mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 04:02:41 +01:00
901c588c1f
Currently, it is hard for the compiler to remove unused C++ virtual functions, because they are all referenced from vtables, which are referenced by constructors. This means that if the constructor is called from any live code, then we keep every virtual function in the final link, even if there are no call sites which can use it. This patch allows unused virtual functions to be removed during LTO (and regular compilation in limited circumstances) by using type metadata to match virtual function call sites to the vtable slots they might load from. This information can then be used in the global dead code elimination pass instead of the references from vtables to virtual functions, to more accurately determine which functions are reachable. To make this transformation safe, I have changed clang's code-generation to always load virtual function pointers using the llvm.type.checked.load intrinsic, instead of regular load instructions. I originally tried writing this using clang's existing code-generation, which uses the llvm.type.test and llvm.assume intrinsics after doing a normal load. However, it is possible for optimisations to obscure the relationship between the GEP, load and llvm.type.test, causing GlobalDCE to fail to find virtual function call sites. The existing linkage and visibility types don't accurately describe the scope in which a virtual call could be made which uses a given vtable. This is wider than the visibility of the type itself, because a virtual function call could be made using a more-visible base class. I've added a new !vcall_visibility metadata type to represent this, described in TypeMetadata.rst. The internalization pass and libLTO have been updated to change this metadata when linking is performed. This doesn't currently work with ThinLTO, because it needs to see every call to llvm.type.checked.load in the linkage unit. It might be possible to extend this optimisation to be able to use the ThinLTO summary, as was done for devirtualization, but until then that combination is rejected in the clang driver. To test this, I've written a fuzzer which generates random C++ programs with complex class inheritance graphs, and virtual functions called through object and function pointers of different types. The programs are spread across multiple translation units and DSOs to test the different visibility restrictions. I've also tried doing bootstrap builds of LLVM to test this. This isn't ideal, because only classes in anonymous namespaces can be optimised with -fvisibility=default, and some parts of LLVM (plugins and bugpoint) do not work correctly with -fvisibility=hidden. However, there are only 12 test failures when building with -fvisibility=hidden (and an unmodified compiler), and this change does not cause any new failures for either value of -fvisibility. On the 7 C++ sub-benchmarks of SPEC2006, this gives a geomean code-size reduction of ~6%, over a baseline compiled with "-O2 -flto -fvisibility=hidden -fwhole-program-vtables". The best cases are reductions of ~14% in 450.soplex and 483.xalancbmk, and there are no code size increases. I've also run this on a set of 8 mbed-os examples compiled for Armv7M, which show a geomean size reduction of ~3%, again with no size increases. I had hoped that this would have no effect on performance, which would allow it to awlays be enabled (when using -fwhole-program-vtables). However, the changes in clang to use the llvm.type.checked.load intrinsic are causing ~1% performance regression in the C++ parts of SPEC2006. It should be possible to recover some of this perf loss by teaching optimisations about the llvm.type.checked.load intrinsic, which would make it worth turning this on by default (though it's still dependent on -fwhole-program-vtables). Differential revision: https://reviews.llvm.org/D63932 llvm-svn: 374539 |
||
---|---|---|
.. | ||
_ocamldoc | ||
_static | ||
_templates | ||
_themes/llvm-theme | ||
AMDGPU | ||
CommandGuide | ||
DependenceGraphs | ||
Frontend | ||
HistoricalNotes | ||
PDB | ||
Proposals | ||
TableGen | ||
tutorial | ||
AddingConstrainedIntrinsics.rst | ||
AdvancedBuilds.rst | ||
AliasAnalysis.rst | ||
AMDGPUInstructionNotation.rst | ||
AMDGPUInstructionSyntax.rst | ||
AMDGPUModifierSyntax.rst | ||
AMDGPUOperandSyntax.rst | ||
AMDGPUUsage.rst | ||
ARM-BE-bitcastfail.png | ||
ARM-BE-bitcastsuccess.png | ||
ARM-BE-ld1.png | ||
ARM-BE-ldr.png | ||
Atomics.rst | ||
Benchmarking.rst | ||
BigEndianNEON.rst | ||
BitCodeFormat.rst | ||
BlockFrequencyTerminology.rst | ||
BranchWeightMetadata.rst | ||
BugLifeCycle.rst | ||
Bugpoint.rst | ||
BugpointRedesign.md | ||
BuildingADistribution.rst | ||
CFIVerify.rst | ||
CMake.rst | ||
CMakeLists.txt | ||
CMakePrimer.rst | ||
CodeGenerator.rst | ||
CodeOfConduct.rst | ||
CodingStandards.rst | ||
CommandLine.rst | ||
CompileCudaWithLLVM.rst | ||
CompilerWriterInfo.rst | ||
conf.py | ||
Contributing.rst | ||
Coroutines.rst | ||
CoverageMappingFormat.rst | ||
DebuggingJITedCode.rst | ||
DeveloperPolicy.rst | ||
Docker.rst | ||
doxygen-mainpage.dox | ||
doxygen.cfg.in | ||
ExceptionHandling.rst | ||
ExtendedIntegerResults.txt | ||
ExtendingLLVM.rst | ||
Extensions.rst | ||
FAQ.rst | ||
FaultMaps.rst | ||
FuzzingLLVM.rst | ||
GarbageCollection.rst | ||
gcc-loops.png | ||
GetElementPtr.rst | ||
GettingInvolved.rst | ||
GettingStarted.rst | ||
GettingStartedTutorials.rst | ||
GettingStartedVS.rst | ||
GlobalISel.rst | ||
GoldPlugin.rst | ||
GwpAsan.rst | ||
HowToAddABuilder.rst | ||
HowToBuildOnARM.rst | ||
HowToBuildWithPGO.rst | ||
HowToCrossCompileBuiltinsOnArm.rst | ||
HowToCrossCompileLLVM.rst | ||
HowToReleaseLLVM.rst | ||
HowToSetUpLLVMStyleRTTI.rst | ||
HowToSubmitABug.rst | ||
HowToUseAttributes.rst | ||
HowToUseInstrMappings.rst | ||
InAlloca.rst | ||
index.rst | ||
LangRef.rst | ||
Lexicon.rst | ||
LibFuzzer.rst | ||
LinkTimeOptimization.rst | ||
linpack-pc.png | ||
llvm-objdump.1 | ||
LLVMBuild.rst | ||
LLVMBuild.txt | ||
LoopTerminology.rst | ||
make.bat | ||
Makefile.sphinx | ||
MarkdownQuickstartTemplate.md | ||
MarkedUpDisassembly.rst | ||
MCJIT-creation.png | ||
MCJIT-dyld-load.png | ||
MCJIT-engine-builder.png | ||
MCJIT-load-object.png | ||
MCJIT-load.png | ||
MCJIT-resolve-relocations.png | ||
MCJITDesignAndImplementation.rst | ||
MeetupGuidelines.rst | ||
MemorySSA.rst | ||
MergeFunctions.rst | ||
MIRLangRef.rst | ||
NVPTXUsage.rst | ||
OptBisect.rst | ||
ORCv2.rst | ||
Packaging.rst | ||
Passes.rst | ||
Phabricator.rst | ||
ProgrammersManual.rst | ||
Projects.rst | ||
re_format.7 | ||
README.txt | ||
Reference.rst | ||
ReleaseNotes.rst | ||
ReleaseProcess.rst | ||
Remarks.rst | ||
ReportingGuide.rst | ||
ScudoHardenedAllocator.rst | ||
SegmentedStacks.rst | ||
SourceLevelDebugging.rst | ||
speculative_load_hardening_microbenchmarks.png | ||
SpeculativeLoadHardening.md | ||
SphinxQuickstartTemplate.rst | ||
StackMaps.rst | ||
StackSafetyAnalysis.rst | ||
Statepoints.rst | ||
SupportLibrary.rst | ||
SystemLibrary.rst | ||
TableGenFundamentals.rst | ||
TestingGuide.rst | ||
TestSuiteGuide.md | ||
TestSuiteMakefileGuide.rst | ||
TransformMetadata.rst | ||
TypeMetadata.rst | ||
UserGuides.rst | ||
Vectorizers.rst | ||
WritingAnLLVMBackend.rst | ||
WritingAnLLVMPass.rst | ||
XRay.rst | ||
XRayExample.rst | ||
XRayFDRFormat.rst | ||
yaml2obj.rst | ||
YamlIO.rst |
LLVM Documentation ================== LLVM's documentation is written in reStructuredText, a lightweight plaintext markup language (file extension `.rst`). While the reStructuredText documentation should be quite readable in source form, it is mostly meant to be processed by the Sphinx documentation generation system to create HTML pages which are hosted on <http://llvm.org/docs/> and updated after every commit. Manpage output is also supported, see below. If you instead would like to generate and view the HTML locally, install Sphinx <http://sphinx-doc.org/> and then do: cd <build-dir> cmake -DLLVM_ENABLE_SPHINX=true -DSPHINX_OUTPUT_HTML=true <src-dir> make -j3 docs-llvm-html $BROWSER <build-dir>/docs//html/index.html The mapping between reStructuredText files and generated documentation is `docs/Foo.rst` <-> `<build-dir>/docs//html/Foo.html` <-> `http://llvm.org/docs/Foo.html`. If you are interested in writing new documentation, you will want to read `SphinxQuickstartTemplate.rst` which will get you writing documentation very fast and includes examples of the most important reStructuredText markup syntax. Manpage Output =============== Building the manpages is similar to building the HTML documentation. The primary difference is to use the `man` makefile target, instead of the default (which is `html`). Sphinx then produces the man pages in the directory `<build-dir>/docs/man/`. cd <build-dir> cmake -DLLVM_ENABLE_SPHINX=true -DSPHINX_OUTPUT_MAN=true <src-dir> make -j3 docs-llvm-man man -l >build-dir>/docs/man/FileCheck.1 The correspondence between .rst files and man pages is `docs/CommandGuide/Foo.rst` <-> `<build-dir>/docs//man/Foo.1`. These .rst files are also included during HTML generation so they are also viewable online (as noted above) at e.g. `http://llvm.org/docs/CommandGuide/Foo.html`. Checking links ============== The reachability of external links in the documentation can be checked by running: cd docs/ make -f Makefile.sphinx linkcheck Doxygen page Output ============== Install doxygen <http://www.stack.nl/~dimitri/doxygen/download.html> and dot2tex <https://dot2tex.readthedocs.io/en/latest>. cd <build-dir> cmake -DLLVM_ENABLE_DOXYGEN=On <llvm-top-src-dir> make doxygen-llvm # for LLVM docs make doxygen-clang # for clang docs It will generate html in <build-dir>/docs/doxygen/html # for LLVM docs <build-dir>/tools/clang/docs/doxygen/html # for clang docs