mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-10-31 07:52:55 +01:00
7ba0f121e5
Late optimization passes like branch folding and tail duplication can transform the machine code in a way that makes it expensive to keep the register liveness information up to date. There is a fuzzy line between register allocation and late scheduling where the liveness information degrades. The MRI::tracksLiveness() flag makes the line clear: While true, liveness information is accurate, and can be used for register scavenging. Once the flag is false, liveness information is not accurate, and can only be used as a hint. Late passes generally don't need the liveness information, but they will sometimes use the register scavenger to help update it. The scavenger enforces strict correctness, and we have to spend a lot of code to update register liveness that may never be used. llvm-svn: 153511
398 lines
13 KiB
C++
398 lines
13 KiB
C++
//===-- RegisterScavenging.cpp - Machine register scavenging --------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the machine register scavenger. It can provide
|
|
// information, such as unused registers, at any point in a machine basic block.
|
|
// It also provides a mechanism to make registers available by evicting them to
|
|
// spill slots.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "reg-scavenging"
|
|
#include "llvm/CodeGen/RegisterScavenging.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
using namespace llvm;
|
|
|
|
/// setUsed - Set the register and its sub-registers as being used.
|
|
void RegScavenger::setUsed(unsigned Reg) {
|
|
RegsAvailable.reset(Reg);
|
|
|
|
for (const uint16_t *SubRegs = TRI->getSubRegisters(Reg);
|
|
unsigned SubReg = *SubRegs; ++SubRegs)
|
|
RegsAvailable.reset(SubReg);
|
|
}
|
|
|
|
bool RegScavenger::isAliasUsed(unsigned Reg) const {
|
|
if (isUsed(Reg))
|
|
return true;
|
|
for (const uint16_t *R = TRI->getAliasSet(Reg); *R; ++R)
|
|
if (isUsed(*R))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
void RegScavenger::initRegState() {
|
|
ScavengedReg = 0;
|
|
ScavengedRC = NULL;
|
|
ScavengeRestore = NULL;
|
|
|
|
// All registers started out unused.
|
|
RegsAvailable.set();
|
|
|
|
if (!MBB)
|
|
return;
|
|
|
|
// Live-in registers are in use.
|
|
for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
|
|
E = MBB->livein_end(); I != E; ++I)
|
|
setUsed(*I);
|
|
|
|
// Pristine CSRs are also unavailable.
|
|
BitVector PR = MBB->getParent()->getFrameInfo()->getPristineRegs(MBB);
|
|
for (int I = PR.find_first(); I>0; I = PR.find_next(I))
|
|
setUsed(I);
|
|
}
|
|
|
|
void RegScavenger::enterBasicBlock(MachineBasicBlock *mbb) {
|
|
MachineFunction &MF = *mbb->getParent();
|
|
const TargetMachine &TM = MF.getTarget();
|
|
TII = TM.getInstrInfo();
|
|
TRI = TM.getRegisterInfo();
|
|
MRI = &MF.getRegInfo();
|
|
|
|
assert((NumPhysRegs == 0 || NumPhysRegs == TRI->getNumRegs()) &&
|
|
"Target changed?");
|
|
|
|
// It is not possible to use the register scavenger after late optimization
|
|
// passes that don't preserve accurate liveness information.
|
|
assert(MRI->tracksLiveness() &&
|
|
"Cannot use register scavenger with inaccurate liveness");
|
|
|
|
// Self-initialize.
|
|
if (!MBB) {
|
|
NumPhysRegs = TRI->getNumRegs();
|
|
RegsAvailable.resize(NumPhysRegs);
|
|
KillRegs.resize(NumPhysRegs);
|
|
DefRegs.resize(NumPhysRegs);
|
|
|
|
// Create reserved registers bitvector.
|
|
ReservedRegs = TRI->getReservedRegs(MF);
|
|
|
|
// Create callee-saved registers bitvector.
|
|
CalleeSavedRegs.resize(NumPhysRegs);
|
|
const uint16_t *CSRegs = TRI->getCalleeSavedRegs(&MF);
|
|
if (CSRegs != NULL)
|
|
for (unsigned i = 0; CSRegs[i]; ++i)
|
|
CalleeSavedRegs.set(CSRegs[i]);
|
|
}
|
|
|
|
MBB = mbb;
|
|
initRegState();
|
|
|
|
Tracking = false;
|
|
}
|
|
|
|
void RegScavenger::addRegWithSubRegs(BitVector &BV, unsigned Reg) {
|
|
BV.set(Reg);
|
|
for (const uint16_t *R = TRI->getSubRegisters(Reg); *R; R++)
|
|
BV.set(*R);
|
|
}
|
|
|
|
void RegScavenger::forward() {
|
|
// Move ptr forward.
|
|
if (!Tracking) {
|
|
MBBI = MBB->begin();
|
|
Tracking = true;
|
|
} else {
|
|
assert(MBBI != MBB->end() && "Already past the end of the basic block!");
|
|
MBBI = llvm::next(MBBI);
|
|
}
|
|
assert(MBBI != MBB->end() && "Already at the end of the basic block!");
|
|
|
|
MachineInstr *MI = MBBI;
|
|
|
|
if (MI == ScavengeRestore) {
|
|
ScavengedReg = 0;
|
|
ScavengedRC = NULL;
|
|
ScavengeRestore = NULL;
|
|
}
|
|
|
|
if (MI->isDebugValue())
|
|
return;
|
|
|
|
// Find out which registers are early clobbered, killed, defined, and marked
|
|
// def-dead in this instruction.
|
|
// FIXME: The scavenger is not predication aware. If the instruction is
|
|
// predicated, conservatively assume "kill" markers do not actually kill the
|
|
// register. Similarly ignores "dead" markers.
|
|
bool isPred = TII->isPredicated(MI);
|
|
KillRegs.reset();
|
|
DefRegs.reset();
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = MI->getOperand(i);
|
|
if (MO.isRegMask())
|
|
(isPred ? DefRegs : KillRegs).setBitsNotInMask(MO.getRegMask());
|
|
if (!MO.isReg())
|
|
continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (!Reg || isReserved(Reg))
|
|
continue;
|
|
|
|
if (MO.isUse()) {
|
|
// Ignore undef uses.
|
|
if (MO.isUndef())
|
|
continue;
|
|
if (!isPred && MO.isKill())
|
|
addRegWithSubRegs(KillRegs, Reg);
|
|
} else {
|
|
assert(MO.isDef());
|
|
if (!isPred && MO.isDead())
|
|
addRegWithSubRegs(KillRegs, Reg);
|
|
else
|
|
addRegWithSubRegs(DefRegs, Reg);
|
|
}
|
|
}
|
|
|
|
// Verify uses and defs.
|
|
#ifndef NDEBUG
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isReg())
|
|
continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (!Reg || isReserved(Reg))
|
|
continue;
|
|
if (MO.isUse()) {
|
|
if (MO.isUndef())
|
|
continue;
|
|
if (!isUsed(Reg)) {
|
|
// Check if it's partial live: e.g.
|
|
// D0 = insert_subreg D0<undef>, S0
|
|
// ... D0
|
|
// The problem is the insert_subreg could be eliminated. The use of
|
|
// D0 is using a partially undef value. This is not *incorrect* since
|
|
// S1 is can be freely clobbered.
|
|
// Ideally we would like a way to model this, but leaving the
|
|
// insert_subreg around causes both correctness and performance issues.
|
|
bool SubUsed = false;
|
|
for (const uint16_t *SubRegs = TRI->getSubRegisters(Reg);
|
|
unsigned SubReg = *SubRegs; ++SubRegs)
|
|
if (isUsed(SubReg)) {
|
|
SubUsed = true;
|
|
break;
|
|
}
|
|
if (!SubUsed) {
|
|
MBB->getParent()->verify(NULL, "In Register Scavenger");
|
|
llvm_unreachable("Using an undefined register!");
|
|
}
|
|
(void)SubUsed;
|
|
}
|
|
} else {
|
|
assert(MO.isDef());
|
|
#if 0
|
|
// FIXME: Enable this once we've figured out how to correctly transfer
|
|
// implicit kills during codegen passes like the coalescer.
|
|
assert((KillRegs.test(Reg) || isUnused(Reg) ||
|
|
isLiveInButUnusedBefore(Reg, MI, MBB, TRI, MRI)) &&
|
|
"Re-defining a live register!");
|
|
#endif
|
|
}
|
|
}
|
|
#endif // NDEBUG
|
|
|
|
// Commit the changes.
|
|
setUnused(KillRegs);
|
|
setUsed(DefRegs);
|
|
}
|
|
|
|
void RegScavenger::getRegsUsed(BitVector &used, bool includeReserved) {
|
|
used = RegsAvailable;
|
|
used.flip();
|
|
if (includeReserved)
|
|
used |= ReservedRegs;
|
|
else
|
|
used.reset(ReservedRegs);
|
|
}
|
|
|
|
unsigned RegScavenger::FindUnusedReg(const TargetRegisterClass *RC) const {
|
|
for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
|
|
I != E; ++I)
|
|
if (!isAliasUsed(*I)) {
|
|
DEBUG(dbgs() << "Scavenger found unused reg: " << TRI->getName(*I) <<
|
|
"\n");
|
|
return *I;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/// getRegsAvailable - Return all available registers in the register class
|
|
/// in Mask.
|
|
BitVector RegScavenger::getRegsAvailable(const TargetRegisterClass *RC) {
|
|
BitVector Mask(TRI->getNumRegs());
|
|
for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
|
|
I != E; ++I)
|
|
if (!isAliasUsed(*I))
|
|
Mask.set(*I);
|
|
return Mask;
|
|
}
|
|
|
|
/// findSurvivorReg - Return the candidate register that is unused for the
|
|
/// longest after StargMII. UseMI is set to the instruction where the search
|
|
/// stopped.
|
|
///
|
|
/// No more than InstrLimit instructions are inspected.
|
|
///
|
|
unsigned RegScavenger::findSurvivorReg(MachineBasicBlock::iterator StartMI,
|
|
BitVector &Candidates,
|
|
unsigned InstrLimit,
|
|
MachineBasicBlock::iterator &UseMI) {
|
|
int Survivor = Candidates.find_first();
|
|
assert(Survivor > 0 && "No candidates for scavenging");
|
|
|
|
MachineBasicBlock::iterator ME = MBB->getFirstTerminator();
|
|
assert(StartMI != ME && "MI already at terminator");
|
|
MachineBasicBlock::iterator RestorePointMI = StartMI;
|
|
MachineBasicBlock::iterator MI = StartMI;
|
|
|
|
bool inVirtLiveRange = false;
|
|
for (++MI; InstrLimit > 0 && MI != ME; ++MI, --InstrLimit) {
|
|
if (MI->isDebugValue()) {
|
|
++InstrLimit; // Don't count debug instructions
|
|
continue;
|
|
}
|
|
bool isVirtKillInsn = false;
|
|
bool isVirtDefInsn = false;
|
|
// Remove any candidates touched by instruction.
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = MI->getOperand(i);
|
|
if (MO.isRegMask())
|
|
Candidates.clearBitsNotInMask(MO.getRegMask());
|
|
if (!MO.isReg() || MO.isUndef() || !MO.getReg())
|
|
continue;
|
|
if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
|
|
if (MO.isDef())
|
|
isVirtDefInsn = true;
|
|
else if (MO.isKill())
|
|
isVirtKillInsn = true;
|
|
continue;
|
|
}
|
|
Candidates.reset(MO.getReg());
|
|
for (const uint16_t *R = TRI->getAliasSet(MO.getReg()); *R; R++)
|
|
Candidates.reset(*R);
|
|
}
|
|
// If we're not in a virtual reg's live range, this is a valid
|
|
// restore point.
|
|
if (!inVirtLiveRange) RestorePointMI = MI;
|
|
|
|
// Update whether we're in the live range of a virtual register
|
|
if (isVirtKillInsn) inVirtLiveRange = false;
|
|
if (isVirtDefInsn) inVirtLiveRange = true;
|
|
|
|
// Was our survivor untouched by this instruction?
|
|
if (Candidates.test(Survivor))
|
|
continue;
|
|
|
|
// All candidates gone?
|
|
if (Candidates.none())
|
|
break;
|
|
|
|
Survivor = Candidates.find_first();
|
|
}
|
|
// If we ran off the end, that's where we want to restore.
|
|
if (MI == ME) RestorePointMI = ME;
|
|
assert (RestorePointMI != StartMI &&
|
|
"No available scavenger restore location!");
|
|
|
|
// We ran out of candidates, so stop the search.
|
|
UseMI = RestorePointMI;
|
|
return Survivor;
|
|
}
|
|
|
|
unsigned RegScavenger::scavengeRegister(const TargetRegisterClass *RC,
|
|
MachineBasicBlock::iterator I,
|
|
int SPAdj) {
|
|
// Consider all allocatable registers in the register class initially
|
|
BitVector Candidates =
|
|
TRI->getAllocatableSet(*I->getParent()->getParent(), RC);
|
|
|
|
// Exclude all the registers being used by the instruction.
|
|
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = I->getOperand(i);
|
|
if (MO.isReg() && MO.getReg() != 0 &&
|
|
!TargetRegisterInfo::isVirtualRegister(MO.getReg()))
|
|
Candidates.reset(MO.getReg());
|
|
}
|
|
|
|
// Try to find a register that's unused if there is one, as then we won't
|
|
// have to spill. Search explicitly rather than masking out based on
|
|
// RegsAvailable, as RegsAvailable does not take aliases into account.
|
|
// That's what getRegsAvailable() is for.
|
|
BitVector Available = getRegsAvailable(RC);
|
|
Available &= Candidates;
|
|
if (Available.any())
|
|
Candidates = Available;
|
|
|
|
// Find the register whose use is furthest away.
|
|
MachineBasicBlock::iterator UseMI;
|
|
unsigned SReg = findSurvivorReg(I, Candidates, 25, UseMI);
|
|
|
|
// If we found an unused register there is no reason to spill it.
|
|
if (!isAliasUsed(SReg)) {
|
|
DEBUG(dbgs() << "Scavenged register: " << TRI->getName(SReg) << "\n");
|
|
return SReg;
|
|
}
|
|
|
|
assert(ScavengedReg == 0 &&
|
|
"Scavenger slot is live, unable to scavenge another register!");
|
|
|
|
// Avoid infinite regress
|
|
ScavengedReg = SReg;
|
|
|
|
// If the target knows how to save/restore the register, let it do so;
|
|
// otherwise, use the emergency stack spill slot.
|
|
if (!TRI->saveScavengerRegister(*MBB, I, UseMI, RC, SReg)) {
|
|
// Spill the scavenged register before I.
|
|
assert(ScavengingFrameIndex >= 0 &&
|
|
"Cannot scavenge register without an emergency spill slot!");
|
|
TII->storeRegToStackSlot(*MBB, I, SReg, true, ScavengingFrameIndex, RC,TRI);
|
|
MachineBasicBlock::iterator II = prior(I);
|
|
TRI->eliminateFrameIndex(II, SPAdj, this);
|
|
|
|
// Restore the scavenged register before its use (or first terminator).
|
|
TII->loadRegFromStackSlot(*MBB, UseMI, SReg, ScavengingFrameIndex, RC, TRI);
|
|
II = prior(UseMI);
|
|
TRI->eliminateFrameIndex(II, SPAdj, this);
|
|
}
|
|
|
|
ScavengeRestore = prior(UseMI);
|
|
|
|
// Doing this here leads to infinite regress.
|
|
// ScavengedReg = SReg;
|
|
ScavengedRC = RC;
|
|
|
|
DEBUG(dbgs() << "Scavenged register (with spill): " << TRI->getName(SReg) <<
|
|
"\n");
|
|
|
|
return SReg;
|
|
}
|