1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 19:23:23 +01:00
llvm-mirror/test/CodeGen/SystemZ/int-add-05.ll
Jonas Paulsson 0f000465c2 [SystemZ, RegAlloc] Favor 3-address instructions during instruction selection.
This patch aims to reduce spilling and register moves by using the 3-address
versions of instructions per default instead of the 2-address equivalent
ones. It seems that both spilling and register moves are improved noticeably
generally.

Regalloc hints are passed to increase conversions to 2-address instructions
which are done in SystemZShortenInst.cpp (after regalloc).

Since the SystemZ reg/mem instructions are 2-address (dst and lhs regs are
the same), foldMemoryOperandImpl() can no longer trivially fold a spilled
source register since the reg/reg instruction is now 3-address. In order to
remedy this, new 3-address pseudo memory instructions are used to perform the
folding only when the dst and lhs virtual registers are known to be allocated
to the same physreg. In order to not let MachineCopyPropagation run and
change registers on these transformed instructions (making it 3-address), a
new target pass called SystemZPostRewrite.cpp is run just after
VirtRegRewriter, that immediately lowers the pseudo to a target instruction.

If it would have been possibe to insert a COPY instruction and change a
register operand (convert to 2-address) in foldMemoryOperandImpl() while
trusting that the caller (e.g. InlineSpiller) would update/repair the
involved LiveIntervals, the solution involving pseudo instructions would not
have been needed. This is perhaps a potential improvement (see Phabricator
post).

Common code changes:

* A new hook TargetPassConfig::addPostRewrite() is utilized to be able to run a
target pass immediately before MachineCopyPropagation.

* VirtRegMap is passed as an argument to foldMemoryOperand().

Review: Ulrich Weigand, Quentin Colombet
https://reviews.llvm.org/D60888

llvm-svn: 362868
2019-06-08 06:19:15 +00:00

143 lines
3.7 KiB
LLVM

; Test 64-bit addition in which the second operand is variable.
;
; RUN: llc < %s -mtriple=s390x-linux-gnu -mcpu=z10 | FileCheck %s --check-prefixes=CHECK,Z10
; RUN: llc < %s -mtriple=s390x-linux-gnu -mcpu=z196 | FileCheck %s --check-prefixes=CHECK,Z196
declare i64 @foo()
; Check AGR.
define i64 @f1(i64 %a, i64 %b) {
; CHECK-LABEL: f1:
; CHECK: agr %r2, %r3
; CHECK: br %r14
%add = add i64 %a, %b
ret i64 %add
}
; Check AG with no displacement.
define i64 @f2(i64 %a, i64 *%src) {
; CHECK-LABEL: f2:
; CHECK: ag %r2, 0(%r3)
; CHECK: br %r14
%b = load i64, i64 *%src
%add = add i64 %a, %b
ret i64 %add
}
; Check the high end of the aligned AG range.
define i64 @f3(i64 %a, i64 *%src) {
; CHECK-LABEL: f3:
; CHECK: ag %r2, 524280(%r3)
; CHECK: br %r14
%ptr = getelementptr i64, i64 *%src, i64 65535
%b = load i64, i64 *%ptr
%add = add i64 %a, %b
ret i64 %add
}
; Check the next doubleword up, which needs separate address logic.
; Other sequences besides this one would be OK.
define i64 @f4(i64 %a, i64 *%src) {
; CHECK-LABEL: f4:
; CHECK: agfi %r3, 524288
; CHECK: ag %r2, 0(%r3)
; CHECK: br %r14
%ptr = getelementptr i64, i64 *%src, i64 65536
%b = load i64, i64 *%ptr
%add = add i64 %a, %b
ret i64 %add
}
; Check the high end of the negative aligned AG range.
define i64 @f5(i64 %a, i64 *%src) {
; CHECK-LABEL: f5:
; CHECK: ag %r2, -8(%r3)
; CHECK: br %r14
%ptr = getelementptr i64, i64 *%src, i64 -1
%b = load i64, i64 *%ptr
%add = add i64 %a, %b
ret i64 %add
}
; Check the low end of the AG range.
define i64 @f6(i64 %a, i64 *%src) {
; CHECK-LABEL: f6:
; CHECK: ag %r2, -524288(%r3)
; CHECK: br %r14
%ptr = getelementptr i64, i64 *%src, i64 -65536
%b = load i64, i64 *%ptr
%add = add i64 %a, %b
ret i64 %add
}
; Check the next doubleword down, which needs separate address logic.
; Other sequences besides this one would be OK.
define i64 @f7(i64 %a, i64 *%src) {
; CHECK-LABEL: f7:
; CHECK: agfi %r3, -524296
; CHECK: ag %r2, 0(%r3)
; CHECK: br %r14
%ptr = getelementptr i64, i64 *%src, i64 -65537
%b = load i64, i64 *%ptr
%add = add i64 %a, %b
ret i64 %add
}
; Check that AG allows an index.
define i64 @f8(i64 %a, i64 %src, i64 %index) {
; CHECK-LABEL: f8:
; CHECK: ag %r2, 524280({{%r4,%r3|%r3,%r4}})
; CHECK: br %r14
%add1 = add i64 %src, %index
%add2 = add i64 %add1, 524280
%ptr = inttoptr i64 %add2 to i64 *
%b = load i64, i64 *%ptr
%add = add i64 %a, %b
ret i64 %add
}
; Check that additions of spilled values can use AG rather than AGR.
; Note: Z196 is suboptimal with one unfolded reload.
define i64 @f9(i64 *%ptr0) {
; CHECK-LABEL: f9:
; CHECK: brasl %r14, foo@PLT
; Z10: ag %r2, 168(%r15)
; Z196: ag %r0, 168(%r15)
; CHECK: br %r14
%ptr1 = getelementptr i64, i64 *%ptr0, i64 2
%ptr2 = getelementptr i64, i64 *%ptr0, i64 4
%ptr3 = getelementptr i64, i64 *%ptr0, i64 6
%ptr4 = getelementptr i64, i64 *%ptr0, i64 8
%ptr5 = getelementptr i64, i64 *%ptr0, i64 10
%ptr6 = getelementptr i64, i64 *%ptr0, i64 12
%ptr7 = getelementptr i64, i64 *%ptr0, i64 14
%ptr8 = getelementptr i64, i64 *%ptr0, i64 16
%ptr9 = getelementptr i64, i64 *%ptr0, i64 18
%val0 = load i64, i64 *%ptr0
%val1 = load i64, i64 *%ptr1
%val2 = load i64, i64 *%ptr2
%val3 = load i64, i64 *%ptr3
%val4 = load i64, i64 *%ptr4
%val5 = load i64, i64 *%ptr5
%val6 = load i64, i64 *%ptr6
%val7 = load i64, i64 *%ptr7
%val8 = load i64, i64 *%ptr8
%val9 = load i64, i64 *%ptr9
%ret = call i64 @foo()
%add0 = add i64 %ret, %val0
%add1 = add i64 %add0, %val1
%add2 = add i64 %add1, %val2
%add3 = add i64 %add2, %val3
%add4 = add i64 %add3, %val4
%add5 = add i64 %add4, %val5
%add6 = add i64 %add5, %val6
%add7 = add i64 %add6, %val7
%add8 = add i64 %add7, %val8
%add9 = add i64 %add8, %val9
ret i64 %add9
}