1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 20:23:11 +01:00
llvm-mirror/lib/Target/X86/X86ScheduleZnver1.td
Craig Topper 355c80f441 [X86] Add SchedWrites for CMOV and SETCC. Use them to remove InstRWs.
Summary:
Cmov and setcc previously used WriteALU, but on Intel processors at least they are more restricted than basic ALU ops.

This patch adds new SchedWrites for them and removes the InstRWs. I had to leave some InstRWs for CMOVA/CMOVBE and SETA/SETBE because those have an extra uop relative to the other condition codes on Intel CPUs.

The test changes are due to fixing a missing ZnAGU dependency on the memory form of setcc.

Reviewers: RKSimon, andreadb, GGanesh

Reviewed By: RKSimon

Subscribers: GGanesh, llvm-commits

Differential Revision: https://reviews.llvm.org/D45380

llvm-svn: 329539
2018-04-08 17:53:18 +00:00

1692 lines
45 KiB
TableGen

//=- X86ScheduleZnver1.td - X86 Znver1 Scheduling -------------*- tablegen -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the machine model for Znver1 to support instruction
// scheduling and other instruction cost heuristics.
//
//===----------------------------------------------------------------------===//
def Znver1Model : SchedMachineModel {
// Zen can decode 4 instructions per cycle.
let IssueWidth = 4;
// Based on the reorder buffer we define MicroOpBufferSize
let MicroOpBufferSize = 192;
let LoadLatency = 4;
let MispredictPenalty = 17;
let HighLatency = 25;
let PostRAScheduler = 1;
// FIXME: This variable is required for incomplete model.
// We haven't catered all instructions.
// So, we reset the value of this variable so as to
// say that the model is incomplete.
let CompleteModel = 0;
}
let SchedModel = Znver1Model in {
// Zen can issue micro-ops to 10 different units in one cycle.
// These are
// * Four integer ALU units (ZALU0, ZALU1, ZALU2, ZALU3)
// * Two AGU units (ZAGU0, ZAGU1)
// * Four FPU units (ZFPU0, ZFPU1, ZFPU2, ZFPU3)
// AGUs feed load store queues @two loads and 1 store per cycle.
// Four ALU units are defined below
def ZnALU0 : ProcResource<1>;
def ZnALU1 : ProcResource<1>;
def ZnALU2 : ProcResource<1>;
def ZnALU3 : ProcResource<1>;
// Two AGU units are defined below
def ZnAGU0 : ProcResource<1>;
def ZnAGU1 : ProcResource<1>;
// Four FPU units are defined below
def ZnFPU0 : ProcResource<1>;
def ZnFPU1 : ProcResource<1>;
def ZnFPU2 : ProcResource<1>;
def ZnFPU3 : ProcResource<1>;
// FPU grouping
def ZnFPU : ProcResGroup<[ZnFPU0, ZnFPU1, ZnFPU2, ZnFPU3]>;
def ZnFPU013 : ProcResGroup<[ZnFPU0, ZnFPU1, ZnFPU3]>;
def ZnFPU01 : ProcResGroup<[ZnFPU0, ZnFPU1]>;
def ZnFPU12 : ProcResGroup<[ZnFPU1, ZnFPU2]>;
def ZnFPU13 : ProcResGroup<[ZnFPU1, ZnFPU3]>;
def ZnFPU23 : ProcResGroup<[ZnFPU2, ZnFPU3]>;
def ZnFPU02 : ProcResGroup<[ZnFPU0, ZnFPU2]>;
def ZnFPU03 : ProcResGroup<[ZnFPU0, ZnFPU3]>;
// Below are the grouping of the units.
// Micro-ops to be issued to multiple units are tackled this way.
// ALU grouping
// ZnALU03 - 0,3 grouping
def ZnALU03: ProcResGroup<[ZnALU0, ZnALU3]>;
// 56 Entry (14x4 entries) Int Scheduler
def ZnALU : ProcResGroup<[ZnALU0, ZnALU1, ZnALU2, ZnALU3]> {
let BufferSize=56;
}
// 28 Entry (14x2) AGU group. AGUs can't be used for all ALU operations
// but are relevant for some instructions
def ZnAGU : ProcResGroup<[ZnAGU0, ZnAGU1]> {
let BufferSize=28;
}
// Integer Multiplication issued on ALU1.
def ZnMultiplier : ProcResource<1>;
// Integer division issued on ALU2.
def ZnDivider : ProcResource<1>;
// 4 Cycles load-to use Latency is captured
def : ReadAdvance<ReadAfterLd, 4>;
// (a folded load is an instruction that loads and does some operation)
// Ex: ADDPD xmm,[mem]-> This instruction has two micro-ops
// Instructions with folded loads are usually micro-fused, so they only appear
// as two micro-ops.
// a. load and
// b. addpd
// This multiclass is for folded loads for integer units.
multiclass ZnWriteResPair<X86FoldableSchedWrite SchedRW,
list<ProcResourceKind> ExePorts,
int Lat, list<int> Res = [1], int UOps = 1> {
// Register variant takes 1-cycle on Execution Port.
def : WriteRes<SchedRW, ExePorts> {
let Latency = Lat;
let ResourceCycles = Res;
let NumMicroOps = UOps;
}
// Memory variant also uses a cycle on ZnAGU
// adds 4 cycles to the latency.
def : WriteRes<SchedRW.Folded, !listconcat([ZnAGU], ExePorts)> {
let Latency = !add(Lat, 4);
let ResourceCycles = !listconcat([1], Res);
let NumMicroOps = !add(UOps, 1);
}
}
// This multiclass is for folded loads for floating point units.
multiclass ZnWriteResFpuPair<X86FoldableSchedWrite SchedRW,
list<ProcResourceKind> ExePorts,
int Lat, list<int> Res = [1], int UOps = 1> {
// Register variant takes 1-cycle on Execution Port.
def : WriteRes<SchedRW, ExePorts> {
let Latency = Lat;
let ResourceCycles = Res;
let NumMicroOps = UOps;
}
// Memory variant also uses a cycle on ZnAGU
// adds 7 cycles to the latency.
def : WriteRes<SchedRW.Folded, !listconcat([ZnAGU], ExePorts)> {
let Latency = !add(Lat, 7);
let ResourceCycles = !listconcat([1], Res);
let NumMicroOps = UOps;
}
}
// WriteRMW is set for instructions with Memory write
// operation in codegen
def : WriteRes<WriteRMW, [ZnAGU]>;
def : WriteRes<WriteStore, [ZnAGU]>;
def : WriteRes<WriteMove, [ZnALU]>;
def : WriteRes<WriteLoad, [ZnAGU]> { let Latency = 8; }
def : WriteRes<WriteZero, []>;
def : WriteRes<WriteLEA, [ZnALU]>;
defm : ZnWriteResPair<WriteALU, [ZnALU], 1>;
defm : ZnWriteResPair<WriteIMul, [ZnALU1, ZnMultiplier], 4>;
defm : ZnWriteResPair<WriteShift, [ZnALU], 1>;
defm : ZnWriteResPair<WriteJump, [ZnALU], 1>;
defm : ZnWriteResFpuPair<WriteCRC32, [ZnFPU0], 3>;
defm : ZnWriteResPair<WriteCMOV, [ZnALU], 1>;
def : WriteRes<WriteSETCC, [ZnALU]>;
def : WriteRes<WriteSETCCStore, [ZnALU, ZnAGU]>;
// Bit counts.
defm : ZnWriteResPair<WriteBitScan, [ZnALU], 3>;
defm : ZnWriteResPair<WriteLZCNT, [ZnALU], 2>;
defm : ZnWriteResPair<WriteTZCNT, [ZnALU], 2>;
defm : ZnWriteResPair<WritePOPCNT, [ZnALU], 1>;
// Treat misc copies as a move.
def : InstRW<[WriteMove], (instrs COPY)>;
// BMI1 BEXTR, BMI2 BZHI
defm : ZnWriteResPair<WriteBEXTR, [ZnALU], 1>;
defm : ZnWriteResPair<WriteBZHI, [ZnALU], 1>;
// IDIV
def : WriteRes<WriteIDiv, [ZnALU2, ZnDivider]> {
let Latency = 41;
let ResourceCycles = [1, 41];
}
def : WriteRes<WriteIDivLd, [ZnALU2, ZnAGU, ZnDivider]> {
let Latency = 45;
let ResourceCycles = [1, 4, 41];
}
// IMULH
def : WriteRes<WriteIMulH, [ZnALU1, ZnMultiplier]>{
let Latency = 4;
}
// Floating point operations
def : WriteRes<WriteFStore, [ZnAGU]>;
def : WriteRes<WriteFMove, [ZnFPU]>;
def : WriteRes<WriteFLoad, [ZnAGU]> { let Latency = 8; }
defm : ZnWriteResFpuPair<WriteFHAdd, [ZnFPU0], 3>;
defm : ZnWriteResFpuPair<WriteFAdd, [ZnFPU0], 3>;
defm : ZnWriteResFpuPair<WriteFBlend, [ZnFPU01], 1>;
defm : ZnWriteResFpuPair<WriteFVarBlend, [ZnFPU01], 1>;
defm : ZnWriteResFpuPair<WriteVarBlend, [ZnFPU0], 1>;
defm : ZnWriteResFpuPair<WriteCvtI2F, [ZnFPU3], 5>;
defm : ZnWriteResFpuPair<WriteCvtF2F, [ZnFPU3], 5>;
defm : ZnWriteResFpuPair<WriteCvtF2I, [ZnFPU3], 5>;
defm : ZnWriteResFpuPair<WriteFDiv, [ZnFPU3], 15>;
defm : ZnWriteResFpuPair<WriteFShuffle, [ZnFPU12], 1>;
defm : ZnWriteResFpuPair<WriteFMul, [ZnFPU0], 5>;
defm : ZnWriteResFpuPair<WriteFMA, [ZnFPU03], 5>;
defm : ZnWriteResFpuPair<WriteFRcp, [ZnFPU01], 5>;
defm : ZnWriteResFpuPair<WriteFRsqrt, [ZnFPU01], 5>;
defm : ZnWriteResFpuPair<WriteFSqrt, [ZnFPU3], 20>;
// Vector integer operations which uses FPU units
def : WriteRes<WriteVecStore, [ZnAGU]>;
def : WriteRes<WriteVecMove, [ZnFPU]>;
def : WriteRes<WriteVecLoad, [ZnAGU]> { let Latency = 8; }
defm : ZnWriteResFpuPair<WriteVecShift, [ZnFPU], 1>;
defm : ZnWriteResFpuPair<WriteVecLogic, [ZnFPU], 1>;
defm : ZnWriteResFpuPair<WritePHAdd, [ZnFPU], 1>;
defm : ZnWriteResFpuPair<WriteVecALU, [ZnFPU], 1>;
defm : ZnWriteResFpuPair<WriteVecIMul, [ZnFPU0], 4>;
defm : ZnWriteResFpuPair<WritePMULLD, [ZnFPU0], 4>; // FIXME
defm : ZnWriteResFpuPair<WriteShuffle, [ZnFPU], 1>;
defm : ZnWriteResFpuPair<WriteBlend, [ZnFPU01], 1>;
defm : ZnWriteResFpuPair<WriteShuffle256, [ZnFPU], 2>;
// Vector Shift Operations
defm : ZnWriteResFpuPair<WriteVarVecShift, [ZnFPU12], 1>;
// MOVMSK Instructions.
def : WriteRes<WriteFMOVMSK, [ZnFPU2]>;
def : WriteRes<WriteVecMOVMSK, [ZnFPU2]>;
def : WriteRes<WriteMMXMOVMSK, [ZnFPU2]>;
// AES Instructions.
defm : ZnWriteResFpuPair<WriteAESDecEnc, [ZnFPU01], 4>;
defm : ZnWriteResFpuPair<WriteAESIMC, [ZnFPU01], 4>;
defm : ZnWriteResFpuPair<WriteAESKeyGen, [ZnFPU01], 4>;
def : WriteRes<WriteFence, [ZnAGU]>;
def : WriteRes<WriteNop, []>;
// Following instructions with latency=100 are microcoded.
// We set long latency so as to block the entire pipeline.
defm : ZnWriteResFpuPair<WriteFShuffle256, [ZnFPU], 100>;
//Microcoded Instructions
let Latency = 100 in {
def : WriteRes<WriteMicrocoded, []>;
def : WriteRes<WriteSystem, []>;
def : WriteRes<WriteMPSAD, []>;
def : WriteRes<WriteMPSADLd, []>;
def : WriteRes<WriteCLMul, []>;
def : WriteRes<WriteCLMulLd, []>;
def : WriteRes<WritePCmpIStrM, []>;
def : WriteRes<WritePCmpIStrMLd, []>;
def : WriteRes<WritePCmpEStrI, []>;
def : WriteRes<WritePCmpEStrILd, []>;
def : WriteRes<WritePCmpEStrM, []>;
def : WriteRes<WritePCmpEStrMLd, []>;
def : WriteRes<WritePCmpIStrI, []>;
def : WriteRes<WritePCmpIStrILd, []>;
}
//=== Regex based itineraries ===//
// Notation:
// - r: register.
// - m = memory.
// - i = immediate
// - mm: 64 bit mmx register.
// - x = 128 bit xmm register.
// - (x)mm = mmx or xmm register.
// - y = 256 bit ymm register.
// - v = any vector register.
//=== Integer Instructions ===//
//-- Move instructions --//
// MOV.
// r16,m.
def : InstRW<[WriteALULd, ReadAfterLd], (instregex "MOV16rm")>;
// MOVSX, MOVZX.
// r,m.
def : InstRW<[WriteLoad], (instregex "MOV(S|Z)X32rm(8|16)")>;
// XCHG.
// r,r.
def ZnWriteXCHG : SchedWriteRes<[ZnALU]> {
let NumMicroOps = 2;
let ResourceCycles = [2];
}
def : InstRW<[ZnWriteXCHG], (instregex "XCHG(8|16|32|64)rr", "XCHG(16|32|64)ar")>;
// r,m.
def ZnWriteXCHGrm : SchedWriteRes<[ZnAGU, ZnALU]> {
let Latency = 5;
let NumMicroOps = 2;
}
def : InstRW<[ZnWriteXCHGrm, ReadAfterLd], (instregex "XCHG(8|16|32|64)rm")>;
def : InstRW<[WriteMicrocoded], (instregex "XLAT")>;
// POP16.
// r.
def ZnWritePop16r : SchedWriteRes<[ZnAGU]>{
let Latency = 5;
let NumMicroOps = 2;
}
def : InstRW<[ZnWritePop16r], (instregex "POP16rmm")>;
def : InstRW<[WriteMicrocoded], (instregex "POPF(16|32)")>;
def : InstRW<[WriteMicrocoded], (instregex "POPA(16|32)")>;
// PUSH.
// r. Has default values.
// m.
def ZnWritePUSH : SchedWriteRes<[ZnAGU]>{
let Latency = 4;
}
def : InstRW<[ZnWritePUSH], (instregex "PUSH(16|32)rmm")>;
//PUSHF
def : InstRW<[WriteMicrocoded], (instregex "PUSHF(16|32)")>;
// PUSHA.
def ZnWritePushA : SchedWriteRes<[ZnAGU]> {
let Latency = 8;
}
def : InstRW<[ZnWritePushA], (instregex "PUSHA(16|32)")>;
//LAHF
def : InstRW<[WriteMicrocoded], (instregex "LAHF")>;
// SAHF.
def ZnWriteSAHF : SchedWriteRes<[ZnALU]> {
let Latency = 2;
let NumMicroOps = 2;
}
def : InstRW<[ZnWriteSAHF], (instregex "SAHF")>;
// BSWAP.
def ZnWriteBSwap : SchedWriteRes<[ZnALU]> {
let ResourceCycles = [4];
}
def : InstRW<[ZnWriteBSwap], (instregex "BSWAP")>;
// MOVBE.
// r,m.
def ZnWriteMOVBE : SchedWriteRes<[ZnAGU, ZnALU]> {
let Latency = 5;
}
def : InstRW<[ZnWriteMOVBE, ReadAfterLd], (instregex "MOVBE(16|32|64)rm")>;
// m16,r16.
def : InstRW<[ZnWriteMOVBE], (instregex "MOVBE(16|32|64)mr")>;
//-- Arithmetic instructions --//
// ADD SUB.
// m,r/i.
def : InstRW<[WriteALULd], (instregex "(ADD|SUB)(8|16|32|64)m(r|i)",
"(ADD|SUB)(8|16|32|64)mi8",
"(ADD|SUB)64mi32")>;
// ADC SBB.
// r,r/i.
def : InstRW<[WriteALU], (instregex "(ADC|SBB)(8|16|32|64)r(r|i)",
"(ADC|SBB)(16|32|64)ri8",
"(ADC|SBB)64ri32")>;
// r,m.
def : InstRW<[WriteALULd, ReadAfterLd],
(instregex "(ADC|SBB)(8|16|32|64)rm")>;
// m,r/i.
def : InstRW<[WriteALULd],
(instregex "(ADC|SBB)(8|16|32|64)m(r|i)",
"(ADC|SBB)(16|32|64)mi8",
"(ADC|SBB)64mi32")>;
// INC DEC NOT NEG.
// m.
def : InstRW<[WriteALULd],
(instregex "(INC|DEC|NOT|NEG)(8|16|32|64)m")>;
// MUL IMUL.
// r16.
def ZnWriteMul16 : SchedWriteRes<[ZnALU1, ZnMultiplier]> {
let Latency = 3;
}
def : InstRW<[ZnWriteMul16], (instrs IMUL16r, MUL16r)>;
def : InstRW<[ZnWriteMul16], (instrs IMUL16rr, IMUL16rri, IMUL16rri8)>; // TODO: is this right?
def : InstRW<[ZnWriteMul16], (instrs IMUL16rm, IMUL16rmi, IMUL16rmi8)>; // TODO: this is definitely wrong but matches what the instregex did.
// m16.
def ZnWriteMul16Ld : SchedWriteRes<[ZnAGU, ZnALU1, ZnMultiplier]> {
let Latency = 8;
}
def : InstRW<[ZnWriteMul16Ld, ReadAfterLd], (instrs IMUL16m, MUL16m)>;
// r32.
def ZnWriteMul32 : SchedWriteRes<[ZnALU1, ZnMultiplier]> {
let Latency = 3;
}
def : InstRW<[ZnWriteMul32], (instrs IMUL32r, MUL32r)>;
def : InstRW<[ZnWriteMul32], (instrs IMUL32rr, IMUL32rri, IMUL32rri8)>; // TODO: is this right?
def : InstRW<[ZnWriteMul32], (instrs IMUL32rm, IMUL32rmi, IMUL32rmi8)>; // TODO: this is definitely wrong but matches what the instregex did.
// m32.
def ZnWriteMul32Ld : SchedWriteRes<[ZnAGU, ZnALU1, ZnMultiplier]> {
let Latency = 8;
}
def : InstRW<[ZnWriteMul32Ld, ReadAfterLd], (instrs IMUL32m, MUL32m)>;
// r64.
def ZnWriteMul64 : SchedWriteRes<[ZnALU1, ZnMultiplier]> {
let Latency = 4;
let NumMicroOps = 2;
}
def : InstRW<[ZnWriteMul64], (instrs IMUL64r, MUL64r)>;
def : InstRW<[ZnWriteMul64], (instrs IMUL64rr, IMUL64rri8, IMUL64rri32)>; // TODO: is this right?
def : InstRW<[ZnWriteMul64], (instrs IMUL64rm, IMUL64rmi32, IMUL64rmi8)>; // TODO: this is definitely wrong but matches what the instregex did.
// m64.
def ZnWriteMul64Ld : SchedWriteRes<[ZnAGU, ZnALU1, ZnMultiplier]> {
let Latency = 9;
let NumMicroOps = 2;
}
def : InstRW<[ZnWriteMul64Ld, ReadAfterLd], (instrs IMUL64m, MUL64m)>;
// MULX.
// r32,r32,r32.
def ZnWriteMulX32 : SchedWriteRes<[ZnALU1, ZnMultiplier]> {
let Latency = 3;
let ResourceCycles = [1, 2];
}
def : InstRW<[ZnWriteMulX32], (instrs MULX32rr)>;
// r32,r32,m32.
def ZnWriteMulX32Ld : SchedWriteRes<[ZnAGU, ZnALU1, ZnMultiplier]> {
let Latency = 8;
let ResourceCycles = [1, 2, 2];
}
def : InstRW<[ZnWriteMulX32Ld, ReadAfterLd], (instrs MULX32rm)>;
// r64,r64,r64.
def ZnWriteMulX64 : SchedWriteRes<[ZnALU1]> {
let Latency = 3;
}
def : InstRW<[ZnWriteMulX64], (instrs MULX64rr)>;
// r64,r64,m64.
def ZnWriteMulX64Ld : SchedWriteRes<[ZnAGU, ZnALU1, ZnMultiplier]> {
let Latency = 8;
}
def : InstRW<[ZnWriteMulX64Ld, ReadAfterLd], (instrs MULX64rm)>;
// DIV, IDIV.
// r8.
def ZnWriteDiv8 : SchedWriteRes<[ZnALU2, ZnDivider]> {
let Latency = 15;
}
def : InstRW<[ZnWriteDiv8], (instregex "DIV8r", "IDIV8r")>;
// r16.
def ZnWriteDiv16 : SchedWriteRes<[ZnALU2, ZnDivider]> {
let Latency = 17;
let NumMicroOps = 2;
}
def : InstRW<[ZnWriteDiv16], (instregex "DIV16r", "IDIV16r")>;
// r32.
def ZnWriteDiv32 : SchedWriteRes<[ZnALU2, ZnDivider]> {
let Latency = 25;
let NumMicroOps = 2;
}
def : InstRW<[ZnWriteDiv32], (instregex "DIV32r", "IDIV32r")>;
// r64.
def ZnWriteDiv64 : SchedWriteRes<[ZnALU2, ZnDivider]> {
let Latency = 41;
let NumMicroOps = 2;
}
def : InstRW<[ZnWriteDiv64], (instregex "DIV64r", "IDIV64r")>;
//-- Control transfer instructions --//
// J(E|R)CXZ.
def ZnWriteJCXZ : SchedWriteRes<[ZnALU03]>;
def : InstRW<[ZnWriteJCXZ], (instrs JCXZ, JECXZ, JRCXZ)>;
// INTO
def : InstRW<[WriteMicrocoded], (instregex "INTO")>;
// LOOP.
def ZnWriteLOOP : SchedWriteRes<[ZnALU03]>;
def : InstRW<[ZnWriteLOOP], (instrs LOOP)>;
// LOOP(N)E, LOOP(N)Z
def ZnWriteLOOPE : SchedWriteRes<[ZnALU03]>;
def : InstRW<[ZnWriteLOOPE], (instrs LOOPE, LOOPNE)>;
// CALL.
// r.
def ZnWriteCALLr : SchedWriteRes<[ZnAGU, ZnALU03]>;
def : InstRW<[ZnWriteCALLr], (instregex "CALL(16|32)r")>;
def : InstRW<[WriteMicrocoded], (instregex "CALL(16|32)m")>;
// RET.
def ZnWriteRET : SchedWriteRes<[ZnALU03]> {
let NumMicroOps = 2;
}
def : InstRW<[ZnWriteRET], (instregex "RET(L|Q|W)", "LRET(L|Q|W)",
"IRET(16|32|64)")>;
//-- Logic instructions --//
// AND OR XOR.
// m,r/i.
def : InstRW<[WriteALULd],
(instregex "(AND|OR|XOR)(8|16|32|64)m(r|i)",
"(AND|OR|XOR)(8|16|32|64)mi8", "(AND|OR|XOR)64mi32")>;
// ANDN.
// r,r.
def : InstRW<[WriteALU], (instregex "ANDN(32|64)rr")>;
// r,m.
def : InstRW<[WriteALULd, ReadAfterLd], (instregex "ANDN(32|64)rm")>;
// Define ALU latency variants
def ZnWriteALULat2 : SchedWriteRes<[ZnALU]> {
let Latency = 2;
}
def ZnWriteALULat2Ld : SchedWriteRes<[ZnAGU, ZnALU]> {
let Latency = 6;
}
// BT.
// r,r/i.
def : InstRW<[WriteShift], (instregex "BT(16|32|64)r(r|i8)")>;
def : InstRW<[WriteShiftLd], (instregex "BT(16|32|64)mr")>;
def : InstRW<[WriteShiftLd], (instregex "BT(16|32|64)mi8")>;
// BTR BTS BTC.
// r,r,i.
def ZnWriteBTRSC : SchedWriteRes<[ZnALU]> {
let Latency = 2;
let NumMicroOps = 2;
}
def : InstRW<[ZnWriteBTRSC], (instregex "BT(R|S|C)(16|32|64)r(r|i8)")>;
// m,r,i.
def ZnWriteBTRSCm : SchedWriteRes<[ZnAGU, ZnALU]> {
let Latency = 6;
let NumMicroOps = 2;
}
// m,r,i.
def : InstRW<[ZnWriteBTRSCm], (instregex "BT(R|S|C)(16|32|64)m(r|i8)")>;
// BLSI BLSMSK BLSR.
// r,r.
def : InstRW<[ZnWriteALULat2], (instregex "BLS(I|MSK|R)(32|64)rr")>;
// r,m.
def : InstRW<[ZnWriteALULat2Ld], (instregex "BLS(I|MSK|R)(32|64)rm")>;
// CLD STD.
def : InstRW<[WriteALU], (instregex "STD", "CLD")>;
// PDEP PEXT.
// r,r,r.
def : InstRW<[WriteMicrocoded], (instregex "PDEP(32|64)rr", "PEXT(32|64)rr")>;
// r,r,m.
def : InstRW<[WriteMicrocoded], (instregex "PDEP(32|64)rm", "PEXT(32|64)rm")>;
// ROR ROL.
def : InstRW<[WriteShift], (instregex "RO(R|L)(8|16|32|64)r1")>;
// RCR RCL.
// r,1.
def : InstRW<[WriteShift], (instregex "RC(R|L)(8|16|32|64)r1")>;
// m,1.
def : InstRW<[WriteMicrocoded], (instregex "RC(R|L)(8|16|32|64)m1")>;
// i.
def : InstRW<[WriteShift], (instregex "RC(R|L)(8|16|32|64)r(i|CL)")>;
// m,i.
def : InstRW<[WriteMicrocoded], (instregex "RC(R|L)(8|16|32|64)m(i|CL)")>;
// SHR SHL SAR.
// m,i.
def : InstRW<[WriteShiftLd], (instregex "S(A|H)(R|L)(8|16|32|64)m(i|1)")>;
// SHRD SHLD.
// r,r
def : InstRW<[WriteShift], (instregex "SH(R|L)D(16|32|64)rri8")>;
// m,r
def : InstRW<[WriteShiftLd], (instregex "SH(R|L)D(16|32|64)mri8")>;
// r,r,cl.
def : InstRW<[WriteMicrocoded], (instregex "SHLD(16|32|64)rrCL")>;
// r,r,cl.
def : InstRW<[WriteMicrocoded], (instregex "SHRD(16|32|64)rrCL")>;
// m,r,cl.
def : InstRW<[WriteMicrocoded], (instregex "SH(R|L)D(16|32|64)mrCL")>;
//-- Misc instructions --//
// CMPXCHG.
def ZnWriteCMPXCHG : SchedWriteRes<[ZnAGU, ZnALU]> {
let Latency = 8;
let NumMicroOps = 5;
}
def : InstRW<[ZnWriteCMPXCHG], (instregex "CMPXCHG(8|16|32|64)rm")>;
// CMPXCHG8B.
def ZnWriteCMPXCHG8B : SchedWriteRes<[ZnAGU, ZnALU]> {
let NumMicroOps = 18;
}
def : InstRW<[ZnWriteCMPXCHG8B], (instregex "CMPXCHG8B")>;
def : InstRW<[WriteMicrocoded], (instregex "CMPXCHG16B")>;
// LEAVE
def ZnWriteLEAVE : SchedWriteRes<[ZnALU, ZnAGU]> {
let Latency = 8;
let NumMicroOps = 2;
}
def : InstRW<[ZnWriteLEAVE], (instregex "LEAVE")>;
// PAUSE.
def : InstRW<[WriteMicrocoded], (instregex "PAUSE")>;
// RDTSC.
def : InstRW<[WriteMicrocoded], (instregex "RDTSC")>;
// RDPMC.
def : InstRW<[WriteMicrocoded], (instregex "RDPMC")>;
// RDRAND.
def : InstRW<[WriteMicrocoded], (instregex "RDRAND(16|32|64)r")>;
// XGETBV.
def : InstRW<[WriteMicrocoded], (instregex "XGETBV")>;
//-- String instructions --//
// CMPS.
def : InstRW<[WriteMicrocoded], (instregex "CMPS(B|L|Q|W)")>;
// LODSB/W.
def : InstRW<[WriteMicrocoded], (instregex "LODS(B|W)")>;
// LODSD/Q.
def : InstRW<[WriteMicrocoded], (instregex "LODS(L|Q)")>;
// MOVS.
def : InstRW<[WriteMicrocoded], (instregex "MOVS(B|L|Q|W)")>;
// SCAS.
def : InstRW<[WriteMicrocoded], (instregex "SCAS(B|W|L|Q)")>;
// STOS
def : InstRW<[WriteMicrocoded], (instregex "STOS(B|L|Q|W)")>;
// XADD.
def : InstRW<[WriteMicrocoded], (instregex "XADD(8|16|32|64)rm")>;
//=== Floating Point x87 Instructions ===//
//-- Move instructions --//
def ZnWriteFLDr : SchedWriteRes<[ZnFPU13]> ;
def ZnWriteSTr: SchedWriteRes<[ZnFPU23]> {
let Latency = 5;
let NumMicroOps = 2;
}
// LD_F.
// r.
def : InstRW<[ZnWriteFLDr], (instregex "LD_Frr")>;
// m.
def ZnWriteLD_F80m : SchedWriteRes<[ZnAGU, ZnFPU13]> {
let NumMicroOps = 2;
}
def : InstRW<[ZnWriteLD_F80m], (instregex "LD_F80m")>;
// FBLD.
def : InstRW<[WriteMicrocoded], (instregex "FBLDm")>;
// FST(P).
// r.
def : InstRW<[ZnWriteSTr], (instregex "ST_(F|FP)rr")>;
// m80.
def ZnWriteST_FP80m : SchedWriteRes<[ZnAGU, ZnFPU23]> {
let Latency = 5;
}
def : InstRW<[ZnWriteST_FP80m], (instregex "ST_FP80m")>;
// FBSTP.
// m80.
def : InstRW<[WriteMicrocoded], (instregex "FBSTPm")>;
def ZnWriteFXCH : SchedWriteRes<[ZnFPU]>;
// FXCHG.
def : InstRW<[ZnWriteFXCH], (instregex "XCH_F")>;
// FILD.
def ZnWriteFILD : SchedWriteRes<[ZnAGU, ZnFPU3]> {
let Latency = 11;
let NumMicroOps = 2;
}
def : InstRW<[ZnWriteFILD], (instregex "ILD_F(16|32|64)m")>;
// FIST(P) FISTTP.
def ZnWriteFIST : SchedWriteRes<[ZnAGU, ZnFPU23]> {
let Latency = 12;
}
def : InstRW<[ZnWriteFIST], (instregex "IS(T|TT)_(F|FP)(16|32|64)m")>;
def ZnWriteFPU13 : SchedWriteRes<[ZnAGU, ZnFPU13]> {
let Latency = 8;
}
def ZnWriteFPU3 : SchedWriteRes<[ZnAGU, ZnFPU3]> {
let Latency = 11;
}
// FLDZ.
def : InstRW<[ZnWriteFPU13], (instregex "LD_F0")>;
// FLD1.
def : InstRW<[ZnWriteFPU3], (instregex "LD_F1")>;
// FLDPI FLDL2E etc.
def : InstRW<[ZnWriteFPU3], (instregex "FLDPI", "FLDL2(T|E)", "FLDL(G|N)2")>;
def : InstRW<[WriteMicrocoded], (instregex "CMOV(B|BE|E|P|NB|NBE|NE|NP)_F")>;
// FNSTSW.
// AX.
def : InstRW<[WriteMicrocoded], (instregex "FNSTSW16r")>;
// m16.
def : InstRW<[WriteMicrocoded], (instregex "FNSTSWm")>;
// FLDCW.
def : InstRW<[WriteMicrocoded], (instregex "FLDCW16m")>;
// FNSTCW.
def : InstRW<[WriteMicrocoded], (instregex "FNSTCW16m")>;
// FINCSTP FDECSTP.
def : InstRW<[ZnWriteFPU3], (instregex "FINCSTP", "FDECSTP")>;
// FFREE.
def : InstRW<[ZnWriteFPU3], (instregex "FFREE")>;
// FNSAVE.
def : InstRW<[WriteMicrocoded], (instregex "FSAVEm")>;
// FRSTOR.
def : InstRW<[WriteMicrocoded], (instregex "FRSTORm")>;
//-- Arithmetic instructions --//
def ZnWriteFPU3Lat2 : SchedWriteRes<[ZnFPU3]> {
let Latency = 2;
}
def ZnWriteFPU3Lat1 : SchedWriteRes<[ZnFPU3]> ;
def ZnWriteFPU0Lat1 : SchedWriteRes<[ZnFPU0]> ;
def ZnWriteFPU0Lat1Ld : SchedWriteRes<[ZnAGU, ZnFPU0]> {
let Latency = 8;
}
// FABS.
def : InstRW<[ZnWriteFPU3Lat2], (instregex "ABS_F")>;
// FCHS.
def : InstRW<[ZnWriteFPU3Lat1], (instregex "CHS_F")>;
// FCOM(P) FUCOM(P).
// r.
def : InstRW<[ZnWriteFPU0Lat1], (instregex "COM_FST0r", "COMP_FST0r", "UCOM_Fr",
"UCOM_FPr")>;
// m.
def : InstRW<[ZnWriteFPU0Lat1Ld], (instregex "FCOM(32|64)m", "FCOMP(32|64)m")>;
// FCOMPP FUCOMPP.
// r.
def : InstRW<[ZnWriteFPU0Lat1], (instregex "FCOMPP", "UCOM_FPPr")>;
def ZnWriteFPU02 : SchedWriteRes<[ZnAGU, ZnFPU02]>
{
let Latency = 9;
}
// FCOMI(P) FUCOMI(P).
// m.
def : InstRW<[ZnWriteFPU02], (instregex "COM_FIr", "COM_FIPr", "UCOM_FIr",
"UCOM_FIPr")>;
def ZnWriteFPU03 : SchedWriteRes<[ZnAGU, ZnFPU03]>
{
let Latency = 12;
let NumMicroOps = 2;
let ResourceCycles = [1,3];
}
// FICOM(P).
def : InstRW<[ZnWriteFPU03], (instregex "FICOM(16|32)m", "FICOMP(16|32)m")>;
// FTST.
def : InstRW<[ZnWriteFPU0Lat1], (instregex "TST_F")>;
// FXAM.
def : InstRW<[ZnWriteFPU3Lat1], (instregex "FXAM")>;
// FPREM.
def : InstRW<[WriteMicrocoded], (instrs FPREM)>;
// FPREM1.
def : InstRW<[WriteMicrocoded], (instrs FPREM1)>;
// FRNDINT.
def : InstRW<[WriteMicrocoded], (instregex "FRNDINT")>;
// FSCALE.
def : InstRW<[WriteMicrocoded], (instregex "FSCALE")>;
// FXTRACT.
def : InstRW<[WriteMicrocoded], (instregex "FXTRACT")>;
// FNOP.
def : InstRW<[ZnWriteFPU0Lat1], (instregex "FNOP")>;
// WAIT.
def : InstRW<[ZnWriteFPU0Lat1], (instregex "WAIT")>;
// FNCLEX.
def : InstRW<[WriteMicrocoded], (instregex "FNCLEX")>;
// FNINIT.
def : InstRW<[WriteMicrocoded], (instregex "FNINIT")>;
//=== Integer MMX and XMM Instructions ===//
//-- Move instructions --//
// Moves from GPR to FPR incurs a penalty
def ZnWriteFPU2 : SchedWriteRes<[ZnFPU2]> {
let Latency = 3;
}
// Move to ALU doesn't incur penalty
def ZnWriteToALU2 : SchedWriteRes<[ZnFPU2]> {
let Latency = 2;
}
def ZnWriteFPU : SchedWriteRes<[ZnFPU]>;
def ZnWriteFPUY : SchedWriteRes<[ZnFPU]> {
let NumMicroOps = 2;
let Latency=2;
}
// MOVD.
// r32/64 <- (x)mm.
def : InstRW<[ZnWriteToALU2], (instregex "MMX_MOVD64grr", "MMX_MOVD64from64rr",
"VMOVPDI2DIrr", "MOVPDI2DIrr")>;
// (x)mm <- r32/64.
def : InstRW<[ZnWriteFPU2], (instregex "MMX_MOVD64rr", "MMX_MOVD64to64rr",
"VMOVDI2PDIrr", "MOVDI2PDIrr")>;
// MOVQ.
// r64 <- (x)mm.
def : InstRW<[ZnWriteToALU2], (instregex "VMOVPQIto64rr")>;
// (x)mm <- r64.
def : InstRW<[ZnWriteFPU2], (instregex "VMOV64toPQIrr")>;
// (x)mm <- (x)mm.
def : InstRW<[ZnWriteFPU], (instregex "MMX_MOVQ64rr")>;
// (V)MOVDQA/U.
// x <- x.
def : InstRW<[ZnWriteFPU], (instregex "MOVDQ(A|U)rr", "VMOVDQ(A|U)rr")>;
// y <- y.
def : InstRW<[ZnWriteFPUY], (instregex "VMOVDQ(A|U)Yrr")>;
// MOVDQ2Q.
def : InstRW<[ZnWriteFPU], (instregex "MMX_MOVDQ2Qrr")>;
// MOVQ2DQ.
def : InstRW<[ZnWriteFPU], (instregex "MMX_MOVQ2DQrr")>;
// PACKSSWB/DW.
// mm <- mm.
def ZnWriteFPU12 : SchedWriteRes<[ZnFPU12]> ;
def ZnWriteFPU12Y : SchedWriteRes<[ZnFPU12]> {
let NumMicroOps = 2;
}
def ZnWriteFPU12m : SchedWriteRes<[ZnAGU, ZnFPU12]> ;
def : InstRW<[ZnWriteFPU12], (instregex "MMX_PACKSSDWirr",
"MMX_PACKSSWBirr", "MMX_PACKUSWBirr")>;
def : InstRW<[ZnWriteFPU12m], (instregex "MMX_PACKSSDWirm",
"MMX_PACKSSWBirm", "MMX_PACKUSWBirm")>;
// VPMOVSX/ZX BW BD BQ DW DQ.
// y <- x.
def : InstRW<[ZnWriteFPU12Y], (instregex "VPMOV(SX|ZX)(BW|BQ|DW|DQ)Yrr")>;
def ZnWriteFPU013 : SchedWriteRes<[ZnFPU013]> ;
def ZnWriteFPU013Y : SchedWriteRes<[ZnFPU013]> {
let Latency = 2;
}
def ZnWriteFPU013m : SchedWriteRes<[ZnAGU, ZnFPU013]> {
let Latency = 8;
let NumMicroOps = 2;
}
def ZnWriteFPU013Ld : SchedWriteRes<[ZnAGU, ZnFPU013]> {
let Latency = 8;
let NumMicroOps = 2;
}
def ZnWriteFPU013LdY : SchedWriteRes<[ZnAGU, ZnFPU013]> {
let Latency = 9;
let NumMicroOps = 2;
}
// PBLENDW.
// x,x,i / v,v,v,i
def : InstRW<[ZnWriteFPU013], (instregex "(V?)PBLENDWrri")>;
// ymm
def : InstRW<[ZnWriteFPU013Y], (instregex "(V?)PBLENDWYrri")>;
// x,m,i / v,v,m,i
def : InstRW<[ZnWriteFPU013Ld], (instregex "(V?)PBLENDWrmi")>;
// y,m,i
def : InstRW<[ZnWriteFPU013LdY], (instregex "(V?)PBLENDWYrmi")>;
def ZnWriteFPU01 : SchedWriteRes<[ZnFPU01]> ;
def ZnWriteFPU01Y : SchedWriteRes<[ZnFPU01]> {
let NumMicroOps = 2;
}
// VPBLENDD.
// v,v,v,i.
def : InstRW<[ZnWriteFPU01], (instregex "VPBLENDDrri")>;
// ymm
def : InstRW<[ZnWriteFPU01Y], (instregex "VPBLENDDYrri")>;
// v,v,m,i
def ZnWriteFPU01Op2 : SchedWriteRes<[ZnAGU, ZnFPU01]> {
let NumMicroOps = 2;
let Latency = 8;
let ResourceCycles = [1, 2];
}
def ZnWriteFPU01Op2Y : SchedWriteRes<[ZnAGU, ZnFPU01]> {
let NumMicroOps = 2;
let Latency = 9;
let ResourceCycles = [1, 3];
}
def : InstRW<[ZnWriteFPU01Op2], (instregex "VPBLENDDrmi")>;
def : InstRW<[ZnWriteFPU01Op2Y], (instregex "VPBLENDDYrmi")>;
// MASKMOVQ.
def : InstRW<[WriteMicrocoded], (instregex "MMX_MASKMOVQ(64)?")>;
// MASKMOVDQU.
def : InstRW<[WriteMicrocoded], (instregex "(V?)MASKMOVDQU(64)?")>;
// VPMASKMOVQ.
// ymm
def : InstRW<[ZnWriteFPU01Op2],(instregex "VPMASKMOVQrm")>;
def : InstRW<[ZnWriteFPU01Op2Y],(instregex "VPMASKMOVQYrm")>;
def : InstRW<[WriteMicrocoded],
(instregex "VPMASKMOVD(Y?)rm")>;
// m, v,v.
def : InstRW<[WriteMicrocoded], (instregex "VPMASKMOV(D|Q)(Y?)mr")>;
// PMOVMSKBY.
def ZnWritePMOVMSKBY : SchedWriteRes<[ZnFPU2]> {
let NumMicroOps = 2;
let Latency = 2;
let ResourceCycles = [2];
}
def : InstRW<[ZnWritePMOVMSKBY], (instregex "(V|MMX_)?PMOVMSKBYrr")>;
// PEXTR B/W/D/Q.
// r32,x,i.
def ZnWritePEXTRr : SchedWriteRes<[ZnFPU12, ZnFPU2]> {
let Latency = 2;
let ResourceCycles = [1, 2];
}
def : InstRW<[ZnWritePEXTRr], (instregex "(V?)PEXTR(B|W|D|Q)rr", "MMX_PEXTRWrr")>;
def ZnWritePEXTRm : SchedWriteRes<[ZnAGU, ZnFPU12, ZnFPU2]> {
let Latency = 5;
let NumMicroOps = 2;
let ResourceCycles = [1, 2, 3];
}
// m8,x,i.
def : InstRW<[ZnWritePEXTRm], (instregex "(V?)PEXTR(B|W|D|Q)mr")>;
// VPBROADCAST B/W.
// x, m8/16.
def ZnWriteVPBROADCAST128Ld : SchedWriteRes<[ZnAGU, ZnFPU12]> {
let Latency = 8;
let NumMicroOps = 2;
let ResourceCycles = [1, 2];
}
def : InstRW<[ZnWriteVPBROADCAST128Ld],
(instregex "VPBROADCAST(B|W)rm")>;
// y, m8/16
def ZnWriteVPBROADCAST256Ld : SchedWriteRes<[ZnAGU, ZnFPU1]> {
let Latency = 8;
let NumMicroOps = 2;
let ResourceCycles = [1, 2];
}
def : InstRW<[ZnWriteVPBROADCAST256Ld],
(instregex "VPBROADCAST(B|W)Yrm")>;
// VPGATHER.
def : InstRW<[WriteMicrocoded], (instregex "VPGATHER(Q|D)(Q|D)(Y?)rm")>;
//-- Arithmetic instructions --//
// HADD, HSUB PS/PD
// PHADD|PHSUB (S) W/D.
def : InstRW<[WriteMicrocoded], (instregex "MMX_PHADD(W|D)r(r|m)",
"MMX_PHADDSWr(r|m)",
"MMX_PHSUB(W|D)r(r|m)",
"MMX_PHSUBSWrr",
"(V?)PH(ADD|SUB)(W|D)(Y?)r(r|m)",
"(V?)PH(ADD|SUB)SW(Y?)r(r|m)")>;
// PCMPGTQ.
def ZnWritePCMPGTQr : SchedWriteRes<[ZnFPU03]>;
def : InstRW<[ZnWritePCMPGTQr], (instregex "(V?)PCMPGTQ(Y?)rr")>;
// x <- x,m.
def ZnWritePCMPGTQm : SchedWriteRes<[ZnAGU, ZnFPU03]> {
let Latency = 8;
}
// ymm.
def ZnWritePCMPGTQYm : SchedWriteRes<[ZnAGU, ZnFPU03]> {
let Latency = 8;
let NumMicroOps = 2;
let ResourceCycles = [1,2];
}
def : InstRW<[ZnWritePCMPGTQm], (instregex "(V?)PCMPGTQrm")>;
def : InstRW<[ZnWritePCMPGTQYm], (instregex "(V?)PCMPGTQYrm")>;
// PMULLD.
// x,x.
def ZnWritePMULLDr : SchedWriteRes<[ZnFPU0]> {
let Latency = 4;
}
// ymm.
def ZnWritePMULLDYr : SchedWriteRes<[ZnFPU0]> {
let Latency = 5;
let ResourceCycles = [2];
}
def : InstRW<[ZnWritePMULLDr], (instregex "(V?)PMULLDrr")>;
def : InstRW<[ZnWritePMULLDYr], (instregex "(V?)PMULLDYrr")>;
// x,m.
def ZnWritePMULLDm : SchedWriteRes<[ZnAGU, ZnFPU0]> {
let Latency = 11;
let NumMicroOps = 2;
}
// y,m.
def ZnWritePMULLDYm : SchedWriteRes<[ZnAGU, ZnFPU0]> {
let Latency = 12;
let NumMicroOps = 2;
let ResourceCycles = [1, 2];
}
def : InstRW<[ZnWritePMULLDm], (instregex "(V?)PMULLDrm")>;
def : InstRW<[ZnWritePMULLDYm], (instregex "(V?)PMULLDYrm")>;
//-- Logic instructions --//
// PTEST.
// v,v.
def ZnWritePTESTr : SchedWriteRes<[ZnFPU12]> {
let ResourceCycles = [2];
}
def : InstRW<[ZnWritePTESTr], (instregex "(V?)PTEST(Y?)rr")>;
// v,m.
def ZnWritePTESTm : SchedWriteRes<[ZnAGU, ZnFPU12]> {
let Latency = 8;
let NumMicroOps = 2;
let ResourceCycles = [1, 2];
}
def : InstRW<[ZnWritePTESTm], (instregex "(V?)PTEST(Y?)rm")>;
// PSLL,PSRL,PSRA W/D/Q.
// x,x / v,v,x.
def ZnWritePShift : SchedWriteRes<[ZnFPU2]> ;
def ZnWritePShiftY : SchedWriteRes<[ZnFPU2]> {
let Latency = 2;
}
def ZnWritePShiftLd : SchedWriteRes<[ZnAGU,ZnFPU2]> {
let Latency = 8;
}
def ZnWritePShiftYLd : SchedWriteRes<[ZnAGU, ZnFPU2]> {
let Latency = 9;
}
def : InstRW<[ZnWritePShift], (instregex "(V?)PS(LL|RL|RA)(W|D|Q)rr")>;
def : InstRW<[ZnWritePShiftY], (instregex "(V?)PS(LL|RL|RA)(W|D|Q)Yrr")>;
def : InstRW<[ZnWritePShiftLd], (instregex "(V?)PS(LL|RL|RA)(W|D|Q)rm")>;
def : InstRW<[ZnWritePShiftYLd], (instregex "(V?)PS(LL|RL|RA)(W|D|Q)Yrm")>;
// PSLL,PSRL DQ.
def : InstRW<[ZnWritePShift], (instregex "(V?)PS(R|L)LDQri")>;
def : InstRW<[ZnWritePShiftY], (instregex "(V?)PS(R|L)LDQYri")>;
//=== Floating Point XMM and YMM Instructions ===//
//-- Move instructions --//
// VPERM2F128.
def : InstRW<[WriteMicrocoded], (instregex "VPERM2F128rr")>;
def : InstRW<[WriteMicrocoded], (instregex "VPERM2F128rm")>;
def ZnWriteBROADCAST : SchedWriteRes<[ZnAGU, ZnFPU13]> {
let NumMicroOps = 2;
let Latency = 8;
}
// VBROADCASTF128.
def : InstRW<[ZnWriteBROADCAST], (instregex "VBROADCASTF128")>;
// EXTRACTPS.
// r32,x,i.
def ZnWriteEXTRACTPSr : SchedWriteRes<[ZnFPU12, ZnFPU2]> {
let Latency = 2;
let NumMicroOps = 2;
let ResourceCycles = [1, 2];
}
def : InstRW<[ZnWriteEXTRACTPSr], (instregex "(V?)EXTRACTPSrr")>;
def ZnWriteEXTRACTPSm : SchedWriteRes<[ZnAGU,ZnFPU12, ZnFPU2]> {
let Latency = 5;
let NumMicroOps = 2;
let ResourceCycles = [5, 1, 2];
}
// m32,x,i.
def : InstRW<[ZnWriteEXTRACTPSm], (instregex "(V?)EXTRACTPSmr")>;
// VEXTRACTF128.
// x,y,i.
def : InstRW<[ZnWriteFPU013], (instregex "VEXTRACTF128rr")>;
// m128,y,i.
def : InstRW<[ZnWriteFPU013m], (instregex "VEXTRACTF128mr")>;
def ZnWriteVINSERT128r: SchedWriteRes<[ZnFPU013]> {
let Latency = 2;
let ResourceCycles = [2];
}
def ZnWriteVINSERT128Ld: SchedWriteRes<[ZnAGU,ZnFPU013]> {
let Latency = 9;
let NumMicroOps = 2;
let ResourceCycles = [1, 2];
}
// VINSERTF128.
// y,y,x,i.
def : InstRW<[ZnWriteVINSERT128r], (instregex "VINSERTF128rr")>;
def : InstRW<[ZnWriteVINSERT128Ld], (instregex "VINSERTF128rm")>;
// VMASKMOVP S/D.
// x,x,m.
def ZnWriteVMASKMOVPLd : SchedWriteRes<[ZnAGU, ZnFPU01]> {
let Latency = 8;
}
// y,y,m.
def ZnWriteVMASKMOVPLdY : SchedWriteRes<[ZnAGU, ZnFPU01]> {
let Latency = 8;
let NumMicroOps = 2;
let ResourceCycles = [1, 2];
}
def ZnWriteVMASKMOVPm : SchedWriteRes<[ZnAGU, ZnFPU01]> {
let Latency = 4;
}
def : InstRW<[ZnWriteVMASKMOVPLd], (instregex "VMASKMOVP(S|D)rm")>;
def : InstRW<[ZnWriteVMASKMOVPLdY], (instregex "VMASKMOVP(S|D)Yrm")>;
def : InstRW<[ZnWriteVMASKMOVPm], (instregex "VMASKMOVP(S|D)mr")>;
// m256,y,y.
def ZnWriteVMASKMOVPYmr : SchedWriteRes<[ZnAGU,ZnFPU01]> {
let Latency = 5;
let NumMicroOps = 2;
let ResourceCycles = [1, 2];
}
def : InstRW<[ZnWriteVMASKMOVPYmr], (instregex "VMASKMOVP(S|D)Ymr")>;
// VGATHERDPS.
// x.
def : InstRW<[WriteMicrocoded], (instregex "VGATHERDPSrm")>;
// y.
def : InstRW<[WriteMicrocoded], (instregex "VGATHERDPSYrm")>;
// VGATHERQPS.
// x.
def : InstRW<[WriteMicrocoded], (instregex "VGATHERQPSrm")>;
// y.
def : InstRW<[WriteMicrocoded], (instregex "VGATHERQPSYrm")>;
// VGATHERDPD.
// x.
def : InstRW<[WriteMicrocoded], (instregex "VGATHERDPDrm")>;
// y.
def : InstRW<[WriteMicrocoded], (instregex "VGATHERDPDYrm")>;
// VGATHERQPD.
// x.
def : InstRW<[WriteMicrocoded], (instregex "VGATHERQPDrm")>;
// y.
def : InstRW<[WriteMicrocoded], (instregex "VGATHERQPDYrm")>;
//-- Conversion instructions --//
def ZnWriteCVTPD2PSr: SchedWriteRes<[ZnFPU3]> {
let Latency = 4;
}
// CVTPD2PS.
// x,x.
def : InstRW<[ZnWriteCVTPD2PSr], (instregex "(V?)CVTPD2PSrr")>;
def ZnWriteCVTPD2PSLd: SchedWriteRes<[ZnAGU,ZnFPU03]> {
let Latency = 11;
let NumMicroOps = 2;
let ResourceCycles = [1,2];
}
// x,m128.
def : InstRW<[ZnWriteCVTPD2PSLd], (instregex "(V?)CVTPD2PS(X?)rm")>;
// x,y.
def ZnWriteCVTPD2PSYr : SchedWriteRes<[ZnFPU3]> {
let Latency = 5;
}
def : InstRW<[ZnWriteCVTPD2PSYr], (instregex "(V?)CVTPD2PSYrr")>;
// x,m256.
def ZnWriteCVTPD2PSYLd : SchedWriteRes<[ZnAGU, ZnFPU3]> {
let Latency = 11;
}
def : InstRW<[ZnWriteCVTPD2PSYLd], (instregex "(V?)CVTPD2PSYrm")>;
// CVTSD2SS.
// x,x.
// Same as WriteCVTPD2PSr
def : InstRW<[ZnWriteCVTPD2PSr], (instregex "(V)?CVTSD2SSrr")>;
// x,m64.
def : InstRW<[ZnWriteCVTPD2PSLd], (instregex "(V)?CVTSD2SSrm")>;
// CVTPS2PD.
// x,x.
def ZnWriteCVTPS2PDr : SchedWriteRes<[ZnFPU3]> {
let Latency = 3;
}
def : InstRW<[ZnWriteCVTPS2PDr], (instregex "(V?)CVTPS2PDrr")>;
// x,m64.
// y,m128.
def ZnWriteCVTPS2PDLd : SchedWriteRes<[ZnAGU, ZnFPU3]> {
let Latency = 10;
let NumMicroOps = 2;
}
def : InstRW<[ZnWriteCVTPS2PDLd], (instregex "(V?)CVTPS2PD(Y?)rm")>;
// y,x.
def ZnWriteVCVTPS2PDY : SchedWriteRes<[ZnFPU3]> {
let Latency = 3;
}
def : InstRW<[ZnWriteVCVTPS2PDY], (instregex "VCVTPS2PDYrr")>;
// CVTSS2SD.
// x,x.
def ZnWriteCVTSS2SDr : SchedWriteRes<[ZnFPU3]> {
let Latency = 4;
}
def : InstRW<[ZnWriteCVTSS2SDr], (instregex "(V?)CVTSS2SDrr")>;
// x,m32.
def ZnWriteCVTSS2SDLd : SchedWriteRes<[ZnAGU, ZnFPU3]> {
let Latency = 11;
let NumMicroOps = 2;
let ResourceCycles = [1, 2];
}
def : InstRW<[ZnWriteCVTSS2SDLd], (instregex "(V?)CVTSS2SDrm")>;
def ZnWriteCVTDQ2PDr: SchedWriteRes<[ZnFPU12,ZnFPU3]> {
let Latency = 5;
}
// CVTDQ2PD.
// x,x.
def : InstRW<[ZnWriteCVTDQ2PDr], (instregex "(V)?CVTDQ2PDrr")>;
// Same as xmm
// y,x.
def : InstRW<[ZnWriteCVTDQ2PDr], (instregex "VCVTDQ2PDYrr")>;
def ZnWriteCVTPD2DQr: SchedWriteRes<[ZnFPU12, ZnFPU3]> {
let Latency = 5;
}
// CVT(T)PD2DQ.
// x,x.
def : InstRW<[ZnWriteCVTDQ2PDr], (instregex "(V?)CVT(T?)PD2DQrr")>;
def ZnWriteCVTPD2DQLd: SchedWriteRes<[ZnAGU,ZnFPU12,ZnFPU3]> {
let Latency = 12;
let NumMicroOps = 2;
}
// x,m128.
def : InstRW<[ZnWriteCVTPD2DQLd], (instregex "(V?)CVT(T?)PD2DQrm")>;
// same as xmm handling
// x,y.
def : InstRW<[ZnWriteCVTPD2DQr], (instregex "VCVT(T?)PD2DQYrr")>;
// x,m256.
def : InstRW<[ZnWriteCVTPD2DQLd], (instregex "VCVT(T?)PD2DQYrm")>;
def ZnWriteCVTPS2PIr: SchedWriteRes<[ZnFPU3]> {
let Latency = 4;
}
// CVT(T)PS2PI.
// mm,x.
def : InstRW<[ZnWriteCVTPS2PIr], (instregex "MMX_CVT(T?)PS2PIirr")>;
// CVTPI2PD.
// x,mm.
def : InstRW<[ZnWriteCVTPS2PDr], (instregex "MMX_CVT(T?)PI2PDirr")>;
// CVT(T)PD2PI.
// mm,x.
def : InstRW<[ZnWriteCVTPS2PIr], (instregex "MMX_CVT(T?)PD2PIirr")>;
def ZnWriteCVSTSI2SSr: SchedWriteRes<[ZnFPU3]> {
let Latency = 5;
}
// CVSTSI2SS.
// x,r32.
def : InstRW<[ZnWriteCVSTSI2SSr], (instregex "(V?)CVTSI2SS(64)?rr")>;
// same as CVTPD2DQr
// CVT(T)SS2SI.
// r32,x.
def : InstRW<[ZnWriteCVTPD2DQr], (instregex "(V?)CVT(T?)SS2SI(64)?rr")>;
// same as CVTPD2DQm
// r32,m32.
def : InstRW<[ZnWriteCVTPD2DQLd], (instregex "(V?)CVT(T?)SS2SI(64)?rm")>;
def ZnWriteCVSTSI2SDr: SchedWriteRes<[ZnFPU013, ZnFPU3]> {
let Latency = 5;
}
// CVTSI2SD.
// x,r32/64.
def : InstRW<[ZnWriteCVSTSI2SDr], (instregex "(V?)CVTSI2SD(64)?rr")>;
def ZnWriteCVSTSI2SIr: SchedWriteRes<[ZnFPU3, ZnFPU2]> {
let Latency = 5;
}
def ZnWriteCVSTSI2SILd: SchedWriteRes<[ZnAGU, ZnFPU3, ZnFPU2]> {
let Latency = 12;
}
// CVTSD2SI.
// r32/64
def : InstRW<[ZnWriteCVSTSI2SIr], (instregex "(V?)CVT(T?)SD2SI(64)?rr")>;
// r32,m32.
def : InstRW<[ZnWriteCVSTSI2SILd], (instregex "(V?)CVT(T?)SD2SI(64)?rm")>;
// VCVTPS2PH.
// x,v,i.
def : InstRW<[WriteMicrocoded], (instregex "VCVTPS2PH(Y?)rr")>;
// m,v,i.
def : InstRW<[WriteMicrocoded], (instregex "VCVTPS2PH(Y?)mr")>;
// VCVTPH2PS.
// v,x.
def : InstRW<[WriteMicrocoded], (instregex "VCVTPH2PS(Y?)rr")>;
// v,m.
def : InstRW<[WriteMicrocoded], (instregex "VCVTPH2PS(Y?)rm")>;
//-- SSE4A instructions --//
// EXTRQ
def ZnWriteEXTRQ: SchedWriteRes<[ZnFPU12, ZnFPU2]> {
let Latency = 2;
}
def : InstRW<[ZnWriteEXTRQ], (instregex "EXTRQ")>;
// INSERTQ
def ZnWriteINSERTQ: SchedWriteRes<[ZnFPU03,ZnFPU1]> {
let Latency = 4;
}
def : InstRW<[ZnWriteINSERTQ], (instregex "INSERTQ")>;
// MOVNTSS/MOVNTSD
def ZnWriteMOVNT: SchedWriteRes<[ZnAGU,ZnFPU2]> {
let Latency = 8;
}
def : InstRW<[ZnWriteMOVNT], (instregex "MOVNTS(S|D)")>;
//-- SHA instructions --//
// SHA256MSG2
def : InstRW<[WriteMicrocoded], (instregex "SHA256MSG2(Y?)r(r|m)")>;
// SHA1MSG1, SHA256MSG1
// x,x.
def ZnWriteSHA1MSG1r : SchedWriteRes<[ZnFPU12]> {
let Latency = 2;
let ResourceCycles = [2];
}
def : InstRW<[ZnWriteSHA1MSG1r], (instregex "SHA(1|256)MSG1rr")>;
// x,m.
def ZnWriteSHA1MSG1Ld : SchedWriteRes<[ZnAGU, ZnFPU12]> {
let Latency = 9;
let ResourceCycles = [1,2];
}
def : InstRW<[ZnWriteSHA1MSG1Ld], (instregex "SHA(1|256)MSG1rm")>;
// SHA1MSG2
// x,x.
def ZnWriteSHA1MSG2r : SchedWriteRes<[ZnFPU12]> ;
def : InstRW<[ZnWriteSHA1MSG2r], (instregex "SHA1MSG2rr")>;
// x,m.
def ZnWriteSHA1MSG2Ld : SchedWriteRes<[ZnAGU, ZnFPU12]> {
let Latency = 8;
}
def : InstRW<[ZnWriteSHA1MSG2Ld], (instregex "SHA1MSG2rm")>;
// SHA1NEXTE
// x,x.
def ZnWriteSHA1NEXTEr : SchedWriteRes<[ZnFPU1]> ;
def : InstRW<[ZnWriteSHA1NEXTEr], (instregex "SHA1NEXTErr")>;
// x,m.
def ZnWriteSHA1NEXTELd : SchedWriteRes<[ZnAGU, ZnFPU1]> {
let Latency = 8;
}
def : InstRW<[ZnWriteSHA1NEXTELd], (instregex "SHA1NEXTErm")>;
// SHA1RNDS4
// x,x.
def ZnWriteSHA1RNDS4r : SchedWriteRes<[ZnFPU1]> {
let Latency = 6;
}
def : InstRW<[ZnWriteSHA1RNDS4r], (instregex "SHA1RNDS4rr")>;
// x,m.
def ZnWriteSHA1RNDS4Ld : SchedWriteRes<[ZnAGU, ZnFPU1]> {
let Latency = 13;
}
def : InstRW<[ZnWriteSHA1RNDS4Ld], (instregex "SHA1RNDS4rm")>;
// SHA256RNDS2
// x,x.
def ZnWriteSHA256RNDS2r : SchedWriteRes<[ZnFPU1]> {
let Latency = 4;
}
def : InstRW<[ZnWriteSHA256RNDS2r], (instregex "SHA256RNDS2rr")>;
// x,m.
def ZnWriteSHA256RNDS2Ld : SchedWriteRes<[ZnAGU, ZnFPU1]> {
let Latency = 11;
}
def : InstRW<[ZnWriteSHA256RNDS2Ld], (instregex "SHA256RNDS2rm")>;
//-- Arithmetic instructions --//
// HADD, HSUB PS/PD
def : InstRW<[WriteMicrocoded], (instregex "(V?)H(ADD|SUB)P(S|D)(Y?)r(r|m)")>;
// MULL SS/SD PS/PD.
// x,x / v,v,v.
def ZnWriteMULr : SchedWriteRes<[ZnFPU01]> {
let Latency = 3;
}
// ymm.
def ZnWriteMULYr : SchedWriteRes<[ZnFPU01]> {
let Latency = 4;
}
def : InstRW<[ZnWriteMULr], (instregex "(V?)MUL(P|S)(S|D)rr")>;
def : InstRW<[ZnWriteMULYr], (instregex "(V?)MUL(P|S)(S|D)Yrr")>;
// x,m / v,v,m.
def ZnWriteMULLd : SchedWriteRes<[ZnAGU, ZnFPU01]> {
let Latency = 10;
let NumMicroOps = 2;
}
def : InstRW<[ZnWriteMULLd], (instregex "(V?)MUL(P|S)(S|D)rm")>;
// ymm
def ZnWriteMULYLd : SchedWriteRes<[ZnAGU, ZnFPU01]> {
let Latency = 11;
let NumMicroOps = 2;
}
def : InstRW<[ZnWriteMULYLd], (instregex "(V?)MUL(P|S)(S|D)Yrm")>;
// VDIVPS.
// y,y,y.
def ZnWriteVDIVPSYr : SchedWriteRes<[ZnFPU3]> {
let Latency = 12;
let ResourceCycles = [12];
}
def : InstRW<[ZnWriteVDIVPSYr], (instregex "VDIVPSYrr")>;
// y,y,m256.
def ZnWriteVDIVPSYLd : SchedWriteRes<[ZnAGU, ZnFPU3]> {
let Latency = 19;
let NumMicroOps = 2;
let ResourceCycles = [1, 19];
}
def : InstRW<[ZnWriteVDIVPSYLd], (instregex "VDIVPSYrm")>;
// VDIVPD.
// y,y,y.
def ZnWriteVDIVPDY : SchedWriteRes<[ZnFPU3]> {
let Latency = 15;
let ResourceCycles = [15];
}
def : InstRW<[ZnWriteVDIVPDY], (instregex "VDIVPDYrr")>;
// y,y,m256.
def ZnWriteVDIVPDYLd : SchedWriteRes<[ZnAGU, ZnFPU3]> {
let Latency = 22;
let NumMicroOps = 2;
let ResourceCycles = [1,22];
}
def : InstRW<[ZnWriteVDIVPDYLd], (instregex "VDIVPDYrm")>;
// VRCPPS.
// y,y.
def ZnWriteVRCPPSr : SchedWriteRes<[ZnFPU01]> {
let Latency = 5;
}
def : InstRW<[ZnWriteVRCPPSr], (instregex "VRCPPSYr")>;
// y,m256.
def ZnWriteVRCPPSLd : SchedWriteRes<[ZnAGU, ZnFPU01]> {
let Latency = 12;
let NumMicroOps = 3;
}
def : InstRW<[ZnWriteVRCPPSLd], (instregex "VRCPPSYm")>;
// ROUND SS/SD PS/PD.
// v,v,i.
def ZnWriteROUNDr : SchedWriteRes<[ZnFPU3]> {
let Latency = 4;
}
def : InstRW<[ZnWriteROUNDr], (instregex "(V?)ROUND(S|P)(S|D)(Y?)r")>;
// v,m,i.
def ZnWriteROUNDm : SchedWriteRes<[ZnAGU, ZnFPU3]> {
let Latency = 11;
let NumMicroOps = 2;
}
def : InstRW<[ZnWriteROUNDm], (instregex "(V?)ROUND(S|P)(S|D)(Y?)m")>;
// DPPS.
// x,x,i / v,v,v,i.
def : InstRW<[WriteMicrocoded], (instregex "(V?)DPPS(Y?)rri")>;
// x,m,i / v,v,m,i.
def : InstRW<[WriteMicrocoded], (instregex "(V?)DPPS(Y?)rmi")>;
// DPPD.
// x,x,i.
def : InstRW<[WriteMicrocoded], (instregex "(V?)DPPDrri")>;
// x,m,i.
def : InstRW<[WriteMicrocoded], (instregex "(V?)DPPDrmi")>;
// VSQRTPS.
// y,y.
def ZnWriteVSQRTPSYr : SchedWriteRes<[ZnFPU3]> {
let Latency = 28;
let ResourceCycles = [28];
}
def : InstRW<[ZnWriteVSQRTPSYr], (instregex "VSQRTPSYr")>;
// y,m256.
def ZnWriteVSQRTPSYLd : SchedWriteRes<[ZnAGU, ZnFPU3]> {
let Latency = 35;
let ResourceCycles = [1,35];
let NumMicroOps = 2;
}
def : InstRW<[ZnWriteVSQRTPSYLd], (instregex "VSQRTPSYm")>;
// VSQRTPD.
// y,y.
def ZnWriteVSQRTPDYr : SchedWriteRes<[ZnFPU3]> {
let Latency = 40;
let ResourceCycles = [40];
}
def : InstRW<[ZnWriteVSQRTPDYr], (instregex "VSQRTPDYr")>;
// y,m256.
def ZnWriteVSQRTPDYLd : SchedWriteRes<[ZnAGU, ZnFPU3]> {
let Latency = 47;
let NumMicroOps = 2;
let ResourceCycles = [1,47];
}
def : InstRW<[ZnWriteVSQRTPDYLd], (instregex "VSQRTPDYm")>;
// RSQRTSS
// x,x.
def ZnWriteRSQRTSSr : SchedWriteRes<[ZnFPU02]> {
let Latency = 5;
}
def : InstRW<[ZnWriteRSQRTSSr], (instregex "(V?)RSQRTSS(Y?)r")>;
// RSQRTPS
// x,x.
def ZnWriteRSQRTPSr : SchedWriteRes<[ZnFPU01]> {
let Latency = 5;
}
def : InstRW<[ZnWriteRSQRTPSr], (instregex "(V?)RSQRTPSr")>;
// RSQRTSSm
// x,m128.
def ZnWriteRSQRTSSLd: SchedWriteRes<[ZnAGU, ZnFPU02]> {
let Latency = 12;
let NumMicroOps = 2;
let ResourceCycles = [1,2];
}
def : InstRW<[ZnWriteRSQRTSSLd], (instregex "(V?)RSQRTSSm")>;
// RSQRTPSm
def ZnWriteRSQRTPSLd : SchedWriteRes<[ZnAGU, ZnFPU01]> {
let Latency = 12;
let NumMicroOps = 2;
}
def : InstRW<[ZnWriteRSQRTPSLd], (instregex "(V?)RSQRTPSm")>;
// RSQRTPS 256.
// y,y.
def ZnWriteRSQRTPSYr : SchedWriteRes<[ZnFPU01]> {
let Latency = 5;
let NumMicroOps = 2;
let ResourceCycles = [2];
}
def : InstRW<[ZnWriteRSQRTPSYr], (instregex "VRSQRTPSYr")>;
// y,m256.
def ZnWriteRSQRTPSYLd : SchedWriteRes<[ZnAGU, ZnFPU01]> {
let Latency = 12;
let NumMicroOps = 2;
}
def : InstRW<[ZnWriteRSQRTPSYLd], (instregex "VRSQRTPSYm")>;
//-- Logic instructions --//
// AND, ANDN, OR, XOR PS/PD.
// x,x / v,v,v.
def : InstRW<[WriteVecLogic], (instregex "(V?)(AND|ANDN|OR|XOR)P(S|D)(Y?)rr")>;
// x,m / v,v,m.
def : InstRW<[WriteVecLogicLd],
(instregex "(V?)(AND|ANDN|OR|XOR)P(S|D)(Y?)rm")>;
//-- Other instructions --//
// VZEROUPPER.
def : InstRW<[WriteMicrocoded], (instregex "VZEROUPPER")>;
// VZEROALL.
def : InstRW<[WriteMicrocoded], (instregex "VZEROALL")>;
// LDMXCSR.
def : InstRW<[WriteMicrocoded], (instregex "(V)?LDMXCSR")>;
// STMXCSR.
def : InstRW<[WriteMicrocoded], (instregex "(V)?STMXCSR")>;
} // SchedModel