1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-26 04:32:44 +01:00
llvm-mirror/lib/Target/AMDGPU/AMDGPUInstructionSelector.cpp
Mirko Brkusanin 5869dbd86c [AMDGPU][GlobalISel] Fix subregister index for EXEC register in selectBallot.
Temporarily remove subregister for EXEC in selectBallot added in
https://reviews.llvm.org/D83214 to fix failures on expensive checks buildbot.
2020-07-13 13:35:34 +02:00

3851 lines
128 KiB
C++

//===- AMDGPUInstructionSelector.cpp ----------------------------*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the targeting of the InstructionSelector class for
/// AMDGPU.
/// \todo This should be generated by TableGen.
//===----------------------------------------------------------------------===//
#include "AMDGPUInstructionSelector.h"
#include "AMDGPUInstrInfo.h"
#include "AMDGPUGlobalISelUtils.h"
#include "AMDGPURegisterBankInfo.h"
#include "AMDGPUSubtarget.h"
#include "AMDGPUTargetMachine.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "SIMachineFunctionInfo.h"
#include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelectorImpl.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "amdgpu-isel"
using namespace llvm;
using namespace MIPatternMatch;
static cl::opt<bool> AllowRiskySelect(
"amdgpu-global-isel-risky-select",
cl::desc("Allow GlobalISel to select cases that are likely to not work yet"),
cl::init(false),
cl::ReallyHidden);
#define GET_GLOBALISEL_IMPL
#define AMDGPUSubtarget GCNSubtarget
#include "AMDGPUGenGlobalISel.inc"
#undef GET_GLOBALISEL_IMPL
#undef AMDGPUSubtarget
AMDGPUInstructionSelector::AMDGPUInstructionSelector(
const GCNSubtarget &STI, const AMDGPURegisterBankInfo &RBI,
const AMDGPUTargetMachine &TM)
: InstructionSelector(), TII(*STI.getInstrInfo()),
TRI(*STI.getRegisterInfo()), RBI(RBI), TM(TM),
STI(STI),
EnableLateStructurizeCFG(AMDGPUTargetMachine::EnableLateStructurizeCFG),
#define GET_GLOBALISEL_PREDICATES_INIT
#include "AMDGPUGenGlobalISel.inc"
#undef GET_GLOBALISEL_PREDICATES_INIT
#define GET_GLOBALISEL_TEMPORARIES_INIT
#include "AMDGPUGenGlobalISel.inc"
#undef GET_GLOBALISEL_TEMPORARIES_INIT
{
}
const char *AMDGPUInstructionSelector::getName() { return DEBUG_TYPE; }
void AMDGPUInstructionSelector::setupMF(MachineFunction &MF, GISelKnownBits &KB,
CodeGenCoverage &CoverageInfo) {
MRI = &MF.getRegInfo();
InstructionSelector::setupMF(MF, KB, CoverageInfo);
}
bool AMDGPUInstructionSelector::isVCC(Register Reg,
const MachineRegisterInfo &MRI) const {
if (Register::isPhysicalRegister(Reg))
return Reg == TRI.getVCC();
auto &RegClassOrBank = MRI.getRegClassOrRegBank(Reg);
const TargetRegisterClass *RC =
RegClassOrBank.dyn_cast<const TargetRegisterClass*>();
if (RC) {
const LLT Ty = MRI.getType(Reg);
return RC->hasSuperClassEq(TRI.getBoolRC()) &&
Ty.isValid() && Ty.getSizeInBits() == 1;
}
const RegisterBank *RB = RegClassOrBank.get<const RegisterBank *>();
return RB->getID() == AMDGPU::VCCRegBankID;
}
bool AMDGPUInstructionSelector::constrainCopyLikeIntrin(MachineInstr &MI,
unsigned NewOpc) const {
MI.setDesc(TII.get(NewOpc));
MI.RemoveOperand(1); // Remove intrinsic ID.
MI.addOperand(*MF, MachineOperand::CreateReg(AMDGPU::EXEC, false, true));
MachineOperand &Dst = MI.getOperand(0);
MachineOperand &Src = MI.getOperand(1);
// TODO: This should be legalized to s32 if needed
if (MRI->getType(Dst.getReg()) == LLT::scalar(1))
return false;
const TargetRegisterClass *DstRC
= TRI.getConstrainedRegClassForOperand(Dst, *MRI);
const TargetRegisterClass *SrcRC
= TRI.getConstrainedRegClassForOperand(Src, *MRI);
if (!DstRC || DstRC != SrcRC)
return false;
return RBI.constrainGenericRegister(Dst.getReg(), *DstRC, *MRI) &&
RBI.constrainGenericRegister(Src.getReg(), *SrcRC, *MRI);
}
bool AMDGPUInstructionSelector::selectCOPY(MachineInstr &I) const {
const DebugLoc &DL = I.getDebugLoc();
MachineBasicBlock *BB = I.getParent();
I.setDesc(TII.get(TargetOpcode::COPY));
const MachineOperand &Src = I.getOperand(1);
MachineOperand &Dst = I.getOperand(0);
Register DstReg = Dst.getReg();
Register SrcReg = Src.getReg();
if (isVCC(DstReg, *MRI)) {
if (SrcReg == AMDGPU::SCC) {
const TargetRegisterClass *RC
= TRI.getConstrainedRegClassForOperand(Dst, *MRI);
if (!RC)
return true;
return RBI.constrainGenericRegister(DstReg, *RC, *MRI);
}
if (!isVCC(SrcReg, *MRI)) {
// TODO: Should probably leave the copy and let copyPhysReg expand it.
if (!RBI.constrainGenericRegister(DstReg, *TRI.getBoolRC(), *MRI))
return false;
const TargetRegisterClass *SrcRC
= TRI.getConstrainedRegClassForOperand(Src, *MRI);
Register MaskedReg = MRI->createVirtualRegister(SrcRC);
// We can't trust the high bits at this point, so clear them.
// TODO: Skip masking high bits if def is known boolean.
unsigned AndOpc = TRI.isSGPRClass(SrcRC) ?
AMDGPU::S_AND_B32 : AMDGPU::V_AND_B32_e32;
BuildMI(*BB, &I, DL, TII.get(AndOpc), MaskedReg)
.addImm(1)
.addReg(SrcReg);
BuildMI(*BB, &I, DL, TII.get(AMDGPU::V_CMP_NE_U32_e64), DstReg)
.addImm(0)
.addReg(MaskedReg);
if (!MRI->getRegClassOrNull(SrcReg))
MRI->setRegClass(SrcReg, SrcRC);
I.eraseFromParent();
return true;
}
const TargetRegisterClass *RC =
TRI.getConstrainedRegClassForOperand(Dst, *MRI);
if (RC && !RBI.constrainGenericRegister(DstReg, *RC, *MRI))
return false;
// Don't constrain the source register to a class so the def instruction
// handles it (unless it's undef).
//
// FIXME: This is a hack. When selecting the def, we neeed to know
// specifically know that the result is VCCRegBank, and not just an SGPR
// with size 1. An SReg_32 with size 1 is ambiguous with wave32.
if (Src.isUndef()) {
const TargetRegisterClass *SrcRC =
TRI.getConstrainedRegClassForOperand(Src, *MRI);
if (SrcRC && !RBI.constrainGenericRegister(SrcReg, *SrcRC, *MRI))
return false;
}
return true;
}
for (const MachineOperand &MO : I.operands()) {
if (Register::isPhysicalRegister(MO.getReg()))
continue;
const TargetRegisterClass *RC =
TRI.getConstrainedRegClassForOperand(MO, *MRI);
if (!RC)
continue;
RBI.constrainGenericRegister(MO.getReg(), *RC, *MRI);
}
return true;
}
bool AMDGPUInstructionSelector::selectPHI(MachineInstr &I) const {
const Register DefReg = I.getOperand(0).getReg();
const LLT DefTy = MRI->getType(DefReg);
if (DefTy == LLT::scalar(1)) {
if (!AllowRiskySelect) {
LLVM_DEBUG(dbgs() << "Skipping risky boolean phi\n");
return false;
}
LLVM_DEBUG(dbgs() << "Selecting risky boolean phi\n");
}
// TODO: Verify this doesn't have insane operands (i.e. VGPR to SGPR copy)
const RegClassOrRegBank &RegClassOrBank =
MRI->getRegClassOrRegBank(DefReg);
const TargetRegisterClass *DefRC
= RegClassOrBank.dyn_cast<const TargetRegisterClass *>();
if (!DefRC) {
if (!DefTy.isValid()) {
LLVM_DEBUG(dbgs() << "PHI operand has no type, not a gvreg?\n");
return false;
}
const RegisterBank &RB = *RegClassOrBank.get<const RegisterBank *>();
DefRC = TRI.getRegClassForTypeOnBank(DefTy, RB, *MRI);
if (!DefRC) {
LLVM_DEBUG(dbgs() << "PHI operand has unexpected size/bank\n");
return false;
}
}
// TODO: Verify that all registers have the same bank
I.setDesc(TII.get(TargetOpcode::PHI));
return RBI.constrainGenericRegister(DefReg, *DefRC, *MRI);
}
MachineOperand
AMDGPUInstructionSelector::getSubOperand64(MachineOperand &MO,
const TargetRegisterClass &SubRC,
unsigned SubIdx) const {
MachineInstr *MI = MO.getParent();
MachineBasicBlock *BB = MO.getParent()->getParent();
Register DstReg = MRI->createVirtualRegister(&SubRC);
if (MO.isReg()) {
unsigned ComposedSubIdx = TRI.composeSubRegIndices(MO.getSubReg(), SubIdx);
Register Reg = MO.getReg();
BuildMI(*BB, MI, MI->getDebugLoc(), TII.get(AMDGPU::COPY), DstReg)
.addReg(Reg, 0, ComposedSubIdx);
return MachineOperand::CreateReg(DstReg, MO.isDef(), MO.isImplicit(),
MO.isKill(), MO.isDead(), MO.isUndef(),
MO.isEarlyClobber(), 0, MO.isDebug(),
MO.isInternalRead());
}
assert(MO.isImm());
APInt Imm(64, MO.getImm());
switch (SubIdx) {
default:
llvm_unreachable("do not know to split immediate with this sub index.");
case AMDGPU::sub0:
return MachineOperand::CreateImm(Imm.getLoBits(32).getSExtValue());
case AMDGPU::sub1:
return MachineOperand::CreateImm(Imm.getHiBits(32).getSExtValue());
}
}
static unsigned getLogicalBitOpcode(unsigned Opc, bool Is64) {
switch (Opc) {
case AMDGPU::G_AND:
return Is64 ? AMDGPU::S_AND_B64 : AMDGPU::S_AND_B32;
case AMDGPU::G_OR:
return Is64 ? AMDGPU::S_OR_B64 : AMDGPU::S_OR_B32;
case AMDGPU::G_XOR:
return Is64 ? AMDGPU::S_XOR_B64 : AMDGPU::S_XOR_B32;
default:
llvm_unreachable("not a bit op");
}
}
bool AMDGPUInstructionSelector::selectG_AND_OR_XOR(MachineInstr &I) const {
MachineOperand &Dst = I.getOperand(0);
MachineOperand &Src0 = I.getOperand(1);
MachineOperand &Src1 = I.getOperand(2);
Register DstReg = Dst.getReg();
unsigned Size = RBI.getSizeInBits(DstReg, *MRI, TRI);
const RegisterBank *DstRB = RBI.getRegBank(DstReg, *MRI, TRI);
if (DstRB->getID() == AMDGPU::VCCRegBankID) {
const TargetRegisterClass *RC = TRI.getBoolRC();
unsigned InstOpc = getLogicalBitOpcode(I.getOpcode(),
RC == &AMDGPU::SReg_64RegClass);
I.setDesc(TII.get(InstOpc));
// Dead implicit-def of scc
I.addOperand(MachineOperand::CreateReg(AMDGPU::SCC, true, // isDef
true, // isImp
false, // isKill
true)); // isDead
// FIXME: Hack to avoid turning the register bank into a register class.
// The selector for G_ICMP relies on seeing the register bank for the result
// is VCC. In wave32 if we constrain the registers to SReg_32 here, it will
// be ambiguous whether it's a scalar or vector bool.
if (Src0.isUndef() && !MRI->getRegClassOrNull(Src0.getReg()))
MRI->setRegClass(Src0.getReg(), RC);
if (Src1.isUndef() && !MRI->getRegClassOrNull(Src1.getReg()))
MRI->setRegClass(Src1.getReg(), RC);
return RBI.constrainGenericRegister(DstReg, *RC, *MRI);
}
// TODO: Should this allow an SCC bank result, and produce a copy from SCC for
// the result?
if (DstRB->getID() == AMDGPU::SGPRRegBankID) {
unsigned InstOpc = getLogicalBitOpcode(I.getOpcode(), Size > 32);
I.setDesc(TII.get(InstOpc));
// Dead implicit-def of scc
I.addOperand(MachineOperand::CreateReg(AMDGPU::SCC, true, // isDef
true, // isImp
false, // isKill
true)); // isDead
return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
}
return false;
}
bool AMDGPUInstructionSelector::selectG_ADD_SUB(MachineInstr &I) const {
MachineBasicBlock *BB = I.getParent();
MachineFunction *MF = BB->getParent();
Register DstReg = I.getOperand(0).getReg();
const DebugLoc &DL = I.getDebugLoc();
LLT Ty = MRI->getType(DstReg);
if (Ty.isVector())
return false;
unsigned Size = Ty.getSizeInBits();
const RegisterBank *DstRB = RBI.getRegBank(DstReg, *MRI, TRI);
const bool IsSALU = DstRB->getID() == AMDGPU::SGPRRegBankID;
const bool Sub = I.getOpcode() == TargetOpcode::G_SUB;
if (Size == 32) {
if (IsSALU) {
const unsigned Opc = Sub ? AMDGPU::S_SUB_U32 : AMDGPU::S_ADD_U32;
MachineInstr *Add =
BuildMI(*BB, &I, DL, TII.get(Opc), DstReg)
.add(I.getOperand(1))
.add(I.getOperand(2));
I.eraseFromParent();
return constrainSelectedInstRegOperands(*Add, TII, TRI, RBI);
}
if (STI.hasAddNoCarry()) {
const unsigned Opc = Sub ? AMDGPU::V_SUB_U32_e64 : AMDGPU::V_ADD_U32_e64;
I.setDesc(TII.get(Opc));
I.addOperand(*MF, MachineOperand::CreateImm(0));
I.addOperand(*MF, MachineOperand::CreateReg(AMDGPU::EXEC, false, true));
return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
}
const unsigned Opc = Sub ? AMDGPU::V_SUB_I32_e64 : AMDGPU::V_ADD_I32_e64;
Register UnusedCarry = MRI->createVirtualRegister(TRI.getWaveMaskRegClass());
MachineInstr *Add
= BuildMI(*BB, &I, DL, TII.get(Opc), DstReg)
.addDef(UnusedCarry, RegState::Dead)
.add(I.getOperand(1))
.add(I.getOperand(2))
.addImm(0);
I.eraseFromParent();
return constrainSelectedInstRegOperands(*Add, TII, TRI, RBI);
}
assert(!Sub && "illegal sub should not reach here");
const TargetRegisterClass &RC
= IsSALU ? AMDGPU::SReg_64_XEXECRegClass : AMDGPU::VReg_64RegClass;
const TargetRegisterClass &HalfRC
= IsSALU ? AMDGPU::SReg_32RegClass : AMDGPU::VGPR_32RegClass;
MachineOperand Lo1(getSubOperand64(I.getOperand(1), HalfRC, AMDGPU::sub0));
MachineOperand Lo2(getSubOperand64(I.getOperand(2), HalfRC, AMDGPU::sub0));
MachineOperand Hi1(getSubOperand64(I.getOperand(1), HalfRC, AMDGPU::sub1));
MachineOperand Hi2(getSubOperand64(I.getOperand(2), HalfRC, AMDGPU::sub1));
Register DstLo = MRI->createVirtualRegister(&HalfRC);
Register DstHi = MRI->createVirtualRegister(&HalfRC);
if (IsSALU) {
BuildMI(*BB, &I, DL, TII.get(AMDGPU::S_ADD_U32), DstLo)
.add(Lo1)
.add(Lo2);
BuildMI(*BB, &I, DL, TII.get(AMDGPU::S_ADDC_U32), DstHi)
.add(Hi1)
.add(Hi2);
} else {
const TargetRegisterClass *CarryRC = TRI.getWaveMaskRegClass();
Register CarryReg = MRI->createVirtualRegister(CarryRC);
BuildMI(*BB, &I, DL, TII.get(AMDGPU::V_ADD_I32_e64), DstLo)
.addDef(CarryReg)
.add(Lo1)
.add(Lo2)
.addImm(0);
MachineInstr *Addc = BuildMI(*BB, &I, DL, TII.get(AMDGPU::V_ADDC_U32_e64), DstHi)
.addDef(MRI->createVirtualRegister(CarryRC), RegState::Dead)
.add(Hi1)
.add(Hi2)
.addReg(CarryReg, RegState::Kill)
.addImm(0);
if (!constrainSelectedInstRegOperands(*Addc, TII, TRI, RBI))
return false;
}
BuildMI(*BB, &I, DL, TII.get(AMDGPU::REG_SEQUENCE), DstReg)
.addReg(DstLo)
.addImm(AMDGPU::sub0)
.addReg(DstHi)
.addImm(AMDGPU::sub1);
if (!RBI.constrainGenericRegister(DstReg, RC, *MRI))
return false;
I.eraseFromParent();
return true;
}
bool AMDGPUInstructionSelector::selectG_UADDO_USUBO_UADDE_USUBE(
MachineInstr &I) const {
MachineBasicBlock *BB = I.getParent();
MachineFunction *MF = BB->getParent();
const DebugLoc &DL = I.getDebugLoc();
Register Dst0Reg = I.getOperand(0).getReg();
Register Dst1Reg = I.getOperand(1).getReg();
const bool IsAdd = I.getOpcode() == AMDGPU::G_UADDO ||
I.getOpcode() == AMDGPU::G_UADDE;
const bool HasCarryIn = I.getOpcode() == AMDGPU::G_UADDE ||
I.getOpcode() == AMDGPU::G_USUBE;
if (isVCC(Dst1Reg, *MRI)) {
// The name of the opcodes are misleading. v_add_i32/v_sub_i32 have unsigned
// carry out despite the _i32 name. These were renamed in VI to _U32.
// FIXME: We should probably rename the opcodes here.
unsigned NoCarryOpc = IsAdd ? AMDGPU::V_ADD_I32_e64 : AMDGPU::V_SUB_I32_e64;
unsigned CarryOpc = IsAdd ? AMDGPU::V_ADDC_U32_e64 : AMDGPU::V_SUBB_U32_e64;
I.setDesc(TII.get(HasCarryIn ? CarryOpc : NoCarryOpc));
I.addOperand(*MF, MachineOperand::CreateReg(AMDGPU::EXEC, false, true));
I.addOperand(*MF, MachineOperand::CreateImm(0));
return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
}
Register Src0Reg = I.getOperand(2).getReg();
Register Src1Reg = I.getOperand(3).getReg();
if (HasCarryIn) {
BuildMI(*BB, &I, DL, TII.get(AMDGPU::COPY), AMDGPU::SCC)
.addReg(I.getOperand(4).getReg());
}
unsigned NoCarryOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32;
unsigned CarryOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32;
BuildMI(*BB, &I, DL, TII.get(HasCarryIn ? CarryOpc : NoCarryOpc), Dst0Reg)
.add(I.getOperand(2))
.add(I.getOperand(3));
BuildMI(*BB, &I, DL, TII.get(AMDGPU::COPY), Dst1Reg)
.addReg(AMDGPU::SCC);
if (!MRI->getRegClassOrNull(Dst1Reg))
MRI->setRegClass(Dst1Reg, &AMDGPU::SReg_32RegClass);
if (!RBI.constrainGenericRegister(Dst0Reg, AMDGPU::SReg_32RegClass, *MRI) ||
!RBI.constrainGenericRegister(Src0Reg, AMDGPU::SReg_32RegClass, *MRI) ||
!RBI.constrainGenericRegister(Src1Reg, AMDGPU::SReg_32RegClass, *MRI))
return false;
if (HasCarryIn &&
!RBI.constrainGenericRegister(I.getOperand(4).getReg(),
AMDGPU::SReg_32RegClass, *MRI))
return false;
I.eraseFromParent();
return true;
}
// TODO: We should probably legalize these to only using 32-bit results.
bool AMDGPUInstructionSelector::selectG_EXTRACT(MachineInstr &I) const {
MachineBasicBlock *BB = I.getParent();
Register DstReg = I.getOperand(0).getReg();
Register SrcReg = I.getOperand(1).getReg();
LLT DstTy = MRI->getType(DstReg);
LLT SrcTy = MRI->getType(SrcReg);
const unsigned SrcSize = SrcTy.getSizeInBits();
unsigned DstSize = DstTy.getSizeInBits();
// TODO: Should handle any multiple of 32 offset.
unsigned Offset = I.getOperand(2).getImm();
if (Offset % 32 != 0 || DstSize > 128)
return false;
// 16-bit operations really use 32-bit registers.
// FIXME: Probably should not allow 16-bit G_EXTRACT results.
if (DstSize == 16)
DstSize = 32;
const TargetRegisterClass *DstRC =
TRI.getConstrainedRegClassForOperand(I.getOperand(0), *MRI);
if (!DstRC || !RBI.constrainGenericRegister(DstReg, *DstRC, *MRI))
return false;
const RegisterBank *SrcBank = RBI.getRegBank(SrcReg, *MRI, TRI);
const TargetRegisterClass *SrcRC =
TRI.getRegClassForSizeOnBank(SrcSize, *SrcBank, *MRI);
if (!SrcRC)
return false;
unsigned SubReg = SIRegisterInfo::getSubRegFromChannel(Offset / 32,
DstSize / 32);
SrcRC = TRI.getSubClassWithSubReg(SrcRC, SubReg);
if (!SrcRC)
return false;
SrcReg = constrainOperandRegClass(*MF, TRI, *MRI, TII, RBI, I,
*SrcRC, I.getOperand(1));
const DebugLoc &DL = I.getDebugLoc();
BuildMI(*BB, &I, DL, TII.get(TargetOpcode::COPY), DstReg)
.addReg(SrcReg, 0, SubReg);
I.eraseFromParent();
return true;
}
bool AMDGPUInstructionSelector::selectG_MERGE_VALUES(MachineInstr &MI) const {
MachineBasicBlock *BB = MI.getParent();
Register DstReg = MI.getOperand(0).getReg();
LLT DstTy = MRI->getType(DstReg);
LLT SrcTy = MRI->getType(MI.getOperand(1).getReg());
const unsigned SrcSize = SrcTy.getSizeInBits();
if (SrcSize < 32)
return selectImpl(MI, *CoverageInfo);
const DebugLoc &DL = MI.getDebugLoc();
const RegisterBank *DstBank = RBI.getRegBank(DstReg, *MRI, TRI);
const unsigned DstSize = DstTy.getSizeInBits();
const TargetRegisterClass *DstRC =
TRI.getRegClassForSizeOnBank(DstSize, *DstBank, *MRI);
if (!DstRC)
return false;
ArrayRef<int16_t> SubRegs = TRI.getRegSplitParts(DstRC, SrcSize / 8);
MachineInstrBuilder MIB =
BuildMI(*BB, &MI, DL, TII.get(TargetOpcode::REG_SEQUENCE), DstReg);
for (int I = 0, E = MI.getNumOperands() - 1; I != E; ++I) {
MachineOperand &Src = MI.getOperand(I + 1);
MIB.addReg(Src.getReg(), getUndefRegState(Src.isUndef()));
MIB.addImm(SubRegs[I]);
const TargetRegisterClass *SrcRC
= TRI.getConstrainedRegClassForOperand(Src, *MRI);
if (SrcRC && !RBI.constrainGenericRegister(Src.getReg(), *SrcRC, *MRI))
return false;
}
if (!RBI.constrainGenericRegister(DstReg, *DstRC, *MRI))
return false;
MI.eraseFromParent();
return true;
}
bool AMDGPUInstructionSelector::selectG_UNMERGE_VALUES(MachineInstr &MI) const {
MachineBasicBlock *BB = MI.getParent();
const int NumDst = MI.getNumOperands() - 1;
MachineOperand &Src = MI.getOperand(NumDst);
Register SrcReg = Src.getReg();
Register DstReg0 = MI.getOperand(0).getReg();
LLT DstTy = MRI->getType(DstReg0);
LLT SrcTy = MRI->getType(SrcReg);
const unsigned DstSize = DstTy.getSizeInBits();
const unsigned SrcSize = SrcTy.getSizeInBits();
const DebugLoc &DL = MI.getDebugLoc();
const RegisterBank *SrcBank = RBI.getRegBank(SrcReg, *MRI, TRI);
const TargetRegisterClass *SrcRC =
TRI.getRegClassForSizeOnBank(SrcSize, *SrcBank, *MRI);
if (!SrcRC || !RBI.constrainGenericRegister(SrcReg, *SrcRC, *MRI))
return false;
const unsigned SrcFlags = getUndefRegState(Src.isUndef());
// Note we could have mixed SGPR and VGPR destination banks for an SGPR
// source, and this relies on the fact that the same subregister indices are
// used for both.
ArrayRef<int16_t> SubRegs = TRI.getRegSplitParts(SrcRC, DstSize / 8);
for (int I = 0, E = NumDst; I != E; ++I) {
MachineOperand &Dst = MI.getOperand(I);
BuildMI(*BB, &MI, DL, TII.get(TargetOpcode::COPY), Dst.getReg())
.addReg(SrcReg, SrcFlags, SubRegs[I]);
const TargetRegisterClass *DstRC =
TRI.getConstrainedRegClassForOperand(Dst, *MRI);
if (DstRC && !RBI.constrainGenericRegister(Dst.getReg(), *DstRC, *MRI))
return false;
}
MI.eraseFromParent();
return true;
}
static bool isZero(Register Reg, const MachineRegisterInfo &MRI) {
int64_t Val;
return mi_match(Reg, MRI, m_ICst(Val)) && Val == 0;
}
bool AMDGPUInstructionSelector::selectG_BUILD_VECTOR_TRUNC(
MachineInstr &MI) const {
if (selectImpl(MI, *CoverageInfo))
return true;
const LLT S32 = LLT::scalar(32);
const LLT V2S16 = LLT::vector(2, 16);
Register Dst = MI.getOperand(0).getReg();
if (MRI->getType(Dst) != V2S16)
return false;
const RegisterBank *DstBank = RBI.getRegBank(Dst, *MRI, TRI);
if (DstBank->getID() != AMDGPU::SGPRRegBankID)
return false;
Register Src0 = MI.getOperand(1).getReg();
Register Src1 = MI.getOperand(2).getReg();
if (MRI->getType(Src0) != S32)
return false;
const DebugLoc &DL = MI.getDebugLoc();
MachineBasicBlock *BB = MI.getParent();
// TODO: This should probably be a combine somewhere
// (build_vector_trunc $src0, undef -> copy $src0
MachineInstr *Src1Def = getDefIgnoringCopies(Src1, *MRI);
if (Src1Def && Src1Def->getOpcode() == AMDGPU::G_IMPLICIT_DEF) {
MI.setDesc(TII.get(AMDGPU::COPY));
MI.RemoveOperand(2);
return RBI.constrainGenericRegister(Dst, AMDGPU::SReg_32RegClass, *MRI) &&
RBI.constrainGenericRegister(Src0, AMDGPU::SReg_32RegClass, *MRI);
}
Register ShiftSrc0;
Register ShiftSrc1;
int64_t ShiftAmt;
// With multiple uses of the shift, this will duplicate the shift and
// increase register pressure.
//
// (build_vector_trunc (lshr_oneuse $src0, 16), (lshr_oneuse $src1, 16)
// => (S_PACK_HH_B32_B16 $src0, $src1)
// (build_vector_trunc $src0, (lshr_oneuse SReg_32:$src1, 16))
// => (S_PACK_LH_B32_B16 $src0, $src1)
// (build_vector_trunc $src0, $src1)
// => (S_PACK_LL_B32_B16 $src0, $src1)
// FIXME: This is an inconvenient way to check a specific value
bool Shift0 = mi_match(
Src0, *MRI, m_OneUse(m_GLShr(m_Reg(ShiftSrc0), m_ICst(ShiftAmt)))) &&
ShiftAmt == 16;
bool Shift1 = mi_match(
Src1, *MRI, m_OneUse(m_GLShr(m_Reg(ShiftSrc1), m_ICst(ShiftAmt)))) &&
ShiftAmt == 16;
unsigned Opc = AMDGPU::S_PACK_LL_B32_B16;
if (Shift0 && Shift1) {
Opc = AMDGPU::S_PACK_HH_B32_B16;
MI.getOperand(1).setReg(ShiftSrc0);
MI.getOperand(2).setReg(ShiftSrc1);
} else if (Shift1) {
Opc = AMDGPU::S_PACK_LH_B32_B16;
MI.getOperand(2).setReg(ShiftSrc1);
} else if (Shift0 && isZero(Src1, *MRI)) {
// build_vector_trunc (lshr $src0, 16), 0 -> s_lshr_b32 $src0, 16
auto MIB = BuildMI(*BB, &MI, DL, TII.get(AMDGPU::S_LSHR_B32), Dst)
.addReg(ShiftSrc0)
.addImm(16);
MI.eraseFromParent();
return constrainSelectedInstRegOperands(*MIB, TII, TRI, RBI);
}
MI.setDesc(TII.get(Opc));
return constrainSelectedInstRegOperands(MI, TII, TRI, RBI);
}
bool AMDGPUInstructionSelector::selectG_PTR_ADD(MachineInstr &I) const {
return selectG_ADD_SUB(I);
}
bool AMDGPUInstructionSelector::selectG_IMPLICIT_DEF(MachineInstr &I) const {
const MachineOperand &MO = I.getOperand(0);
// FIXME: Interface for getConstrainedRegClassForOperand needs work. The
// regbank check here is to know why getConstrainedRegClassForOperand failed.
const TargetRegisterClass *RC = TRI.getConstrainedRegClassForOperand(MO, *MRI);
if ((!RC && !MRI->getRegBankOrNull(MO.getReg())) ||
(RC && RBI.constrainGenericRegister(MO.getReg(), *RC, *MRI))) {
I.setDesc(TII.get(TargetOpcode::IMPLICIT_DEF));
return true;
}
return false;
}
bool AMDGPUInstructionSelector::selectG_INSERT(MachineInstr &I) const {
MachineBasicBlock *BB = I.getParent();
Register DstReg = I.getOperand(0).getReg();
Register Src0Reg = I.getOperand(1).getReg();
Register Src1Reg = I.getOperand(2).getReg();
LLT Src1Ty = MRI->getType(Src1Reg);
unsigned DstSize = MRI->getType(DstReg).getSizeInBits();
unsigned InsSize = Src1Ty.getSizeInBits();
int64_t Offset = I.getOperand(3).getImm();
// FIXME: These cases should have been illegal and unnecessary to check here.
if (Offset % 32 != 0 || InsSize % 32 != 0)
return false;
unsigned SubReg = TRI.getSubRegFromChannel(Offset / 32, InsSize / 32);
if (SubReg == AMDGPU::NoSubRegister)
return false;
const RegisterBank *DstBank = RBI.getRegBank(DstReg, *MRI, TRI);
const TargetRegisterClass *DstRC =
TRI.getRegClassForSizeOnBank(DstSize, *DstBank, *MRI);
if (!DstRC)
return false;
const RegisterBank *Src0Bank = RBI.getRegBank(Src0Reg, *MRI, TRI);
const RegisterBank *Src1Bank = RBI.getRegBank(Src1Reg, *MRI, TRI);
const TargetRegisterClass *Src0RC =
TRI.getRegClassForSizeOnBank(DstSize, *Src0Bank, *MRI);
const TargetRegisterClass *Src1RC =
TRI.getRegClassForSizeOnBank(InsSize, *Src1Bank, *MRI);
// Deal with weird cases where the class only partially supports the subreg
// index.
Src0RC = TRI.getSubClassWithSubReg(Src0RC, SubReg);
if (!Src0RC || !Src1RC)
return false;
if (!RBI.constrainGenericRegister(DstReg, *DstRC, *MRI) ||
!RBI.constrainGenericRegister(Src0Reg, *Src0RC, *MRI) ||
!RBI.constrainGenericRegister(Src1Reg, *Src1RC, *MRI))
return false;
const DebugLoc &DL = I.getDebugLoc();
BuildMI(*BB, &I, DL, TII.get(TargetOpcode::INSERT_SUBREG), DstReg)
.addReg(Src0Reg)
.addReg(Src1Reg)
.addImm(SubReg);
I.eraseFromParent();
return true;
}
bool AMDGPUInstructionSelector::selectInterpP1F16(MachineInstr &MI) const {
if (STI.getLDSBankCount() != 16)
return selectImpl(MI, *CoverageInfo);
Register Dst = MI.getOperand(0).getReg();
Register Src0 = MI.getOperand(2).getReg();
Register M0Val = MI.getOperand(6).getReg();
if (!RBI.constrainGenericRegister(M0Val, AMDGPU::SReg_32RegClass, *MRI) ||
!RBI.constrainGenericRegister(Dst, AMDGPU::VGPR_32RegClass, *MRI) ||
!RBI.constrainGenericRegister(Src0, AMDGPU::VGPR_32RegClass, *MRI))
return false;
// This requires 2 instructions. It is possible to write a pattern to support
// this, but the generated isel emitter doesn't correctly deal with multiple
// output instructions using the same physical register input. The copy to m0
// is incorrectly placed before the second instruction.
//
// TODO: Match source modifiers.
Register InterpMov = MRI->createVirtualRegister(&AMDGPU::VGPR_32RegClass);
const DebugLoc &DL = MI.getDebugLoc();
MachineBasicBlock *MBB = MI.getParent();
BuildMI(*MBB, &MI, DL, TII.get(AMDGPU::COPY), AMDGPU::M0)
.addReg(M0Val);
BuildMI(*MBB, &MI, DL, TII.get(AMDGPU::V_INTERP_MOV_F32), InterpMov)
.addImm(2)
.addImm(MI.getOperand(4).getImm()) // $attr
.addImm(MI.getOperand(3).getImm()); // $attrchan
BuildMI(*MBB, &MI, DL, TII.get(AMDGPU::V_INTERP_P1LV_F16), Dst)
.addImm(0) // $src0_modifiers
.addReg(Src0) // $src0
.addImm(MI.getOperand(4).getImm()) // $attr
.addImm(MI.getOperand(3).getImm()) // $attrchan
.addImm(0) // $src2_modifiers
.addReg(InterpMov) // $src2 - 2 f16 values selected by high
.addImm(MI.getOperand(5).getImm()) // $high
.addImm(0) // $clamp
.addImm(0); // $omod
MI.eraseFromParent();
return true;
}
// We need to handle this here because tablegen doesn't support matching
// instructions with multiple outputs.
bool AMDGPUInstructionSelector::selectDivScale(MachineInstr &MI) const {
Register Dst0 = MI.getOperand(0).getReg();
Register Dst1 = MI.getOperand(1).getReg();
LLT Ty = MRI->getType(Dst0);
unsigned Opc;
if (Ty == LLT::scalar(32))
Opc = AMDGPU::V_DIV_SCALE_F32;
else if (Ty == LLT::scalar(64))
Opc = AMDGPU::V_DIV_SCALE_F64;
else
return false;
const DebugLoc &DL = MI.getDebugLoc();
MachineBasicBlock *MBB = MI.getParent();
Register Numer = MI.getOperand(3).getReg();
Register Denom = MI.getOperand(4).getReg();
unsigned ChooseDenom = MI.getOperand(5).getImm();
Register Src0 = ChooseDenom != 0 ? Numer : Denom;
auto MIB = BuildMI(*MBB, &MI, DL, TII.get(Opc), Dst0)
.addDef(Dst1)
.addUse(Src0)
.addUse(Denom)
.addUse(Numer);
MI.eraseFromParent();
return constrainSelectedInstRegOperands(*MIB, TII, TRI, RBI);
}
bool AMDGPUInstructionSelector::selectG_INTRINSIC(MachineInstr &I) const {
unsigned IntrinsicID = I.getIntrinsicID();
switch (IntrinsicID) {
case Intrinsic::amdgcn_if_break: {
MachineBasicBlock *BB = I.getParent();
// FIXME: Manually selecting to avoid dealiing with the SReg_1 trick
// SelectionDAG uses for wave32 vs wave64.
BuildMI(*BB, &I, I.getDebugLoc(), TII.get(AMDGPU::SI_IF_BREAK))
.add(I.getOperand(0))
.add(I.getOperand(2))
.add(I.getOperand(3));
Register DstReg = I.getOperand(0).getReg();
Register Src0Reg = I.getOperand(2).getReg();
Register Src1Reg = I.getOperand(3).getReg();
I.eraseFromParent();
for (Register Reg : { DstReg, Src0Reg, Src1Reg })
MRI->setRegClass(Reg, TRI.getWaveMaskRegClass());
return true;
}
case Intrinsic::amdgcn_interp_p1_f16:
return selectInterpP1F16(I);
case Intrinsic::amdgcn_wqm:
return constrainCopyLikeIntrin(I, AMDGPU::WQM);
case Intrinsic::amdgcn_softwqm:
return constrainCopyLikeIntrin(I, AMDGPU::SOFT_WQM);
case Intrinsic::amdgcn_wwm:
return constrainCopyLikeIntrin(I, AMDGPU::WWM);
case Intrinsic::amdgcn_div_scale:
return selectDivScale(I);
case Intrinsic::amdgcn_icmp:
return selectIntrinsicIcmp(I);
case Intrinsic::amdgcn_ballot:
return selectBallot(I);
default:
return selectImpl(I, *CoverageInfo);
}
}
static int getV_CMPOpcode(CmpInst::Predicate P, unsigned Size) {
if (Size != 32 && Size != 64)
return -1;
switch (P) {
default:
llvm_unreachable("Unknown condition code!");
case CmpInst::ICMP_NE:
return Size == 32 ? AMDGPU::V_CMP_NE_U32_e64 : AMDGPU::V_CMP_NE_U64_e64;
case CmpInst::ICMP_EQ:
return Size == 32 ? AMDGPU::V_CMP_EQ_U32_e64 : AMDGPU::V_CMP_EQ_U64_e64;
case CmpInst::ICMP_SGT:
return Size == 32 ? AMDGPU::V_CMP_GT_I32_e64 : AMDGPU::V_CMP_GT_I64_e64;
case CmpInst::ICMP_SGE:
return Size == 32 ? AMDGPU::V_CMP_GE_I32_e64 : AMDGPU::V_CMP_GE_I64_e64;
case CmpInst::ICMP_SLT:
return Size == 32 ? AMDGPU::V_CMP_LT_I32_e64 : AMDGPU::V_CMP_LT_I64_e64;
case CmpInst::ICMP_SLE:
return Size == 32 ? AMDGPU::V_CMP_LE_I32_e64 : AMDGPU::V_CMP_LE_I64_e64;
case CmpInst::ICMP_UGT:
return Size == 32 ? AMDGPU::V_CMP_GT_U32_e64 : AMDGPU::V_CMP_GT_U64_e64;
case CmpInst::ICMP_UGE:
return Size == 32 ? AMDGPU::V_CMP_GE_U32_e64 : AMDGPU::V_CMP_GE_U64_e64;
case CmpInst::ICMP_ULT:
return Size == 32 ? AMDGPU::V_CMP_LT_U32_e64 : AMDGPU::V_CMP_LT_U64_e64;
case CmpInst::ICMP_ULE:
return Size == 32 ? AMDGPU::V_CMP_LE_U32_e64 : AMDGPU::V_CMP_LE_U64_e64;
}
}
int AMDGPUInstructionSelector::getS_CMPOpcode(CmpInst::Predicate P,
unsigned Size) const {
if (Size == 64) {
if (!STI.hasScalarCompareEq64())
return -1;
switch (P) {
case CmpInst::ICMP_NE:
return AMDGPU::S_CMP_LG_U64;
case CmpInst::ICMP_EQ:
return AMDGPU::S_CMP_EQ_U64;
default:
return -1;
}
}
if (Size != 32)
return -1;
switch (P) {
case CmpInst::ICMP_NE:
return AMDGPU::S_CMP_LG_U32;
case CmpInst::ICMP_EQ:
return AMDGPU::S_CMP_EQ_U32;
case CmpInst::ICMP_SGT:
return AMDGPU::S_CMP_GT_I32;
case CmpInst::ICMP_SGE:
return AMDGPU::S_CMP_GE_I32;
case CmpInst::ICMP_SLT:
return AMDGPU::S_CMP_LT_I32;
case CmpInst::ICMP_SLE:
return AMDGPU::S_CMP_LE_I32;
case CmpInst::ICMP_UGT:
return AMDGPU::S_CMP_GT_U32;
case CmpInst::ICMP_UGE:
return AMDGPU::S_CMP_GE_U32;
case CmpInst::ICMP_ULT:
return AMDGPU::S_CMP_LT_U32;
case CmpInst::ICMP_ULE:
return AMDGPU::S_CMP_LE_U32;
default:
llvm_unreachable("Unknown condition code!");
}
}
bool AMDGPUInstructionSelector::selectG_ICMP(MachineInstr &I) const {
MachineBasicBlock *BB = I.getParent();
const DebugLoc &DL = I.getDebugLoc();
Register SrcReg = I.getOperand(2).getReg();
unsigned Size = RBI.getSizeInBits(SrcReg, *MRI, TRI);
auto Pred = (CmpInst::Predicate)I.getOperand(1).getPredicate();
Register CCReg = I.getOperand(0).getReg();
if (!isVCC(CCReg, *MRI)) {
int Opcode = getS_CMPOpcode(Pred, Size);
if (Opcode == -1)
return false;
MachineInstr *ICmp = BuildMI(*BB, &I, DL, TII.get(Opcode))
.add(I.getOperand(2))
.add(I.getOperand(3));
BuildMI(*BB, &I, DL, TII.get(AMDGPU::COPY), CCReg)
.addReg(AMDGPU::SCC);
bool Ret =
constrainSelectedInstRegOperands(*ICmp, TII, TRI, RBI) &&
RBI.constrainGenericRegister(CCReg, AMDGPU::SReg_32RegClass, *MRI);
I.eraseFromParent();
return Ret;
}
int Opcode = getV_CMPOpcode(Pred, Size);
if (Opcode == -1)
return false;
MachineInstr *ICmp = BuildMI(*BB, &I, DL, TII.get(Opcode),
I.getOperand(0).getReg())
.add(I.getOperand(2))
.add(I.getOperand(3));
RBI.constrainGenericRegister(ICmp->getOperand(0).getReg(),
*TRI.getBoolRC(), *MRI);
bool Ret = constrainSelectedInstRegOperands(*ICmp, TII, TRI, RBI);
I.eraseFromParent();
return Ret;
}
bool AMDGPUInstructionSelector::selectIntrinsicIcmp(MachineInstr &I) const {
Register Dst = I.getOperand(0).getReg();
if (isVCC(Dst, *MRI))
return false;
if (MRI->getType(Dst).getSizeInBits() != STI.getWavefrontSize())
return false;
MachineBasicBlock *BB = I.getParent();
const DebugLoc &DL = I.getDebugLoc();
Register SrcReg = I.getOperand(2).getReg();
unsigned Size = RBI.getSizeInBits(SrcReg, *MRI, TRI);
auto Pred = static_cast<CmpInst::Predicate>(I.getOperand(4).getImm());
int Opcode = getV_CMPOpcode(Pred, Size);
if (Opcode == -1)
return false;
MachineInstr *ICmp = BuildMI(*BB, &I, DL, TII.get(Opcode), Dst)
.add(I.getOperand(2))
.add(I.getOperand(3));
RBI.constrainGenericRegister(ICmp->getOperand(0).getReg(), *TRI.getBoolRC(),
*MRI);
bool Ret = constrainSelectedInstRegOperands(*ICmp, TII, TRI, RBI);
I.eraseFromParent();
return Ret;
}
bool AMDGPUInstructionSelector::selectBallot(MachineInstr &I) const {
MachineBasicBlock *BB = I.getParent();
const DebugLoc &DL = I.getDebugLoc();
Register DstReg = I.getOperand(0).getReg();
const unsigned Size = MRI->getType(DstReg).getSizeInBits();
const bool Is64 = Size == 64;
if (Size != STI.getWavefrontSize())
return false;
Optional<ValueAndVReg> Arg =
getConstantVRegValWithLookThrough(I.getOperand(2).getReg(), *MRI, true);
if (Arg.hasValue()) {
const int64_t Value = Arg.getValue().Value;
if (Value == 0) {
unsigned Opcode = Is64 ? AMDGPU::S_MOV_B64 : AMDGPU::S_MOV_B32;
BuildMI(*BB, &I, DL, TII.get(Opcode), DstReg).addImm(0);
} else if (Value == -1) { // all ones
Register SrcReg = Is64 ? AMDGPU::EXEC : AMDGPU::EXEC_LO;
BuildMI(*BB, &I, DL, TII.get(AMDGPU::COPY), DstReg).addReg(SrcReg);
} else
return false;
} else {
Register SrcReg = I.getOperand(2).getReg();
BuildMI(*BB, &I, DL, TII.get(AMDGPU::COPY), DstReg).addReg(SrcReg);
}
I.eraseFromParent();
return true;
}
bool AMDGPUInstructionSelector::selectEndCfIntrinsic(MachineInstr &MI) const {
// FIXME: Manually selecting to avoid dealiing with the SReg_1 trick
// SelectionDAG uses for wave32 vs wave64.
MachineBasicBlock *BB = MI.getParent();
BuildMI(*BB, &MI, MI.getDebugLoc(), TII.get(AMDGPU::SI_END_CF))
.add(MI.getOperand(1));
Register Reg = MI.getOperand(1).getReg();
MI.eraseFromParent();
if (!MRI->getRegClassOrNull(Reg))
MRI->setRegClass(Reg, TRI.getWaveMaskRegClass());
return true;
}
static unsigned getDSShaderTypeValue(const MachineFunction &MF) {
switch (MF.getFunction().getCallingConv()) {
case CallingConv::AMDGPU_PS:
return 1;
case CallingConv::AMDGPU_VS:
return 2;
case CallingConv::AMDGPU_GS:
return 3;
case CallingConv::AMDGPU_HS:
case CallingConv::AMDGPU_LS:
case CallingConv::AMDGPU_ES:
report_fatal_error("ds_ordered_count unsupported for this calling conv");
case CallingConv::AMDGPU_CS:
case CallingConv::AMDGPU_KERNEL:
case CallingConv::C:
case CallingConv::Fast:
default:
// Assume other calling conventions are various compute callable functions
return 0;
}
}
bool AMDGPUInstructionSelector::selectDSOrderedIntrinsic(
MachineInstr &MI, Intrinsic::ID IntrID) const {
MachineBasicBlock *MBB = MI.getParent();
MachineFunction *MF = MBB->getParent();
const DebugLoc &DL = MI.getDebugLoc();
unsigned IndexOperand = MI.getOperand(7).getImm();
bool WaveRelease = MI.getOperand(8).getImm() != 0;
bool WaveDone = MI.getOperand(9).getImm() != 0;
if (WaveDone && !WaveRelease)
report_fatal_error("ds_ordered_count: wave_done requires wave_release");
unsigned OrderedCountIndex = IndexOperand & 0x3f;
IndexOperand &= ~0x3f;
unsigned CountDw = 0;
if (STI.getGeneration() >= AMDGPUSubtarget::GFX10) {
CountDw = (IndexOperand >> 24) & 0xf;
IndexOperand &= ~(0xf << 24);
if (CountDw < 1 || CountDw > 4) {
report_fatal_error(
"ds_ordered_count: dword count must be between 1 and 4");
}
}
if (IndexOperand)
report_fatal_error("ds_ordered_count: bad index operand");
unsigned Instruction = IntrID == Intrinsic::amdgcn_ds_ordered_add ? 0 : 1;
unsigned ShaderType = getDSShaderTypeValue(*MF);
unsigned Offset0 = OrderedCountIndex << 2;
unsigned Offset1 = WaveRelease | (WaveDone << 1) | (ShaderType << 2) |
(Instruction << 4);
if (STI.getGeneration() >= AMDGPUSubtarget::GFX10)
Offset1 |= (CountDw - 1) << 6;
unsigned Offset = Offset0 | (Offset1 << 8);
Register M0Val = MI.getOperand(2).getReg();
BuildMI(*MBB, &MI, DL, TII.get(AMDGPU::COPY), AMDGPU::M0)
.addReg(M0Val);
Register DstReg = MI.getOperand(0).getReg();
Register ValReg = MI.getOperand(3).getReg();
MachineInstrBuilder DS =
BuildMI(*MBB, &MI, DL, TII.get(AMDGPU::DS_ORDERED_COUNT), DstReg)
.addReg(ValReg)
.addImm(Offset)
.cloneMemRefs(MI);
if (!RBI.constrainGenericRegister(M0Val, AMDGPU::SReg_32RegClass, *MRI))
return false;
bool Ret = constrainSelectedInstRegOperands(*DS, TII, TRI, RBI);
MI.eraseFromParent();
return Ret;
}
static unsigned gwsIntrinToOpcode(unsigned IntrID) {
switch (IntrID) {
case Intrinsic::amdgcn_ds_gws_init:
return AMDGPU::DS_GWS_INIT;
case Intrinsic::amdgcn_ds_gws_barrier:
return AMDGPU::DS_GWS_BARRIER;
case Intrinsic::amdgcn_ds_gws_sema_v:
return AMDGPU::DS_GWS_SEMA_V;
case Intrinsic::amdgcn_ds_gws_sema_br:
return AMDGPU::DS_GWS_SEMA_BR;
case Intrinsic::amdgcn_ds_gws_sema_p:
return AMDGPU::DS_GWS_SEMA_P;
case Intrinsic::amdgcn_ds_gws_sema_release_all:
return AMDGPU::DS_GWS_SEMA_RELEASE_ALL;
default:
llvm_unreachable("not a gws intrinsic");
}
}
bool AMDGPUInstructionSelector::selectDSGWSIntrinsic(MachineInstr &MI,
Intrinsic::ID IID) const {
if (IID == Intrinsic::amdgcn_ds_gws_sema_release_all &&
!STI.hasGWSSemaReleaseAll())
return false;
// intrinsic ID, vsrc, offset
const bool HasVSrc = MI.getNumOperands() == 3;
assert(HasVSrc || MI.getNumOperands() == 2);
Register BaseOffset = MI.getOperand(HasVSrc ? 2 : 1).getReg();
const RegisterBank *OffsetRB = RBI.getRegBank(BaseOffset, *MRI, TRI);
if (OffsetRB->getID() != AMDGPU::SGPRRegBankID)
return false;
MachineInstr *OffsetDef = getDefIgnoringCopies(BaseOffset, *MRI);
assert(OffsetDef);
unsigned ImmOffset;
MachineBasicBlock *MBB = MI.getParent();
const DebugLoc &DL = MI.getDebugLoc();
MachineInstr *Readfirstlane = nullptr;
// If we legalized the VGPR input, strip out the readfirstlane to analyze the
// incoming offset, in case there's an add of a constant. We'll have to put it
// back later.
if (OffsetDef->getOpcode() == AMDGPU::V_READFIRSTLANE_B32) {
Readfirstlane = OffsetDef;
BaseOffset = OffsetDef->getOperand(1).getReg();
OffsetDef = getDefIgnoringCopies(BaseOffset, *MRI);
}
if (OffsetDef->getOpcode() == AMDGPU::G_CONSTANT) {
// If we have a constant offset, try to use the 0 in m0 as the base.
// TODO: Look into changing the default m0 initialization value. If the
// default -1 only set the low 16-bits, we could leave it as-is and add 1 to
// the immediate offset.
ImmOffset = OffsetDef->getOperand(1).getCImm()->getZExtValue();
BuildMI(*MBB, &MI, DL, TII.get(AMDGPU::S_MOV_B32), AMDGPU::M0)
.addImm(0);
} else {
std::tie(BaseOffset, ImmOffset, OffsetDef)
= AMDGPU::getBaseWithConstantOffset(*MRI, BaseOffset);
if (Readfirstlane) {
// We have the constant offset now, so put the readfirstlane back on the
// variable component.
if (!RBI.constrainGenericRegister(BaseOffset, AMDGPU::VGPR_32RegClass, *MRI))
return false;
Readfirstlane->getOperand(1).setReg(BaseOffset);
BaseOffset = Readfirstlane->getOperand(0).getReg();
} else {
if (!RBI.constrainGenericRegister(BaseOffset,
AMDGPU::SReg_32RegClass, *MRI))
return false;
}
Register M0Base = MRI->createVirtualRegister(&AMDGPU::SReg_32RegClass);
BuildMI(*MBB, &MI, DL, TII.get(AMDGPU::S_LSHL_B32), M0Base)
.addReg(BaseOffset)
.addImm(16);
BuildMI(*MBB, &MI, DL, TII.get(AMDGPU::COPY), AMDGPU::M0)
.addReg(M0Base);
}
// The resource id offset is computed as (<isa opaque base> + M0[21:16] +
// offset field) % 64. Some versions of the programming guide omit the m0
// part, or claim it's from offset 0.
auto MIB = BuildMI(*MBB, &MI, DL, TII.get(gwsIntrinToOpcode(IID)));
if (HasVSrc) {
Register VSrc = MI.getOperand(1).getReg();
MIB.addReg(VSrc);
if (!RBI.constrainGenericRegister(VSrc, AMDGPU::VGPR_32RegClass, *MRI))
return false;
}
MIB.addImm(ImmOffset)
.addImm(-1) // $gds
.cloneMemRefs(MI);
MI.eraseFromParent();
return true;
}
bool AMDGPUInstructionSelector::selectDSAppendConsume(MachineInstr &MI,
bool IsAppend) const {
Register PtrBase = MI.getOperand(2).getReg();
LLT PtrTy = MRI->getType(PtrBase);
bool IsGDS = PtrTy.getAddressSpace() == AMDGPUAS::REGION_ADDRESS;
unsigned Offset;
std::tie(PtrBase, Offset) = selectDS1Addr1OffsetImpl(MI.getOperand(2));
// TODO: Should this try to look through readfirstlane like GWS?
if (!isDSOffsetLegal(PtrBase, Offset, 16)) {
PtrBase = MI.getOperand(2).getReg();
Offset = 0;
}
MachineBasicBlock *MBB = MI.getParent();
const DebugLoc &DL = MI.getDebugLoc();
const unsigned Opc = IsAppend ? AMDGPU::DS_APPEND : AMDGPU::DS_CONSUME;
BuildMI(*MBB, &MI, DL, TII.get(AMDGPU::COPY), AMDGPU::M0)
.addReg(PtrBase);
BuildMI(*MBB, &MI, DL, TII.get(Opc), MI.getOperand(0).getReg())
.addImm(Offset)
.addImm(IsGDS ? -1 : 0)
.cloneMemRefs(MI);
MI.eraseFromParent();
return true;
}
static bool parseTexFail(uint64_t TexFailCtrl, bool &TFE, bool &LWE,
bool &IsTexFail) {
if (TexFailCtrl)
IsTexFail = true;
TFE = (TexFailCtrl & 0x1) ? 1 : 0;
TexFailCtrl &= ~(uint64_t)0x1;
LWE = (TexFailCtrl & 0x2) ? 1 : 0;
TexFailCtrl &= ~(uint64_t)0x2;
return TexFailCtrl == 0;
}
static bool parseCachePolicy(uint64_t Value,
bool *GLC, bool *SLC, bool *DLC) {
if (GLC) {
*GLC = (Value & 0x1) ? 1 : 0;
Value &= ~(uint64_t)0x1;
}
if (SLC) {
*SLC = (Value & 0x2) ? 1 : 0;
Value &= ~(uint64_t)0x2;
}
if (DLC) {
*DLC = (Value & 0x4) ? 1 : 0;
Value &= ~(uint64_t)0x4;
}
return Value == 0;
}
bool AMDGPUInstructionSelector::selectImageIntrinsic(
MachineInstr &MI, const AMDGPU::ImageDimIntrinsicInfo *Intr) const {
MachineBasicBlock *MBB = MI.getParent();
const DebugLoc &DL = MI.getDebugLoc();
const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim);
const AMDGPU::MIMGLZMappingInfo *LZMappingInfo =
AMDGPU::getMIMGLZMappingInfo(Intr->BaseOpcode);
const AMDGPU::MIMGMIPMappingInfo *MIPMappingInfo =
AMDGPU::getMIMGMIPMappingInfo(Intr->BaseOpcode);
unsigned IntrOpcode = Intr->BaseOpcode;
const bool IsGFX10 = STI.getGeneration() >= AMDGPUSubtarget::GFX10;
const int VAddrIdx = getImageVAddrIdxBegin(BaseOpcode,
MI.getNumExplicitDefs());
int NumVAddr, NumGradients;
std::tie(NumVAddr, NumGradients) = getImageNumVAddr(Intr, BaseOpcode);
Register VDataIn, VDataOut;
LLT VDataTy;
int NumVDataDwords = -1;
bool IsD16 = false;
// XXX - Can we just get the second to last argument for ctrl?
unsigned CtrlIdx; // Index of texfailctrl argument
bool Unorm;
if (!BaseOpcode->Sampler) {
Unorm = true;
CtrlIdx = VAddrIdx + NumVAddr + 1;
} else {
Unorm = MI.getOperand(VAddrIdx + NumVAddr + 2).getImm() != 0;
CtrlIdx = VAddrIdx + NumVAddr + 3;
}
bool TFE;
bool LWE;
bool IsTexFail = false;
if (!parseTexFail(MI.getOperand(CtrlIdx).getImm(), TFE, LWE, IsTexFail))
return false;
const int Flags = MI.getOperand(CtrlIdx + 2).getImm();
const bool IsA16 = (Flags & 1) != 0;
const bool IsG16 = (Flags & 2) != 0;
// A16 implies 16 bit gradients
if (IsA16 && !IsG16)
return false;
unsigned DMask = 0;
unsigned DMaskLanes = 0;
if (BaseOpcode->Atomic) {
VDataOut = MI.getOperand(0).getReg();
VDataIn = MI.getOperand(2).getReg();
LLT Ty = MRI->getType(VDataIn);
// Be careful to allow atomic swap on 16-bit element vectors.
const bool Is64Bit = BaseOpcode->AtomicX2 ?
Ty.getSizeInBits() == 128 :
Ty.getSizeInBits() == 64;
if (BaseOpcode->AtomicX2) {
assert(MI.getOperand(3).getReg() == AMDGPU::NoRegister);
DMask = Is64Bit ? 0xf : 0x3;
NumVDataDwords = Is64Bit ? 4 : 2;
} else {
DMask = Is64Bit ? 0x3 : 0x1;
NumVDataDwords = Is64Bit ? 2 : 1;
}
} else {
const int DMaskIdx = 2; // Input/output + intrinsic ID.
DMask = MI.getOperand(DMaskIdx).getImm();
DMaskLanes = BaseOpcode->Gather4 ? 4 : countPopulation(DMask);
if (BaseOpcode->Store) {
VDataIn = MI.getOperand(1).getReg();
VDataTy = MRI->getType(VDataIn);
NumVDataDwords = (VDataTy.getSizeInBits() + 31) / 32;
} else {
VDataOut = MI.getOperand(0).getReg();
VDataTy = MRI->getType(VDataOut);
NumVDataDwords = DMaskLanes;
// One memoperand is mandatory, except for getresinfo.
// FIXME: Check this in verifier.
if (!MI.memoperands_empty()) {
const MachineMemOperand *MMO = *MI.memoperands_begin();
// Infer d16 from the memory size, as the register type will be mangled by
// unpacked subtargets, or by TFE.
IsD16 = ((8 * MMO->getSize()) / DMaskLanes) < 32;
if (IsD16 && !STI.hasUnpackedD16VMem())
NumVDataDwords = (DMaskLanes + 1) / 2;
}
}
}
// Optimize _L to _LZ when _L is zero
if (LZMappingInfo) {
// The legalizer replaced the register with an immediate 0 if we need to
// change the opcode.
const MachineOperand &Lod = MI.getOperand(VAddrIdx + NumVAddr - 1);
if (Lod.isImm()) {
assert(Lod.getImm() == 0);
IntrOpcode = LZMappingInfo->LZ; // set new opcode to _lz variant of _l
}
}
// Optimize _mip away, when 'lod' is zero
if (MIPMappingInfo) {
const MachineOperand &Lod = MI.getOperand(VAddrIdx + NumVAddr - 1);
if (Lod.isImm()) {
assert(Lod.getImm() == 0);
IntrOpcode = MIPMappingInfo->NONMIP; // set new opcode to variant without _mip
}
}
// Set G16 opcode
if (IsG16 && !IsA16) {
const AMDGPU::MIMGG16MappingInfo *G16MappingInfo =
AMDGPU::getMIMGG16MappingInfo(Intr->BaseOpcode);
assert(G16MappingInfo);
IntrOpcode = G16MappingInfo->G16; // set opcode to variant with _g16
}
// TODO: Check this in verifier.
assert((!IsTexFail || DMaskLanes >= 1) && "should have legalized this");
bool GLC = false;
bool SLC = false;
bool DLC = false;
if (BaseOpcode->Atomic) {
GLC = true; // TODO no-return optimization
if (!parseCachePolicy(MI.getOperand(CtrlIdx + 1).getImm(), nullptr, &SLC,
IsGFX10 ? &DLC : nullptr))
return false;
} else {
if (!parseCachePolicy(MI.getOperand(CtrlIdx + 1).getImm(), &GLC, &SLC,
IsGFX10 ? &DLC : nullptr))
return false;
}
int NumVAddrRegs = 0;
int NumVAddrDwords = 0;
for (int I = 0; I < NumVAddr; ++I) {
// Skip the $noregs and 0s inserted during legalization.
MachineOperand &AddrOp = MI.getOperand(VAddrIdx + I);
if (!AddrOp.isReg())
continue; // XXX - Break?
Register Addr = AddrOp.getReg();
if (!Addr)
break;
++NumVAddrRegs;
NumVAddrDwords += (MRI->getType(Addr).getSizeInBits() + 31) / 32;
}
// The legalizer preprocessed the intrinsic arguments. If we aren't using
// NSA, these should have beeen packed into a single value in the first
// address register
const bool UseNSA = NumVAddrRegs != 1 && NumVAddrDwords == NumVAddrRegs;
if (UseNSA && !STI.hasFeature(AMDGPU::FeatureNSAEncoding)) {
LLVM_DEBUG(dbgs() << "Trying to use NSA on non-NSA target\n");
return false;
}
if (IsTexFail)
++NumVDataDwords;
int Opcode = -1;
if (IsGFX10) {
Opcode = AMDGPU::getMIMGOpcode(IntrOpcode,
UseNSA ? AMDGPU::MIMGEncGfx10NSA
: AMDGPU::MIMGEncGfx10Default,
NumVDataDwords, NumVAddrDwords);
} else {
if (STI.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8,
NumVDataDwords, NumVAddrDwords);
if (Opcode == -1)
Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6,
NumVDataDwords, NumVAddrDwords);
}
assert(Opcode != -1);
auto MIB = BuildMI(*MBB, &MI, DL, TII.get(Opcode))
.cloneMemRefs(MI);
if (VDataOut) {
if (BaseOpcode->AtomicX2) {
const bool Is64 = MRI->getType(VDataOut).getSizeInBits() == 64;
Register TmpReg = MRI->createVirtualRegister(
Is64 ? &AMDGPU::VReg_128RegClass : &AMDGPU::VReg_64RegClass);
unsigned SubReg = Is64 ? AMDGPU::sub0_sub1 : AMDGPU::sub0;
MIB.addDef(TmpReg);
BuildMI(*MBB, &MI, DL, TII.get(AMDGPU::COPY), VDataOut)
.addReg(TmpReg, RegState::Kill, SubReg);
} else {
MIB.addDef(VDataOut); // vdata output
}
}
if (VDataIn)
MIB.addReg(VDataIn); // vdata input
for (int i = 0; i != NumVAddrRegs; ++i) {
MachineOperand &SrcOp = MI.getOperand(VAddrIdx + i);
if (SrcOp.isReg()) {
assert(SrcOp.getReg() != 0);
MIB.addReg(SrcOp.getReg());
}
}
MIB.addReg(MI.getOperand(VAddrIdx + NumVAddr).getReg()); // rsrc
if (BaseOpcode->Sampler)
MIB.addReg(MI.getOperand(VAddrIdx + NumVAddr + 1).getReg()); // sampler
MIB.addImm(DMask); // dmask
if (IsGFX10)
MIB.addImm(DimInfo->Encoding);
MIB.addImm(Unorm);
if (IsGFX10)
MIB.addImm(DLC);
MIB.addImm(GLC);
MIB.addImm(SLC);
MIB.addImm(IsA16 && // a16 or r128
STI.hasFeature(AMDGPU::FeatureR128A16) ? -1 : 0);
if (IsGFX10)
MIB.addImm(IsA16 ? -1 : 0);
MIB.addImm(TFE); // tfe
MIB.addImm(LWE); // lwe
if (!IsGFX10)
MIB.addImm(DimInfo->DA ? -1 : 0);
if (BaseOpcode->HasD16)
MIB.addImm(IsD16 ? -1 : 0);
MI.eraseFromParent();
return constrainSelectedInstRegOperands(*MIB, TII, TRI, RBI);
}
bool AMDGPUInstructionSelector::selectG_INTRINSIC_W_SIDE_EFFECTS(
MachineInstr &I) const {
unsigned IntrinsicID = I.getIntrinsicID();
switch (IntrinsicID) {
case Intrinsic::amdgcn_end_cf:
return selectEndCfIntrinsic(I);
case Intrinsic::amdgcn_ds_ordered_add:
case Intrinsic::amdgcn_ds_ordered_swap:
return selectDSOrderedIntrinsic(I, IntrinsicID);
case Intrinsic::amdgcn_ds_gws_init:
case Intrinsic::amdgcn_ds_gws_barrier:
case Intrinsic::amdgcn_ds_gws_sema_v:
case Intrinsic::amdgcn_ds_gws_sema_br:
case Intrinsic::amdgcn_ds_gws_sema_p:
case Intrinsic::amdgcn_ds_gws_sema_release_all:
return selectDSGWSIntrinsic(I, IntrinsicID);
case Intrinsic::amdgcn_ds_append:
return selectDSAppendConsume(I, true);
case Intrinsic::amdgcn_ds_consume:
return selectDSAppendConsume(I, false);
default: {
return selectImpl(I, *CoverageInfo);
}
}
}
bool AMDGPUInstructionSelector::selectG_SELECT(MachineInstr &I) const {
if (selectImpl(I, *CoverageInfo))
return true;
MachineBasicBlock *BB = I.getParent();
const DebugLoc &DL = I.getDebugLoc();
Register DstReg = I.getOperand(0).getReg();
unsigned Size = RBI.getSizeInBits(DstReg, *MRI, TRI);
assert(Size <= 32 || Size == 64);
const MachineOperand &CCOp = I.getOperand(1);
Register CCReg = CCOp.getReg();
if (!isVCC(CCReg, *MRI)) {
unsigned SelectOpcode = Size == 64 ? AMDGPU::S_CSELECT_B64 :
AMDGPU::S_CSELECT_B32;
MachineInstr *CopySCC = BuildMI(*BB, &I, DL, TII.get(AMDGPU::COPY), AMDGPU::SCC)
.addReg(CCReg);
// The generic constrainSelectedInstRegOperands doesn't work for the scc register
// bank, because it does not cover the register class that we used to represent
// for it. So we need to manually set the register class here.
if (!MRI->getRegClassOrNull(CCReg))
MRI->setRegClass(CCReg, TRI.getConstrainedRegClassForOperand(CCOp, *MRI));
MachineInstr *Select = BuildMI(*BB, &I, DL, TII.get(SelectOpcode), DstReg)
.add(I.getOperand(2))
.add(I.getOperand(3));
bool Ret = constrainSelectedInstRegOperands(*Select, TII, TRI, RBI) |
constrainSelectedInstRegOperands(*CopySCC, TII, TRI, RBI);
I.eraseFromParent();
return Ret;
}
// Wide VGPR select should have been split in RegBankSelect.
if (Size > 32)
return false;
MachineInstr *Select =
BuildMI(*BB, &I, DL, TII.get(AMDGPU::V_CNDMASK_B32_e64), DstReg)
.addImm(0)
.add(I.getOperand(3))
.addImm(0)
.add(I.getOperand(2))
.add(I.getOperand(1));
bool Ret = constrainSelectedInstRegOperands(*Select, TII, TRI, RBI);
I.eraseFromParent();
return Ret;
}
bool AMDGPUInstructionSelector::selectG_STORE(MachineInstr &I) const {
initM0(I);
return selectImpl(I, *CoverageInfo);
}
static int sizeToSubRegIndex(unsigned Size) {
switch (Size) {
case 32:
return AMDGPU::sub0;
case 64:
return AMDGPU::sub0_sub1;
case 96:
return AMDGPU::sub0_sub1_sub2;
case 128:
return AMDGPU::sub0_sub1_sub2_sub3;
case 256:
return AMDGPU::sub0_sub1_sub2_sub3_sub4_sub5_sub6_sub7;
default:
if (Size < 32)
return AMDGPU::sub0;
if (Size > 256)
return -1;
return sizeToSubRegIndex(PowerOf2Ceil(Size));
}
}
bool AMDGPUInstructionSelector::selectG_TRUNC(MachineInstr &I) const {
Register DstReg = I.getOperand(0).getReg();
Register SrcReg = I.getOperand(1).getReg();
const LLT DstTy = MRI->getType(DstReg);
const LLT SrcTy = MRI->getType(SrcReg);
const LLT S1 = LLT::scalar(1);
const RegisterBank *SrcRB = RBI.getRegBank(SrcReg, *MRI, TRI);
const RegisterBank *DstRB;
if (DstTy == S1) {
// This is a special case. We don't treat s1 for legalization artifacts as
// vcc booleans.
DstRB = SrcRB;
} else {
DstRB = RBI.getRegBank(DstReg, *MRI, TRI);
if (SrcRB != DstRB)
return false;
}
const bool IsVALU = DstRB->getID() == AMDGPU::VGPRRegBankID;
unsigned DstSize = DstTy.getSizeInBits();
unsigned SrcSize = SrcTy.getSizeInBits();
const TargetRegisterClass *SrcRC
= TRI.getRegClassForSizeOnBank(SrcSize, *SrcRB, *MRI);
const TargetRegisterClass *DstRC
= TRI.getRegClassForSizeOnBank(DstSize, *DstRB, *MRI);
if (!SrcRC || !DstRC)
return false;
if (!RBI.constrainGenericRegister(SrcReg, *SrcRC, *MRI) ||
!RBI.constrainGenericRegister(DstReg, *DstRC, *MRI)) {
LLVM_DEBUG(dbgs() << "Failed to constrain G_TRUNC\n");
return false;
}
if (DstTy == LLT::vector(2, 16) && SrcTy == LLT::vector(2, 32)) {
MachineBasicBlock *MBB = I.getParent();
const DebugLoc &DL = I.getDebugLoc();
Register LoReg = MRI->createVirtualRegister(DstRC);
Register HiReg = MRI->createVirtualRegister(DstRC);
BuildMI(*MBB, I, DL, TII.get(AMDGPU::COPY), LoReg)
.addReg(SrcReg, 0, AMDGPU::sub0);
BuildMI(*MBB, I, DL, TII.get(AMDGPU::COPY), HiReg)
.addReg(SrcReg, 0, AMDGPU::sub1);
if (IsVALU && STI.hasSDWA()) {
// Write the low 16-bits of the high element into the high 16-bits of the
// low element.
MachineInstr *MovSDWA =
BuildMI(*MBB, I, DL, TII.get(AMDGPU::V_MOV_B32_sdwa), DstReg)
.addImm(0) // $src0_modifiers
.addReg(HiReg) // $src0
.addImm(0) // $clamp
.addImm(AMDGPU::SDWA::WORD_1) // $dst_sel
.addImm(AMDGPU::SDWA::UNUSED_PRESERVE) // $dst_unused
.addImm(AMDGPU::SDWA::WORD_0) // $src0_sel
.addReg(LoReg, RegState::Implicit);
MovSDWA->tieOperands(0, MovSDWA->getNumOperands() - 1);
} else {
Register TmpReg0 = MRI->createVirtualRegister(DstRC);
Register TmpReg1 = MRI->createVirtualRegister(DstRC);
Register ImmReg = MRI->createVirtualRegister(DstRC);
if (IsVALU) {
BuildMI(*MBB, I, DL, TII.get(AMDGPU::V_LSHLREV_B32_e64), TmpReg0)
.addImm(16)
.addReg(HiReg);
} else {
BuildMI(*MBB, I, DL, TII.get(AMDGPU::S_LSHL_B32), TmpReg0)
.addReg(HiReg)
.addImm(16);
}
unsigned MovOpc = IsVALU ? AMDGPU::V_MOV_B32_e32 : AMDGPU::S_MOV_B32;
unsigned AndOpc = IsVALU ? AMDGPU::V_AND_B32_e64 : AMDGPU::S_AND_B32;
unsigned OrOpc = IsVALU ? AMDGPU::V_OR_B32_e64 : AMDGPU::S_OR_B32;
BuildMI(*MBB, I, DL, TII.get(MovOpc), ImmReg)
.addImm(0xffff);
BuildMI(*MBB, I, DL, TII.get(AndOpc), TmpReg1)
.addReg(LoReg)
.addReg(ImmReg);
BuildMI(*MBB, I, DL, TII.get(OrOpc), DstReg)
.addReg(TmpReg0)
.addReg(TmpReg1);
}
I.eraseFromParent();
return true;
}
if (!DstTy.isScalar())
return false;
if (SrcSize > 32) {
int SubRegIdx = sizeToSubRegIndex(DstSize);
if (SubRegIdx == -1)
return false;
// Deal with weird cases where the class only partially supports the subreg
// index.
const TargetRegisterClass *SrcWithSubRC
= TRI.getSubClassWithSubReg(SrcRC, SubRegIdx);
if (!SrcWithSubRC)
return false;
if (SrcWithSubRC != SrcRC) {
if (!RBI.constrainGenericRegister(SrcReg, *SrcWithSubRC, *MRI))
return false;
}
I.getOperand(1).setSubReg(SubRegIdx);
}
I.setDesc(TII.get(TargetOpcode::COPY));
return true;
}
/// \returns true if a bitmask for \p Size bits will be an inline immediate.
static bool shouldUseAndMask(unsigned Size, unsigned &Mask) {
Mask = maskTrailingOnes<unsigned>(Size);
int SignedMask = static_cast<int>(Mask);
return SignedMask >= -16 && SignedMask <= 64;
}
// Like RegisterBankInfo::getRegBank, but don't assume vcc for s1.
const RegisterBank *AMDGPUInstructionSelector::getArtifactRegBank(
Register Reg, const MachineRegisterInfo &MRI,
const TargetRegisterInfo &TRI) const {
const RegClassOrRegBank &RegClassOrBank = MRI.getRegClassOrRegBank(Reg);
if (auto *RB = RegClassOrBank.dyn_cast<const RegisterBank *>())
return RB;
// Ignore the type, since we don't use vcc in artifacts.
if (auto *RC = RegClassOrBank.dyn_cast<const TargetRegisterClass *>())
return &RBI.getRegBankFromRegClass(*RC, LLT());
return nullptr;
}
bool AMDGPUInstructionSelector::selectG_SZA_EXT(MachineInstr &I) const {
bool InReg = I.getOpcode() == AMDGPU::G_SEXT_INREG;
bool Signed = I.getOpcode() == AMDGPU::G_SEXT || InReg;
const DebugLoc &DL = I.getDebugLoc();
MachineBasicBlock &MBB = *I.getParent();
const Register DstReg = I.getOperand(0).getReg();
const Register SrcReg = I.getOperand(1).getReg();
const LLT DstTy = MRI->getType(DstReg);
const LLT SrcTy = MRI->getType(SrcReg);
const unsigned SrcSize = I.getOpcode() == AMDGPU::G_SEXT_INREG ?
I.getOperand(2).getImm() : SrcTy.getSizeInBits();
const unsigned DstSize = DstTy.getSizeInBits();
if (!DstTy.isScalar())
return false;
if (I.getOpcode() == AMDGPU::G_ANYEXT)
return selectCOPY(I);
// Artifact casts should never use vcc.
const RegisterBank *SrcBank = getArtifactRegBank(SrcReg, *MRI, TRI);
if (SrcBank->getID() == AMDGPU::VGPRRegBankID && DstSize <= 32) {
// 64-bit should have been split up in RegBankSelect
// Try to use an and with a mask if it will save code size.
unsigned Mask;
if (!Signed && shouldUseAndMask(SrcSize, Mask)) {
MachineInstr *ExtI =
BuildMI(MBB, I, DL, TII.get(AMDGPU::V_AND_B32_e32), DstReg)
.addImm(Mask)
.addReg(SrcReg);
I.eraseFromParent();
return constrainSelectedInstRegOperands(*ExtI, TII, TRI, RBI);
}
const unsigned BFE = Signed ? AMDGPU::V_BFE_I32 : AMDGPU::V_BFE_U32;
MachineInstr *ExtI =
BuildMI(MBB, I, DL, TII.get(BFE), DstReg)
.addReg(SrcReg)
.addImm(0) // Offset
.addImm(SrcSize); // Width
I.eraseFromParent();
return constrainSelectedInstRegOperands(*ExtI, TII, TRI, RBI);
}
if (SrcBank->getID() == AMDGPU::SGPRRegBankID && DstSize <= 64) {
const TargetRegisterClass &SrcRC = InReg && DstSize > 32 ?
AMDGPU::SReg_64RegClass : AMDGPU::SReg_32RegClass;
if (!RBI.constrainGenericRegister(SrcReg, SrcRC, *MRI))
return false;
if (Signed && DstSize == 32 && (SrcSize == 8 || SrcSize == 16)) {
const unsigned SextOpc = SrcSize == 8 ?
AMDGPU::S_SEXT_I32_I8 : AMDGPU::S_SEXT_I32_I16;
BuildMI(MBB, I, DL, TII.get(SextOpc), DstReg)
.addReg(SrcReg);
I.eraseFromParent();
return RBI.constrainGenericRegister(DstReg, AMDGPU::SReg_32RegClass, *MRI);
}
const unsigned BFE64 = Signed ? AMDGPU::S_BFE_I64 : AMDGPU::S_BFE_U64;
const unsigned BFE32 = Signed ? AMDGPU::S_BFE_I32 : AMDGPU::S_BFE_U32;
// Scalar BFE is encoded as S1[5:0] = offset, S1[22:16]= width.
if (DstSize > 32 && (SrcSize <= 32 || InReg)) {
// We need a 64-bit register source, but the high bits don't matter.
Register ExtReg = MRI->createVirtualRegister(&AMDGPU::SReg_64RegClass);
Register UndefReg = MRI->createVirtualRegister(&AMDGPU::SReg_32RegClass);
unsigned SubReg = InReg ? AMDGPU::sub0 : 0;
BuildMI(MBB, I, DL, TII.get(AMDGPU::IMPLICIT_DEF), UndefReg);
BuildMI(MBB, I, DL, TII.get(AMDGPU::REG_SEQUENCE), ExtReg)
.addReg(SrcReg, 0, SubReg)
.addImm(AMDGPU::sub0)
.addReg(UndefReg)
.addImm(AMDGPU::sub1);
BuildMI(MBB, I, DL, TII.get(BFE64), DstReg)
.addReg(ExtReg)
.addImm(SrcSize << 16);
I.eraseFromParent();
return RBI.constrainGenericRegister(DstReg, AMDGPU::SReg_64RegClass, *MRI);
}
unsigned Mask;
if (!Signed && shouldUseAndMask(SrcSize, Mask)) {
BuildMI(MBB, I, DL, TII.get(AMDGPU::S_AND_B32), DstReg)
.addReg(SrcReg)
.addImm(Mask);
} else {
BuildMI(MBB, I, DL, TII.get(BFE32), DstReg)
.addReg(SrcReg)
.addImm(SrcSize << 16);
}
I.eraseFromParent();
return RBI.constrainGenericRegister(DstReg, AMDGPU::SReg_32RegClass, *MRI);
}
return false;
}
bool AMDGPUInstructionSelector::selectG_CONSTANT(MachineInstr &I) const {
MachineBasicBlock *BB = I.getParent();
MachineOperand &ImmOp = I.getOperand(1);
// The AMDGPU backend only supports Imm operands and not CImm or FPImm.
if (ImmOp.isFPImm()) {
const APInt &Imm = ImmOp.getFPImm()->getValueAPF().bitcastToAPInt();
ImmOp.ChangeToImmediate(Imm.getZExtValue());
} else if (ImmOp.isCImm()) {
ImmOp.ChangeToImmediate(ImmOp.getCImm()->getZExtValue());
}
Register DstReg = I.getOperand(0).getReg();
unsigned Size;
bool IsSgpr;
const RegisterBank *RB = MRI->getRegBankOrNull(I.getOperand(0).getReg());
if (RB) {
IsSgpr = RB->getID() == AMDGPU::SGPRRegBankID;
Size = MRI->getType(DstReg).getSizeInBits();
} else {
const TargetRegisterClass *RC = TRI.getRegClassForReg(*MRI, DstReg);
IsSgpr = TRI.isSGPRClass(RC);
Size = TRI.getRegSizeInBits(*RC);
}
if (Size != 32 && Size != 64)
return false;
unsigned Opcode = IsSgpr ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32;
if (Size == 32) {
I.setDesc(TII.get(Opcode));
I.addImplicitDefUseOperands(*MF);
return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
}
const DebugLoc &DL = I.getDebugLoc();
APInt Imm(Size, I.getOperand(1).getImm());
MachineInstr *ResInst;
if (IsSgpr && TII.isInlineConstant(Imm)) {
ResInst = BuildMI(*BB, &I, DL, TII.get(AMDGPU::S_MOV_B64), DstReg)
.addImm(I.getOperand(1).getImm());
} else {
const TargetRegisterClass *RC = IsSgpr ?
&AMDGPU::SReg_32RegClass : &AMDGPU::VGPR_32RegClass;
Register LoReg = MRI->createVirtualRegister(RC);
Register HiReg = MRI->createVirtualRegister(RC);
BuildMI(*BB, &I, DL, TII.get(Opcode), LoReg)
.addImm(Imm.trunc(32).getZExtValue());
BuildMI(*BB, &I, DL, TII.get(Opcode), HiReg)
.addImm(Imm.ashr(32).getZExtValue());
ResInst = BuildMI(*BB, &I, DL, TII.get(AMDGPU::REG_SEQUENCE), DstReg)
.addReg(LoReg)
.addImm(AMDGPU::sub0)
.addReg(HiReg)
.addImm(AMDGPU::sub1);
}
// We can't call constrainSelectedInstRegOperands here, because it doesn't
// work for target independent opcodes
I.eraseFromParent();
const TargetRegisterClass *DstRC =
TRI.getConstrainedRegClassForOperand(ResInst->getOperand(0), *MRI);
if (!DstRC)
return true;
return RBI.constrainGenericRegister(DstReg, *DstRC, *MRI);
}
bool AMDGPUInstructionSelector::selectG_FNEG(MachineInstr &MI) const {
// Only manually handle the f64 SGPR case.
//
// FIXME: This is a workaround for 2.5 different tablegen problems. Because
// the bit ops theoretically have a second result due to the implicit def of
// SCC, the GlobalISelEmitter is overly conservative and rejects it. Fixing
// that is easy by disabling the check. The result works, but uses a
// nonsensical sreg32orlds_and_sreg_1 regclass.
//
// The DAG emitter is more problematic, and incorrectly adds both S_XOR_B32 to
// the variadic REG_SEQUENCE operands.
Register Dst = MI.getOperand(0).getReg();
const RegisterBank *DstRB = RBI.getRegBank(Dst, *MRI, TRI);
if (DstRB->getID() != AMDGPU::SGPRRegBankID ||
MRI->getType(Dst) != LLT::scalar(64))
return false;
Register Src = MI.getOperand(1).getReg();
MachineInstr *Fabs = getOpcodeDef(TargetOpcode::G_FABS, Src, *MRI);
if (Fabs)
Src = Fabs->getOperand(1).getReg();
if (!RBI.constrainGenericRegister(Src, AMDGPU::SReg_64RegClass, *MRI) ||
!RBI.constrainGenericRegister(Dst, AMDGPU::SReg_64RegClass, *MRI))
return false;
MachineBasicBlock *BB = MI.getParent();
const DebugLoc &DL = MI.getDebugLoc();
Register LoReg = MRI->createVirtualRegister(&AMDGPU::SReg_32RegClass);
Register HiReg = MRI->createVirtualRegister(&AMDGPU::SReg_32RegClass);
Register ConstReg = MRI->createVirtualRegister(&AMDGPU::SReg_32RegClass);
Register OpReg = MRI->createVirtualRegister(&AMDGPU::SReg_32RegClass);
BuildMI(*BB, &MI, DL, TII.get(AMDGPU::COPY), LoReg)
.addReg(Src, 0, AMDGPU::sub0);
BuildMI(*BB, &MI, DL, TII.get(AMDGPU::COPY), HiReg)
.addReg(Src, 0, AMDGPU::sub1);
BuildMI(*BB, &MI, DL, TII.get(AMDGPU::S_MOV_B32), ConstReg)
.addImm(0x80000000);
// Set or toggle sign bit.
unsigned Opc = Fabs ? AMDGPU::S_OR_B32 : AMDGPU::S_XOR_B32;
BuildMI(*BB, &MI, DL, TII.get(Opc), OpReg)
.addReg(HiReg)
.addReg(ConstReg);
BuildMI(*BB, &MI, DL, TII.get(AMDGPU::REG_SEQUENCE), Dst)
.addReg(LoReg)
.addImm(AMDGPU::sub0)
.addReg(OpReg)
.addImm(AMDGPU::sub1);
MI.eraseFromParent();
return true;
}
// FIXME: This is a workaround for the same tablegen problems as G_FNEG
bool AMDGPUInstructionSelector::selectG_FABS(MachineInstr &MI) const {
Register Dst = MI.getOperand(0).getReg();
const RegisterBank *DstRB = RBI.getRegBank(Dst, *MRI, TRI);
if (DstRB->getID() != AMDGPU::SGPRRegBankID ||
MRI->getType(Dst) != LLT::scalar(64))
return false;
Register Src = MI.getOperand(1).getReg();
MachineBasicBlock *BB = MI.getParent();
const DebugLoc &DL = MI.getDebugLoc();
Register LoReg = MRI->createVirtualRegister(&AMDGPU::SReg_32RegClass);
Register HiReg = MRI->createVirtualRegister(&AMDGPU::SReg_32RegClass);
Register ConstReg = MRI->createVirtualRegister(&AMDGPU::SReg_32RegClass);
Register OpReg = MRI->createVirtualRegister(&AMDGPU::SReg_32RegClass);
if (!RBI.constrainGenericRegister(Src, AMDGPU::SReg_64RegClass, *MRI) ||
!RBI.constrainGenericRegister(Dst, AMDGPU::SReg_64RegClass, *MRI))
return false;
BuildMI(*BB, &MI, DL, TII.get(AMDGPU::COPY), LoReg)
.addReg(Src, 0, AMDGPU::sub0);
BuildMI(*BB, &MI, DL, TII.get(AMDGPU::COPY), HiReg)
.addReg(Src, 0, AMDGPU::sub1);
BuildMI(*BB, &MI, DL, TII.get(AMDGPU::S_MOV_B32), ConstReg)
.addImm(0x7fffffff);
// Clear sign bit.
// TODO: Should this used S_BITSET0_*?
BuildMI(*BB, &MI, DL, TII.get(AMDGPU::S_AND_B32), OpReg)
.addReg(HiReg)
.addReg(ConstReg);
BuildMI(*BB, &MI, DL, TII.get(AMDGPU::REG_SEQUENCE), Dst)
.addReg(LoReg)
.addImm(AMDGPU::sub0)
.addReg(OpReg)
.addImm(AMDGPU::sub1);
MI.eraseFromParent();
return true;
}
static bool isConstant(const MachineInstr &MI) {
return MI.getOpcode() == TargetOpcode::G_CONSTANT;
}
void AMDGPUInstructionSelector::getAddrModeInfo(const MachineInstr &Load,
const MachineRegisterInfo &MRI, SmallVectorImpl<GEPInfo> &AddrInfo) const {
const MachineInstr *PtrMI = MRI.getUniqueVRegDef(Load.getOperand(1).getReg());
assert(PtrMI);
if (PtrMI->getOpcode() != TargetOpcode::G_PTR_ADD)
return;
GEPInfo GEPInfo(*PtrMI);
for (unsigned i = 1; i != 3; ++i) {
const MachineOperand &GEPOp = PtrMI->getOperand(i);
const MachineInstr *OpDef = MRI.getUniqueVRegDef(GEPOp.getReg());
assert(OpDef);
if (i == 2 && isConstant(*OpDef)) {
// TODO: Could handle constant base + variable offset, but a combine
// probably should have commuted it.
assert(GEPInfo.Imm == 0);
GEPInfo.Imm = OpDef->getOperand(1).getCImm()->getSExtValue();
continue;
}
const RegisterBank *OpBank = RBI.getRegBank(GEPOp.getReg(), MRI, TRI);
if (OpBank->getID() == AMDGPU::SGPRRegBankID)
GEPInfo.SgprParts.push_back(GEPOp.getReg());
else
GEPInfo.VgprParts.push_back(GEPOp.getReg());
}
AddrInfo.push_back(GEPInfo);
getAddrModeInfo(*PtrMI, MRI, AddrInfo);
}
bool AMDGPUInstructionSelector::isInstrUniform(const MachineInstr &MI) const {
if (!MI.hasOneMemOperand())
return false;
const MachineMemOperand *MMO = *MI.memoperands_begin();
const Value *Ptr = MMO->getValue();
// UndefValue means this is a load of a kernel input. These are uniform.
// Sometimes LDS instructions have constant pointers.
// If Ptr is null, then that means this mem operand contains a
// PseudoSourceValue like GOT.
if (!Ptr || isa<UndefValue>(Ptr) || isa<Argument>(Ptr) ||
isa<Constant>(Ptr) || isa<GlobalValue>(Ptr))
return true;
if (MMO->getAddrSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT)
return true;
const Instruction *I = dyn_cast<Instruction>(Ptr);
return I && I->getMetadata("amdgpu.uniform");
}
bool AMDGPUInstructionSelector::hasVgprParts(ArrayRef<GEPInfo> AddrInfo) const {
for (const GEPInfo &GEPInfo : AddrInfo) {
if (!GEPInfo.VgprParts.empty())
return true;
}
return false;
}
void AMDGPUInstructionSelector::initM0(MachineInstr &I) const {
MachineBasicBlock *BB = I.getParent();
const LLT PtrTy = MRI->getType(I.getOperand(1).getReg());
unsigned AS = PtrTy.getAddressSpace();
if ((AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) &&
STI.ldsRequiresM0Init()) {
// If DS instructions require M0 initializtion, insert it before selecting.
BuildMI(*BB, &I, I.getDebugLoc(), TII.get(AMDGPU::S_MOV_B32), AMDGPU::M0)
.addImm(-1);
}
}
bool AMDGPUInstructionSelector::selectG_LOAD_ATOMICRMW(MachineInstr &I) const {
initM0(I);
return selectImpl(I, *CoverageInfo);
}
// TODO: No rtn optimization.
bool AMDGPUInstructionSelector::selectG_AMDGPU_ATOMIC_CMPXCHG(
MachineInstr &MI) const {
Register PtrReg = MI.getOperand(1).getReg();
const LLT PtrTy = MRI->getType(PtrReg);
if (PtrTy.getAddressSpace() == AMDGPUAS::FLAT_ADDRESS ||
STI.useFlatForGlobal())
return selectImpl(MI, *CoverageInfo);
Register DstReg = MI.getOperand(0).getReg();
const LLT Ty = MRI->getType(DstReg);
const bool Is64 = Ty.getSizeInBits() == 64;
const unsigned SubReg = Is64 ? AMDGPU::sub0_sub1 : AMDGPU::sub0;
Register TmpReg = MRI->createVirtualRegister(
Is64 ? &AMDGPU::VReg_128RegClass : &AMDGPU::VReg_64RegClass);
const DebugLoc &DL = MI.getDebugLoc();
MachineBasicBlock *BB = MI.getParent();
Register VAddr, RSrcReg, SOffset;
int64_t Offset = 0;
unsigned Opcode;
if (selectMUBUFOffsetImpl(MI.getOperand(1), RSrcReg, SOffset, Offset)) {
Opcode = Is64 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_OFFSET_RTN :
AMDGPU::BUFFER_ATOMIC_CMPSWAP_OFFSET_RTN;
} else if (selectMUBUFAddr64Impl(MI.getOperand(1), VAddr,
RSrcReg, SOffset, Offset)) {
Opcode = Is64 ? AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_ADDR64_RTN :
AMDGPU::BUFFER_ATOMIC_CMPSWAP_ADDR64_RTN;
} else
return selectImpl(MI, *CoverageInfo);
auto MIB = BuildMI(*BB, &MI, DL, TII.get(Opcode), TmpReg)
.addReg(MI.getOperand(2).getReg());
if (VAddr)
MIB.addReg(VAddr);
MIB.addReg(RSrcReg);
if (SOffset)
MIB.addReg(SOffset);
else
MIB.addImm(0);
MIB.addImm(Offset);
MIB.addImm(0); // slc
MIB.cloneMemRefs(MI);
BuildMI(*BB, &MI, DL, TII.get(AMDGPU::COPY), DstReg)
.addReg(TmpReg, RegState::Kill, SubReg);
MI.eraseFromParent();
MRI->setRegClass(
DstReg, Is64 ? &AMDGPU::VReg_64RegClass : &AMDGPU::VGPR_32RegClass);
return constrainSelectedInstRegOperands(*MIB, TII, TRI, RBI);
}
bool AMDGPUInstructionSelector::selectG_BRCOND(MachineInstr &I) const {
MachineBasicBlock *BB = I.getParent();
MachineOperand &CondOp = I.getOperand(0);
Register CondReg = CondOp.getReg();
const DebugLoc &DL = I.getDebugLoc();
unsigned BrOpcode;
Register CondPhysReg;
const TargetRegisterClass *ConstrainRC;
// In SelectionDAG, we inspect the IR block for uniformity metadata to decide
// whether the branch is uniform when selecting the instruction. In
// GlobalISel, we should push that decision into RegBankSelect. Assume for now
// RegBankSelect knows what it's doing if the branch condition is scc, even
// though it currently does not.
if (!isVCC(CondReg, *MRI)) {
if (MRI->getType(CondReg) != LLT::scalar(32))
return false;
CondPhysReg = AMDGPU::SCC;
BrOpcode = AMDGPU::S_CBRANCH_SCC1;
// FIXME: Hack for isSCC tests
ConstrainRC = &AMDGPU::SGPR_32RegClass;
} else {
// FIXME: Do we have to insert an and with exec here, like in SelectionDAG?
// We sort of know that a VCC producer based on the register bank, that ands
// inactive lanes with 0. What if there was a logical operation with vcc
// producers in different blocks/with different exec masks?
// FIXME: Should scc->vcc copies and with exec?
CondPhysReg = TRI.getVCC();
BrOpcode = AMDGPU::S_CBRANCH_VCCNZ;
ConstrainRC = TRI.getBoolRC();
}
if (!MRI->getRegClassOrNull(CondReg))
MRI->setRegClass(CondReg, ConstrainRC);
BuildMI(*BB, &I, DL, TII.get(AMDGPU::COPY), CondPhysReg)
.addReg(CondReg);
BuildMI(*BB, &I, DL, TII.get(BrOpcode))
.addMBB(I.getOperand(1).getMBB());
I.eraseFromParent();
return true;
}
bool AMDGPUInstructionSelector::selectG_FRAME_INDEX_GLOBAL_VALUE(
MachineInstr &I) const {
Register DstReg = I.getOperand(0).getReg();
const RegisterBank *DstRB = RBI.getRegBank(DstReg, *MRI, TRI);
const bool IsVGPR = DstRB->getID() == AMDGPU::VGPRRegBankID;
I.setDesc(TII.get(IsVGPR ? AMDGPU::V_MOV_B32_e32 : AMDGPU::S_MOV_B32));
if (IsVGPR)
I.addOperand(*MF, MachineOperand::CreateReg(AMDGPU::EXEC, false, true));
return RBI.constrainGenericRegister(
DstReg, IsVGPR ? AMDGPU::VGPR_32RegClass : AMDGPU::SReg_32RegClass, *MRI);
}
bool AMDGPUInstructionSelector::selectG_PTRMASK(MachineInstr &I) const {
Register DstReg = I.getOperand(0).getReg();
Register SrcReg = I.getOperand(1).getReg();
Register MaskReg = I.getOperand(2).getReg();
LLT Ty = MRI->getType(DstReg);
LLT MaskTy = MRI->getType(MaskReg);
const RegisterBank *DstRB = RBI.getRegBank(DstReg, *MRI, TRI);
const RegisterBank *SrcRB = RBI.getRegBank(SrcReg, *MRI, TRI);
const RegisterBank *MaskRB = RBI.getRegBank(MaskReg, *MRI, TRI);
const bool IsVGPR = DstRB->getID() == AMDGPU::VGPRRegBankID;
if (DstRB != SrcRB) // Should only happen for hand written MIR.
return false;
unsigned NewOpc = IsVGPR ? AMDGPU::V_AND_B32_e64 : AMDGPU::S_AND_B32;
const TargetRegisterClass &RegRC
= IsVGPR ? AMDGPU::VGPR_32RegClass : AMDGPU::SReg_32RegClass;
const TargetRegisterClass *DstRC = TRI.getRegClassForTypeOnBank(Ty, *DstRB,
*MRI);
const TargetRegisterClass *SrcRC = TRI.getRegClassForTypeOnBank(Ty, *SrcRB,
*MRI);
const TargetRegisterClass *MaskRC =
TRI.getRegClassForTypeOnBank(MaskTy, *MaskRB, *MRI);
if (!RBI.constrainGenericRegister(DstReg, *DstRC, *MRI) ||
!RBI.constrainGenericRegister(SrcReg, *SrcRC, *MRI) ||
!RBI.constrainGenericRegister(MaskReg, *MaskRC, *MRI))
return false;
MachineBasicBlock *BB = I.getParent();
const DebugLoc &DL = I.getDebugLoc();
if (Ty.getSizeInBits() == 32) {
assert(MaskTy.getSizeInBits() == 32 &&
"ptrmask should have been narrowed during legalize");
BuildMI(*BB, &I, DL, TII.get(NewOpc), DstReg)
.addReg(SrcReg)
.addReg(MaskReg);
I.eraseFromParent();
return true;
}
Register HiReg = MRI->createVirtualRegister(&RegRC);
Register LoReg = MRI->createVirtualRegister(&RegRC);
// Extract the subregisters from the source pointer.
BuildMI(*BB, &I, DL, TII.get(AMDGPU::COPY), LoReg)
.addReg(SrcReg, 0, AMDGPU::sub0);
BuildMI(*BB, &I, DL, TII.get(AMDGPU::COPY), HiReg)
.addReg(SrcReg, 0, AMDGPU::sub1);
Register MaskedLo, MaskedHi;
// Try to avoid emitting a bit operation when we only need to touch half of
// the 64-bit pointer.
APInt MaskOnes = KnownBits->getKnownOnes(MaskReg).zextOrSelf(64);
const APInt MaskHi32 = APInt::getHighBitsSet(64, 32);
const APInt MaskLo32 = APInt::getLowBitsSet(64, 32);
if ((MaskOnes & MaskLo32) == MaskLo32) {
// If all the bits in the low half are 1, we only need a copy for it.
MaskedLo = LoReg;
} else {
// Extract the mask subregister and apply the and.
Register MaskLo = MRI->createVirtualRegister(&RegRC);
MaskedLo = MRI->createVirtualRegister(&RegRC);
BuildMI(*BB, &I, DL, TII.get(AMDGPU::COPY), MaskLo)
.addReg(MaskReg, 0, AMDGPU::sub0);
BuildMI(*BB, &I, DL, TII.get(NewOpc), MaskedLo)
.addReg(LoReg)
.addReg(MaskLo);
}
if ((MaskOnes & MaskHi32) == MaskHi32) {
// If all the bits in the high half are 1, we only need a copy for it.
MaskedHi = HiReg;
} else {
Register MaskHi = MRI->createVirtualRegister(&RegRC);
MaskedHi = MRI->createVirtualRegister(&RegRC);
BuildMI(*BB, &I, DL, TII.get(AMDGPU::COPY), MaskHi)
.addReg(MaskReg, 0, AMDGPU::sub1);
BuildMI(*BB, &I, DL, TII.get(NewOpc), MaskedHi)
.addReg(HiReg)
.addReg(MaskHi);
}
BuildMI(*BB, &I, DL, TII.get(AMDGPU::REG_SEQUENCE), DstReg)
.addReg(MaskedLo)
.addImm(AMDGPU::sub0)
.addReg(MaskedHi)
.addImm(AMDGPU::sub1);
I.eraseFromParent();
return true;
}
/// Return the register to use for the index value, and the subregister to use
/// for the indirectly accessed register.
static std::pair<Register, unsigned>
computeIndirectRegIndex(MachineRegisterInfo &MRI,
const SIRegisterInfo &TRI,
const TargetRegisterClass *SuperRC,
Register IdxReg,
unsigned EltSize) {
Register IdxBaseReg;
int Offset;
MachineInstr *Unused;
std::tie(IdxBaseReg, Offset, Unused)
= AMDGPU::getBaseWithConstantOffset(MRI, IdxReg);
if (IdxBaseReg == AMDGPU::NoRegister) {
// This will happen if the index is a known constant. This should ordinarily
// be legalized out, but handle it as a register just in case.
assert(Offset == 0);
IdxBaseReg = IdxReg;
}
ArrayRef<int16_t> SubRegs = TRI.getRegSplitParts(SuperRC, EltSize);
// Skip out of bounds offsets, or else we would end up using an undefined
// register.
if (static_cast<unsigned>(Offset) >= SubRegs.size())
return std::make_pair(IdxReg, SubRegs[0]);
return std::make_pair(IdxBaseReg, SubRegs[Offset]);
}
bool AMDGPUInstructionSelector::selectG_EXTRACT_VECTOR_ELT(
MachineInstr &MI) const {
Register DstReg = MI.getOperand(0).getReg();
Register SrcReg = MI.getOperand(1).getReg();
Register IdxReg = MI.getOperand(2).getReg();
LLT DstTy = MRI->getType(DstReg);
LLT SrcTy = MRI->getType(SrcReg);
const RegisterBank *DstRB = RBI.getRegBank(DstReg, *MRI, TRI);
const RegisterBank *SrcRB = RBI.getRegBank(SrcReg, *MRI, TRI);
const RegisterBank *IdxRB = RBI.getRegBank(IdxReg, *MRI, TRI);
// The index must be scalar. If it wasn't RegBankSelect should have moved this
// into a waterfall loop.
if (IdxRB->getID() != AMDGPU::SGPRRegBankID)
return false;
const TargetRegisterClass *SrcRC = TRI.getRegClassForTypeOnBank(SrcTy, *SrcRB,
*MRI);
const TargetRegisterClass *DstRC = TRI.getRegClassForTypeOnBank(DstTy, *DstRB,
*MRI);
if (!SrcRC || !DstRC)
return false;
if (!RBI.constrainGenericRegister(SrcReg, *SrcRC, *MRI) ||
!RBI.constrainGenericRegister(DstReg, *DstRC, *MRI) ||
!RBI.constrainGenericRegister(IdxReg, AMDGPU::SReg_32RegClass, *MRI))
return false;
MachineBasicBlock *BB = MI.getParent();
const DebugLoc &DL = MI.getDebugLoc();
const bool Is64 = DstTy.getSizeInBits() == 64;
unsigned SubReg;
std::tie(IdxReg, SubReg) = computeIndirectRegIndex(*MRI, TRI, SrcRC, IdxReg,
DstTy.getSizeInBits() / 8);
if (SrcRB->getID() == AMDGPU::SGPRRegBankID) {
if (DstTy.getSizeInBits() != 32 && !Is64)
return false;
BuildMI(*BB, &MI, DL, TII.get(AMDGPU::COPY), AMDGPU::M0)
.addReg(IdxReg);
unsigned Opc = Is64 ? AMDGPU::S_MOVRELS_B64 : AMDGPU::S_MOVRELS_B32;
BuildMI(*BB, &MI, DL, TII.get(Opc), DstReg)
.addReg(SrcReg, 0, SubReg)
.addReg(SrcReg, RegState::Implicit);
MI.eraseFromParent();
return true;
}
if (SrcRB->getID() != AMDGPU::VGPRRegBankID || DstTy.getSizeInBits() != 32)
return false;
if (!STI.useVGPRIndexMode()) {
BuildMI(*BB, &MI, DL, TII.get(AMDGPU::COPY), AMDGPU::M0)
.addReg(IdxReg);
BuildMI(*BB, &MI, DL, TII.get(AMDGPU::V_MOVRELS_B32_e32), DstReg)
.addReg(SrcReg, RegState::Undef, SubReg)
.addReg(SrcReg, RegState::Implicit);
MI.eraseFromParent();
return true;
}
BuildMI(*BB, MI, DL, TII.get(AMDGPU::S_SET_GPR_IDX_ON))
.addReg(IdxReg)
.addImm(AMDGPU::VGPRIndexMode::SRC0_ENABLE);
BuildMI(*BB, MI, DL, TII.get(AMDGPU::V_MOV_B32_e32), DstReg)
.addReg(SrcReg, RegState::Undef, SubReg)
.addReg(SrcReg, RegState::Implicit)
.addReg(AMDGPU::M0, RegState::Implicit);
BuildMI(*BB, MI, DL, TII.get(AMDGPU::S_SET_GPR_IDX_OFF));
MI.eraseFromParent();
return true;
}
// TODO: Fold insert_vector_elt (extract_vector_elt) into movrelsd
bool AMDGPUInstructionSelector::selectG_INSERT_VECTOR_ELT(
MachineInstr &MI) const {
Register DstReg = MI.getOperand(0).getReg();
Register VecReg = MI.getOperand(1).getReg();
Register ValReg = MI.getOperand(2).getReg();
Register IdxReg = MI.getOperand(3).getReg();
LLT VecTy = MRI->getType(DstReg);
LLT ValTy = MRI->getType(ValReg);
unsigned VecSize = VecTy.getSizeInBits();
unsigned ValSize = ValTy.getSizeInBits();
const RegisterBank *VecRB = RBI.getRegBank(VecReg, *MRI, TRI);
const RegisterBank *ValRB = RBI.getRegBank(ValReg, *MRI, TRI);
const RegisterBank *IdxRB = RBI.getRegBank(IdxReg, *MRI, TRI);
assert(VecTy.getElementType() == ValTy);
// The index must be scalar. If it wasn't RegBankSelect should have moved this
// into a waterfall loop.
if (IdxRB->getID() != AMDGPU::SGPRRegBankID)
return false;
const TargetRegisterClass *VecRC = TRI.getRegClassForTypeOnBank(VecTy, *VecRB,
*MRI);
const TargetRegisterClass *ValRC = TRI.getRegClassForTypeOnBank(ValTy, *ValRB,
*MRI);
if (!RBI.constrainGenericRegister(VecReg, *VecRC, *MRI) ||
!RBI.constrainGenericRegister(DstReg, *VecRC, *MRI) ||
!RBI.constrainGenericRegister(ValReg, *ValRC, *MRI) ||
!RBI.constrainGenericRegister(IdxReg, AMDGPU::SReg_32RegClass, *MRI))
return false;
if (VecRB->getID() == AMDGPU::VGPRRegBankID && ValSize != 32)
return false;
unsigned SubReg;
std::tie(IdxReg, SubReg) = computeIndirectRegIndex(*MRI, TRI, VecRC, IdxReg,
ValSize / 8);
const bool IndexMode = VecRB->getID() == AMDGPU::VGPRRegBankID &&
STI.useVGPRIndexMode();
MachineBasicBlock *BB = MI.getParent();
const DebugLoc &DL = MI.getDebugLoc();
if (IndexMode) {
BuildMI(*BB, MI, DL, TII.get(AMDGPU::S_SET_GPR_IDX_ON))
.addReg(IdxReg)
.addImm(AMDGPU::VGPRIndexMode::DST_ENABLE);
} else {
BuildMI(*BB, &MI, DL, TII.get(AMDGPU::COPY), AMDGPU::M0)
.addReg(IdxReg);
}
const MCInstrDesc &RegWriteOp
= TII.getIndirectRegWritePseudo(VecSize, ValSize,
VecRB->getID() == AMDGPU::SGPRRegBankID);
BuildMI(*BB, MI, DL, RegWriteOp, DstReg)
.addReg(VecReg)
.addReg(ValReg)
.addImm(SubReg);
if (IndexMode)
BuildMI(*BB, MI, DL, TII.get(AMDGPU::S_SET_GPR_IDX_OFF));
MI.eraseFromParent();
return true;
}
static bool isZeroOrUndef(int X) {
return X == 0 || X == -1;
}
static bool isOneOrUndef(int X) {
return X == 1 || X == -1;
}
static bool isZeroOrOneOrUndef(int X) {
return X == 0 || X == 1 || X == -1;
}
// Normalize a VOP3P shuffle mask to refer to the low/high half of a single
// 32-bit register.
static Register normalizeVOP3PMask(int NewMask[2], Register Src0, Register Src1,
ArrayRef<int> Mask) {
NewMask[0] = Mask[0];
NewMask[1] = Mask[1];
if (isZeroOrOneOrUndef(Mask[0]) && isZeroOrOneOrUndef(Mask[1]))
return Src0;
assert(NewMask[0] == 2 || NewMask[0] == 3 || NewMask[0] == -1);
assert(NewMask[1] == 2 || NewMask[1] == 3 || NewMask[1] == -1);
// Shift the mask inputs to be 0/1;
NewMask[0] = NewMask[0] == -1 ? -1 : NewMask[0] - 2;
NewMask[1] = NewMask[1] == -1 ? -1 : NewMask[1] - 2;
return Src1;
}
// This is only legal with VOP3P instructions as an aid to op_sel matching.
bool AMDGPUInstructionSelector::selectG_SHUFFLE_VECTOR(
MachineInstr &MI) const {
Register DstReg = MI.getOperand(0).getReg();
Register Src0Reg = MI.getOperand(1).getReg();
Register Src1Reg = MI.getOperand(2).getReg();
ArrayRef<int> ShufMask = MI.getOperand(3).getShuffleMask();
const LLT V2S16 = LLT::vector(2, 16);
if (MRI->getType(DstReg) != V2S16 || MRI->getType(Src0Reg) != V2S16)
return false;
if (!AMDGPU::isLegalVOP3PShuffleMask(ShufMask))
return false;
assert(ShufMask.size() == 2);
assert(STI.hasSDWA() && "no target has VOP3P but not SDWA");
MachineBasicBlock *MBB = MI.getParent();
const DebugLoc &DL = MI.getDebugLoc();
const RegisterBank *DstRB = RBI.getRegBank(DstReg, *MRI, TRI);
const bool IsVALU = DstRB->getID() == AMDGPU::VGPRRegBankID;
const TargetRegisterClass &RC = IsVALU ?
AMDGPU::VGPR_32RegClass : AMDGPU::SReg_32RegClass;
// Handle the degenerate case which should have folded out.
if (ShufMask[0] == -1 && ShufMask[1] == -1) {
BuildMI(*MBB, MI, DL, TII.get(AMDGPU::IMPLICIT_DEF), DstReg);
MI.eraseFromParent();
return RBI.constrainGenericRegister(DstReg, RC, *MRI);
}
// A legal VOP3P mask only reads one of the sources.
int Mask[2];
Register SrcVec = normalizeVOP3PMask(Mask, Src0Reg, Src1Reg, ShufMask);
if (!RBI.constrainGenericRegister(DstReg, RC, *MRI) ||
!RBI.constrainGenericRegister(SrcVec, RC, *MRI))
return false;
// TODO: This also should have been folded out
if (isZeroOrUndef(Mask[0]) && isOneOrUndef(Mask[1])) {
BuildMI(*MBB, MI, DL, TII.get(AMDGPU::COPY), DstReg)
.addReg(SrcVec);
MI.eraseFromParent();
return true;
}
if (Mask[0] == 1 && Mask[1] == -1) {
if (IsVALU) {
BuildMI(*MBB, MI, DL, TII.get(AMDGPU::V_LSHRREV_B32_e64), DstReg)
.addImm(16)
.addReg(SrcVec);
} else {
BuildMI(*MBB, MI, DL, TII.get(AMDGPU::S_LSHR_B32), DstReg)
.addReg(SrcVec)
.addImm(16);
}
} else if (Mask[0] == -1 && Mask[1] == 0) {
if (IsVALU) {
BuildMI(*MBB, MI, DL, TII.get(AMDGPU::V_LSHLREV_B32_e64), DstReg)
.addImm(16)
.addReg(SrcVec);
} else {
BuildMI(*MBB, MI, DL, TII.get(AMDGPU::S_LSHL_B32), DstReg)
.addReg(SrcVec)
.addImm(16);
}
} else if (Mask[0] == 0 && Mask[1] == 0) {
if (IsVALU) {
// Write low half of the register into the high half.
MachineInstr *MovSDWA =
BuildMI(*MBB, MI, DL, TII.get(AMDGPU::V_MOV_B32_sdwa), DstReg)
.addImm(0) // $src0_modifiers
.addReg(SrcVec) // $src0
.addImm(0) // $clamp
.addImm(AMDGPU::SDWA::WORD_1) // $dst_sel
.addImm(AMDGPU::SDWA::UNUSED_PRESERVE) // $dst_unused
.addImm(AMDGPU::SDWA::WORD_0) // $src0_sel
.addReg(SrcVec, RegState::Implicit);
MovSDWA->tieOperands(0, MovSDWA->getNumOperands() - 1);
} else {
BuildMI(*MBB, MI, DL, TII.get(AMDGPU::S_PACK_LL_B32_B16), DstReg)
.addReg(SrcVec)
.addReg(SrcVec);
}
} else if (Mask[0] == 1 && Mask[1] == 1) {
if (IsVALU) {
// Write high half of the register into the low half.
MachineInstr *MovSDWA =
BuildMI(*MBB, MI, DL, TII.get(AMDGPU::V_MOV_B32_sdwa), DstReg)
.addImm(0) // $src0_modifiers
.addReg(SrcVec) // $src0
.addImm(0) // $clamp
.addImm(AMDGPU::SDWA::WORD_0) // $dst_sel
.addImm(AMDGPU::SDWA::UNUSED_PRESERVE) // $dst_unused
.addImm(AMDGPU::SDWA::WORD_1) // $src0_sel
.addReg(SrcVec, RegState::Implicit);
MovSDWA->tieOperands(0, MovSDWA->getNumOperands() - 1);
} else {
BuildMI(*MBB, MI, DL, TII.get(AMDGPU::S_PACK_HH_B32_B16), DstReg)
.addReg(SrcVec)
.addReg(SrcVec);
}
} else if (Mask[0] == 1 && Mask[1] == 0) {
if (IsVALU) {
BuildMI(*MBB, MI, DL, TII.get(AMDGPU::V_ALIGNBIT_B32), DstReg)
.addReg(SrcVec)
.addReg(SrcVec)
.addImm(16);
} else {
Register TmpReg = MRI->createVirtualRegister(&AMDGPU::SReg_32RegClass);
BuildMI(*MBB, MI, DL, TII.get(AMDGPU::S_LSHR_B32), TmpReg)
.addReg(SrcVec)
.addImm(16);
BuildMI(*MBB, MI, DL, TII.get(AMDGPU::S_PACK_LL_B32_B16), DstReg)
.addReg(TmpReg)
.addReg(SrcVec);
}
} else
llvm_unreachable("all shuffle masks should be handled");
MI.eraseFromParent();
return true;
}
bool AMDGPUInstructionSelector::select(MachineInstr &I) {
if (I.isPHI())
return selectPHI(I);
if (!I.isPreISelOpcode()) {
if (I.isCopy())
return selectCOPY(I);
return true;
}
switch (I.getOpcode()) {
case TargetOpcode::G_AND:
case TargetOpcode::G_OR:
case TargetOpcode::G_XOR:
if (selectImpl(I, *CoverageInfo))
return true;
return selectG_AND_OR_XOR(I);
case TargetOpcode::G_ADD:
case TargetOpcode::G_SUB:
if (selectImpl(I, *CoverageInfo))
return true;
return selectG_ADD_SUB(I);
case TargetOpcode::G_UADDO:
case TargetOpcode::G_USUBO:
case TargetOpcode::G_UADDE:
case TargetOpcode::G_USUBE:
return selectG_UADDO_USUBO_UADDE_USUBE(I);
case TargetOpcode::G_INTTOPTR:
case TargetOpcode::G_BITCAST:
case TargetOpcode::G_PTRTOINT:
return selectCOPY(I);
case TargetOpcode::G_CONSTANT:
case TargetOpcode::G_FCONSTANT:
return selectG_CONSTANT(I);
case TargetOpcode::G_FNEG:
if (selectImpl(I, *CoverageInfo))
return true;
return selectG_FNEG(I);
case TargetOpcode::G_FABS:
if (selectImpl(I, *CoverageInfo))
return true;
return selectG_FABS(I);
case TargetOpcode::G_EXTRACT:
return selectG_EXTRACT(I);
case TargetOpcode::G_MERGE_VALUES:
case TargetOpcode::G_BUILD_VECTOR:
case TargetOpcode::G_CONCAT_VECTORS:
return selectG_MERGE_VALUES(I);
case TargetOpcode::G_UNMERGE_VALUES:
return selectG_UNMERGE_VALUES(I);
case TargetOpcode::G_BUILD_VECTOR_TRUNC:
return selectG_BUILD_VECTOR_TRUNC(I);
case TargetOpcode::G_PTR_ADD:
return selectG_PTR_ADD(I);
case TargetOpcode::G_IMPLICIT_DEF:
return selectG_IMPLICIT_DEF(I);
case TargetOpcode::G_INSERT:
return selectG_INSERT(I);
case TargetOpcode::G_INTRINSIC:
return selectG_INTRINSIC(I);
case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
return selectG_INTRINSIC_W_SIDE_EFFECTS(I);
case TargetOpcode::G_ICMP:
if (selectG_ICMP(I))
return true;
return selectImpl(I, *CoverageInfo);
case TargetOpcode::G_LOAD:
case TargetOpcode::G_ATOMIC_CMPXCHG:
case TargetOpcode::G_ATOMICRMW_XCHG:
case TargetOpcode::G_ATOMICRMW_ADD:
case TargetOpcode::G_ATOMICRMW_SUB:
case TargetOpcode::G_ATOMICRMW_AND:
case TargetOpcode::G_ATOMICRMW_OR:
case TargetOpcode::G_ATOMICRMW_XOR:
case TargetOpcode::G_ATOMICRMW_MIN:
case TargetOpcode::G_ATOMICRMW_MAX:
case TargetOpcode::G_ATOMICRMW_UMIN:
case TargetOpcode::G_ATOMICRMW_UMAX:
case TargetOpcode::G_ATOMICRMW_FADD:
return selectG_LOAD_ATOMICRMW(I);
case AMDGPU::G_AMDGPU_ATOMIC_CMPXCHG:
return selectG_AMDGPU_ATOMIC_CMPXCHG(I);
case TargetOpcode::G_SELECT:
return selectG_SELECT(I);
case TargetOpcode::G_STORE:
return selectG_STORE(I);
case TargetOpcode::G_TRUNC:
return selectG_TRUNC(I);
case TargetOpcode::G_SEXT:
case TargetOpcode::G_ZEXT:
case TargetOpcode::G_ANYEXT:
case TargetOpcode::G_SEXT_INREG:
if (selectImpl(I, *CoverageInfo))
return true;
return selectG_SZA_EXT(I);
case TargetOpcode::G_BRCOND:
return selectG_BRCOND(I);
case TargetOpcode::G_FRAME_INDEX:
case TargetOpcode::G_GLOBAL_VALUE:
return selectG_FRAME_INDEX_GLOBAL_VALUE(I);
case TargetOpcode::G_PTRMASK:
return selectG_PTRMASK(I);
case TargetOpcode::G_EXTRACT_VECTOR_ELT:
return selectG_EXTRACT_VECTOR_ELT(I);
case TargetOpcode::G_INSERT_VECTOR_ELT:
return selectG_INSERT_VECTOR_ELT(I);
case TargetOpcode::G_SHUFFLE_VECTOR:
return selectG_SHUFFLE_VECTOR(I);
case AMDGPU::G_AMDGPU_ATOMIC_INC:
case AMDGPU::G_AMDGPU_ATOMIC_DEC:
initM0(I);
return selectImpl(I, *CoverageInfo);
case AMDGPU::G_AMDGPU_INTRIN_IMAGE_LOAD:
case AMDGPU::G_AMDGPU_INTRIN_IMAGE_STORE: {
const AMDGPU::ImageDimIntrinsicInfo *Intr
= AMDGPU::getImageDimIntrinsicInfo(I.getIntrinsicID());
assert(Intr && "not an image intrinsic with image pseudo");
return selectImageIntrinsic(I, Intr);
}
default:
return selectImpl(I, *CoverageInfo);
}
return false;
}
InstructionSelector::ComplexRendererFns
AMDGPUInstructionSelector::selectVCSRC(MachineOperand &Root) const {
return {{
[=](MachineInstrBuilder &MIB) { MIB.add(Root); }
}};
}
std::pair<Register, unsigned>
AMDGPUInstructionSelector::selectVOP3ModsImpl(MachineOperand &Root) const {
Register Src = Root.getReg();
Register OrigSrc = Src;
unsigned Mods = 0;
MachineInstr *MI = getDefIgnoringCopies(Src, *MRI);
if (MI && MI->getOpcode() == AMDGPU::G_FNEG) {
Src = MI->getOperand(1).getReg();
Mods |= SISrcMods::NEG;
MI = getDefIgnoringCopies(Src, *MRI);
}
if (MI && MI->getOpcode() == AMDGPU::G_FABS) {
Src = MI->getOperand(1).getReg();
Mods |= SISrcMods::ABS;
}
if (Mods != 0 &&
RBI.getRegBank(Src, *MRI, TRI)->getID() != AMDGPU::VGPRRegBankID) {
MachineInstr *UseMI = Root.getParent();
// If we looked through copies to find source modifiers on an SGPR operand,
// we now have an SGPR register source. To avoid potentially violating the
// constant bus restriction, we need to insert a copy to a VGPR.
Register VGPRSrc = MRI->cloneVirtualRegister(OrigSrc);
BuildMI(*UseMI->getParent(), UseMI, UseMI->getDebugLoc(),
TII.get(AMDGPU::COPY), VGPRSrc)
.addReg(Src);
Src = VGPRSrc;
}
return std::make_pair(Src, Mods);
}
///
/// This will select either an SGPR or VGPR operand and will save us from
/// having to write an extra tablegen pattern.
InstructionSelector::ComplexRendererFns
AMDGPUInstructionSelector::selectVSRC0(MachineOperand &Root) const {
return {{
[=](MachineInstrBuilder &MIB) { MIB.add(Root); }
}};
}
InstructionSelector::ComplexRendererFns
AMDGPUInstructionSelector::selectVOP3Mods0(MachineOperand &Root) const {
Register Src;
unsigned Mods;
std::tie(Src, Mods) = selectVOP3ModsImpl(Root);
return {{
[=](MachineInstrBuilder &MIB) { MIB.addReg(Src); },
[=](MachineInstrBuilder &MIB) { MIB.addImm(Mods); }, // src0_mods
[=](MachineInstrBuilder &MIB) { MIB.addImm(0); }, // clamp
[=](MachineInstrBuilder &MIB) { MIB.addImm(0); } // omod
}};
}
InstructionSelector::ComplexRendererFns
AMDGPUInstructionSelector::selectVOP3OMods(MachineOperand &Root) const {
return {{
[=](MachineInstrBuilder &MIB) { MIB.add(Root); },
[=](MachineInstrBuilder &MIB) { MIB.addImm(0); }, // clamp
[=](MachineInstrBuilder &MIB) { MIB.addImm(0); } // omod
}};
}
InstructionSelector::ComplexRendererFns
AMDGPUInstructionSelector::selectVOP3Mods(MachineOperand &Root) const {
Register Src;
unsigned Mods;
std::tie(Src, Mods) = selectVOP3ModsImpl(Root);
return {{
[=](MachineInstrBuilder &MIB) { MIB.addReg(Src); },
[=](MachineInstrBuilder &MIB) { MIB.addImm(Mods); } // src_mods
}};
}
InstructionSelector::ComplexRendererFns
AMDGPUInstructionSelector::selectVOP3NoMods(MachineOperand &Root) const {
Register Reg = Root.getReg();
const MachineInstr *Def = getDefIgnoringCopies(Reg, *MRI);
if (Def && (Def->getOpcode() == AMDGPU::G_FNEG ||
Def->getOpcode() == AMDGPU::G_FABS))
return {};
return {{
[=](MachineInstrBuilder &MIB) { MIB.addReg(Reg); },
}};
}
std::pair<Register, unsigned>
AMDGPUInstructionSelector::selectVOP3PModsImpl(
Register Src, const MachineRegisterInfo &MRI) const {
unsigned Mods = 0;
MachineInstr *MI = MRI.getVRegDef(Src);
if (MI && MI->getOpcode() == AMDGPU::G_FNEG &&
// It's possible to see an f32 fneg here, but unlikely.
// TODO: Treat f32 fneg as only high bit.
MRI.getType(Src) == LLT::vector(2, 16)) {
Mods ^= (SISrcMods::NEG | SISrcMods::NEG_HI);
Src = MI->getOperand(1).getReg();
MI = MRI.getVRegDef(Src);
}
// TODO: Match op_sel through g_build_vector_trunc and g_shuffle_vector.
// Packed instructions do not have abs modifiers.
Mods |= SISrcMods::OP_SEL_1;
return std::make_pair(Src, Mods);
}
InstructionSelector::ComplexRendererFns
AMDGPUInstructionSelector::selectVOP3PMods(MachineOperand &Root) const {
MachineRegisterInfo &MRI
= Root.getParent()->getParent()->getParent()->getRegInfo();
Register Src;
unsigned Mods;
std::tie(Src, Mods) = selectVOP3PModsImpl(Root.getReg(), MRI);
return {{
[=](MachineInstrBuilder &MIB) { MIB.addReg(Src); },
[=](MachineInstrBuilder &MIB) { MIB.addImm(Mods); } // src_mods
}};
}
InstructionSelector::ComplexRendererFns
AMDGPUInstructionSelector::selectVOP3Mods_nnan(MachineOperand &Root) const {
Register Src;
unsigned Mods;
std::tie(Src, Mods) = selectVOP3ModsImpl(Root);
if (!TM.Options.NoNaNsFPMath && !isKnownNeverNaN(Src, *MRI))
return None;
return {{
[=](MachineInstrBuilder &MIB) { MIB.addReg(Src); },
[=](MachineInstrBuilder &MIB) { MIB.addImm(Mods); } // src_mods
}};
}
InstructionSelector::ComplexRendererFns
AMDGPUInstructionSelector::selectVOP3OpSelMods(MachineOperand &Root) const {
// FIXME: Handle op_sel
return {{
[=](MachineInstrBuilder &MIB) { MIB.addReg(Root.getReg()); },
[=](MachineInstrBuilder &MIB) { MIB.addImm(0); } // src_mods
}};
}
InstructionSelector::ComplexRendererFns
AMDGPUInstructionSelector::selectSmrdImm(MachineOperand &Root) const {
SmallVector<GEPInfo, 4> AddrInfo;
getAddrModeInfo(*Root.getParent(), *MRI, AddrInfo);
if (AddrInfo.empty() || AddrInfo[0].SgprParts.size() != 1)
return None;
const GEPInfo &GEPInfo = AddrInfo[0];
Optional<int64_t> EncodedImm =
AMDGPU::getSMRDEncodedOffset(STI, GEPInfo.Imm, false);
if (!EncodedImm)
return None;
unsigned PtrReg = GEPInfo.SgprParts[0];
return {{
[=](MachineInstrBuilder &MIB) { MIB.addReg(PtrReg); },
[=](MachineInstrBuilder &MIB) { MIB.addImm(*EncodedImm); }
}};
}
InstructionSelector::ComplexRendererFns
AMDGPUInstructionSelector::selectSmrdImm32(MachineOperand &Root) const {
SmallVector<GEPInfo, 4> AddrInfo;
getAddrModeInfo(*Root.getParent(), *MRI, AddrInfo);
if (AddrInfo.empty() || AddrInfo[0].SgprParts.size() != 1)
return None;
const GEPInfo &GEPInfo = AddrInfo[0];
Register PtrReg = GEPInfo.SgprParts[0];
Optional<int64_t> EncodedImm =
AMDGPU::getSMRDEncodedLiteralOffset32(STI, GEPInfo.Imm);
if (!EncodedImm)
return None;
return {{
[=](MachineInstrBuilder &MIB) { MIB.addReg(PtrReg); },
[=](MachineInstrBuilder &MIB) { MIB.addImm(*EncodedImm); }
}};
}
InstructionSelector::ComplexRendererFns
AMDGPUInstructionSelector::selectSmrdSgpr(MachineOperand &Root) const {
MachineInstr *MI = Root.getParent();
MachineBasicBlock *MBB = MI->getParent();
SmallVector<GEPInfo, 4> AddrInfo;
getAddrModeInfo(*MI, *MRI, AddrInfo);
// FIXME: We should shrink the GEP if the offset is known to be <= 32-bits,
// then we can select all ptr + 32-bit offsets not just immediate offsets.
if (AddrInfo.empty() || AddrInfo[0].SgprParts.size() != 1)
return None;
const GEPInfo &GEPInfo = AddrInfo[0];
// SGPR offset is unsigned.
if (!GEPInfo.Imm || GEPInfo.Imm < 0 || !isUInt<32>(GEPInfo.Imm))
return None;
// If we make it this far we have a load with an 32-bit immediate offset.
// It is OK to select this using a sgpr offset, because we have already
// failed trying to select this load into one of the _IMM variants since
// the _IMM Patterns are considered before the _SGPR patterns.
Register PtrReg = GEPInfo.SgprParts[0];
Register OffsetReg = MRI->createVirtualRegister(&AMDGPU::SReg_32RegClass);
BuildMI(*MBB, MI, MI->getDebugLoc(), TII.get(AMDGPU::S_MOV_B32), OffsetReg)
.addImm(GEPInfo.Imm);
return {{
[=](MachineInstrBuilder &MIB) { MIB.addReg(PtrReg); },
[=](MachineInstrBuilder &MIB) { MIB.addReg(OffsetReg); }
}};
}
template <bool Signed>
InstructionSelector::ComplexRendererFns
AMDGPUInstructionSelector::selectFlatOffsetImpl(MachineOperand &Root) const {
MachineInstr *MI = Root.getParent();
InstructionSelector::ComplexRendererFns Default = {{
[=](MachineInstrBuilder &MIB) { MIB.addReg(Root.getReg()); },
[=](MachineInstrBuilder &MIB) { MIB.addImm(0); }, // offset
[=](MachineInstrBuilder &MIB) { MIB.addImm(0); } // slc
}};
if (!STI.hasFlatInstOffsets())
return Default;
const MachineInstr *OpDef = MRI->getVRegDef(Root.getReg());
if (!OpDef || OpDef->getOpcode() != AMDGPU::G_PTR_ADD)
return Default;
Optional<int64_t> Offset =
getConstantVRegVal(OpDef->getOperand(2).getReg(), *MRI);
if (!Offset.hasValue())
return Default;
unsigned AddrSpace = (*MI->memoperands_begin())->getAddrSpace();
if (!TII.isLegalFLATOffset(Offset.getValue(), AddrSpace, Signed))
return Default;
Register BasePtr = OpDef->getOperand(1).getReg();
return {{
[=](MachineInstrBuilder &MIB) { MIB.addReg(BasePtr); },
[=](MachineInstrBuilder &MIB) { MIB.addImm(Offset.getValue()); },
[=](MachineInstrBuilder &MIB) { MIB.addImm(0); } // slc
}};
}
InstructionSelector::ComplexRendererFns
AMDGPUInstructionSelector::selectFlatOffset(MachineOperand &Root) const {
return selectFlatOffsetImpl<false>(Root);
}
InstructionSelector::ComplexRendererFns
AMDGPUInstructionSelector::selectFlatOffsetSigned(MachineOperand &Root) const {
return selectFlatOffsetImpl<true>(Root);
}
static bool isStackPtrRelative(const MachinePointerInfo &PtrInfo) {
auto PSV = PtrInfo.V.dyn_cast<const PseudoSourceValue *>();
return PSV && PSV->isStack();
}
InstructionSelector::ComplexRendererFns
AMDGPUInstructionSelector::selectMUBUFScratchOffen(MachineOperand &Root) const {
MachineInstr *MI = Root.getParent();
MachineBasicBlock *MBB = MI->getParent();
MachineFunction *MF = MBB->getParent();
const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
int64_t Offset = 0;
if (mi_match(Root.getReg(), *MRI, m_ICst(Offset)) &&
Offset != TM.getNullPointerValue(AMDGPUAS::PRIVATE_ADDRESS)) {
Register HighBits = MRI->createVirtualRegister(&AMDGPU::VGPR_32RegClass);
// TODO: Should this be inside the render function? The iterator seems to
// move.
BuildMI(*MBB, MI, MI->getDebugLoc(), TII.get(AMDGPU::V_MOV_B32_e32),
HighBits)
.addImm(Offset & ~4095);
return {{[=](MachineInstrBuilder &MIB) { // rsrc
MIB.addReg(Info->getScratchRSrcReg());
},
[=](MachineInstrBuilder &MIB) { // vaddr
MIB.addReg(HighBits);
},
[=](MachineInstrBuilder &MIB) { // soffset
const MachineMemOperand *MMO = *MI->memoperands_begin();
const MachinePointerInfo &PtrInfo = MMO->getPointerInfo();
if (isStackPtrRelative(PtrInfo))
MIB.addReg(Info->getStackPtrOffsetReg());
else
MIB.addImm(0);
},
[=](MachineInstrBuilder &MIB) { // offset
MIB.addImm(Offset & 4095);
}}};
}
assert(Offset == 0 || Offset == -1);
// Try to fold a frame index directly into the MUBUF vaddr field, and any
// offsets.
Optional<int> FI;
Register VAddr = Root.getReg();
if (const MachineInstr *RootDef = MRI->getVRegDef(Root.getReg())) {
if (isBaseWithConstantOffset(Root, *MRI)) {
const MachineOperand &LHS = RootDef->getOperand(1);
const MachineOperand &RHS = RootDef->getOperand(2);
const MachineInstr *LHSDef = MRI->getVRegDef(LHS.getReg());
const MachineInstr *RHSDef = MRI->getVRegDef(RHS.getReg());
if (LHSDef && RHSDef) {
int64_t PossibleOffset =
RHSDef->getOperand(1).getCImm()->getSExtValue();
if (SIInstrInfo::isLegalMUBUFImmOffset(PossibleOffset) &&
(!STI.privateMemoryResourceIsRangeChecked() ||
KnownBits->signBitIsZero(LHS.getReg()))) {
if (LHSDef->getOpcode() == AMDGPU::G_FRAME_INDEX)
FI = LHSDef->getOperand(1).getIndex();
else
VAddr = LHS.getReg();
Offset = PossibleOffset;
}
}
} else if (RootDef->getOpcode() == AMDGPU::G_FRAME_INDEX) {
FI = RootDef->getOperand(1).getIndex();
}
}
return {{[=](MachineInstrBuilder &MIB) { // rsrc
MIB.addReg(Info->getScratchRSrcReg());
},
[=](MachineInstrBuilder &MIB) { // vaddr
if (FI.hasValue())
MIB.addFrameIndex(FI.getValue());
else
MIB.addReg(VAddr);
},
[=](MachineInstrBuilder &MIB) { // soffset
// If we don't know this private access is a local stack object, it
// needs to be relative to the entry point's scratch wave offset.
// TODO: Should split large offsets that don't fit like above.
// TODO: Don't use scratch wave offset just because the offset
// didn't fit.
if (!Info->isEntryFunction() && FI.hasValue())
MIB.addReg(Info->getStackPtrOffsetReg());
else
MIB.addImm(0);
},
[=](MachineInstrBuilder &MIB) { // offset
MIB.addImm(Offset);
}}};
}
bool AMDGPUInstructionSelector::isDSOffsetLegal(Register Base,
int64_t Offset,
unsigned OffsetBits) const {
if ((OffsetBits == 16 && !isUInt<16>(Offset)) ||
(OffsetBits == 8 && !isUInt<8>(Offset)))
return false;
if (STI.hasUsableDSOffset() || STI.unsafeDSOffsetFoldingEnabled())
return true;
// On Southern Islands instruction with a negative base value and an offset
// don't seem to work.
return KnownBits->signBitIsZero(Base);
}
InstructionSelector::ComplexRendererFns
AMDGPUInstructionSelector::selectMUBUFScratchOffset(
MachineOperand &Root) const {
MachineInstr *MI = Root.getParent();
MachineBasicBlock *MBB = MI->getParent();
int64_t Offset = 0;
if (!mi_match(Root.getReg(), *MRI, m_ICst(Offset)) ||
!SIInstrInfo::isLegalMUBUFImmOffset(Offset))
return {};
const MachineFunction *MF = MBB->getParent();
const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
const MachineMemOperand *MMO = *MI->memoperands_begin();
const MachinePointerInfo &PtrInfo = MMO->getPointerInfo();
return {{
[=](MachineInstrBuilder &MIB) { // rsrc
MIB.addReg(Info->getScratchRSrcReg());
},
[=](MachineInstrBuilder &MIB) { // soffset
if (isStackPtrRelative(PtrInfo))
MIB.addReg(Info->getStackPtrOffsetReg());
else
MIB.addImm(0);
},
[=](MachineInstrBuilder &MIB) { MIB.addImm(Offset); } // offset
}};
}
std::pair<Register, unsigned>
AMDGPUInstructionSelector::selectDS1Addr1OffsetImpl(MachineOperand &Root) const {
const MachineInstr *RootDef = MRI->getVRegDef(Root.getReg());
if (!RootDef)
return std::make_pair(Root.getReg(), 0);
int64_t ConstAddr = 0;
Register PtrBase;
int64_t Offset;
std::tie(PtrBase, Offset) =
getPtrBaseWithConstantOffset(Root.getReg(), *MRI);
if (Offset) {
if (isDSOffsetLegal(PtrBase, Offset, 16)) {
// (add n0, c0)
return std::make_pair(PtrBase, Offset);
}
} else if (RootDef->getOpcode() == AMDGPU::G_SUB) {
// TODO
} else if (mi_match(Root.getReg(), *MRI, m_ICst(ConstAddr))) {
// TODO
}
return std::make_pair(Root.getReg(), 0);
}
InstructionSelector::ComplexRendererFns
AMDGPUInstructionSelector::selectDS1Addr1Offset(MachineOperand &Root) const {
Register Reg;
unsigned Offset;
std::tie(Reg, Offset) = selectDS1Addr1OffsetImpl(Root);
return {{
[=](MachineInstrBuilder &MIB) { MIB.addReg(Reg); },
[=](MachineInstrBuilder &MIB) { MIB.addImm(Offset); }
}};
}
InstructionSelector::ComplexRendererFns
AMDGPUInstructionSelector::selectDS64Bit4ByteAligned(MachineOperand &Root) const {
Register Reg;
unsigned Offset;
std::tie(Reg, Offset) = selectDS64Bit4ByteAlignedImpl(Root);
return {{
[=](MachineInstrBuilder &MIB) { MIB.addReg(Reg); },
[=](MachineInstrBuilder &MIB) { MIB.addImm(Offset); },
[=](MachineInstrBuilder &MIB) { MIB.addImm(Offset+1); }
}};
}
std::pair<Register, unsigned>
AMDGPUInstructionSelector::selectDS64Bit4ByteAlignedImpl(MachineOperand &Root) const {
const MachineInstr *RootDef = MRI->getVRegDef(Root.getReg());
if (!RootDef)
return std::make_pair(Root.getReg(), 0);
int64_t ConstAddr = 0;
Register PtrBase;
int64_t Offset;
std::tie(PtrBase, Offset) =
getPtrBaseWithConstantOffset(Root.getReg(), *MRI);
if (Offset) {
int64_t DWordOffset0 = Offset / 4;
int64_t DWordOffset1 = DWordOffset0 + 1;
if (isDSOffsetLegal(PtrBase, DWordOffset1, 8)) {
// (add n0, c0)
return std::make_pair(PtrBase, DWordOffset0);
}
} else if (RootDef->getOpcode() == AMDGPU::G_SUB) {
// TODO
} else if (mi_match(Root.getReg(), *MRI, m_ICst(ConstAddr))) {
// TODO
}
return std::make_pair(Root.getReg(), 0);
}
/// If \p Root is a G_PTR_ADD with a G_CONSTANT on the right hand side, return
/// the base value with the constant offset. There may be intervening copies
/// between \p Root and the identified constant. Returns \p Root, 0 if this does
/// not match the pattern.
std::pair<Register, int64_t>
AMDGPUInstructionSelector::getPtrBaseWithConstantOffset(
Register Root, const MachineRegisterInfo &MRI) const {
MachineInstr *RootI = MRI.getVRegDef(Root);
if (RootI->getOpcode() != TargetOpcode::G_PTR_ADD)
return {Root, 0};
MachineOperand &RHS = RootI->getOperand(2);
Optional<ValueAndVReg> MaybeOffset
= getConstantVRegValWithLookThrough(RHS.getReg(), MRI, true);
if (!MaybeOffset)
return {Root, 0};
return {RootI->getOperand(1).getReg(), MaybeOffset->Value};
}
static void addZeroImm(MachineInstrBuilder &MIB) {
MIB.addImm(0);
}
/// Return a resource descriptor for use with an arbitrary 64-bit pointer. If \p
/// BasePtr is not valid, a null base pointer will be used.
static Register buildRSRC(MachineIRBuilder &B, MachineRegisterInfo &MRI,
uint32_t FormatLo, uint32_t FormatHi,
Register BasePtr) {
Register RSrc2 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
Register RSrc3 = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
Register RSrcHi = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
Register RSrc = MRI.createVirtualRegister(&AMDGPU::SGPR_128RegClass);
B.buildInstr(AMDGPU::S_MOV_B32)
.addDef(RSrc2)
.addImm(FormatLo);
B.buildInstr(AMDGPU::S_MOV_B32)
.addDef(RSrc3)
.addImm(FormatHi);
// Build the half of the subregister with the constants before building the
// full 128-bit register. If we are building multiple resource descriptors,
// this will allow CSEing of the 2-component register.
B.buildInstr(AMDGPU::REG_SEQUENCE)
.addDef(RSrcHi)
.addReg(RSrc2)
.addImm(AMDGPU::sub0)
.addReg(RSrc3)
.addImm(AMDGPU::sub1);
Register RSrcLo = BasePtr;
if (!BasePtr) {
RSrcLo = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
B.buildInstr(AMDGPU::S_MOV_B64)
.addDef(RSrcLo)
.addImm(0);
}
B.buildInstr(AMDGPU::REG_SEQUENCE)
.addDef(RSrc)
.addReg(RSrcLo)
.addImm(AMDGPU::sub0_sub1)
.addReg(RSrcHi)
.addImm(AMDGPU::sub2_sub3);
return RSrc;
}
static Register buildAddr64RSrc(MachineIRBuilder &B, MachineRegisterInfo &MRI,
const SIInstrInfo &TII, Register BasePtr) {
uint64_t DefaultFormat = TII.getDefaultRsrcDataFormat();
// FIXME: Why are half the "default" bits ignored based on the addressing
// mode?
return buildRSRC(B, MRI, 0, Hi_32(DefaultFormat), BasePtr);
}
static Register buildOffsetSrc(MachineIRBuilder &B, MachineRegisterInfo &MRI,
const SIInstrInfo &TII, Register BasePtr) {
uint64_t DefaultFormat = TII.getDefaultRsrcDataFormat();
// FIXME: Why are half the "default" bits ignored based on the addressing
// mode?
return buildRSRC(B, MRI, -1, Hi_32(DefaultFormat), BasePtr);
}
AMDGPUInstructionSelector::MUBUFAddressData
AMDGPUInstructionSelector::parseMUBUFAddress(Register Src) const {
MUBUFAddressData Data;
Data.N0 = Src;
Register PtrBase;
int64_t Offset;
std::tie(PtrBase, Offset) = getPtrBaseWithConstantOffset(Src, *MRI);
if (isUInt<32>(Offset)) {
Data.N0 = PtrBase;
Data.Offset = Offset;
}
if (MachineInstr *InputAdd
= getOpcodeDef(TargetOpcode::G_PTR_ADD, Data.N0, *MRI)) {
Data.N2 = InputAdd->getOperand(1).getReg();
Data.N3 = InputAdd->getOperand(2).getReg();
// FIXME: Need to fix extra SGPR->VGPRcopies inserted
// FIXME: Don't know this was defined by operand 0
//
// TODO: Remove this when we have copy folding optimizations after
// RegBankSelect.
Data.N2 = getDefIgnoringCopies(Data.N2, *MRI)->getOperand(0).getReg();
Data.N3 = getDefIgnoringCopies(Data.N3, *MRI)->getOperand(0).getReg();
}
return Data;
}
/// Return if the addr64 mubuf mode should be used for the given address.
bool AMDGPUInstructionSelector::shouldUseAddr64(MUBUFAddressData Addr) const {
// (ptr_add N2, N3) -> addr64, or
// (ptr_add (ptr_add N2, N3), C1) -> addr64
if (Addr.N2)
return true;
const RegisterBank *N0Bank = RBI.getRegBank(Addr.N0, *MRI, TRI);
return N0Bank->getID() == AMDGPU::VGPRRegBankID;
}
/// Split an immediate offset \p ImmOffset depending on whether it fits in the
/// immediate field. Modifies \p ImmOffset and sets \p SOffset to the variable
/// component.
void AMDGPUInstructionSelector::splitIllegalMUBUFOffset(
MachineIRBuilder &B, Register &SOffset, int64_t &ImmOffset) const {
if (SIInstrInfo::isLegalMUBUFImmOffset(ImmOffset))
return;
// Illegal offset, store it in soffset.
SOffset = MRI->createVirtualRegister(&AMDGPU::SReg_32RegClass);
B.buildInstr(AMDGPU::S_MOV_B32)
.addDef(SOffset)
.addImm(ImmOffset);
ImmOffset = 0;
}
bool AMDGPUInstructionSelector::selectMUBUFAddr64Impl(
MachineOperand &Root, Register &VAddr, Register &RSrcReg,
Register &SOffset, int64_t &Offset) const {
// FIXME: Predicates should stop this from reaching here.
// addr64 bit was removed for volcanic islands.
if (!STI.hasAddr64() || STI.useFlatForGlobal())
return false;
MUBUFAddressData AddrData = parseMUBUFAddress(Root.getReg());
if (!shouldUseAddr64(AddrData))
return false;
Register N0 = AddrData.N0;
Register N2 = AddrData.N2;
Register N3 = AddrData.N3;
Offset = AddrData.Offset;
// Base pointer for the SRD.
Register SRDPtr;
if (N2) {
if (RBI.getRegBank(N2, *MRI, TRI)->getID() == AMDGPU::VGPRRegBankID) {
assert(N3);
if (RBI.getRegBank(N3, *MRI, TRI)->getID() == AMDGPU::VGPRRegBankID) {
// Both N2 and N3 are divergent. Use N0 (the result of the add) as the
// addr64, and construct the default resource from a 0 address.
VAddr = N0;
} else {
SRDPtr = N3;
VAddr = N2;
}
} else {
// N2 is not divergent.
SRDPtr = N2;
VAddr = N3;
}
} else if (RBI.getRegBank(N0, *MRI, TRI)->getID() == AMDGPU::VGPRRegBankID) {
// Use the default null pointer in the resource
VAddr = N0;
} else {
// N0 -> offset, or
// (N0 + C1) -> offset
SRDPtr = N0;
}
MachineIRBuilder B(*Root.getParent());
RSrcReg = buildAddr64RSrc(B, *MRI, TII, SRDPtr);
splitIllegalMUBUFOffset(B, SOffset, Offset);
return true;
}
bool AMDGPUInstructionSelector::selectMUBUFOffsetImpl(
MachineOperand &Root, Register &RSrcReg, Register &SOffset,
int64_t &Offset) const {
MUBUFAddressData AddrData = parseMUBUFAddress(Root.getReg());
if (shouldUseAddr64(AddrData))
return false;
// N0 -> offset, or
// (N0 + C1) -> offset
Register SRDPtr = AddrData.N0;
Offset = AddrData.Offset;
// TODO: Look through extensions for 32-bit soffset.
MachineIRBuilder B(*Root.getParent());
RSrcReg = buildOffsetSrc(B, *MRI, TII, SRDPtr);
splitIllegalMUBUFOffset(B, SOffset, Offset);
return true;
}
InstructionSelector::ComplexRendererFns
AMDGPUInstructionSelector::selectMUBUFAddr64(MachineOperand &Root) const {
Register VAddr;
Register RSrcReg;
Register SOffset;
int64_t Offset = 0;
if (!selectMUBUFAddr64Impl(Root, VAddr, RSrcReg, SOffset, Offset))
return {};
// FIXME: Use defaulted operands for trailing 0s and remove from the complex
// pattern.
return {{
[=](MachineInstrBuilder &MIB) { // rsrc
MIB.addReg(RSrcReg);
},
[=](MachineInstrBuilder &MIB) { // vaddr
MIB.addReg(VAddr);
},
[=](MachineInstrBuilder &MIB) { // soffset
if (SOffset)
MIB.addReg(SOffset);
else
MIB.addImm(0);
},
[=](MachineInstrBuilder &MIB) { // offset
MIB.addImm(Offset);
},
addZeroImm, // glc
addZeroImm, // slc
addZeroImm, // tfe
addZeroImm, // dlc
addZeroImm // swz
}};
}
InstructionSelector::ComplexRendererFns
AMDGPUInstructionSelector::selectMUBUFOffset(MachineOperand &Root) const {
Register RSrcReg;
Register SOffset;
int64_t Offset = 0;
if (!selectMUBUFOffsetImpl(Root, RSrcReg, SOffset, Offset))
return {};
return {{
[=](MachineInstrBuilder &MIB) { // rsrc
MIB.addReg(RSrcReg);
},
[=](MachineInstrBuilder &MIB) { // soffset
if (SOffset)
MIB.addReg(SOffset);
else
MIB.addImm(0);
},
[=](MachineInstrBuilder &MIB) { MIB.addImm(Offset); }, // offset
addZeroImm, // glc
addZeroImm, // slc
addZeroImm, // tfe
addZeroImm, // dlc
addZeroImm // swz
}};
}
InstructionSelector::ComplexRendererFns
AMDGPUInstructionSelector::selectMUBUFAddr64Atomic(MachineOperand &Root) const {
Register VAddr;
Register RSrcReg;
Register SOffset;
int64_t Offset = 0;
if (!selectMUBUFAddr64Impl(Root, VAddr, RSrcReg, SOffset, Offset))
return {};
// FIXME: Use defaulted operands for trailing 0s and remove from the complex
// pattern.
return {{
[=](MachineInstrBuilder &MIB) { // rsrc
MIB.addReg(RSrcReg);
},
[=](MachineInstrBuilder &MIB) { // vaddr
MIB.addReg(VAddr);
},
[=](MachineInstrBuilder &MIB) { // soffset
if (SOffset)
MIB.addReg(SOffset);
else
MIB.addImm(0);
},
[=](MachineInstrBuilder &MIB) { // offset
MIB.addImm(Offset);
},
addZeroImm // slc
}};
}
InstructionSelector::ComplexRendererFns
AMDGPUInstructionSelector::selectMUBUFOffsetAtomic(MachineOperand &Root) const {
Register RSrcReg;
Register SOffset;
int64_t Offset = 0;
if (!selectMUBUFOffsetImpl(Root, RSrcReg, SOffset, Offset))
return {};
return {{
[=](MachineInstrBuilder &MIB) { // rsrc
MIB.addReg(RSrcReg);
},
[=](MachineInstrBuilder &MIB) { // soffset
if (SOffset)
MIB.addReg(SOffset);
else
MIB.addImm(0);
},
[=](MachineInstrBuilder &MIB) { MIB.addImm(Offset); }, // offset
addZeroImm // slc
}};
}
/// Get an immediate that must be 32-bits, and treated as zero extended.
static Optional<uint64_t> getConstantZext32Val(Register Reg,
const MachineRegisterInfo &MRI) {
// getConstantVRegVal sexts any values, so see if that matters.
Optional<int64_t> OffsetVal = getConstantVRegVal(Reg, MRI);
if (!OffsetVal || !isInt<32>(*OffsetVal))
return None;
return Lo_32(*OffsetVal);
}
InstructionSelector::ComplexRendererFns
AMDGPUInstructionSelector::selectSMRDBufferImm(MachineOperand &Root) const {
Optional<uint64_t> OffsetVal = getConstantZext32Val(Root.getReg(), *MRI);
if (!OffsetVal)
return {};
Optional<int64_t> EncodedImm =
AMDGPU::getSMRDEncodedOffset(STI, *OffsetVal, true);
if (!EncodedImm)
return {};
return {{ [=](MachineInstrBuilder &MIB) { MIB.addImm(*EncodedImm); } }};
}
InstructionSelector::ComplexRendererFns
AMDGPUInstructionSelector::selectSMRDBufferImm32(MachineOperand &Root) const {
assert(STI.getGeneration() == AMDGPUSubtarget::SEA_ISLANDS);
Optional<uint64_t> OffsetVal = getConstantZext32Val(Root.getReg(), *MRI);
if (!OffsetVal)
return {};
Optional<int64_t> EncodedImm
= AMDGPU::getSMRDEncodedLiteralOffset32(STI, *OffsetVal);
if (!EncodedImm)
return {};
return {{ [=](MachineInstrBuilder &MIB) { MIB.addImm(*EncodedImm); } }};
}
void AMDGPUInstructionSelector::renderTruncImm32(MachineInstrBuilder &MIB,
const MachineInstr &MI,
int OpIdx) const {
assert(MI.getOpcode() == TargetOpcode::G_CONSTANT && OpIdx == -1 &&
"Expected G_CONSTANT");
MIB.addImm(MI.getOperand(1).getCImm()->getSExtValue());
}
void AMDGPUInstructionSelector::renderNegateImm(MachineInstrBuilder &MIB,
const MachineInstr &MI,
int OpIdx) const {
assert(MI.getOpcode() == TargetOpcode::G_CONSTANT && OpIdx == -1 &&
"Expected G_CONSTANT");
MIB.addImm(-MI.getOperand(1).getCImm()->getSExtValue());
}
void AMDGPUInstructionSelector::renderBitcastImm(MachineInstrBuilder &MIB,
const MachineInstr &MI,
int OpIdx) const {
assert(OpIdx == -1);
const MachineOperand &Op = MI.getOperand(1);
if (MI.getOpcode() == TargetOpcode::G_FCONSTANT)
MIB.addImm(Op.getFPImm()->getValueAPF().bitcastToAPInt().getZExtValue());
else {
assert(MI.getOpcode() == TargetOpcode::G_CONSTANT && "Expected G_CONSTANT");
MIB.addImm(Op.getCImm()->getSExtValue());
}
}
void AMDGPUInstructionSelector::renderPopcntImm(MachineInstrBuilder &MIB,
const MachineInstr &MI,
int OpIdx) const {
assert(MI.getOpcode() == TargetOpcode::G_CONSTANT && OpIdx == -1 &&
"Expected G_CONSTANT");
MIB.addImm(MI.getOperand(1).getCImm()->getValue().countPopulation());
}
/// This only really exists to satisfy DAG type checking machinery, so is a
/// no-op here.
void AMDGPUInstructionSelector::renderTruncTImm(MachineInstrBuilder &MIB,
const MachineInstr &MI,
int OpIdx) const {
MIB.addImm(MI.getOperand(OpIdx).getImm());
}
void AMDGPUInstructionSelector::renderExtractGLC(MachineInstrBuilder &MIB,
const MachineInstr &MI,
int OpIdx) const {
assert(OpIdx >= 0 && "expected to match an immediate operand");
MIB.addImm(MI.getOperand(OpIdx).getImm() & 1);
}
void AMDGPUInstructionSelector::renderExtractSLC(MachineInstrBuilder &MIB,
const MachineInstr &MI,
int OpIdx) const {
assert(OpIdx >= 0 && "expected to match an immediate operand");
MIB.addImm((MI.getOperand(OpIdx).getImm() >> 1) & 1);
}
void AMDGPUInstructionSelector::renderExtractDLC(MachineInstrBuilder &MIB,
const MachineInstr &MI,
int OpIdx) const {
assert(OpIdx >= 0 && "expected to match an immediate operand");
MIB.addImm((MI.getOperand(OpIdx).getImm() >> 2) & 1);
}
void AMDGPUInstructionSelector::renderExtractSWZ(MachineInstrBuilder &MIB,
const MachineInstr &MI,
int OpIdx) const {
assert(OpIdx >= 0 && "expected to match an immediate operand");
MIB.addImm((MI.getOperand(OpIdx).getImm() >> 3) & 1);
}
bool AMDGPUInstructionSelector::isInlineImmediate16(int64_t Imm) const {
return AMDGPU::isInlinableLiteral16(Imm, STI.hasInv2PiInlineImm());
}
bool AMDGPUInstructionSelector::isInlineImmediate32(int64_t Imm) const {
return AMDGPU::isInlinableLiteral32(Imm, STI.hasInv2PiInlineImm());
}
bool AMDGPUInstructionSelector::isInlineImmediate64(int64_t Imm) const {
return AMDGPU::isInlinableLiteral64(Imm, STI.hasInv2PiInlineImm());
}
bool AMDGPUInstructionSelector::isInlineImmediate(const APFloat &Imm) const {
return TII.isInlineConstant(Imm);
}