFICombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
SDValue N1 = N->getOperand(1);
|
|
if (N1.getOpcode() == ISD::AND) {
|
|
ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
|
|
if (!N11C)
|
|
return SDValue();
|
|
unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
|
|
unsigned LSB = countTrailingZeros(~InvMask);
|
|
unsigned Width = (32 - countLeadingZeros(~InvMask)) - LSB;
|
|
unsigned Mask = (1 << Width)-1;
|
|
unsigned Mask2 = N11C->getZExtValue();
|
|
if ((Mask & (~Mask2)) == 0)
|
|
return DCI.DAG.getNode(ARMISD::BFI, SDLoc(N), N->getValueType(0),
|
|
N->getOperand(0), N1.getOperand(0),
|
|
N->getOperand(2));
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
/// PerformVMOVRRDCombine - Target-specific dag combine xforms for
|
|
/// ARMISD::VMOVRRD.
|
|
static SDValue PerformVMOVRRDCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
// vmovrrd(vmovdrr x, y) -> x,y
|
|
SDValue InDouble = N->getOperand(0);
|
|
if (InDouble.getOpcode() == ARMISD::VMOVDRR)
|
|
return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
|
|
|
|
// vmovrrd(load f64) -> (load i32), (load i32)
|
|
SDNode *InNode = InDouble.getNode();
|
|
if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
|
|
InNode->getValueType(0) == MVT::f64 &&
|
|
InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
|
|
!cast<LoadSDNode>(InNode)->isVolatile()) {
|
|
// TODO: Should this be done for non-FrameIndex operands?
|
|
LoadSDNode *LD = cast<LoadSDNode>(InNode);
|
|
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDLoc DL(LD);
|
|
SDValue BasePtr = LD->getBasePtr();
|
|
SDValue NewLD1 = DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr,
|
|
LD->getPointerInfo(), LD->isVolatile(),
|
|
LD->isNonTemporal(), LD->isInvariant(),
|
|
LD->getAlignment());
|
|
|
|
SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
|
|
DAG.getConstant(4, MVT::i32));
|
|
SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, NewLD1.getValue(1), OffsetPtr,
|
|
LD->getPointerInfo(), LD->isVolatile(),
|
|
LD->isNonTemporal(), LD->isInvariant(),
|
|
std::min(4U, LD->getAlignment() / 2));
|
|
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
|
|
SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
|
|
DCI.RemoveFromWorklist(LD);
|
|
DAG.DeleteNode(LD);
|
|
return Result;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// PerformVMOVDRRCombine - Target-specific dag combine xforms for
|
|
/// ARMISD::VMOVDRR. This is also used for BUILD_VECTORs with 2 operands.
|
|
static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
|
|
// N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
|
|
SDValue Op0 = N->getOperand(0);
|
|
SDValue Op1 = N->getOperand(1);
|
|
if (Op0.getOpcode() == ISD::BITCAST)
|
|
Op0 = Op0.getOperand(0);
|
|
if (Op1.getOpcode() == ISD::BITCAST)
|
|
Op1 = Op1.getOperand(0);
|
|
if (Op0.getOpcode() == ARMISD::VMOVRRD &&
|
|
Op0.getNode() == Op1.getNode() &&
|
|
Op0.getResNo() == 0 && Op1.getResNo() == 1)
|
|
return DAG.getNode(ISD::BITCAST, SDLoc(N),
|
|
N->getValueType(0), Op0.getOperand(0));
|
|
return SDValue();
|
|
}
|
|
|
|
/// PerformSTORECombine - Target-specific dag combine xforms for
|
|
/// ISD::STORE.
|
|
static SDValue PerformSTORECombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
StoreSDNode *St = cast<StoreSDNode>(N);
|
|
if (St->isVolatile())
|
|
return SDValue();
|
|
|
|
// Optimize trunc store (of multiple scalars) to shuffle and store. First,
|
|
// pack all of the elements in one place. Next, store to memory in fewer
|
|
// chunks.
|
|
SDValue StVal = St->getValue();
|
|
EVT VT = StVal.getValueType();
|
|
if (St->isTruncatingStore() && VT.isVector()) {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
EVT StVT = St->getMemoryVT();
|
|
unsigned NumElems = VT.getVectorNumElements();
|
|
assert(StVT != VT && "Cannot truncate to the same type");
|
|
unsigned FromEltSz = VT.getVectorElementType().getSizeInBits();
|
|
unsigned ToEltSz = StVT.getVectorElementType().getSizeInBits();
|
|
|
|
// From, To sizes and ElemCount must be pow of two
|
|
if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue();
|
|
|
|
// We are going to use the original vector elt for storing.
|
|
// Accumulated smaller vector elements must be a multiple of the store size.
|
|
if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue();
|
|
|
|
unsigned SizeRatio = FromEltSz / ToEltSz;
|
|
assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
|
|
|
|
// Create a type on which we perform the shuffle.
|
|
EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
|
|
NumElems*SizeRatio);
|
|
assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
|
|
|
|
SDLoc DL(St);
|
|
SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
|
|
SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
|
|
for (unsigned i = 0; i < NumElems; ++i) ShuffleVec[i] = i * SizeRatio;
|
|
|
|
// Can't shuffle using an illegal type.
|
|
if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
|
|
|
|
SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec,
|
|
DAG.getUNDEF(WideVec.getValueType()),
|
|
ShuffleVec.data());
|
|
// At this point all of the data is stored at the bottom of the
|
|
// register. We now need to save it to mem.
|
|
|
|
// Find the largest store unit
|
|
MVT StoreType = MVT::i8;
|
|
for (unsigned tp = MVT::FIRST_INTEGER_VALUETYPE;
|
|
tp < MVT::LAST_INTEGER_VALUETYPE; ++tp) {
|
|
MVT Tp = (MVT::SimpleValueType)tp;
|
|
if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
|
|
StoreType = Tp;
|
|
}
|
|
// Didn't find a legal store type.
|
|
if (!TLI.isTypeLegal(StoreType))
|
|
return SDValue();
|
|
|
|
// Bitcast the original vector into a vector of store-size units
|
|
EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
|
|
StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
|
|
assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
|
|
SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
|
|
SmallVector<SDValue, 8> Chains;
|
|
SDValue Increment = DAG.getConstant(StoreType.getSizeInBits()/8,
|
|
TLI.getPointerTy());
|
|
SDValue BasePtr = St->getBasePtr();
|
|
|
|
// Perform one or more big stores into memory.
|
|
unsigned E = (ToEltSz*NumElems)/StoreType.getSizeInBits();
|
|
for (unsigned I = 0; I < E; I++) {
|
|
SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
|
|
StoreType, ShuffWide,
|
|
DAG.getIntPtrConstant(I));
|
|
SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr,
|
|
St->getPointerInfo(), St->isVolatile(),
|
|
St->isNonTemporal(), St->getAlignment());
|
|
BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
|
|
Increment);
|
|
Chains.push_back(Ch);
|
|
}
|
|
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, &Chains[0],
|
|
Chains.size());
|
|
}
|
|
|
|
if (!ISD::isNormalStore(St))
|
|
return SDValue();
|
|
|
|
// Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
|
|
// ARM stores of arguments in the same cache line.
|
|
if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
|
|
StVal.getNode()->hasOneUse()) {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDLoc DL(St);
|
|
SDValue BasePtr = St->getBasePtr();
|
|
SDValue NewST1 = DAG.getStore(St->getChain(), DL,
|
|
StVal.getNode()->getOperand(0), BasePtr,
|
|
St->getPointerInfo(), St->isVolatile(),
|
|
St->isNonTemporal(), St->getAlignment());
|
|
|
|
SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
|
|
DAG.getConstant(4, MVT::i32));
|
|
return DAG.getStore(NewST1.getValue(0), DL, StVal.getNode()->getOperand(1),
|
|
OffsetPtr, St->getPointerInfo(), St->isVolatile(),
|
|
St->isNonTemporal(),
|
|
std::min(4U, St->getAlignment() / 2));
|
|
}
|
|
|
|
if (StVal.getValueType() != MVT::i64 ||
|
|
StVal.getNode()->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
|
|
return SDValue();
|
|
|
|
// Bitcast an i64 store extracted from a vector to f64.
|
|
// Otherwise, the i64 value will be legalized to a pair of i32 values.
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDLoc dl(StVal);
|
|
SDValue IntVec = StVal.getOperand(0);
|
|
EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
|
|
IntVec.getValueType().getVectorNumElements());
|
|
SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
|
|
SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
|
|
Vec, StVal.getOperand(1));
|
|
dl = SDLoc(N);
|
|
SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
|
|
// Make the DAGCombiner fold the bitcasts.
|
|
DCI.AddToWorklist(Vec.getNode());
|
|
DCI.AddToWorklist(ExtElt.getNode());
|
|
DCI.AddToWorklist(V.getNode());
|
|
return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
|
|
St->getPointerInfo(), St->isVolatile(),
|
|
St->isNonTemporal(), St->getAlignment(),
|
|
St->getTBAAInfo());
|
|
}
|
|
|
|
/// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
|
|
/// are normal, non-volatile loads. If so, it is profitable to bitcast an
|
|
/// i64 vector to have f64 elements, since the value can then be loaded
|
|
/// directly into a VFP register.
|
|
static bool hasNormalLoadOperand(SDNode *N) {
|
|
unsigned NumElts = N->getValueType(0).getVectorNumElements();
|
|
for (unsigned i = 0; i < NumElts; ++i) {
|
|
SDNode *Elt = N->getOperand(i).getNode();
|
|
if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
|
|
/// ISD::BUILD_VECTOR.
|
|
static SDValue PerformBUILD_VECTORCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI){
|
|
// build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
|
|
// VMOVRRD is introduced when legalizing i64 types. It forces the i64 value
|
|
// into a pair of GPRs, which is fine when the value is used as a scalar,
|
|
// but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
if (N->getNumOperands() == 2) {
|
|
SDValue RV = PerformVMOVDRRCombine(N, DAG);
|
|
if (RV.getNode())
|
|
return RV;
|
|
}
|
|
|
|
// Load i64 elements as f64 values so that type legalization does not split
|
|
// them up into i32 values.
|
|
EVT VT = N->getValueType(0);
|
|
if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
|
|
return SDValue();
|
|
SDLoc dl(N);
|
|
SmallVector<SDValue, 8> Ops;
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
for (unsigned i = 0; i < NumElts; ++i) {
|
|
SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
|
|
Ops.push_back(V);
|
|
// Make the DAGCombiner fold the bitcast.
|
|
DCI.AddToWorklist(V.getNode());
|
|
}
|
|
EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
|
|
SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, FloatVT, Ops.data(), NumElts);
|
|
return DAG.getNode(ISD::BITCAST, dl, VT, BV);
|
|
}
|
|
|
|
/// \brief Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
|
|
static SDValue
|
|
PerformARMBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
|
|
// ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
|
|
// At that time, we may have inserted bitcasts from integer to float.
|
|
// If these bitcasts have survived DAGCombine, change the lowering of this
|
|
// BUILD_VECTOR in something more vector friendly, i.e., that does not
|
|
// force to use floating point types.
|
|
|
|
// Make sure we can change the type of the vector.
|
|
// This is possible iff:
|
|
// 1. The vector is only used in a bitcast to a integer type. I.e.,
|
|
// 1.1. Vector is used only once.
|
|
// 1.2. Use is a bit convert to an integer type.
|
|
// 2. The size of its operands are 32-bits (64-bits are not legal).
|
|
EVT VT = N->getValueType(0);
|
|
EVT EltVT = VT.getVectorElementType();
|
|
|
|
// Check 1.1. and 2.
|
|
if (EltVT.getSizeInBits() != 32 || !N->hasOneUse())
|
|
return SDValue();
|
|
|
|
// By construction, the input type must be float.
|
|
assert(EltVT == MVT::f32 && "Unexpected type!");
|
|
|
|
// Check 1.2.
|
|
SDNode *Use = *N->use_begin();
|
|
if (Use->getOpcode() != ISD::BITCAST ||
|
|
Use->getValueType(0).isFloatingPoint())
|
|
return SDValue();
|
|
|
|
// Check profitability.
|
|
// Model is, if more than half of the relevant operands are bitcast from
|
|
// i32, turn the build_vector into a sequence of insert_vector_elt.
|
|
// Relevant operands are everything that is not statically
|
|
// (i.e., at compile time) bitcasted.
|
|
unsigned NumOfBitCastedElts = 0;
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
unsigned NumOfRelevantElts = NumElts;
|
|
for (unsigned Idx = 0; Idx < NumElts; ++Idx) {
|
|
SDValue Elt = N->getOperand(Idx);
|
|
if (Elt->getOpcode() == ISD::BITCAST) {
|
|
// Assume only bit cast to i32 will go away.
|
|
if (Elt->getOperand(0).getValueType() == MVT::i32)
|
|
++NumOfBitCastedElts;
|
|
} else if (Elt.getOpcode() == ISD::UNDEF || isa<ConstantSDNode>(Elt))
|
|
// Constants are statically casted, thus do not count them as
|
|
// relevant operands.
|
|
--NumOfRelevantElts;
|
|
}
|
|
|
|
// Check if more than half of the elements require a non-free bitcast.
|
|
if (NumOfBitCastedElts <= NumOfRelevantElts / 2)
|
|
return SDValue();
|
|
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
// Create the new vector type.
|
|
EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
|
|
// Check if the type is legal.
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
if (!TLI.isTypeLegal(VecVT))
|
|
return SDValue();
|
|
|
|
// Combine:
|
|
// ARMISD::BUILD_VECTOR E1, E2, ..., EN.
|
|
// => BITCAST INSERT_VECTOR_ELT
|
|
// (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
|
|
// (BITCAST EN), N.
|
|
SDValue Vec = DAG.getUNDEF(VecVT);
|
|
SDLoc dl(N);
|
|
for (unsigned Idx = 0 ; Idx < NumElts; ++Idx) {
|
|
SDValue V = N->getOperand(Idx);
|
|
if (V.getOpcode() == ISD::UNDEF)
|
|
continue;
|
|
if (V.getOpcode() == ISD::BITCAST &&
|
|
V->getOperand(0).getValueType() == MVT::i32)
|
|
// Fold obvious case.
|
|
V = V.getOperand(0);
|
|
else {
|
|
V = DAG.getNode(ISD::BITCAST, SDLoc(V), MVT::i32, V);
|
|
// Make the DAGCombiner fold the bitcasts.
|
|
DCI.AddToWorklist(V.getNode());
|
|
}
|
|
SDValue LaneIdx = DAG.getConstant(Idx, MVT::i32);
|
|
Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecVT, Vec, V, LaneIdx);
|
|
}
|
|
Vec = DAG.getNode(ISD::BITCAST, dl, VT, Vec);
|
|
// Make the DAGCombiner fold the bitcasts.
|
|
DCI.AddToWorklist(Vec.getNode());
|
|
return Vec;
|
|
}
|
|
|
|
/// PerformInsertEltCombine - Target-specific dag combine xforms for
|
|
/// ISD::INSERT_VECTOR_ELT.
|
|
static SDValue PerformInsertEltCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
// Bitcast an i64 load inserted into a vector to f64.
|
|
// Otherwise, the i64 value will be legalized to a pair of i32 values.
|
|
EVT VT = N->getValueType(0);
|
|
SDNode *Elt = N->getOperand(1).getNode();
|
|
if (VT.getVectorElementType() != MVT::i64 ||
|
|
!ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
|
|
return SDValue();
|
|
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDLoc dl(N);
|
|
EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
|
|
VT.getVectorNumElements());
|
|
SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
|
|
SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
|
|
// Make the DAGCombiner fold the bitcasts.
|
|
DCI.AddToWorklist(Vec.getNode());
|
|
DCI.AddToWorklist(V.getNode());
|
|
SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
|
|
Vec, V, N->getOperand(2));
|
|
return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
|
|
}
|
|
|
|
/// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
|
|
/// ISD::VECTOR_SHUFFLE.
|
|
static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
|
|
// The LLVM shufflevector instruction does not require the shuffle mask
|
|
// length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
|
|
// have that requirement. When translating to ISD::VECTOR_SHUFFLE, if the
|
|
// operands do not match the mask length, they are extended by concatenating
|
|
// them with undef vectors. That is probably the right thing for other
|
|
// targets, but for NEON it is better to concatenate two double-register
|
|
// size vector operands into a single quad-register size vector. Do that
|
|
// transformation here:
|
|
// shuffle(concat(v1, undef), concat(v2, undef)) ->
|
|
// shuffle(concat(v1, v2), undef)
|
|
SDValue Op0 = N->getOperand(0);
|
|
SDValue Op1 = N->getOperand(1);
|
|
if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
|
|
Op1.getOpcode() != ISD::CONCAT_VECTORS ||
|
|
Op0.getNumOperands() != 2 ||
|
|
Op1.getNumOperands() != 2)
|
|
return SDValue();
|
|
SDValue Concat0Op1 = Op0.getOperand(1);
|
|
SDValue Concat1Op1 = Op1.getOperand(1);
|
|
if (Concat0Op1.getOpcode() != ISD::UNDEF ||
|
|
Concat1Op1.getOpcode() != ISD::UNDEF)
|
|
return SDValue();
|
|
// Skip the transformation if any of the types are illegal.
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
EVT VT = N->getValueType(0);
|
|
if (!TLI.isTypeLegal(VT) ||
|
|
!TLI.isTypeLegal(Concat0Op1.getValueType()) ||
|
|
!TLI.isTypeLegal(Concat1Op1.getValueType()))
|
|
return SDValue();
|
|
|
|
SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
|
|
Op0.getOperand(0), Op1.getOperand(0));
|
|
// Translate the shuffle mask.
|
|
SmallVector<int, 16> NewMask;
|
|
unsigned NumElts = VT.getVectorNumElements();
|
|
unsigned HalfElts = NumElts/2;
|
|
ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
|
|
for (unsigned n = 0; n < NumElts; ++n) {
|
|
int MaskElt = SVN->getMaskElt(n);
|
|
int NewElt = -1;
|
|
if (MaskElt < (int)HalfElts)
|
|
NewElt = MaskElt;
|
|
else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
|
|
NewElt = HalfElts + MaskElt - NumElts;
|
|
NewMask.push_back(NewElt);
|
|
}
|
|
return DAG.getVectorShuffle(VT, SDLoc(N), NewConcat,
|
|
DAG.getUNDEF(VT), NewMask.data());
|
|
}
|
|
|
|
/// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP and
|
|
/// NEON load/store intrinsics to merge base address updates.
|
|
static SDValue CombineBaseUpdate(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
|
|
return SDValue();
|
|
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
|
|
N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
|
|
unsigned AddrOpIdx = (isIntrinsic ? 2 : 1);
|
|
SDValue Addr = N->getOperand(AddrOpIdx);
|
|
|
|
// Search for a use of the address operand that is an increment.
|
|
for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
|
|
UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
|
|
SDNode *User = *UI;
|
|
if (User->getOpcode() != ISD::ADD ||
|
|
UI.getUse().getResNo() != Addr.getResNo())
|
|
continue;
|
|
|
|
// Check that the add is independent of the load/store. Otherwise, folding
|
|
// it would create a cycle.
|
|
if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
|
|
continue;
|
|
|
|
// Find the new opcode for the updating load/store.
|
|
bool isLoad = true;
|
|
bool isLaneOp = false;
|
|
unsigned NewOpc = 0;
|
|
unsigned NumVecs = 0;
|
|
if (isIntrinsic) {
|
|
unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
|
|
switch (IntNo) {
|
|
default: llvm_unreachable("unexpected intrinsic for Neon base update");
|
|
case Intrinsic::arm_neon_vld1: NewOpc = ARMISD::VLD1_UPD;
|
|
NumVecs = 1; break;
|
|
case Intrinsic::arm_neon_vld2: NewOpc = ARMISD::VLD2_UPD;
|
|
NumVecs = 2; break;
|
|
case Intrinsic::arm_neon_vld3: NewOpc = ARMISD::VLD3_UPD;
|
|
NumVecs = 3; break;
|
|
case Intrinsic::arm_neon_vld4: NewOpc = ARMISD::VLD4_UPD;
|
|
NumVecs = 4; break;
|
|
case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
|
|
NumVecs = 2; isLaneOp = true; break;
|
|
case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
|
|
NumVecs = 3; isLaneOp = true; break;
|
|
case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
|
|
NumVecs = 4; isLaneOp = true; break;
|
|
case Intrinsic::arm_neon_vst1: NewOpc = ARMISD::VST1_UPD;
|
|
NumVecs = 1; isLoad = false; break;
|
|
case Intrinsic::arm_neon_vst2: NewOpc = ARMISD::VST2_UPD;
|
|
NumVecs = 2; isLoad = false; break;
|
|
case Intrinsic::arm_neon_vst3: NewOpc = ARMISD::VST3_UPD;
|
|
NumVecs = 3; isLoad = false; break;
|
|
case Intrinsic::arm_neon_vst4: NewOpc = ARMISD::VST4_UPD;
|
|
NumVecs = 4; isLoad = false; break;
|
|
case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
|
|
NumVecs = 2; isLoad = false; isLaneOp = true; break;
|
|
case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
|
|
NumVecs = 3; isLoad = false; isLaneOp = true; break;
|
|
case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
|
|
NumVecs = 4; isLoad = false; isLaneOp = true; break;
|
|
}
|
|
} else {
|
|
isLaneOp = true;
|
|
switch (N->getOpcode()) {
|
|
default: llvm_unreachable("unexpected opcode for Neon base update");
|
|
case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
|
|
case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
|
|
case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
|
|
}
|
|
}
|
|
|
|
// Find the size of memory referenced by the load/store.
|
|
EVT VecTy;
|
|
if (isLoad)
|
|
VecTy = N->getValueType(0);
|
|
else
|
|
VecTy = N->getOperand(AddrOpIdx+1).getValueType();
|
|
unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
|
|
if (isLaneOp)
|
|
NumBytes /= VecTy.getVectorNumElements();
|
|
|
|
// If the increment is a constant, it must match the memory ref size.
|
|
SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
|
|
if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
|
|
uint64_t IncVal = CInc->getZExtValue();
|
|
if (IncVal != NumBytes)
|
|
continue;
|
|
} else if (NumBytes >= 3 * 16) {
|
|
// VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
|
|
// separate instructions that make it harder to use a non-constant update.
|
|
continue;
|
|
}
|
|
|
|
// Create the new updating load/store node.
|
|
EVT Tys[6];
|
|
unsigned NumResultVecs = (isLoad ? NumVecs : 0);
|
|
unsigned n;
|
|
for (n = 0; n < NumResultVecs; ++n)
|
|
Tys[n] = VecTy;
|
|
Tys[n++] = MVT::i32;
|
|
Tys[n] = MVT::Other;
|
|
SDVTList SDTys = DAG.getVTList(Tys, NumResultVecs+2);
|
|
SmallVector<SDValue, 8> Ops;
|
|
Ops.push_back(N->getOperand(0)); // incoming chain
|
|
Ops.push_back(N->getOperand(AddrOpIdx));
|
|
Ops.push_back(Inc);
|
|
for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands(); ++i) {
|
|
Ops.push_back(N->getOperand(i));
|
|
}
|
|
MemIntrinsicSDNode *MemInt = cast<MemIntrinsicSDNode>(N);
|
|
SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, SDLoc(N), SDTys,
|
|
Ops.data(), Ops.size(),
|
|
MemInt->getMemoryVT(),
|
|
MemInt->getMemOperand());
|
|
|
|
// Update the uses.
|
|
std::vector<SDValue> NewResults;
|
|
for (unsigned i = 0; i < NumResultVecs; ++i) {
|
|
NewResults.push_back(SDValue(UpdN.getNode(), i));
|
|
}
|
|
NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
|
|
DCI.CombineTo(N, NewResults);
|
|
DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
|
|
|
|
break;
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
/// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
|
|
/// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
|
|
/// are also VDUPLANEs. If so, combine them to a vldN-dup operation and
|
|
/// return true.
|
|
static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
EVT VT = N->getValueType(0);
|
|
// vldN-dup instructions only support 64-bit vectors for N > 1.
|
|
if (!VT.is64BitVector())
|
|
return false;
|
|
|
|
// Check if the VDUPLANE operand is a vldN-dup intrinsic.
|
|
SDNode *VLD = N->getOperand(0).getNode();
|
|
if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
|
|
return false;
|
|
unsigned NumVecs = 0;
|
|
unsigned NewOpc = 0;
|
|
unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
|
|
if (IntNo == Intrinsic::arm_neon_vld2lane) {
|
|
NumVecs = 2;
|
|
NewOpc = ARMISD::VLD2DUP;
|
|
} else if (IntNo == Intrinsic::arm_neon_vld3lane) {
|
|
NumVecs = 3;
|
|
NewOpc = ARMISD::VLD3DUP;
|
|
} else if (IntNo == Intrinsic::arm_neon_vld4lane) {
|
|
NumVecs = 4;
|
|
NewOpc = ARMISD::VLD4DUP;
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
// First check that all the vldN-lane uses are VDUPLANEs and that the lane
|
|
// numbers match the load.
|
|
unsigned VLDLaneNo =
|
|
cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
|
|
for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
|
|
UI != UE; ++UI) {
|
|
// Ignore uses of the chain result.
|
|
if (UI.getUse().getResNo() == NumVecs)
|
|
continue;
|
|
SDNode *User = *UI;
|
|
if (User->getOpcode() != ARMISD::VDUPLANE ||
|
|
VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
|
|
return false;
|
|
}
|
|
|
|
// Create the vldN-dup node.
|
|
EVT Tys[5];
|
|
unsigned n;
|
|
for (n = 0; n < NumVecs; ++n)
|
|
Tys[n] = VT;
|
|
Tys[n] = MVT::Other;
|
|
SDVTList SDTys = DAG.getVTList(Tys, NumVecs+1);
|
|
SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
|
|
MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
|
|
SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys,
|
|
Ops, 2, VLDMemInt->getMemoryVT(),
|
|
VLDMemInt->getMemOperand());
|
|
|
|
// Update the uses.
|
|
for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
|
|
UI != UE; ++UI) {
|
|
unsigned ResNo = UI.getUse().getResNo();
|
|
// Ignore uses of the chain result.
|
|
if (ResNo == NumVecs)
|
|
continue;
|
|
SDNode *User = *UI;
|
|
DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
|
|
}
|
|
|
|
// Now the vldN-lane intrinsic is dead except for its chain result.
|
|
// Update uses of the chain.
|
|
std::vector<SDValue> VLDDupResults;
|
|
for (unsigned n = 0; n < NumVecs; ++n)
|
|
VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
|
|
VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
|
|
DCI.CombineTo(VLD, VLDDupResults);
|
|
|
|
return true;
|
|
}
|
|
|
|
/// PerformVDUPLANECombine - Target-specific dag combine xforms for
|
|
/// ARMISD::VDUPLANE.
|
|
static SDValue PerformVDUPLANECombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI) {
|
|
SDValue Op = N->getOperand(0);
|
|
|
|
// If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
|
|
// of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
|
|
if (CombineVLDDUP(N, DCI))
|
|
return SDValue(N, 0);
|
|
|
|
// If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
|
|
// redundant. Ignore bit_converts for now; element sizes are checked below.
|
|
while (Op.getOpcode() == ISD::BITCAST)
|
|
Op = Op.getOperand(0);
|
|
if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
|
|
return SDValue();
|
|
|
|
// Make sure the VMOV element size is not bigger than the VDUPLANE elements.
|
|
unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
|
|
// The canonical VMOV for a zero vector uses a 32-bit element size.
|
|
unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
|
|
unsigned EltBits;
|
|
if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
|
|
EltSize = 8;
|
|
EVT VT = N->getValueType(0);
|
|
if (EltSize > VT.getVectorElementType().getSizeInBits())
|
|
return SDValue();
|
|
|
|
return DCI.DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
|
|
}
|
|
|
|
// isConstVecPow2 - Return true if each vector element is a power of 2, all
|
|
// elements are the same constant, C, and Log2(C) ranges from 1 to 32.
|
|
static bool isConstVecPow2(SDValue ConstVec, bool isSigned, uint64_t &C)
|
|
{
|
|
integerPart cN;
|
|
integerPart c0 = 0;
|
|
for (unsigned I = 0, E = ConstVec.getValueType().getVectorNumElements();
|
|
I != E; I++) {
|
|
ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(ConstVec.getOperand(I));
|
|
if (!C)
|
|
return false;
|
|
|
|
bool isExact;
|
|
APFloat APF = C->getValueAPF();
|
|
if (APF.convertToInteger(&cN, 64, isSigned, APFloat::rmTowardZero, &isExact)
|
|
!= APFloat::opOK || !isExact)
|
|
return false;
|
|
|
|
c0 = (I == 0) ? cN : c0;
|
|
if (!isPowerOf2_64(cN) || c0 != cN || Log2_64(c0) < 1 || Log2_64(c0) > 32)
|
|
return false;
|
|
}
|
|
C = c0;
|
|
return true;
|
|
}
|
|
|
|
/// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
|
|
/// can replace combinations of VMUL and VCVT (floating-point to integer)
|
|
/// when the VMUL has a constant operand that is a power of 2.
|
|
///
|
|
/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
|
|
/// vmul.f32 d16, d17, d16
|
|
/// vcvt.s32.f32 d16, d16
|
|
/// becomes:
|
|
/// vcvt.s32.f32 d16, d16, #3
|
|
static SDValue PerformVCVTCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const ARMSubtarget *Subtarget) {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDValue Op = N->getOperand(0);
|
|
|
|
if (!Subtarget->hasNEON() || !Op.getValueType().isVector() ||
|
|
Op.getOpcode() != ISD::FMUL)
|
|
return SDValue();
|
|
|
|
uint64_t C;
|
|
SDValue N0 = Op->getOperand(0);
|
|
SDValue ConstVec = Op->getOperand(1);
|
|
bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
|
|
|
|
if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
|
|
!isConstVecPow2(ConstVec, isSigned, C))
|
|
return SDValue();
|
|
|
|
MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
|
|
MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
|
|
if (FloatTy.getSizeInBits() != 32 || IntTy.getSizeInBits() > 32) {
|
|
// These instructions only exist converting from f32 to i32. We can handle
|
|
// smaller integers by generating an extra truncate, but larger ones would
|
|
// be lossy.
|
|
return SDValue();
|
|
}
|
|
|
|
unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
|
|
Intrinsic::arm_neon_vcvtfp2fxu;
|
|
unsigned NumLanes = Op.getValueType().getVectorNumElements();
|
|
SDValue FixConv = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N),
|
|
NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
|
|
DAG.getConstant(IntrinsicOpcode, MVT::i32), N0,
|
|
DAG.getConstant(Log2_64(C), MVT::i32));
|
|
|
|
if (IntTy.getSizeInBits() < FloatTy.getSizeInBits())
|
|
FixConv = DAG.getNode(ISD::TRUNCATE, SDLoc(N), N->getValueType(0), FixConv);
|
|
|
|
return FixConv;
|
|
}
|
|
|
|
/// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
|
|
/// can replace combinations of VCVT (integer to floating-point) and VDIV
|
|
/// when the VDIV has a constant operand that is a power of 2.
|
|
///
|
|
/// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
|
|
/// vcvt.f32.s32 d16, d16
|
|
/// vdiv.f32 d16, d17, d16
|
|
/// becomes:
|
|
/// vcvt.f32.s32 d16, d16, #3
|
|
static SDValue PerformVDIVCombine(SDNode *N,
|
|
TargetLowering::DAGCombinerInfo &DCI,
|
|
const ARMSubtarget *Subtarget) {
|
|
SelectionDAG &DAG = DCI.DAG;
|
|
SDValue Op = N->getOperand(0);
|
|
unsigned OpOpcode = Op.getNode()->getOpcode();
|
|
|
|
if (!Subtarget->hasNEON() || !N->getValueType(0).isVector() ||
|
|
(OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
|
|
return SDValue();
|
|
|
|
uint64_t C;
|
|
SDValue ConstVec = N->getOperand(1);
|
|
bool isSigned = OpOpcode == ISD::SINT_TO_FP;
|
|
|
|
if (ConstVec.getOpcode() != ISD::BUILD_VECTOR ||
|
|
!isConstVecPow2(ConstVec, isSigned, C))
|
|
return SDValue();
|
|
|
|
MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
|
|
MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
|
|
if (FloatTy.getSizeInBits() != 32 || IntTy.getSizeInBits() > 32) {
|
|
// These instructions only exist converting from i32 to f32. We can handle
|
|
// smaller integers by generating an extra extend, but larger ones would
|
|
// be lossy.
|
|
return SDValue();
|
|
}
|
|
|
|
SDValue ConvInput = Op.getOperand(0);
|
|
unsigned NumLanes = Op.getValueType().getVectorNumElements();
|
|
if (IntTy.getSizeInBits() < FloatTy.getSizeInBits())
|
|
ConvInput = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
|
|
SDLoc(N), NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
|
|
ConvInput);
|
|
|
|
unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
|
|
Intrinsic::arm_neon_vcvtfxu2fp;
|
|
return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, SDLoc(N),
|
|
Op.getValueType(),
|
|
DAG.getConstant(IntrinsicOpcode, MVT::i32),
|
|
ConvInput, DAG.getConstant(Log2_64(C), MVT::i32));
|
|
}
|
|
|
|
/// Getvshiftimm - Check if this is a valid build_vector for the immediate
|
|
/// operand of a vector shift operation, where all the elements of the
|
|
/// build_vector must have the same constant integer value.
|
|
static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
|
|
// Ignore bit_converts.
|
|
while (Op.getOpcode() == ISD::BITCAST)
|
|
Op = Op.getOperand(0);
|
|
BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
|
|
APInt SplatBits, SplatUndef;
|
|
unsigned SplatBitSize;
|
|
bool HasAnyUndefs;
|
|
if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
|
|
HasAnyUndefs, ElementBits) ||
|
|
SplatBitSize > ElementBits)
|
|
return false;
|
|
Cnt = SplatBits.getSExtValue();
|
|
return true;
|
|
}
|
|
|
|
/// isVShiftLImm - Check if this is a valid build_vector for the immediate
|
|
/// operand of a vector shift left operation. That value must be in the range:
|
|
/// 0 <= Value < ElementBits for a left shift; or
|
|
/// 0 <= Value <= ElementBits for a long left shift.
|
|
static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
|
|
assert(VT.isVector() && "vector shift count is not a vector type");
|
|
unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
|
|
if (! getVShiftImm(Op, ElementBits, Cnt))
|
|
return false;
|
|
return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
|
|
}
|
|
|
|
/// isVShiftRImm - Check if this is a valid build_vector for the immediate
|
|
/// operand of a vector shift right operation. For a shift opcode, the value
|
|
/// is positive, but for an intrinsic the value count must be negative. The
|
|
/// absolute value must be in the range:
|
|
/// 1 <= |Value| <= ElementBits for a right shift; or
|
|
/// 1 <= |Value| <= ElementBits/2 for a narrow right shift.
|
|
static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
|
|
int64_t &Cnt) {
|
|
assert(VT.isVector() && "vector shift count is not a vector type");
|
|
unsigned ElementBits = VT.getVectorElementType().getSizeInBits();
|
|
if (! getVShiftImm(Op, ElementBits, Cnt))
|
|
return false;
|
|
if (isIntrinsic)
|
|
Cnt = -Cnt;
|
|
return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
|
|
}
|
|
|
|
/// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
|
|
static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
|
|
unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
|
|
switch (IntNo) {
|
|
default:
|
|
// Don't do anything for most intrinsics.
|
|
break;
|
|
|
|
// Vector shifts: check for immediate versions and lower them.
|
|
// Note: This is done during DAG combining instead of DAG legalizing because
|
|
// the build_vectors for 64-bit vector element shift counts are generally
|
|
// not legal, and it is hard to see their values after they get legalized to
|
|
// loads from a constant pool.
|
|
case Intrinsic::arm_neon_vshifts:
|
|
case Intrinsic::arm_neon_vshiftu:
|
|
case Intrinsic::arm_neon_vshiftls:
|
|
case Intrinsic::arm_neon_vshiftlu:
|
|
case Intrinsic::arm_neon_vshiftn:
|
|
case Intrinsic::arm_neon_vrshifts:
|
|
case Intrinsic::arm_neon_vrshiftu:
|
|
case Intrinsic::arm_neon_vrshiftn:
|
|
case Intrinsic::arm_neon_vqshifts:
|
|
case Intrinsic::arm_neon_vqshiftu:
|
|
case Intrinsic::arm_neon_vqshiftsu:
|
|
case Intrinsic::arm_neon_vqshiftns:
|
|
case Intrinsic::arm_neon_vqshiftnu:
|
|
case Intrinsic::arm_neon_vqshiftnsu:
|
|
case Intrinsic::arm_neon_vqrshiftns:
|
|
case Intrinsic::arm_neon_vqrshiftnu:
|
|
case Intrinsic::arm_neon_vqrshiftnsu: {
|
|
EVT VT = N->getOperand(1).getValueType();
|
|
int64_t Cnt;
|
|
unsigned VShiftOpc = 0;
|
|
|
|
switch (IntNo) {
|
|
case Intrinsic::arm_neon_vshifts:
|
|
case Intrinsic::arm_neon_vshiftu:
|
|
if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
|
|
VShiftOpc = ARMISD::VSHL;
|
|
break;
|
|
}
|
|
if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
|
|
VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
|
|
ARMISD::VSHRs : ARMISD::VSHRu);
|
|
break;
|
|
}
|
|
return SDValue();
|
|
|
|
case Intrinsic::arm_neon_vshiftls:
|
|
case Intrinsic::arm_neon_vshiftlu:
|
|
if (isVShiftLImm(N->getOperand(2), VT, true, Cnt))
|
|
break;
|
|
llvm_unreachable("invalid shift count for vshll intrinsic");
|
|
|
|
case Intrinsic::arm_neon_vrshifts:
|
|
case Intrinsic::arm_neon_vrshiftu:
|
|
if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
|
|
break;
|
|
return SDValue();
|
|
|
|
case Intrinsic::arm_neon_vqshifts:
|
|
case Intrinsic::arm_neon_vqshiftu:
|
|
if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
|
|
break;
|
|
return SDValue();
|
|
|
|
case Intrinsic::arm_neon_vqshiftsu:
|
|
if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
|
|
break;
|
|
llvm_unreachable("invalid shift count for vqshlu intrinsic");
|
|
|
|
case Intrinsic::arm_neon_vshiftn:
|
|
case Intrinsic::arm_neon_vrshiftn:
|
|
case Intrinsic::arm_neon_vqshiftns:
|
|
case Intrinsic::arm_neon_vqshiftnu:
|
|
case Intrinsic::arm_neon_vqshiftnsu:
|
|
case Intrinsic::arm_neon_vqrshiftns:
|
|
case Intrinsic::arm_neon_vqrshiftnu:
|
|
case Intrinsic::arm_neon_vqrshiftnsu:
|
|
// Narrowing shifts require an immediate right shift.
|
|
if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
|
|
break;
|
|
llvm_unreachable("invalid shift count for narrowing vector shift "
|
|
"intrinsic");
|
|
|
|
default:
|
|
llvm_unreachable("unhandled vector shift");
|
|
}
|
|
|
|
switch (IntNo) {
|
|
case Intrinsic::arm_neon_vshifts:
|
|
case Intrinsic::arm_neon_vshiftu:
|
|
// Opcode already set above.
|
|
break;
|
|
case Intrinsic::arm_neon_vshiftls:
|
|
case Intrinsic::arm_neon_vshiftlu:
|
|
if (Cnt == VT.getVectorElementType().getSizeInBits())
|
|
VShiftOpc = ARMISD::VSHLLi;
|
|
else
|
|
VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ?
|
|
ARMISD::VSHLLs : ARMISD::VSHLLu);
|
|
break;
|
|
case Intrinsic::arm_neon_vshiftn:
|
|
VShiftOpc = ARMISD::VSHRN; break;
|
|
case Intrinsic::arm_neon_vrshifts:
|
|
VShiftOpc = ARMISD::VRSHRs; break;
|
|
case Intrinsic::arm_neon_vrshiftu:
|
|
VShiftOpc = ARMISD::VRSHRu; break;
|
|
case Intrinsic::arm_neon_vrshiftn:
|
|
VShiftOpc = ARMISD::VRSHRN; break;
|
|
case Intrinsic::arm_neon_vqshifts:
|
|
VShiftOpc = ARMISD::VQSHLs; break;
|
|
case Intrinsic::arm_neon_vqshiftu:
|
|
VShiftOpc = ARMISD::VQSHLu; break;
|
|
case Intrinsic::arm_neon_vqshiftsu:
|
|
VShiftOpc = ARMISD::VQSHLsu; break;
|
|
case Intrinsic::arm_neon_vqshiftns:
|
|
VShiftOpc = ARMISD::VQSHRNs; break;
|
|
case Intrinsic::arm_neon_vqshiftnu:
|
|
VShiftOpc = ARMISD::VQSHRNu; break;
|
|
case Intrinsic::arm_neon_vqshiftnsu:
|
|
VShiftOpc = ARMISD::VQSHRNsu; break;
|
|
case Intrinsic::arm_neon_vqrshiftns:
|
|
VShiftOpc = ARMISD::VQRSHRNs; break;
|
|
case Intrinsic::arm_neon_vqrshiftnu:
|
|
VShiftOpc = ARMISD::VQRSHRNu; break;
|
|
case Intrinsic::arm_neon_vqrshiftnsu:
|
|
VShiftOpc = ARMISD::VQRSHRNsu; break;
|
|
}
|
|
|
|
return DAG.getNode(VShiftOpc, SDLoc(N), N->getValueType(0),
|
|
N->getOperand(1), DAG.getConstant(Cnt, MVT::i32));
|
|
}
|
|
|
|
case Intrinsic::arm_neon_vshiftins: {
|
|
EVT VT = N->getOperand(1).getValueType();
|
|
int64_t Cnt;
|
|
unsigned VShiftOpc = 0;
|
|
|
|
if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
|
|
VShiftOpc = ARMISD::VSLI;
|
|
else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
|
|
VShiftOpc = ARMISD::VSRI;
|
|
else {
|
|
llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
|
|
}
|
|
|
|
return DAG.getNode(VShiftOpc, SDLoc(N), N->getValueType(0),
|
|
N->getOperand(1), N->getOperand(2),
|
|
DAG.getConstant(Cnt, MVT::i32));
|
|
}
|
|
|
|
case Intrinsic::arm_neon_vqrshifts:
|
|
case Intrinsic::arm_neon_vqrshiftu:
|
|
// No immediate versions of these to check for.
|
|
break;
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// PerformShiftCombine - Checks for immediate versions of vector shifts and
|
|
/// lowers them. As with the vector shift intrinsics, this is done during DAG
|
|
/// combining instead of DAG legalizing because the build_vectors for 64-bit
|
|
/// vector element shift counts are generally not legal, and it is hard to see
|
|
/// their values after they get legalized to loads from a constant pool.
|
|
static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
|
|
const ARMSubtarget *ST) {
|
|
EVT VT = N->getValueType(0);
|
|
if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) {
|
|
// Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
|
|
// 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
|
|
SDValue N1 = N->getOperand(1);
|
|
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
|
|
SDValue N0 = N->getOperand(0);
|
|
if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP &&
|
|
DAG.MaskedValueIsZero(N0.getOperand(0),
|
|
APInt::getHighBitsSet(32, 16)))
|
|
return DAG.getNode(ISD::ROTR, SDLoc(N), VT, N0, N1);
|
|
}
|
|
}
|
|
|
|
// Nothing to be done for scalar shifts.
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
if (!VT.isVector() || !TLI.isTypeLegal(VT))
|
|
return SDValue();
|
|
|
|
assert(ST->hasNEON() && "unexpected vector shift");
|
|
int64_t Cnt;
|
|
|
|
switch (N->getOpcode()) {
|
|
default: llvm_unreachable("unexpected shift opcode");
|
|
|
|
case ISD::SHL:
|
|
if (isVShiftLImm(N->getOperand(1), VT, false, Cnt))
|
|
return DAG.getNode(ARMISD::VSHL, SDLoc(N), VT, N->getOperand(0),
|
|
DAG.getConstant(Cnt, MVT::i32));
|
|
break;
|
|
|
|
case ISD::SRA:
|
|
case ISD::SRL:
|
|
if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
|
|
unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
|
|
ARMISD::VSHRs : ARMISD::VSHRu);
|
|
return DAG.getNode(VShiftOpc, SDLoc(N), VT, N->getOperand(0),
|
|
DAG.getConstant(Cnt, MVT::i32));
|
|
}
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
/// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
|
|
/// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
|
|
static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
|
|
const ARMSubtarget *ST) {
|
|
SDValue N0 = N->getOperand(0);
|
|
|
|
// Check for sign- and zero-extensions of vector extract operations of 8-
|
|
// and 16-bit vector elements. NEON supports these directly. They are
|
|
// handled during DAG combining because type legalization will promote them
|
|
// to 32-bit types and it is messy to recognize the operations after that.
|
|
if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
|
|
SDValue Vec = N0.getOperand(0);
|
|
SDValue Lane = N0.getOperand(1);
|
|
EVT VT = N->getValueType(0);
|
|
EVT EltVT = N0.getValueType();
|
|
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
|
|
|
|
if (VT == MVT::i32 &&
|
|
(EltVT == MVT::i8 || EltVT == MVT::i16) &&
|
|
TLI.isTypeLegal(Vec.getValueType()) &&
|
|
isa<ConstantSDNode>(Lane)) {
|
|
|
|
unsigned Opc = 0;
|
|
switch (N->getOpcode()) {
|
|
default: llvm_unreachable("unexpected opcode");
|
|
case ISD::SIGN_EXTEND:
|
|
Opc = ARMISD::VGETLANEs;
|
|
break;
|
|
case ISD::ZERO_EXTEND:
|
|
case ISD::ANY_EXTEND:
|
|
Opc = ARMISD::VGETLANEu;
|
|
break;
|
|
}
|
|
return DAG.getNode(Opc, SDLoc(N), VT, Vec, Lane);
|
|
}
|
|
}
|
|
|
|
return SDValue();
|
|
}
|
|
|
|
/// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC
|
|
/// to match f32 max/min patterns to use NEON vmax/vmin instructions.
|
|
static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG,
|
|
const ARMSubtarget *ST) {
|
|
// If the target supports NEON, try to use vmax/vmin instructions for f32
|
|
// selects like "x < y ? x : y". Unless the NoNaNsFPMath option is set,
|
|
// be careful about NaNs: NEON's vmax/vmin return NaN if either operand is
|
|
// a NaN; only do the transformation when it matches that behavior.
|
|
|
|
// For now only do this when using NEON for FP operations; if using VFP, it
|
|
// is not obvious that the benefit outweighs the cost of switching to the
|
|
// NEON pipeline.
|
|
if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() ||
|
|
N->getValueType(0) != MVT::f32)
|
|
return SDValue();
|
|
|
|
SDValue CondLHS = N->getOperand(0);
|
|
SDValue CondRHS = N->getOperand(1);
|
|
SDValue LHS = N->getOperand(2);
|
|
SDValue RHS = N->getOperand(3);
|
|
ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
|
|
|
|
unsigned Opcode = 0;
|
|
bool IsReversed;
|
|
if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) {
|
|
IsReversed = false; // x CC y ? x : y
|
|
} else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) {
|
|
IsReversed = true ; // x CC y ? y : x
|
|
} else {
|
|
return SDValue();
|
|
}
|
|
|
|
bool IsUnordered;
|
|
switch (CC) {
|
|
default: break;
|
|
case ISD::SETOLT:
|
|
case ISD::SETOLE:
|
|
case ISD::SETLT:
|
|
case ISD::SETLE:
|
|
case ISD::SETULT:
|
|
case ISD::SETULE:
|
|
// If LHS is NaN, an ordered comparison will be false and the result will
|
|
// be the RHS, but vmin(NaN, RHS) = NaN. Avoid this by checking that LHS
|
|
// != NaN. Likewise, for unordered comparisons, check for RHS != NaN.
|
|
IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE);
|
|
if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
|
|
break;
|
|
// For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin
|
|
// will return -0, so vmin can only be used for unsafe math or if one of
|
|
// the operands is known to be nonzero.
|
|
if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) &&
|
|
!DAG.getTarget().Options.UnsafeFPMath &&
|
|
!(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
|
|
break;
|
|
Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN;
|
|
break;
|
|
|
|
case ISD::SETOGT:
|
|
case ISD::SETOGE:
|
|
case ISD::SETGT:
|
|
case ISD::SETGE:
|
|
case ISD::SETUGT:
|
|
case ISD::SETUGE:
|
|
// If LHS is NaN, an ordered comparison will be false and the result will
|
|
// be the RHS, but vmax(NaN, RHS) = NaN. Avoid this by checking that LHS
|
|
// != NaN. Likewise, for unordered comparisons, check for RHS != NaN.
|
|
IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE);
|
|
if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS))
|
|
break;
|
|
// For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax
|
|
// will return +0, so vmax can only be used for unsafe math or if one of
|
|
// the operands is known to be nonzero.
|
|
if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) &&
|
|
!DAG.getTarget().Options.UnsafeFPMath &&
|
|
!(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS)))
|
|
break;
|
|
Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX;
|
|
break;
|
|
}
|
|
|
|
if (!Opcode)
|
|
return SDValue();
|
|
return DAG.getNode(Opcode, SDLoc(N), N->getValueType(0), LHS, RHS);
|
|
}
|
|
|
|
/// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
|
|
SDValue
|
|
ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
|
|
SDValue Cmp = N->getOperand(4);
|
|
if (Cmp.getOpcode() != ARMISD::CMPZ)
|
|
// Only looking at EQ and NE cases.
|
|
return SDValue();
|
|
|
|
EVT VT = N->getValueType(0);
|
|
SDLoc dl(N);
|
|
SDValue LHS = Cmp.getOperand(0);
|
|
SDValue RHS = Cmp.getOperand(1);
|
|
SDValue FalseVal = N->getOperand(0);
|
|
SDValue TrueVal = N->getOperand(1);
|
|
SDValue ARMcc = N->getOperand(2);
|
|
ARMCC::CondCodes CC =
|
|
(ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
|
|
|
|
// Simplify
|
|
// mov r1, r0
|
|
// cmp r1, x
|
|
// mov r0, y
|
|
// moveq r0, x
|
|
// to
|
|
// cmp r0, x
|
|
// movne r0, y
|
|
//
|
|
// mov r1, r0
|
|
// cmp r1, x
|
|
// mov r0, x
|
|
// movne r0, y
|
|
// to
|
|
// cmp r0, x
|
|
// movne r0, y
|
|
/// FIXME: Turn this into a target neutral optimization?
|
|
SDValue Res;
|
|
if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
|
|
Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
|
|
N->getOperand(3), Cmp);
|
|
} else if (CC == ARMCC::EQ && TrueVal == RHS) {
|
|
SDValue ARMcc;
|
|
SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
|
|
Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
|
|
N->getOperand(3), NewCmp);
|
|
}
|
|
|
|
if (Res.getNode()) {
|
|
APInt KnownZero, KnownOne;
|
|
DAG.ComputeMaskedBits(SDValue(N,0), KnownZero, KnownOne);
|
|
// Capture demanded bits information that would be otherwise lost.
|
|
if (KnownZero == 0xfffffffe)
|
|
Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
|
|
DAG.getValueType(MVT::i1));
|
|
else if (KnownZero == 0xffffff00)
|
|
Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
|
|
DAG.getValueType(MVT::i8));
|
|
else if (KnownZero == 0xffff0000)
|
|
Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
|
|
DAG.getValueType(MVT::i16));
|
|
}
|
|
|
|
return Res;
|
|
}
|
|
|
|
SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
|
|
DAGCombinerInfo &DCI) const {
|
|
switch (N->getOpcode()) {
|
|
default: break;
|
|
case ISD::ADDC: return PerformADDCCombine(N, DCI, Subtarget);
|
|
case ISD::ADD: return PerformADDCombine(N, DCI, Subtarget);
|
|
case ISD::SUB: return PerformSUBCombine(N, DCI);
|
|
case ISD::MUL: return PerformMULCombine(N, DCI, Subtarget);
|
|
case ISD::OR: return PerformORCombine(N, DCI, Subtarget);
|
|
case ISD::XOR: return PerformXORCombine(N, DCI, Subtarget);
|
|
case ISD::AND: return PerformANDCombine(N, DCI, Subtarget);
|
|
case ARMISD::BFI: return PerformBFICombine(N, DCI);
|
|
case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI);
|
|
case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
|
|
case ISD::STORE: return PerformSTORECombine(N, DCI);
|
|
case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI);
|
|
case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
|
|
case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
|
|
case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
|
|
case ISD::FP_TO_SINT:
|
|
case ISD::FP_TO_UINT: return PerformVCVTCombine(N, DCI, Subtarget);
|
|
case ISD::FDIV: return PerformVDIVCombine(N, DCI, Subtarget);
|
|
case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
|
|
case ISD::SHL:
|
|
case ISD::SRA:
|
|
case ISD::SRL: return PerformShiftCombine(N, DCI.DAG, Subtarget);
|
|
case ISD::SIGN_EXTEND:
|
|
case ISD::ZERO_EXTEND:
|
|
case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
|
|
case ISD::SELECT_CC: return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget);
|
|
case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
|
|
case ARMISD::VLD2DUP:
|
|
case ARMISD::VLD3DUP:
|
|
case ARMISD::VLD4DUP:
|
|
return CombineBaseUpdate(N, DCI);
|
|
case ARMISD::BUILD_VECTOR:
|
|
return PerformARMBUILD_VECTORCombine(N, DCI);
|
|
case ISD::INTRINSIC_VOID:
|
|
case ISD::INTRINSIC_W_CHAIN:
|
|
switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
|
|
case Intrinsic::arm_neon_vld1:
|
|
case Intrinsic::arm_neon_vld2:
|
|
case Intrinsic::arm_neon_vld3:
|
|
case Intrinsic::arm_neon_vld4:
|
|
case Intrinsic::arm_neon_vld2lane:
|
|
case Intrinsic::arm_neon_vld3lane:
|
|
case Intrinsic::arm_neon_vld4lane:
|
|
case Intrinsic::arm_neon_vst1:
|
|
case Intrinsic::arm_neon_vst2:
|
|
case Intrinsic::arm_neon_vst3:
|
|
case Intrinsic::arm_neon_vst4:
|
|
case Intrinsic::arm_neon_vst2lane:
|
|
case Intrinsic::arm_neon_vst3lane:
|
|
case Intrinsic::arm_neon_vst4lane:
|
|
return CombineBaseUpdate(N, DCI);
|
|
default: break;
|
|
}
|
|
break;
|
|
}
|
|
return SDValue();
|
|
}
|
|
|
|
bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
|
|
EVT VT) const {
|
|
return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
|
|
}
|
|
|
|
bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT, bool *Fast) const {
|
|
// The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
|
|
bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
|
|
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default:
|
|
return false;
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
case MVT::i32: {
|
|
// Unaligned access can use (for example) LRDB, LRDH, LDR
|
|
if (AllowsUnaligned) {
|
|
if (Fast)
|
|
*Fast = Subtarget->hasV7Ops();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
case MVT::f64:
|
|
case MVT::v2f64: {
|
|
// For any little-endian targets with neon, we can support unaligned ld/st
|
|
// of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
|
|
// A big-endian target may also explictly support unaligned accesses
|
|
if (Subtarget->hasNEON() && (AllowsUnaligned || isLittleEndian())) {
|
|
if (Fast)
|
|
*Fast = true;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
|
|
unsigned AlignCheck) {
|
|
return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
|
|
(DstAlign == 0 || DstAlign % AlignCheck == 0));
|
|
}
|
|
|
|
EVT ARMTargetLowering::getOptimalMemOpType(uint64_t Size,
|
|
unsigned DstAlign, unsigned SrcAlign,
|
|
bool IsMemset, bool ZeroMemset,
|
|
bool MemcpyStrSrc,
|
|
MachineFunction &MF) const {
|
|
const Function *F = MF.getFunction();
|
|
|
|
// See if we can use NEON instructions for this...
|
|
if ((!IsMemset || ZeroMemset) &&
|
|
Subtarget->hasNEON() &&
|
|
!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
|
|
Attribute::NoImplicitFloat)) {
|
|
bool Fast;
|
|
if (Size >= 16 &&
|
|
(memOpAlign(SrcAlign, DstAlign, 16) ||
|
|
(allowsUnalignedMemoryAccesses(MVT::v2f64, &Fast) && Fast))) {
|
|
return MVT::v2f64;
|
|
} else if (Size >= 8 &&
|
|
(memOpAlign(SrcAlign, DstAlign, 8) ||
|
|
(allowsUnalignedMemoryAccesses(MVT::f64, &Fast) && Fast))) {
|
|
return MVT::f64;
|
|
}
|
|
}
|
|
|
|
// Lowering to i32/i16 if the size permits.
|
|
if (Size >= 4)
|
|
return MVT::i32;
|
|
else if (Size >= 2)
|
|
return MVT::i16;
|
|
|
|
// Let the target-independent logic figure it out.
|
|
return MVT::Other;
|
|
}
|
|
|
|
bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
|
|
if (Val.getOpcode() != ISD::LOAD)
|
|
return false;
|
|
|
|
EVT VT1 = Val.getValueType();
|
|
if (!VT1.isSimple() || !VT1.isInteger() ||
|
|
!VT2.isSimple() || !VT2.isInteger())
|
|
return false;
|
|
|
|
switch (VT1.getSimpleVT().SimpleTy) {
|
|
default: break;
|
|
case MVT::i1:
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
// 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool ARMTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
|
|
if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
|
|
return false;
|
|
|
|
if (!isTypeLegal(EVT::getEVT(Ty1)))
|
|
return false;
|
|
|
|
assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
|
|
|
|
// Assuming the caller doesn't have a zeroext or signext return parameter,
|
|
// truncation all the way down to i1 is valid.
|
|
return true;
|
|
}
|
|
|
|
|
|
static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
|
|
if (V < 0)
|
|
return false;
|
|
|
|
unsigned Scale = 1;
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default: return false;
|
|
case MVT::i1:
|
|
case MVT::i8:
|
|
// Scale == 1;
|
|
break;
|
|
case MVT::i16:
|
|
// Scale == 2;
|
|
Scale = 2;
|
|
break;
|
|
case MVT::i32:
|
|
// Scale == 4;
|
|
Scale = 4;
|
|
break;
|
|
}
|
|
|
|
if ((V & (Scale - 1)) != 0)
|
|
return false;
|
|
V /= Scale;
|
|
return V == (V & ((1LL << 5) - 1));
|
|
}
|
|
|
|
static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
|
|
const ARMSubtarget *Subtarget) {
|
|
bool isNeg = false;
|
|
if (V < 0) {
|
|
isNeg = true;
|
|
V = - V;
|
|
}
|
|
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default: return false;
|
|
case MVT::i1:
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
case MVT::i32:
|
|
// + imm12 or - imm8
|
|
if (isNeg)
|
|
return V == (V & ((1LL << 8) - 1));
|
|
return V == (V & ((1LL << 12) - 1));
|
|
case MVT::f32:
|
|
case MVT::f64:
|
|
// Same as ARM mode. FIXME: NEON?
|
|
if (!Subtarget->hasVFP2())
|
|
return false;
|
|
if ((V & 3) != 0)
|
|
return false;
|
|
V >>= 2;
|
|
return V == (V & ((1LL << 8) - 1));
|
|
}
|
|
}
|
|
|
|
/// isLegalAddressImmediate - Return true if the integer value can be used
|
|
/// as the offset of the target addressing mode for load / store of the
|
|
/// given type.
|
|
static bool isLegalAddressImmediate(int64_t V, EVT VT,
|
|
const ARMSubtarget *Subtarget) {
|
|
if (V == 0)
|
|
return true;
|
|
|
|
if (!VT.isSimple())
|
|
return false;
|
|
|
|
if (Subtarget->isThumb1Only())
|
|
return isLegalT1AddressImmediate(V, VT);
|
|
else if (Subtarget->isThumb2())
|
|
return isLegalT2AddressImmediate(V, VT, Subtarget);
|
|
|
|
// ARM mode.
|
|
if (V < 0)
|
|
V = - V;
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default: return false;
|
|
case MVT::i1:
|
|
case MVT::i8:
|
|
case MVT::i32:
|
|
// +- imm12
|
|
return V == (V & ((1LL << 12) - 1));
|
|
case MVT::i16:
|
|
// +- imm8
|
|
return V == (V & ((1LL << 8) - 1));
|
|
case MVT::f32:
|
|
case MVT::f64:
|
|
if (!Subtarget->hasVFP2()) // FIXME: NEON?
|
|
return false;
|
|
if ((V & 3) != 0)
|
|
return false;
|
|
V >>= 2;
|
|
return V == (V & ((1LL << 8) - 1));
|
|
}
|
|
}
|
|
|
|
bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
|
|
EVT VT) const {
|
|
int Scale = AM.Scale;
|
|
if (Scale < 0)
|
|
return false;
|
|
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default: return false;
|
|
case MVT::i1:
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
case MVT::i32:
|
|
if (Scale == 1)
|
|
return true;
|
|
// r + r << imm
|
|
Scale = Scale & ~1;
|
|
return Scale == 2 || Scale == 4 || Scale == 8;
|
|
case MVT::i64:
|
|
// r + r
|
|
if (((unsigned)AM.HasBaseReg + Scale) <= 2)
|
|
return true;
|
|
return false;
|
|
case MVT::isVoid:
|
|
// Note, we allow "void" uses (basically, uses that aren't loads or
|
|
// stores), because arm allows folding a scale into many arithmetic
|
|
// operations. This should be made more precise and revisited later.
|
|
|
|
// Allow r << imm, but the imm has to be a multiple of two.
|
|
if (Scale & 1) return false;
|
|
return isPowerOf2_32(Scale);
|
|
}
|
|
}
|
|
|
|
/// isLegalAddressingMode - Return true if the addressing mode represented
|
|
/// by AM is legal for this target, for a load/store of the specified type.
|
|
bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM,
|
|
Type *Ty) const {
|
|
EVT VT = getValueType(Ty, true);
|
|
if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
|
|
return false;
|
|
|
|
// Can never fold addr of global into load/store.
|
|
if (AM.BaseGV)
|
|
return false;
|
|
|
|
switch (AM.Scale) {
|
|
case 0: // no scale reg, must be "r+i" or "r", or "i".
|
|
break;
|
|
case 1:
|
|
if (Subtarget->isThumb1Only())
|
|
return false;
|
|
// FALL THROUGH.
|
|
default:
|
|
// ARM doesn't support any R+R*scale+imm addr modes.
|
|
if (AM.BaseOffs)
|
|
return false;
|
|
|
|
if (!VT.isSimple())
|
|
return false;
|
|
|
|
if (Subtarget->isThumb2())
|
|
return isLegalT2ScaledAddressingMode(AM, VT);
|
|
|
|
int Scale = AM.Scale;
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default: return false;
|
|
case MVT::i1:
|
|
case MVT::i8:
|
|
case MVT::i32:
|
|
if (Scale < 0) Scale = -Scale;
|
|
if (Scale == 1)
|
|
return true;
|
|
// r + r << imm
|
|
return isPowerOf2_32(Scale & ~1);
|
|
case MVT::i16:
|
|
case MVT::i64:
|
|
// r + r
|
|
if (((unsigned)AM.HasBaseReg + Scale) <= 2)
|
|
return true;
|
|
return false;
|
|
|
|
case MVT::isVoid:
|
|
// Note, we allow "void" uses (basically, uses that aren't loads or
|
|
// stores), because arm allows folding a scale into many arithmetic
|
|
// operations. This should be made more precise and revisited later.
|
|
|
|
// Allow r << imm, but the imm has to be a multiple of two.
|
|
if (Scale & 1) return false;
|
|
return isPowerOf2_32(Scale);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// isLegalICmpImmediate - Return true if the specified immediate is legal
|
|
/// icmp immediate, that is the target has icmp instructions which can compare
|
|
/// a register against the immediate without having to materialize the
|
|
/// immediate into a register.
|
|
bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
|
|
// Thumb2 and ARM modes can use cmn for negative immediates.
|
|
if (!Subtarget->isThumb())
|
|
return ARM_AM::getSOImmVal(llvm::abs64(Imm)) != -1;
|
|
if (Subtarget->isThumb2())
|
|
return ARM_AM::getT2SOImmVal(llvm::abs64(Imm)) != -1;
|
|
// Thumb1 doesn't have cmn, and only 8-bit immediates.
|
|
return Imm >= 0 && Imm <= 255;
|
|
}
|
|
|
|
/// isLegalAddImmediate - Return true if the specified immediate is a legal add
|
|
/// *or sub* immediate, that is the target has add or sub instructions which can
|
|
/// add a register with the immediate without having to materialize the
|
|
/// immediate into a register.
|
|
bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
|
|
// Same encoding for add/sub, just flip the sign.
|
|
int64_t AbsImm = llvm::abs64(Imm);
|
|
if (!Subtarget->isThumb())
|
|
return ARM_AM::getSOImmVal(AbsImm) != -1;
|
|
if (Subtarget->isThumb2())
|
|
return ARM_AM::getT2SOImmVal(AbsImm) != -1;
|
|
// Thumb1 only has 8-bit unsigned immediate.
|
|
return AbsImm >= 0 && AbsImm <= 255;
|
|
}
|
|
|
|
static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
|
|
bool isSEXTLoad, SDValue &Base,
|
|
SDValue &Offset, bool &isInc,
|
|
SelectionDAG &DAG) {
|
|
if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
|
|
return false;
|
|
|
|
if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
|
|
// AddressingMode 3
|
|
Base = Ptr->getOperand(0);
|
|
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
|
|
int RHSC = (int)RHS->getZExtValue();
|
|
if (RHSC < 0 && RHSC > -256) {
|
|
assert(Ptr->getOpcode() == ISD::ADD);
|
|
isInc = false;
|
|
Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
|
|
return true;
|
|
}
|
|
}
|
|
isInc = (Ptr->getOpcode() == ISD::ADD);
|
|
Offset = Ptr->getOperand(1);
|
|
return true;
|
|
} else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
|
|
// AddressingMode 2
|
|
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
|
|
int RHSC = (int)RHS->getZExtValue();
|
|
if (RHSC < 0 && RHSC > -0x1000) {
|
|
assert(Ptr->getOpcode() == ISD::ADD);
|
|
isInc = false;
|
|
Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
|
|
Base = Ptr->getOperand(0);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (Ptr->getOpcode() == ISD::ADD) {
|
|
isInc = true;
|
|
ARM_AM::ShiftOpc ShOpcVal=
|
|
ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
|
|
if (ShOpcVal != ARM_AM::no_shift) {
|
|
Base = Ptr->getOperand(1);
|
|
Offset = Ptr->getOperand(0);
|
|
} else {
|
|
Base = Ptr->getOperand(0);
|
|
Offset = Ptr->getOperand(1);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
isInc = (Ptr->getOpcode() == ISD::ADD);
|
|
Base = Ptr->getOperand(0);
|
|
Offset = Ptr->getOperand(1);
|
|
return true;
|
|
}
|
|
|
|
// FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
|
|
return false;
|
|
}
|
|
|
|
static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
|
|
bool isSEXTLoad, SDValue &Base,
|
|
SDValue &Offset, bool &isInc,
|
|
SelectionDAG &DAG) {
|
|
if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
|
|
return false;
|
|
|
|
Base = Ptr->getOperand(0);
|
|
if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
|
|
int RHSC = (int)RHS->getZExtValue();
|
|
if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
|
|
assert(Ptr->getOpcode() == ISD::ADD);
|
|
isInc = false;
|
|
Offset = DAG.getConstant(-RHSC, RHS->getValueType(0));
|
|
return true;
|
|
} else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
|
|
isInc = Ptr->getOpcode() == ISD::ADD;
|
|
Offset = DAG.getConstant(RHSC, RHS->getValueType(0));
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// getPreIndexedAddressParts - returns true by value, base pointer and
|
|
/// offset pointer and addressing mode by reference if the node's address
|
|
/// can be legally represented as pre-indexed load / store address.
|
|
bool
|
|
ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
|
|
SDValue &Offset,
|
|
ISD::MemIndexedMode &AM,
|
|
SelectionDAG &DAG) const {
|
|
if (Subtarget->isThumb1Only())
|
|
return false;
|
|
|
|
EVT VT;
|
|
SDValue Ptr;
|
|
bool isSEXTLoad = false;
|
|
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
|
|
Ptr = LD->getBasePtr();
|
|
VT = LD->getMemoryVT();
|
|
isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
|
|
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
|
|
Ptr = ST->getBasePtr();
|
|
VT = ST->getMemoryVT();
|
|
} else
|
|
return false;
|
|
|
|
bool isInc;
|
|
bool isLegal = false;
|
|
if (Subtarget->isThumb2())
|
|
isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
|
|
Offset, isInc, DAG);
|
|
else
|
|
isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
|
|
Offset, isInc, DAG);
|
|
if (!isLegal)
|
|
return false;
|
|
|
|
AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
|
|
return true;
|
|
}
|
|
|
|
/// getPostIndexedAddressParts - returns true by value, base pointer and
|
|
/// offset pointer and addressing mode by reference if this node can be
|
|
/// combined with a load / store to form a post-indexed load / store.
|
|
bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
|
|
SDValue &Base,
|
|
SDValue &Offset,
|
|
ISD::MemIndexedMode &AM,
|
|
SelectionDAG &DAG) const {
|
|
if (Subtarget->isThumb1Only())
|
|
return false;
|
|
|
|
EVT VT;
|
|
SDValue Ptr;
|
|
bool isSEXTLoad = false;
|
|
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
|
|
VT = LD->getMemoryVT();
|
|
Ptr = LD->getBasePtr();
|
|
isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
|
|
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
|
|
VT = ST->getMemoryVT();
|
|
Ptr = ST->getBasePtr();
|
|
} else
|
|
return false;
|
|
|
|
bool isInc;
|
|
bool isLegal = false;
|
|
if (Subtarget->isThumb2())
|
|
isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
|
|
isInc, DAG);
|
|
else
|
|
isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
|
|
isInc, DAG);
|
|
if (!isLegal)
|
|
return false;
|
|
|
|
if (Ptr != Base) {
|
|
// Swap base ptr and offset to catch more post-index load / store when
|
|
// it's legal. In Thumb2 mode, offset must be an immediate.
|
|
if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
|
|
!Subtarget->isThumb2())
|
|
std::swap(Base, Offset);
|
|
|
|
// Post-indexed load / store update the base pointer.
|
|
if (Ptr != Base)
|
|
return false;
|
|
}
|
|
|
|
AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
|
|
return true;
|
|
}
|
|
|
|
void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
|
|
APInt &KnownZero,
|
|
APInt &KnownOne,
|
|
const SelectionDAG &DAG,
|
|
unsigned Depth) const {
|
|
unsigned BitWidth = KnownOne.getBitWidth();
|
|
KnownZero = KnownOne = APInt(BitWidth, 0);
|
|
switch (Op.getOpcode()) {
|
|
default: break;
|
|
case ARMISD::ADDC:
|
|
case ARMISD::ADDE:
|
|
case ARMISD::SUBC:
|
|
case ARMISD::SUBE:
|
|
// These nodes' second result is a boolean
|
|
if (Op.getResNo() == 0)
|
|
break;
|
|
KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
|
|
break;
|
|
case ARMISD::CMOV: {
|
|
// Bits are known zero/one if known on the LHS and RHS.
|
|
DAG.ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
|
|
if (KnownZero == 0 && KnownOne == 0) return;
|
|
|
|
APInt KnownZeroRHS, KnownOneRHS;
|
|
DAG.ComputeMaskedBits(Op.getOperand(1), KnownZeroRHS, KnownOneRHS, Depth+1);
|
|
KnownZero &= KnownZeroRHS;
|
|
KnownOne &= KnownOneRHS;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ARM Inline Assembly Support
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
|
|
// Looking for "rev" which is V6+.
|
|
if (!Subtarget->hasV6Ops())
|
|
return false;
|
|
|
|
InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
|
|
std::string AsmStr = IA->getAsmString();
|
|
SmallVector<StringRef, 4> AsmPieces;
|
|
SplitString(AsmStr, AsmPieces, ";\n");
|
|
|
|
switch (AsmPieces.size()) {
|
|
default: return false;
|
|
case 1:
|
|
AsmStr = AsmPieces[0];
|
|
AsmPieces.clear();
|
|
SplitString(AsmStr, AsmPieces, " \t,");
|
|
|
|
// rev $0, $1
|
|
if (AsmPieces.size() == 3 &&
|
|
AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
|
|
IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
|
|
IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
|
|
if (Ty && Ty->getBitWidth() == 32)
|
|
return IntrinsicLowering::LowerToByteSwap(CI);
|
|
}
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// getConstraintType - Given a constraint letter, return the type of
|
|
/// constraint it is for this target.
|
|
ARMTargetLowering::ConstraintType
|
|
ARMTargetLowering::getConstraintType(const std::string &Constraint) const {
|
|
if (Constraint.size() == 1) {
|
|
switch (Constraint[0]) {
|
|
default: break;
|
|
case 'l': return C_RegisterClass;
|
|
case 'w': return C_RegisterClass;
|
|
case 'h': return C_RegisterClass;
|
|
case 'x': return C_RegisterClass;
|
|
case 't': return C_RegisterClass;
|
|
case 'j': return C_Other; // Constant for movw.
|
|
// An address with a single base register. Due to the way we
|
|
// currently handle addresses it is the same as an 'r' memory constraint.
|
|
case 'Q': return C_Memory;
|
|
}
|
|
} else if (Constraint.size() == 2) {
|
|
switch (Constraint[0]) {
|
|
default: break;
|
|
// All 'U+' constraints are addresses.
|
|
case 'U': return C_Memory;
|
|
}
|
|
}
|
|
return TargetLowering::getConstraintType(Constraint);
|
|
}
|
|
|
|
/// Examine constraint type and operand type and determine a weight value.
|
|
/// This object must already have been set up with the operand type
|
|
/// and the current alternative constraint selected.
|
|
TargetLowering::ConstraintWeight
|
|
ARMTargetLowering::getSingleConstraintMatchWeight(
|
|
AsmOperandInfo &info, const char *constraint) const {
|
|
ConstraintWeight weight = CW_Invalid;
|
|
Value *CallOperandVal = info.CallOperandVal;
|
|
// If we don't have a value, we can't do a match,
|
|
// but allow it at the lowest weight.
|
|
if (CallOperandVal == NULL)
|
|
return CW_Default;
|
|
Type *type = CallOperandVal->getType();
|
|
// Look at the constraint type.
|
|
switch (*constraint) {
|
|
default:
|
|
weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
|
|
break;
|
|
case 'l':
|
|
if (type->isIntegerTy()) {
|
|
if (Subtarget->isThumb())
|
|
weight = CW_SpecificReg;
|
|
else
|
|
weight = CW_Register;
|
|
}
|
|
break;
|
|
case 'w':
|
|
if (type->isFloatingPointTy())
|
|
weight = CW_Register;
|
|
break;
|
|
}
|
|
return weight;
|
|
}
|
|
|
|
typedef std::pair<unsigned, const TargetRegisterClass*> RCPair;
|
|
RCPair
|
|
ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
|
|
MVT VT) const {
|
|
if (Constraint.size() == 1) {
|
|
// GCC ARM Constraint Letters
|
|
switch (Constraint[0]) {
|
|
case 'l': // Low regs or general regs.
|
|
if (Subtarget->isThumb())
|
|
return RCPair(0U, &ARM::tGPRRegClass);
|
|
return RCPair(0U, &ARM::GPRRegClass);
|
|
case 'h': // High regs or no regs.
|
|
if (Subtarget->isThumb())
|
|
return RCPair(0U, &ARM::hGPRRegClass);
|
|
break;
|
|
case 'r':
|
|
return RCPair(0U, &ARM::GPRRegClass);
|
|
case 'w':
|
|
if (VT == MVT::f32)
|
|
return RCPair(0U, &ARM::SPRRegClass);
|
|
if (VT.getSizeInBits() == 64)
|
|
return RCPair(0U, &ARM::DPRRegClass);
|
|
if (VT.getSizeInBits() == 128)
|
|
return RCPair(0U, &ARM::QPRRegClass);
|
|
break;
|
|
case 'x':
|
|
if (VT == MVT::f32)
|
|
return RCPair(0U, &ARM::SPR_8RegClass);
|
|
if (VT.getSizeInBits() == 64)
|
|
return RCPair(0U, &ARM::DPR_8RegClass);
|
|
if (VT.getSizeInBits() == 128)
|
|
return RCPair(0U, &ARM::QPR_8RegClass);
|
|
break;
|
|
case 't':
|
|
if (VT == MVT::f32)
|
|
return RCPair(0U, &ARM::SPRRegClass);
|
|
break;
|
|
}
|
|
}
|
|
if (StringRef("{cc}").equals_lower(Constraint))
|
|
return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);
|
|
|
|
return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
|
|
}
|
|
|
|
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
|
|
/// vector. If it is invalid, don't add anything to Ops.
|
|
void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
|
|
std::string &Constraint,
|
|
std::vector<SDValue>&Ops,
|
|
SelectionDAG &DAG) const {
|
|
SDValue Result(0, 0);
|
|
|
|
// Currently only support length 1 constraints.
|
|
if (Constraint.length() != 1) return;
|
|
|
|
char ConstraintLetter = Constraint[0];
|
|
switch (ConstraintLetter) {
|
|
default: break;
|
|
case 'j':
|
|
case 'I': case 'J': case 'K': case 'L':
|
|
case 'M': case 'N': case 'O':
|
|
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
|
|
if (!C)
|
|
return;
|
|
|
|
int64_t CVal64 = C->getSExtValue();
|
|
int CVal = (int) CVal64;
|
|
// None of these constraints allow values larger than 32 bits. Check
|
|
// that the value fits in an int.
|
|
if (CVal != CVal64)
|
|
return;
|
|
|
|
switch (ConstraintLetter) {
|
|
case 'j':
|
|
// Constant suitable for movw, must be between 0 and
|
|
// 65535.
|
|
if (Subtarget->hasV6T2Ops())
|
|
if (CVal >= 0 && CVal <= 65535)
|
|
break;
|
|
return;
|
|
case 'I':
|
|
if (Subtarget->isThumb1Only()) {
|
|
// This must be a constant between 0 and 255, for ADD
|
|
// immediates.
|
|
if (CVal >= 0 && CVal <= 255)
|
|
break;
|
|
} else if (Subtarget->isThumb2()) {
|
|
// A constant that can be used as an immediate value in a
|
|
// data-processing instruction.
|
|
if (ARM_AM::getT2SOImmVal(CVal) != -1)
|
|
break;
|
|
} else {
|
|
// A constant that can be used as an immediate value in a
|
|
// data-processing instruction.
|
|
if (ARM_AM::getSOImmVal(CVal) != -1)
|
|
break;
|
|
}
|
|
return;
|
|
|
|
case 'J':
|
|
if (Subtarget->isThumb()) { // FIXME thumb2
|
|
// This must be a constant between -255 and -1, for negated ADD
|
|
// immediates. This can be used in GCC with an "n" modifier that
|
|
// prints the negated value, for use with SUB instructions. It is
|
|
// not useful otherwise but is implemented for compatibility.
|
|
if (CVal >= -255 && CVal <= -1)
|
|
break;
|
|
} else {
|
|
// This must be a constant between -4095 and 4095. It is not clear
|
|
// what this constraint is intended for. Implemented for
|
|
// compatibility with GCC.
|
|
if (CVal >= -4095 && CVal <= 4095)
|
|
break;
|
|
}
|
|
return;
|
|
|
|
case 'K':
|
|
if (Subtarget->isThumb1Only()) {
|
|
// A 32-bit value where only one byte has a nonzero value. Exclude
|
|
// zero to match GCC. This constraint is used by GCC internally for
|
|
// constants that can be loaded with a move/shift combination.
|
|
// It is not useful otherwise but is implemented for compatibility.
|
|
if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
|
|
break;
|
|
} else if (Subtarget->isThumb2()) {
|
|
// A constant whose bitwise inverse can be used as an immediate
|
|
// value in a data-processing instruction. This can be used in GCC
|
|
// with a "B" modifier that prints the inverted value, for use with
|
|
// BIC and MVN instructions. It is not useful otherwise but is
|
|
// implemented for compatibility.
|
|
if (ARM_AM::getT2SOImmVal(~CVal) != -1)
|
|
break;
|
|
} else {
|
|
// A constant whose bitwise inverse can be used as an immediate
|
|
// value in a data-processing instruction. This can be used in GCC
|
|
// with a "B" modifier that prints the inverted value, for use with
|
|
// BIC and MVN instructions. It is not useful otherwise but is
|
|
// implemented for compatibility.
|
|
if (ARM_AM::getSOImmVal(~CVal) != -1)
|
|
break;
|
|
}
|
|
return;
|
|
|
|
case 'L':
|
|
if (Subtarget->isThumb1Only()) {
|
|
// This must be a constant between -7 and 7,
|
|
// for 3-operand ADD/SUB immediate instructions.
|
|
if (CVal >= -7 && CVal < 7)
|
|
break;
|
|
} else if (Subtarget->isThumb2()) {
|
|
// A constant whose negation can be used as an immediate value in a
|
|
// data-processing instruction. This can be used in GCC with an "n"
|
|
// modifier that prints the negated value, for use with SUB
|
|
// instructions. It is not useful otherwise but is implemented for
|
|
// compatibility.
|
|
if (ARM_AM::getT2SOImmVal(-CVal) != -1)
|
|
break;
|
|
} else {
|
|
// A constant whose negation can be used as an immediate value in a
|
|
// data-processing instruction. This can be used in GCC with an "n"
|
|
// modifier that prints the negated value, for use with SUB
|
|
// instructions. It is not useful otherwise but is implemented for
|
|
// compatibility.
|
|
if (ARM_AM::getSOImmVal(-CVal) != -1)
|
|
break;
|
|
}
|
|
return;
|
|
|
|
case 'M':
|
|
if (Subtarget->isThumb()) { // FIXME thumb2
|
|
// This must be a multiple of 4 between 0 and 1020, for
|
|
// ADD sp + immediate.
|
|
if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
|
|
break;
|
|
} else {
|
|
// A power of two or a constant between 0 and 32. This is used in
|
|
// GCC for the shift amount on shifted register operands, but it is
|
|
// useful in general for any shift amounts.
|
|
if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
|
|
break;
|
|
}
|
|
return;
|
|
|
|
case 'N':
|
|
if (Subtarget->isThumb()) { // FIXME thumb2
|
|
// This must be a constant between 0 and 31, for shift amounts.
|
|
if (CVal >= 0 && CVal <= 31)
|
|
break;
|
|
}
|
|
return;
|
|
|
|
case 'O':
|
|
if (Subtarget->isThumb()) { // FIXME thumb2
|
|
// This must be a multiple of 4 between -508 and 508, for
|
|
// ADD/SUB sp = sp + immediate.
|
|
if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
|
|
break;
|
|
}
|
|
return;
|
|
}
|
|
Result = DAG.getTargetConstant(CVal, Op.getValueType());
|
|
break;
|
|
}
|
|
|
|
if (Result.getNode()) {
|
|
Ops.push_back(Result);
|
|
return;
|
|
}
|
|
return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
|
|
}
|
|
|
|
SDValue ARMTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
|
|
assert(Subtarget->isTargetAEABI() && "Register-based DivRem lowering only");
|
|
unsigned Opcode = Op->getOpcode();
|
|
assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
|
|
"Invalid opcode for Div/Rem lowering");
|
|
bool isSigned = (Opcode == ISD::SDIVREM);
|
|
EVT VT = Op->getValueType(0);
|
|
Type *Ty = VT.getTypeForEVT(*DAG.getContext());
|
|
|
|
RTLIB::Libcall LC;
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default: llvm_unreachable("Unexpected request for libcall!");
|
|
case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break;
|
|
case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
|
|
case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
|
|
case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
|
|
}
|
|
|
|
SDValue InChain = DAG.getEntryNode();
|
|
|
|
TargetLowering::ArgListTy Args;
|
|
TargetLowering::ArgListEntry Entry;
|
|
for (unsigned i = 0, e = Op->getNumOperands(); i != e; ++i) {
|
|
EVT ArgVT = Op->getOperand(i).getValueType();
|
|
Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
|
|
Entry.Node = Op->getOperand(i);
|
|
Entry.Ty = ArgTy;
|
|
Entry.isSExt = isSigned;
|
|
Entry.isZExt = !isSigned;
|
|
Args.push_back(Entry);
|
|
}
|
|
|
|
SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
|
|
getPointerTy());
|
|
|
|
Type *RetTy = (Type*)StructType::get(Ty, Ty, NULL);
|
|
|
|
SDLoc dl(Op);
|
|
TargetLowering::
|
|
CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, true,
|
|
0, getLibcallCallingConv(LC), /*isTailCall=*/false,
|
|
/*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
|
|
Callee, Args, DAG, dl);
|
|
std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
|
|
|
|
return CallInfo.first;
|
|
}
|
|
|
|
bool
|
|
ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
|
|
// The ARM target isn't yet aware of offsets.
|
|
return false;
|
|
}
|
|
|
|
bool ARM::isBitFieldInvertedMask(unsigned v) {
|
|
if (v == 0xffffffff)
|
|
return false;
|
|
|
|
// there can be 1's on either or both "outsides", all the "inside"
|
|
// bits must be 0's
|
|
unsigned TO = CountTrailingOnes_32(v);
|
|
unsigned LO = CountLeadingOnes_32(v);
|
|
v = (v >> TO) << TO;
|
|
v = (v << LO) >> LO;
|
|
return v == 0;
|
|
}
|
|
|
|
/// isFPImmLegal - Returns true if the target can instruction select the
|
|
/// specified FP immediate natively. If false, the legalizer will
|
|
/// materialize the FP immediate as a load from a constant pool.
|
|
bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
|
|
if (!Subtarget->hasVFP3())
|
|
return false;
|
|
if (VT == MVT::f32)
|
|
return ARM_AM::getFP32Imm(Imm) != -1;
|
|
if (VT == MVT::f64)
|
|
return ARM_AM::getFP64Imm(Imm) != -1;
|
|
return false;
|
|
}
|
|
|
|
/// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
|
|
/// MemIntrinsicNodes. The associated MachineMemOperands record the alignment
|
|
/// specified in the intrinsic calls.
|
|
bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
|
|
const CallInst &I,
|
|
unsigned Intrinsic) const {
|
|
switch (Intrinsic) {
|
|
case Intrinsic::arm_neon_vld1:
|
|
case Intrinsic::arm_neon_vld2:
|
|
case Intrinsic::arm_neon_vld3:
|
|
case Intrinsic::arm_neon_vld4:
|
|
case Intrinsic::arm_neon_vld2lane:
|
|
case Intrinsic::arm_neon_vld3lane:
|
|
case Intrinsic::arm_neon_vld4lane: {
|
|
Info.opc = ISD::INTRINSIC_W_CHAIN;
|
|
// Conservatively set memVT to the entire set of vectors loaded.
|
|
uint64_t NumElts = getDataLayout()->getTypeAllocSize(I.getType()) / 8;
|
|
Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
|
|
Info.ptrVal = I.getArgOperand(0);
|
|
Info.offset = 0;
|
|
Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
|
|
Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
|
|
Info.vol = false; // volatile loads with NEON intrinsics not supported
|
|
Info.readMem = true;
|
|
Info.writeMem = false;
|
|
return true;
|
|
}
|
|
case Intrinsic::arm_neon_vst1:
|
|
case Intrinsic::arm_neon_vst2:
|
|
case Intrinsic::arm_neon_vst3:
|
|
case Intrinsic::arm_neon_vst4:
|
|
case Intrinsic::arm_neon_vst2lane:
|
|
case Intrinsic::arm_neon_vst3lane:
|
|
case Intrinsic::arm_neon_vst4lane: {
|
|
Info.opc = ISD::INTRINSIC_VOID;
|
|
// Conservatively set memVT to the entire set of vectors stored.
|
|
unsigned NumElts = 0;
|
|
for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
|
|
Type *ArgTy = I.getArgOperand(ArgI)->getType();
|
|
if (!ArgTy->isVectorTy())
|
|
break;
|
|
NumElts += getDataLayout()->getTypeAllocSize(ArgTy) / 8;
|
|
}
|
|
Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
|
|
Info.ptrVal = I.getArgOperand(0);
|
|
Info.offset = 0;
|
|
Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
|
|
Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
|
|
Info.vol = false; // volatile stores with NEON intrinsics not supported
|
|
Info.readMem = false;
|
|
Info.writeMem = true;
|
|
return true;
|
|
}
|
|
case Intrinsic::arm_ldrex: {
|
|
PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
|
|
Info.opc = ISD::INTRINSIC_W_CHAIN;
|
|
Info.memVT = MVT::getVT(PtrTy->getElementType());
|
|
Info.ptrVal = I.getArgOperand(0);
|
|
Info.offset = 0;
|
|
Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
|
|
Info.vol = true;
|
|
Info.readMem = true;
|
|
Info.writeMem = false;
|
|
return true;
|
|
}
|
|
case Intrinsic::arm_strex: {
|
|
PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
|
|
Info.opc = ISD::INTRINSIC_W_CHAIN;
|
|
Info.memVT = MVT::getVT(PtrTy->getElementType());
|
|
Info.ptrVal = I.getArgOperand(1);
|
|
Info.offset = 0;
|
|
Info.align = getDataLayout()->getABITypeAlignment(PtrTy->getElementType());
|
|
Info.vol = true;
|
|
Info.readMem = false;
|
|
Info.writeMem = true;
|
|
return true;
|
|
}
|
|
case Intrinsic::arm_strexd: {
|
|
Info.opc = ISD::INTRINSIC_W_CHAIN;
|
|
Info.memVT = MVT::i64;
|
|
Info.ptrVal = I.getArgOperand(2);
|
|
Info.offset = 0;
|
|
Info.align = 8;
|
|
Info.vol = true;
|
|
Info.readMem = false;
|
|
Info.writeMem = true;
|
|
return true;
|
|
}
|
|
case Intrinsic::arm_ldrexd: {
|
|
Info.opc = ISD::INTRINSIC_W_CHAIN;
|
|
Info.memVT = MVT::i64;
|
|
Info.ptrVal = I.getArgOperand(0);
|
|
Info.offset = 0;
|
|
Info.align = 8;
|
|
Info.vol = true;
|
|
Info.readMem = true;
|
|
Info.writeMem = false;
|
|
return true;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|