mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-24 03:33:20 +01:00
a0dfc5a477
Summary: This intrinsic represents a label with a list of associated metadata strings. It is modelled as reading and writing inaccessible memory so that it won't be removed as dead code. I think the intention is that the annotation strings should appear at most once in the debug info, so I marked it noduplicate. We are allowed to inline code with annotations as long as we strip the annotation, but that can be done later. Reviewers: majnemer Subscribers: eraman, llvm-commits, hiraditya Differential Revision: https://reviews.llvm.org/D36904 llvm-svn: 312569
996 lines
45 KiB
C++
996 lines
45 KiB
C++
//===-- llvm/CodeGen/ISDOpcodes.h - CodeGen opcodes -------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file declares codegen opcodes and related utilities.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_CODEGEN_ISDOPCODES_H
|
|
#define LLVM_CODEGEN_ISDOPCODES_H
|
|
|
|
namespace llvm {
|
|
|
|
/// ISD namespace - This namespace contains an enum which represents all of the
|
|
/// SelectionDAG node types and value types.
|
|
///
|
|
namespace ISD {
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
/// ISD::NodeType enum - This enum defines the target-independent operators
|
|
/// for a SelectionDAG.
|
|
///
|
|
/// Targets may also define target-dependent operator codes for SDNodes. For
|
|
/// example, on x86, these are the enum values in the X86ISD namespace.
|
|
/// Targets should aim to use target-independent operators to model their
|
|
/// instruction sets as much as possible, and only use target-dependent
|
|
/// operators when they have special requirements.
|
|
///
|
|
/// Finally, during and after selection proper, SNodes may use special
|
|
/// operator codes that correspond directly with MachineInstr opcodes. These
|
|
/// are used to represent selected instructions. See the isMachineOpcode()
|
|
/// and getMachineOpcode() member functions of SDNode.
|
|
///
|
|
enum NodeType {
|
|
/// DELETED_NODE - This is an illegal value that is used to catch
|
|
/// errors. This opcode is not a legal opcode for any node.
|
|
DELETED_NODE,
|
|
|
|
/// EntryToken - This is the marker used to indicate the start of a region.
|
|
EntryToken,
|
|
|
|
/// TokenFactor - This node takes multiple tokens as input and produces a
|
|
/// single token result. This is used to represent the fact that the operand
|
|
/// operators are independent of each other.
|
|
TokenFactor,
|
|
|
|
/// AssertSext, AssertZext - These nodes record if a register contains a
|
|
/// value that has already been zero or sign extended from a narrower type.
|
|
/// These nodes take two operands. The first is the node that has already
|
|
/// been extended, and the second is a value type node indicating the width
|
|
/// of the extension
|
|
AssertSext, AssertZext,
|
|
|
|
/// Various leaf nodes.
|
|
BasicBlock, VALUETYPE, CONDCODE, Register, RegisterMask,
|
|
Constant, ConstantFP,
|
|
GlobalAddress, GlobalTLSAddress, FrameIndex,
|
|
JumpTable, ConstantPool, ExternalSymbol, BlockAddress,
|
|
|
|
/// The address of the GOT
|
|
GLOBAL_OFFSET_TABLE,
|
|
|
|
/// FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
|
|
/// llvm.returnaddress on the DAG. These nodes take one operand, the index
|
|
/// of the frame or return address to return. An index of zero corresponds
|
|
/// to the current function's frame or return address, an index of one to
|
|
/// the parent's frame or return address, and so on.
|
|
FRAMEADDR, RETURNADDR, ADDROFRETURNADDR,
|
|
|
|
/// LOCAL_RECOVER - Represents the llvm.localrecover intrinsic.
|
|
/// Materializes the offset from the local object pointer of another
|
|
/// function to a particular local object passed to llvm.localescape. The
|
|
/// operand is the MCSymbol label used to represent this offset, since
|
|
/// typically the offset is not known until after code generation of the
|
|
/// parent.
|
|
LOCAL_RECOVER,
|
|
|
|
/// READ_REGISTER, WRITE_REGISTER - This node represents llvm.register on
|
|
/// the DAG, which implements the named register global variables extension.
|
|
READ_REGISTER,
|
|
WRITE_REGISTER,
|
|
|
|
/// FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to
|
|
/// first (possible) on-stack argument. This is needed for correct stack
|
|
/// adjustment during unwind.
|
|
FRAME_TO_ARGS_OFFSET,
|
|
|
|
/// EH_DWARF_CFA - This node represents the pointer to the DWARF Canonical
|
|
/// Frame Address (CFA), generally the value of the stack pointer at the
|
|
/// call site in the previous frame.
|
|
EH_DWARF_CFA,
|
|
|
|
/// OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents
|
|
/// 'eh_return' gcc dwarf builtin, which is used to return from
|
|
/// exception. The general meaning is: adjust stack by OFFSET and pass
|
|
/// execution to HANDLER. Many platform-related details also :)
|
|
EH_RETURN,
|
|
|
|
/// RESULT, OUTCHAIN = EH_SJLJ_SETJMP(INCHAIN, buffer)
|
|
/// This corresponds to the eh.sjlj.setjmp intrinsic.
|
|
/// It takes an input chain and a pointer to the jump buffer as inputs
|
|
/// and returns an outchain.
|
|
EH_SJLJ_SETJMP,
|
|
|
|
/// OUTCHAIN = EH_SJLJ_LONGJMP(INCHAIN, buffer)
|
|
/// This corresponds to the eh.sjlj.longjmp intrinsic.
|
|
/// It takes an input chain and a pointer to the jump buffer as inputs
|
|
/// and returns an outchain.
|
|
EH_SJLJ_LONGJMP,
|
|
|
|
/// OUTCHAIN = EH_SJLJ_SETUP_DISPATCH(INCHAIN)
|
|
/// The target initializes the dispatch table here.
|
|
EH_SJLJ_SETUP_DISPATCH,
|
|
|
|
/// TargetConstant* - Like Constant*, but the DAG does not do any folding,
|
|
/// simplification, or lowering of the constant. They are used for constants
|
|
/// which are known to fit in the immediate fields of their users, or for
|
|
/// carrying magic numbers which are not values which need to be
|
|
/// materialized in registers.
|
|
TargetConstant,
|
|
TargetConstantFP,
|
|
|
|
/// TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
|
|
/// anything else with this node, and this is valid in the target-specific
|
|
/// dag, turning into a GlobalAddress operand.
|
|
TargetGlobalAddress,
|
|
TargetGlobalTLSAddress,
|
|
TargetFrameIndex,
|
|
TargetJumpTable,
|
|
TargetConstantPool,
|
|
TargetExternalSymbol,
|
|
TargetBlockAddress,
|
|
|
|
MCSymbol,
|
|
|
|
/// TargetIndex - Like a constant pool entry, but with completely
|
|
/// target-dependent semantics. Holds target flags, a 32-bit index, and a
|
|
/// 64-bit index. Targets can use this however they like.
|
|
TargetIndex,
|
|
|
|
/// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
|
|
/// This node represents a target intrinsic function with no side effects.
|
|
/// The first operand is the ID number of the intrinsic from the
|
|
/// llvm::Intrinsic namespace. The operands to the intrinsic follow. The
|
|
/// node returns the result of the intrinsic.
|
|
INTRINSIC_WO_CHAIN,
|
|
|
|
/// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
|
|
/// This node represents a target intrinsic function with side effects that
|
|
/// returns a result. The first operand is a chain pointer. The second is
|
|
/// the ID number of the intrinsic from the llvm::Intrinsic namespace. The
|
|
/// operands to the intrinsic follow. The node has two results, the result
|
|
/// of the intrinsic and an output chain.
|
|
INTRINSIC_W_CHAIN,
|
|
|
|
/// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
|
|
/// This node represents a target intrinsic function with side effects that
|
|
/// does not return a result. The first operand is a chain pointer. The
|
|
/// second is the ID number of the intrinsic from the llvm::Intrinsic
|
|
/// namespace. The operands to the intrinsic follow.
|
|
INTRINSIC_VOID,
|
|
|
|
/// CopyToReg - This node has three operands: a chain, a register number to
|
|
/// set to this value, and a value.
|
|
CopyToReg,
|
|
|
|
/// CopyFromReg - This node indicates that the input value is a virtual or
|
|
/// physical register that is defined outside of the scope of this
|
|
/// SelectionDAG. The register is available from the RegisterSDNode object.
|
|
CopyFromReg,
|
|
|
|
/// UNDEF - An undefined node.
|
|
UNDEF,
|
|
|
|
/// EXTRACT_ELEMENT - This is used to get the lower or upper (determined by
|
|
/// a Constant, which is required to be operand #1) half of the integer or
|
|
/// float value specified as operand #0. This is only for use before
|
|
/// legalization, for values that will be broken into multiple registers.
|
|
EXTRACT_ELEMENT,
|
|
|
|
/// BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways.
|
|
/// Given two values of the same integer value type, this produces a value
|
|
/// twice as big. Like EXTRACT_ELEMENT, this can only be used before
|
|
/// legalization.
|
|
BUILD_PAIR,
|
|
|
|
/// MERGE_VALUES - This node takes multiple discrete operands and returns
|
|
/// them all as its individual results. This nodes has exactly the same
|
|
/// number of inputs and outputs. This node is useful for some pieces of the
|
|
/// code generator that want to think about a single node with multiple
|
|
/// results, not multiple nodes.
|
|
MERGE_VALUES,
|
|
|
|
/// Simple integer binary arithmetic operators.
|
|
ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
|
|
|
|
/// SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing
|
|
/// a signed/unsigned value of type i[2*N], and return the full value as
|
|
/// two results, each of type iN.
|
|
SMUL_LOHI, UMUL_LOHI,
|
|
|
|
/// SDIVREM/UDIVREM - Divide two integers and produce both a quotient and
|
|
/// remainder result.
|
|
SDIVREM, UDIVREM,
|
|
|
|
/// CARRY_FALSE - This node is used when folding other nodes,
|
|
/// like ADDC/SUBC, which indicate the carry result is always false.
|
|
CARRY_FALSE,
|
|
|
|
/// Carry-setting nodes for multiple precision addition and subtraction.
|
|
/// These nodes take two operands of the same value type, and produce two
|
|
/// results. The first result is the normal add or sub result, the second
|
|
/// result is the carry flag result.
|
|
/// FIXME: These nodes are deprecated in favor of ADDCARRY and SUBCARRY.
|
|
/// They are kept around for now to provide a smooth transition path
|
|
/// toward the use of ADDCARRY/SUBCARRY and will eventually be removed.
|
|
ADDC, SUBC,
|
|
|
|
/// Carry-using nodes for multiple precision addition and subtraction. These
|
|
/// nodes take three operands: The first two are the normal lhs and rhs to
|
|
/// the add or sub, and the third is the input carry flag. These nodes
|
|
/// produce two results; the normal result of the add or sub, and the output
|
|
/// carry flag. These nodes both read and write a carry flag to allow them
|
|
/// to them to be chained together for add and sub of arbitrarily large
|
|
/// values.
|
|
ADDE, SUBE,
|
|
|
|
/// Carry-using nodes for multiple precision addition and subtraction.
|
|
/// These nodes take three operands: The first two are the normal lhs and
|
|
/// rhs to the add or sub, and the third is a boolean indicating if there
|
|
/// is an incoming carry. These nodes produce two results: the normal
|
|
/// result of the add or sub, and the output carry so they can be chained
|
|
/// together. The use of this opcode is preferable to adde/sube if the
|
|
/// target supports it, as the carry is a regular value rather than a
|
|
/// glue, which allows further optimisation.
|
|
ADDCARRY, SUBCARRY,
|
|
|
|
/// RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
|
|
/// These nodes take two operands: the normal LHS and RHS to the add. They
|
|
/// produce two results: the normal result of the add, and a boolean that
|
|
/// indicates if an overflow occurred (*not* a flag, because it may be store
|
|
/// to memory, etc.). If the type of the boolean is not i1 then the high
|
|
/// bits conform to getBooleanContents.
|
|
/// These nodes are generated from llvm.[su]add.with.overflow intrinsics.
|
|
SADDO, UADDO,
|
|
|
|
/// Same for subtraction.
|
|
SSUBO, USUBO,
|
|
|
|
/// Same for multiplication.
|
|
SMULO, UMULO,
|
|
|
|
/// Simple binary floating point operators.
|
|
FADD, FSUB, FMUL, FDIV, FREM,
|
|
|
|
/// Constrained versions of the binary floating point operators.
|
|
/// These will be lowered to the simple operators before final selection.
|
|
/// They are used to limit optimizations while the DAG is being
|
|
/// optimized.
|
|
STRICT_FADD, STRICT_FSUB, STRICT_FMUL, STRICT_FDIV, STRICT_FREM,
|
|
STRICT_FMA,
|
|
|
|
/// Constrained versions of libm-equivalent floating point intrinsics.
|
|
/// These will be lowered to the equivalent non-constrained pseudo-op
|
|
/// (or expanded to the equivalent library call) before final selection.
|
|
/// They are used to limit optimizations while the DAG is being optimized.
|
|
STRICT_FSQRT, STRICT_FPOW, STRICT_FPOWI, STRICT_FSIN, STRICT_FCOS,
|
|
STRICT_FEXP, STRICT_FEXP2, STRICT_FLOG, STRICT_FLOG10, STRICT_FLOG2,
|
|
STRICT_FRINT, STRICT_FNEARBYINT,
|
|
|
|
/// FMA - Perform a * b + c with no intermediate rounding step.
|
|
FMA,
|
|
|
|
/// FMAD - Perform a * b + c, while getting the same result as the
|
|
/// separately rounded operations.
|
|
FMAD,
|
|
|
|
/// FCOPYSIGN(X, Y) - Return the value of X with the sign of Y. NOTE: This
|
|
/// DAG node does not require that X and Y have the same type, just that
|
|
/// they are both floating point. X and the result must have the same type.
|
|
/// FCOPYSIGN(f32, f64) is allowed.
|
|
FCOPYSIGN,
|
|
|
|
/// INT = FGETSIGN(FP) - Return the sign bit of the specified floating point
|
|
/// value as an integer 0/1 value.
|
|
FGETSIGN,
|
|
|
|
/// Returns platform specific canonical encoding of a floating point number.
|
|
FCANONICALIZE,
|
|
|
|
/// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector with the
|
|
/// specified, possibly variable, elements. The number of elements is
|
|
/// required to be a power of two. The types of the operands must all be
|
|
/// the same and must match the vector element type, except that integer
|
|
/// types are allowed to be larger than the element type, in which case
|
|
/// the operands are implicitly truncated.
|
|
BUILD_VECTOR,
|
|
|
|
/// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element
|
|
/// at IDX replaced with VAL. If the type of VAL is larger than the vector
|
|
/// element type then VAL is truncated before replacement.
|
|
INSERT_VECTOR_ELT,
|
|
|
|
/// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
|
|
/// identified by the (potentially variable) element number IDX. If the
|
|
/// return type is an integer type larger than the element type of the
|
|
/// vector, the result is extended to the width of the return type. In
|
|
/// that case, the high bits are undefined.
|
|
EXTRACT_VECTOR_ELT,
|
|
|
|
/// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of
|
|
/// vector type with the same length and element type, this produces a
|
|
/// concatenated vector result value, with length equal to the sum of the
|
|
/// lengths of the input vectors.
|
|
CONCAT_VECTORS,
|
|
|
|
/// INSERT_SUBVECTOR(VECTOR1, VECTOR2, IDX) - Returns a vector
|
|
/// with VECTOR2 inserted into VECTOR1 at the (potentially
|
|
/// variable) element number IDX, which must be a multiple of the
|
|
/// VECTOR2 vector length. The elements of VECTOR1 starting at
|
|
/// IDX are overwritten with VECTOR2. Elements IDX through
|
|
/// vector_length(VECTOR2) must be valid VECTOR1 indices.
|
|
INSERT_SUBVECTOR,
|
|
|
|
/// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR (an
|
|
/// vector value) starting with the element number IDX, which must be a
|
|
/// constant multiple of the result vector length.
|
|
EXTRACT_SUBVECTOR,
|
|
|
|
/// VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as
|
|
/// VEC1/VEC2. A VECTOR_SHUFFLE node also contains an array of constant int
|
|
/// values that indicate which value (or undef) each result element will
|
|
/// get. These constant ints are accessible through the
|
|
/// ShuffleVectorSDNode class. This is quite similar to the Altivec
|
|
/// 'vperm' instruction, except that the indices must be constants and are
|
|
/// in terms of the element size of VEC1/VEC2, not in terms of bytes.
|
|
VECTOR_SHUFFLE,
|
|
|
|
/// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
|
|
/// scalar value into element 0 of the resultant vector type. The top
|
|
/// elements 1 to N-1 of the N-element vector are undefined. The type
|
|
/// of the operand must match the vector element type, except when they
|
|
/// are integer types. In this case the operand is allowed to be wider
|
|
/// than the vector element type, and is implicitly truncated to it.
|
|
SCALAR_TO_VECTOR,
|
|
|
|
/// MULHU/MULHS - Multiply high - Multiply two integers of type iN,
|
|
/// producing an unsigned/signed value of type i[2*N], then return the top
|
|
/// part.
|
|
MULHU, MULHS,
|
|
|
|
/// [US]{MIN/MAX} - Binary minimum or maximum or signed or unsigned
|
|
/// integers.
|
|
SMIN, SMAX, UMIN, UMAX,
|
|
|
|
/// Bitwise operators - logical and, logical or, logical xor.
|
|
AND, OR, XOR,
|
|
|
|
/// ABS - Determine the unsigned absolute value of a signed integer value of
|
|
/// the same bitwidth.
|
|
/// Note: A value of INT_MIN will return INT_MIN, no saturation or overflow
|
|
/// is performed.
|
|
ABS,
|
|
|
|
/// Shift and rotation operations. After legalization, the type of the
|
|
/// shift amount is known to be TLI.getShiftAmountTy(). Before legalization
|
|
/// the shift amount can be any type, but care must be taken to ensure it is
|
|
/// large enough. TLI.getShiftAmountTy() is i8 on some targets, but before
|
|
/// legalization, types like i1024 can occur and i8 doesn't have enough bits
|
|
/// to represent the shift amount.
|
|
/// When the 1st operand is a vector, the shift amount must be in the same
|
|
/// type. (TLI.getShiftAmountTy() will return the same type when the input
|
|
/// type is a vector.)
|
|
SHL, SRA, SRL, ROTL, ROTR,
|
|
|
|
/// Byte Swap and Counting operators.
|
|
BSWAP, CTTZ, CTLZ, CTPOP, BITREVERSE,
|
|
|
|
/// Bit counting operators with an undefined result for zero inputs.
|
|
CTTZ_ZERO_UNDEF, CTLZ_ZERO_UNDEF,
|
|
|
|
/// Select(COND, TRUEVAL, FALSEVAL). If the type of the boolean COND is not
|
|
/// i1 then the high bits must conform to getBooleanContents.
|
|
SELECT,
|
|
|
|
/// Select with a vector condition (op #0) and two vector operands (ops #1
|
|
/// and #2), returning a vector result. All vectors have the same length.
|
|
/// Much like the scalar select and setcc, each bit in the condition selects
|
|
/// whether the corresponding result element is taken from op #1 or op #2.
|
|
/// At first, the VSELECT condition is of vXi1 type. Later, targets may
|
|
/// change the condition type in order to match the VSELECT node using a
|
|
/// pattern. The condition follows the BooleanContent format of the target.
|
|
VSELECT,
|
|
|
|
/// Select with condition operator - This selects between a true value and
|
|
/// a false value (ops #2 and #3) based on the boolean result of comparing
|
|
/// the lhs and rhs (ops #0 and #1) of a conditional expression with the
|
|
/// condition code in op #4, a CondCodeSDNode.
|
|
SELECT_CC,
|
|
|
|
/// SetCC operator - This evaluates to a true value iff the condition is
|
|
/// true. If the result value type is not i1 then the high bits conform
|
|
/// to getBooleanContents. The operands to this are the left and right
|
|
/// operands to compare (ops #0, and #1) and the condition code to compare
|
|
/// them with (op #2) as a CondCodeSDNode. If the operands are vector types
|
|
/// then the result type must also be a vector type.
|
|
SETCC,
|
|
|
|
/// Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, and
|
|
/// op #2 is a *carry value*. This operator checks the result of
|
|
/// "LHS - RHS - Carry", and can be used to compare two wide integers:
|
|
/// (setcce lhshi rhshi (subc lhslo rhslo) cc). Only valid for integers.
|
|
/// FIXME: This node is deprecated in favor of SETCCCARRY.
|
|
/// It is kept around for now to provide a smooth transition path
|
|
/// toward the use of SETCCCARRY and will eventually be removed.
|
|
SETCCE,
|
|
|
|
/// Like SetCC, ops #0 and #1 are the LHS and RHS operands to compare, but
|
|
/// op #2 is a boolean indicating if there is an incoming carry. This
|
|
/// operator checks the result of "LHS - RHS - Carry", and can be used to
|
|
/// compare two wide integers: (setcce lhshi rhshi (subc lhslo rhslo) cc).
|
|
/// Only valid for integers.
|
|
SETCCCARRY,
|
|
|
|
/// SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
|
|
/// integer shift operations. The operation ordering is:
|
|
/// [Lo,Hi] = op [LoLHS,HiLHS], Amt
|
|
SHL_PARTS, SRA_PARTS, SRL_PARTS,
|
|
|
|
/// Conversion operators. These are all single input single output
|
|
/// operations. For all of these, the result type must be strictly
|
|
/// wider or narrower (depending on the operation) than the source
|
|
/// type.
|
|
|
|
/// SIGN_EXTEND - Used for integer types, replicating the sign bit
|
|
/// into new bits.
|
|
SIGN_EXTEND,
|
|
|
|
/// ZERO_EXTEND - Used for integer types, zeroing the new bits.
|
|
ZERO_EXTEND,
|
|
|
|
/// ANY_EXTEND - Used for integer types. The high bits are undefined.
|
|
ANY_EXTEND,
|
|
|
|
/// TRUNCATE - Completely drop the high bits.
|
|
TRUNCATE,
|
|
|
|
/// [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
|
|
/// depends on the first letter) to floating point.
|
|
SINT_TO_FP,
|
|
UINT_TO_FP,
|
|
|
|
/// SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
|
|
/// sign extend a small value in a large integer register (e.g. sign
|
|
/// extending the low 8 bits of a 32-bit register to fill the top 24 bits
|
|
/// with the 7th bit). The size of the smaller type is indicated by the 1th
|
|
/// operand, a ValueType node.
|
|
SIGN_EXTEND_INREG,
|
|
|
|
/// ANY_EXTEND_VECTOR_INREG(Vector) - This operator represents an
|
|
/// in-register any-extension of the low lanes of an integer vector. The
|
|
/// result type must have fewer elements than the operand type, and those
|
|
/// elements must be larger integer types such that the total size of the
|
|
/// operand type and the result type match. Each of the low operand
|
|
/// elements is any-extended into the corresponding, wider result
|
|
/// elements with the high bits becoming undef.
|
|
ANY_EXTEND_VECTOR_INREG,
|
|
|
|
/// SIGN_EXTEND_VECTOR_INREG(Vector) - This operator represents an
|
|
/// in-register sign-extension of the low lanes of an integer vector. The
|
|
/// result type must have fewer elements than the operand type, and those
|
|
/// elements must be larger integer types such that the total size of the
|
|
/// operand type and the result type match. Each of the low operand
|
|
/// elements is sign-extended into the corresponding, wider result
|
|
/// elements.
|
|
// FIXME: The SIGN_EXTEND_INREG node isn't specifically limited to
|
|
// scalars, but it also doesn't handle vectors well. Either it should be
|
|
// restricted to scalars or this node (and its handling) should be merged
|
|
// into it.
|
|
SIGN_EXTEND_VECTOR_INREG,
|
|
|
|
/// ZERO_EXTEND_VECTOR_INREG(Vector) - This operator represents an
|
|
/// in-register zero-extension of the low lanes of an integer vector. The
|
|
/// result type must have fewer elements than the operand type, and those
|
|
/// elements must be larger integer types such that the total size of the
|
|
/// operand type and the result type match. Each of the low operand
|
|
/// elements is zero-extended into the corresponding, wider result
|
|
/// elements.
|
|
ZERO_EXTEND_VECTOR_INREG,
|
|
|
|
/// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
|
|
/// integer.
|
|
FP_TO_SINT,
|
|
FP_TO_UINT,
|
|
|
|
/// X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type
|
|
/// down to the precision of the destination VT. TRUNC is a flag, which is
|
|
/// always an integer that is zero or one. If TRUNC is 0, this is a
|
|
/// normal rounding, if it is 1, this FP_ROUND is known to not change the
|
|
/// value of Y.
|
|
///
|
|
/// The TRUNC = 1 case is used in cases where we know that the value will
|
|
/// not be modified by the node, because Y is not using any of the extra
|
|
/// precision of source type. This allows certain transformations like
|
|
/// FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for
|
|
/// FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed.
|
|
FP_ROUND,
|
|
|
|
/// FLT_ROUNDS_ - Returns current rounding mode:
|
|
/// -1 Undefined
|
|
/// 0 Round to 0
|
|
/// 1 Round to nearest
|
|
/// 2 Round to +inf
|
|
/// 3 Round to -inf
|
|
FLT_ROUNDS_,
|
|
|
|
/// X = FP_ROUND_INREG(Y, VT) - This operator takes an FP register, and
|
|
/// rounds it to a floating point value. It then promotes it and returns it
|
|
/// in a register of the same size. This operation effectively just
|
|
/// discards excess precision. The type to round down to is specified by
|
|
/// the VT operand, a VTSDNode.
|
|
FP_ROUND_INREG,
|
|
|
|
/// X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
|
|
FP_EXTEND,
|
|
|
|
/// BITCAST - This operator converts between integer, vector and FP
|
|
/// values, as if the value was stored to memory with one type and loaded
|
|
/// from the same address with the other type (or equivalently for vector
|
|
/// format conversions, etc). The source and result are required to have
|
|
/// the same bit size (e.g. f32 <-> i32). This can also be used for
|
|
/// int-to-int or fp-to-fp conversions, but that is a noop, deleted by
|
|
/// getNode().
|
|
///
|
|
/// This operator is subtly different from the bitcast instruction from
|
|
/// LLVM-IR since this node may change the bits in the register. For
|
|
/// example, this occurs on big-endian NEON and big-endian MSA where the
|
|
/// layout of the bits in the register depends on the vector type and this
|
|
/// operator acts as a shuffle operation for some vector type combinations.
|
|
BITCAST,
|
|
|
|
/// ADDRSPACECAST - This operator converts between pointers of different
|
|
/// address spaces.
|
|
ADDRSPACECAST,
|
|
|
|
/// FP16_TO_FP, FP_TO_FP16 - These operators are used to perform promotions
|
|
/// and truncation for half-precision (16 bit) floating numbers. These nodes
|
|
/// form a semi-softened interface for dealing with f16 (as an i16), which
|
|
/// is often a storage-only type but has native conversions.
|
|
FP16_TO_FP, FP_TO_FP16,
|
|
|
|
/// FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
|
|
/// FLOG, FLOG2, FLOG10, FEXP, FEXP2,
|
|
/// FCEIL, FTRUNC, FRINT, FNEARBYINT, FROUND, FFLOOR - Perform various unary
|
|
/// floating point operations. These are inspired by libm.
|
|
FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
|
|
FLOG, FLOG2, FLOG10, FEXP, FEXP2,
|
|
FCEIL, FTRUNC, FRINT, FNEARBYINT, FROUND, FFLOOR,
|
|
/// FMINNUM/FMAXNUM - Perform floating-point minimum or maximum on two
|
|
/// values.
|
|
/// In the case where a single input is NaN, the non-NaN input is returned.
|
|
///
|
|
/// The return value of (FMINNUM 0.0, -0.0) could be either 0.0 or -0.0.
|
|
FMINNUM, FMAXNUM,
|
|
/// FMINNAN/FMAXNAN - Behave identically to FMINNUM/FMAXNUM, except that
|
|
/// when a single input is NaN, NaN is returned.
|
|
FMINNAN, FMAXNAN,
|
|
|
|
/// FSINCOS - Compute both fsin and fcos as a single operation.
|
|
FSINCOS,
|
|
|
|
/// LOAD and STORE have token chains as their first operand, then the same
|
|
/// operands as an LLVM load/store instruction, then an offset node that
|
|
/// is added / subtracted from the base pointer to form the address (for
|
|
/// indexed memory ops).
|
|
LOAD, STORE,
|
|
|
|
/// DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
|
|
/// to a specified boundary. This node always has two return values: a new
|
|
/// stack pointer value and a chain. The first operand is the token chain,
|
|
/// the second is the number of bytes to allocate, and the third is the
|
|
/// alignment boundary. The size is guaranteed to be a multiple of the
|
|
/// stack alignment, and the alignment is guaranteed to be bigger than the
|
|
/// stack alignment (if required) or 0 to get standard stack alignment.
|
|
DYNAMIC_STACKALLOC,
|
|
|
|
/// Control flow instructions. These all have token chains.
|
|
|
|
/// BR - Unconditional branch. The first operand is the chain
|
|
/// operand, the second is the MBB to branch to.
|
|
BR,
|
|
|
|
/// BRIND - Indirect branch. The first operand is the chain, the second
|
|
/// is the value to branch to, which must be of the same type as the
|
|
/// target's pointer type.
|
|
BRIND,
|
|
|
|
/// BR_JT - Jumptable branch. The first operand is the chain, the second
|
|
/// is the jumptable index, the last one is the jumptable entry index.
|
|
BR_JT,
|
|
|
|
/// BRCOND - Conditional branch. The first operand is the chain, the
|
|
/// second is the condition, the third is the block to branch to if the
|
|
/// condition is true. If the type of the condition is not i1, then the
|
|
/// high bits must conform to getBooleanContents.
|
|
BRCOND,
|
|
|
|
/// BR_CC - Conditional branch. The behavior is like that of SELECT_CC, in
|
|
/// that the condition is represented as condition code, and two nodes to
|
|
/// compare, rather than as a combined SetCC node. The operands in order
|
|
/// are chain, cc, lhs, rhs, block to branch to if condition is true.
|
|
BR_CC,
|
|
|
|
/// INLINEASM - Represents an inline asm block. This node always has two
|
|
/// return values: a chain and a flag result. The inputs are as follows:
|
|
/// Operand #0 : Input chain.
|
|
/// Operand #1 : a ExternalSymbolSDNode with a pointer to the asm string.
|
|
/// Operand #2 : a MDNodeSDNode with the !srcloc metadata.
|
|
/// Operand #3 : HasSideEffect, IsAlignStack bits.
|
|
/// After this, it is followed by a list of operands with this format:
|
|
/// ConstantSDNode: Flags that encode whether it is a mem or not, the
|
|
/// of operands that follow, etc. See InlineAsm.h.
|
|
/// ... however many operands ...
|
|
/// Operand #last: Optional, an incoming flag.
|
|
///
|
|
/// The variable width operands are required to represent target addressing
|
|
/// modes as a single "operand", even though they may have multiple
|
|
/// SDOperands.
|
|
INLINEASM,
|
|
|
|
/// EH_LABEL - Represents a label in mid basic block used to track
|
|
/// locations needed for debug and exception handling tables. These nodes
|
|
/// take a chain as input and return a chain.
|
|
EH_LABEL,
|
|
|
|
/// ANNOTATION_LABEL - Represents a mid basic block label used by
|
|
/// annotations. This should remain within the basic block and be ordered
|
|
/// with respect to other call instructions, but loads and stores may float
|
|
/// past it.
|
|
ANNOTATION_LABEL,
|
|
|
|
/// CATCHPAD - Represents a catchpad instruction.
|
|
CATCHPAD,
|
|
|
|
/// CATCHRET - Represents a return from a catch block funclet. Used for
|
|
/// MSVC compatible exception handling. Takes a chain operand and a
|
|
/// destination basic block operand.
|
|
CATCHRET,
|
|
|
|
/// CLEANUPRET - Represents a return from a cleanup block funclet. Used for
|
|
/// MSVC compatible exception handling. Takes only a chain operand.
|
|
CLEANUPRET,
|
|
|
|
/// STACKSAVE - STACKSAVE has one operand, an input chain. It produces a
|
|
/// value, the same type as the pointer type for the system, and an output
|
|
/// chain.
|
|
STACKSAVE,
|
|
|
|
/// STACKRESTORE has two operands, an input chain and a pointer to restore
|
|
/// to it returns an output chain.
|
|
STACKRESTORE,
|
|
|
|
/// CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end
|
|
/// of a call sequence, and carry arbitrary information that target might
|
|
/// want to know. The first operand is a chain, the rest are specified by
|
|
/// the target and not touched by the DAG optimizers.
|
|
/// Targets that may use stack to pass call arguments define additional
|
|
/// operands:
|
|
/// - size of the call frame part that must be set up within the
|
|
/// CALLSEQ_START..CALLSEQ_END pair,
|
|
/// - part of the call frame prepared prior to CALLSEQ_START.
|
|
/// Both these parameters must be constants, their sum is the total call
|
|
/// frame size.
|
|
/// CALLSEQ_START..CALLSEQ_END pairs may not be nested.
|
|
CALLSEQ_START, // Beginning of a call sequence
|
|
CALLSEQ_END, // End of a call sequence
|
|
|
|
/// VAARG - VAARG has four operands: an input chain, a pointer, a SRCVALUE,
|
|
/// and the alignment. It returns a pair of values: the vaarg value and a
|
|
/// new chain.
|
|
VAARG,
|
|
|
|
/// VACOPY - VACOPY has 5 operands: an input chain, a destination pointer,
|
|
/// a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
|
|
/// source.
|
|
VACOPY,
|
|
|
|
/// VAEND, VASTART - VAEND and VASTART have three operands: an input chain,
|
|
/// pointer, and a SRCVALUE.
|
|
VAEND, VASTART,
|
|
|
|
/// SRCVALUE - This is a node type that holds a Value* that is used to
|
|
/// make reference to a value in the LLVM IR.
|
|
SRCVALUE,
|
|
|
|
/// MDNODE_SDNODE - This is a node that holdes an MDNode*, which is used to
|
|
/// reference metadata in the IR.
|
|
MDNODE_SDNODE,
|
|
|
|
/// PCMARKER - This corresponds to the pcmarker intrinsic.
|
|
PCMARKER,
|
|
|
|
/// READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
|
|
/// It produces a chain and one i64 value. The only operand is a chain.
|
|
/// If i64 is not legal, the result will be expanded into smaller values.
|
|
/// Still, it returns an i64, so targets should set legality for i64.
|
|
/// The result is the content of the architecture-specific cycle
|
|
/// counter-like register (or other high accuracy low latency clock source).
|
|
READCYCLECOUNTER,
|
|
|
|
/// HANDLENODE node - Used as a handle for various purposes.
|
|
HANDLENODE,
|
|
|
|
/// INIT_TRAMPOLINE - This corresponds to the init_trampoline intrinsic. It
|
|
/// takes as input a token chain, the pointer to the trampoline, the pointer
|
|
/// to the nested function, the pointer to pass for the 'nest' parameter, a
|
|
/// SRCVALUE for the trampoline and another for the nested function
|
|
/// (allowing targets to access the original Function*).
|
|
/// It produces a token chain as output.
|
|
INIT_TRAMPOLINE,
|
|
|
|
/// ADJUST_TRAMPOLINE - This corresponds to the adjust_trampoline intrinsic.
|
|
/// It takes a pointer to the trampoline and produces a (possibly) new
|
|
/// pointer to the same trampoline with platform-specific adjustments
|
|
/// applied. The pointer it returns points to an executable block of code.
|
|
ADJUST_TRAMPOLINE,
|
|
|
|
/// TRAP - Trapping instruction
|
|
TRAP,
|
|
|
|
/// DEBUGTRAP - Trap intended to get the attention of a debugger.
|
|
DEBUGTRAP,
|
|
|
|
/// PREFETCH - This corresponds to a prefetch intrinsic. The first operand
|
|
/// is the chain. The other operands are the address to prefetch,
|
|
/// read / write specifier, locality specifier and instruction / data cache
|
|
/// specifier.
|
|
PREFETCH,
|
|
|
|
/// OUTCHAIN = ATOMIC_FENCE(INCHAIN, ordering, scope)
|
|
/// This corresponds to the fence instruction. It takes an input chain, and
|
|
/// two integer constants: an AtomicOrdering and a SynchronizationScope.
|
|
ATOMIC_FENCE,
|
|
|
|
/// Val, OUTCHAIN = ATOMIC_LOAD(INCHAIN, ptr)
|
|
/// This corresponds to "load atomic" instruction.
|
|
ATOMIC_LOAD,
|
|
|
|
/// OUTCHAIN = ATOMIC_STORE(INCHAIN, ptr, val)
|
|
/// This corresponds to "store atomic" instruction.
|
|
ATOMIC_STORE,
|
|
|
|
/// Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
|
|
/// For double-word atomic operations:
|
|
/// ValLo, ValHi, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmpLo, cmpHi,
|
|
/// swapLo, swapHi)
|
|
/// This corresponds to the cmpxchg instruction.
|
|
ATOMIC_CMP_SWAP,
|
|
|
|
/// Val, Success, OUTCHAIN
|
|
/// = ATOMIC_CMP_SWAP_WITH_SUCCESS(INCHAIN, ptr, cmp, swap)
|
|
/// N.b. this is still a strong cmpxchg operation, so
|
|
/// Success == "Val == cmp".
|
|
ATOMIC_CMP_SWAP_WITH_SUCCESS,
|
|
|
|
/// Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt)
|
|
/// Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amt)
|
|
/// For double-word atomic operations:
|
|
/// ValLo, ValHi, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amtLo, amtHi)
|
|
/// ValLo, ValHi, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amtLo, amtHi)
|
|
/// These correspond to the atomicrmw instruction.
|
|
ATOMIC_SWAP,
|
|
ATOMIC_LOAD_ADD,
|
|
ATOMIC_LOAD_SUB,
|
|
ATOMIC_LOAD_AND,
|
|
ATOMIC_LOAD_OR,
|
|
ATOMIC_LOAD_XOR,
|
|
ATOMIC_LOAD_NAND,
|
|
ATOMIC_LOAD_MIN,
|
|
ATOMIC_LOAD_MAX,
|
|
ATOMIC_LOAD_UMIN,
|
|
ATOMIC_LOAD_UMAX,
|
|
|
|
// Masked load and store - consecutive vector load and store operations
|
|
// with additional mask operand that prevents memory accesses to the
|
|
// masked-off lanes.
|
|
MLOAD, MSTORE,
|
|
|
|
// Masked gather and scatter - load and store operations for a vector of
|
|
// random addresses with additional mask operand that prevents memory
|
|
// accesses to the masked-off lanes.
|
|
MGATHER, MSCATTER,
|
|
|
|
/// This corresponds to the llvm.lifetime.* intrinsics. The first operand
|
|
/// is the chain and the second operand is the alloca pointer.
|
|
LIFETIME_START, LIFETIME_END,
|
|
|
|
/// GC_TRANSITION_START/GC_TRANSITION_END - These operators mark the
|
|
/// beginning and end of GC transition sequence, and carry arbitrary
|
|
/// information that target might need for lowering. The first operand is
|
|
/// a chain, the rest are specified by the target and not touched by the DAG
|
|
/// optimizers. GC_TRANSITION_START..GC_TRANSITION_END pairs may not be
|
|
/// nested.
|
|
GC_TRANSITION_START,
|
|
GC_TRANSITION_END,
|
|
|
|
/// GET_DYNAMIC_AREA_OFFSET - get offset from native SP to the address of
|
|
/// the most recent dynamic alloca. For most targets that would be 0, but
|
|
/// for some others (e.g. PowerPC, PowerPC64) that would be compile-time
|
|
/// known nonzero constant. The only operand here is the chain.
|
|
GET_DYNAMIC_AREA_OFFSET,
|
|
|
|
/// Generic reduction nodes. These nodes represent horizontal vector
|
|
/// reduction operations, producing a scalar result.
|
|
/// The STRICT variants perform reductions in sequential order. The first
|
|
/// operand is an initial scalar accumulator value, and the second operand
|
|
/// is the vector to reduce.
|
|
VECREDUCE_STRICT_FADD, VECREDUCE_STRICT_FMUL,
|
|
/// These reductions are non-strict, and have a single vector operand.
|
|
VECREDUCE_FADD, VECREDUCE_FMUL,
|
|
VECREDUCE_ADD, VECREDUCE_MUL,
|
|
VECREDUCE_AND, VECREDUCE_OR, VECREDUCE_XOR,
|
|
VECREDUCE_SMAX, VECREDUCE_SMIN, VECREDUCE_UMAX, VECREDUCE_UMIN,
|
|
/// FMIN/FMAX nodes can have flags, for NaN/NoNaN variants.
|
|
VECREDUCE_FMAX, VECREDUCE_FMIN,
|
|
|
|
/// BUILTIN_OP_END - This must be the last enum value in this list.
|
|
/// The target-specific pre-isel opcode values start here.
|
|
BUILTIN_OP_END
|
|
};
|
|
|
|
/// FIRST_TARGET_MEMORY_OPCODE - Target-specific pre-isel operations
|
|
/// which do not reference a specific memory location should be less than
|
|
/// this value. Those that do must not be less than this value, and can
|
|
/// be used with SelectionDAG::getMemIntrinsicNode.
|
|
static const int FIRST_TARGET_MEMORY_OPCODE = BUILTIN_OP_END+300;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
/// MemIndexedMode enum - This enum defines the load / store indexed
|
|
/// addressing modes.
|
|
///
|
|
/// UNINDEXED "Normal" load / store. The effective address is already
|
|
/// computed and is available in the base pointer. The offset
|
|
/// operand is always undefined. In addition to producing a
|
|
/// chain, an unindexed load produces one value (result of the
|
|
/// load); an unindexed store does not produce a value.
|
|
///
|
|
/// PRE_INC Similar to the unindexed mode where the effective address is
|
|
/// PRE_DEC the value of the base pointer add / subtract the offset.
|
|
/// It considers the computation as being folded into the load /
|
|
/// store operation (i.e. the load / store does the address
|
|
/// computation as well as performing the memory transaction).
|
|
/// The base operand is always undefined. In addition to
|
|
/// producing a chain, pre-indexed load produces two values
|
|
/// (result of the load and the result of the address
|
|
/// computation); a pre-indexed store produces one value (result
|
|
/// of the address computation).
|
|
///
|
|
/// POST_INC The effective address is the value of the base pointer. The
|
|
/// POST_DEC value of the offset operand is then added to / subtracted
|
|
/// from the base after memory transaction. In addition to
|
|
/// producing a chain, post-indexed load produces two values
|
|
/// (the result of the load and the result of the base +/- offset
|
|
/// computation); a post-indexed store produces one value (the
|
|
/// the result of the base +/- offset computation).
|
|
enum MemIndexedMode {
|
|
UNINDEXED = 0,
|
|
PRE_INC,
|
|
PRE_DEC,
|
|
POST_INC,
|
|
POST_DEC
|
|
};
|
|
|
|
static const int LAST_INDEXED_MODE = POST_DEC + 1;
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
/// LoadExtType enum - This enum defines the three variants of LOADEXT
|
|
/// (load with extension).
|
|
///
|
|
/// SEXTLOAD loads the integer operand and sign extends it to a larger
|
|
/// integer result type.
|
|
/// ZEXTLOAD loads the integer operand and zero extends it to a larger
|
|
/// integer result type.
|
|
/// EXTLOAD is used for two things: floating point extending loads and
|
|
/// integer extending loads [the top bits are undefined].
|
|
enum LoadExtType {
|
|
NON_EXTLOAD = 0,
|
|
EXTLOAD,
|
|
SEXTLOAD,
|
|
ZEXTLOAD
|
|
};
|
|
|
|
static const int LAST_LOADEXT_TYPE = ZEXTLOAD + 1;
|
|
|
|
NodeType getExtForLoadExtType(bool IsFP, LoadExtType);
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
/// ISD::CondCode enum - These are ordered carefully to make the bitfields
|
|
/// below work out, when considering SETFALSE (something that never exists
|
|
/// dynamically) as 0. "U" -> Unsigned (for integer operands) or Unordered
|
|
/// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
|
|
/// to. If the "N" column is 1, the result of the comparison is undefined if
|
|
/// the input is a NAN.
|
|
///
|
|
/// All of these (except for the 'always folded ops') should be handled for
|
|
/// floating point. For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
|
|
/// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
|
|
///
|
|
/// Note that these are laid out in a specific order to allow bit-twiddling
|
|
/// to transform conditions.
|
|
enum CondCode {
|
|
// Opcode N U L G E Intuitive operation
|
|
SETFALSE, // 0 0 0 0 Always false (always folded)
|
|
SETOEQ, // 0 0 0 1 True if ordered and equal
|
|
SETOGT, // 0 0 1 0 True if ordered and greater than
|
|
SETOGE, // 0 0 1 1 True if ordered and greater than or equal
|
|
SETOLT, // 0 1 0 0 True if ordered and less than
|
|
SETOLE, // 0 1 0 1 True if ordered and less than or equal
|
|
SETONE, // 0 1 1 0 True if ordered and operands are unequal
|
|
SETO, // 0 1 1 1 True if ordered (no nans)
|
|
SETUO, // 1 0 0 0 True if unordered: isnan(X) | isnan(Y)
|
|
SETUEQ, // 1 0 0 1 True if unordered or equal
|
|
SETUGT, // 1 0 1 0 True if unordered or greater than
|
|
SETUGE, // 1 0 1 1 True if unordered, greater than, or equal
|
|
SETULT, // 1 1 0 0 True if unordered or less than
|
|
SETULE, // 1 1 0 1 True if unordered, less than, or equal
|
|
SETUNE, // 1 1 1 0 True if unordered or not equal
|
|
SETTRUE, // 1 1 1 1 Always true (always folded)
|
|
// Don't care operations: undefined if the input is a nan.
|
|
SETFALSE2, // 1 X 0 0 0 Always false (always folded)
|
|
SETEQ, // 1 X 0 0 1 True if equal
|
|
SETGT, // 1 X 0 1 0 True if greater than
|
|
SETGE, // 1 X 0 1 1 True if greater than or equal
|
|
SETLT, // 1 X 1 0 0 True if less than
|
|
SETLE, // 1 X 1 0 1 True if less than or equal
|
|
SETNE, // 1 X 1 1 0 True if not equal
|
|
SETTRUE2, // 1 X 1 1 1 Always true (always folded)
|
|
|
|
SETCC_INVALID // Marker value.
|
|
};
|
|
|
|
/// Return true if this is a setcc instruction that performs a signed
|
|
/// comparison when used with integer operands.
|
|
inline bool isSignedIntSetCC(CondCode Code) {
|
|
return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
|
|
}
|
|
|
|
/// Return true if this is a setcc instruction that performs an unsigned
|
|
/// comparison when used with integer operands.
|
|
inline bool isUnsignedIntSetCC(CondCode Code) {
|
|
return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
|
|
}
|
|
|
|
/// Return true if the specified condition returns true if the two operands to
|
|
/// the condition are equal. Note that if one of the two operands is a NaN,
|
|
/// this value is meaningless.
|
|
inline bool isTrueWhenEqual(CondCode Cond) {
|
|
return ((int)Cond & 1) != 0;
|
|
}
|
|
|
|
/// This function returns 0 if the condition is always false if an operand is
|
|
/// a NaN, 1 if the condition is always true if the operand is a NaN, and 2 if
|
|
/// the condition is undefined if the operand is a NaN.
|
|
inline unsigned getUnorderedFlavor(CondCode Cond) {
|
|
return ((int)Cond >> 3) & 3;
|
|
}
|
|
|
|
/// Return the operation corresponding to !(X op Y), where 'op' is a valid
|
|
/// SetCC operation.
|
|
CondCode getSetCCInverse(CondCode Operation, bool isInteger);
|
|
|
|
/// Return the operation corresponding to (Y op X) when given the operation
|
|
/// for (X op Y).
|
|
CondCode getSetCCSwappedOperands(CondCode Operation);
|
|
|
|
/// Return the result of a logical OR between different comparisons of
|
|
/// identical values: ((X op1 Y) | (X op2 Y)). This function returns
|
|
/// SETCC_INVALID if it is not possible to represent the resultant comparison.
|
|
CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
|
|
|
|
/// Return the result of a logical AND between different comparisons of
|
|
/// identical values: ((X op1 Y) & (X op2 Y)). This function returns
|
|
/// SETCC_INVALID if it is not possible to represent the resultant comparison.
|
|
CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
|
|
|
|
} // end llvm::ISD namespace
|
|
|
|
} // end llvm namespace
|
|
|
|
#endif
|