mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-24 11:42:57 +01:00
15c7b91ac2
behavior based on other files defining DEBUG_TYPE, which means it cannot define DEBUG_TYPE at all. This is actually better IMO as it forces folks to define relevant DEBUG_TYPEs for their files. However, it requires all files that currently use DEBUG(...) to define a DEBUG_TYPE if they don't already. I've updated all such files in LLVM and will do the same for other upstream projects. This still leaves one important change in how LLVM uses the DEBUG_TYPE macro going forward: we need to only define the macro *after* header files have been #include-ed. Previously, this wasn't possible because Debug.h required the macro to be pre-defined. This commit removes that. By defining DEBUG_TYPE after the includes two things are fixed: - Header files that need to provide a DEBUG_TYPE for some inline code can do so by defining the macro before their inline code and undef-ing it afterward so the macro does not escape. - We no longer have rampant ODR violations due to including headers with different DEBUG_TYPE definitions. This may be mostly an academic violation today, but with modules these types of violations are easy to check for and potentially very relevant. Where necessary to suppor headers with DEBUG_TYPE, I have moved the definitions below the includes in this commit. I plan to move the rest of the DEBUG_TYPE macros in LLVM in subsequent commits; this one is big enough. The comments in Debug.h, which were hilariously out of date already, have been updated to reflect the recommended practice going forward. llvm-svn: 206822
175 lines
6.1 KiB
C++
175 lines
6.1 KiB
C++
//===- DAGISelEmitter.cpp - Generate an instruction selector --------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This tablegen backend emits a DAG instruction selector.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CodeGenDAGPatterns.h"
|
|
#include "DAGISelMatcher.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/TableGen/Record.h"
|
|
#include "llvm/TableGen/TableGenBackend.h"
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "dag-isel-emitter"
|
|
|
|
namespace {
|
|
/// DAGISelEmitter - The top-level class which coordinates construction
|
|
/// and emission of the instruction selector.
|
|
class DAGISelEmitter {
|
|
CodeGenDAGPatterns CGP;
|
|
public:
|
|
explicit DAGISelEmitter(RecordKeeper &R) : CGP(R) {}
|
|
void run(raw_ostream &OS);
|
|
};
|
|
} // End anonymous namespace
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// DAGISelEmitter Helper methods
|
|
//
|
|
|
|
/// getResultPatternCost - Compute the number of instructions for this pattern.
|
|
/// This is a temporary hack. We should really include the instruction
|
|
/// latencies in this calculation.
|
|
static unsigned getResultPatternCost(TreePatternNode *P,
|
|
CodeGenDAGPatterns &CGP) {
|
|
if (P->isLeaf()) return 0;
|
|
|
|
unsigned Cost = 0;
|
|
Record *Op = P->getOperator();
|
|
if (Op->isSubClassOf("Instruction")) {
|
|
Cost++;
|
|
CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op);
|
|
if (II.usesCustomInserter)
|
|
Cost += 10;
|
|
}
|
|
for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
|
|
Cost += getResultPatternCost(P->getChild(i), CGP);
|
|
return Cost;
|
|
}
|
|
|
|
/// getResultPatternCodeSize - Compute the code size of instructions for this
|
|
/// pattern.
|
|
static unsigned getResultPatternSize(TreePatternNode *P,
|
|
CodeGenDAGPatterns &CGP) {
|
|
if (P->isLeaf()) return 0;
|
|
|
|
unsigned Cost = 0;
|
|
Record *Op = P->getOperator();
|
|
if (Op->isSubClassOf("Instruction")) {
|
|
Cost += Op->getValueAsInt("CodeSize");
|
|
}
|
|
for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
|
|
Cost += getResultPatternSize(P->getChild(i), CGP);
|
|
return Cost;
|
|
}
|
|
|
|
namespace {
|
|
// PatternSortingPredicate - return true if we prefer to match LHS before RHS.
|
|
// In particular, we want to match maximal patterns first and lowest cost within
|
|
// a particular complexity first.
|
|
struct PatternSortingPredicate {
|
|
PatternSortingPredicate(CodeGenDAGPatterns &cgp) : CGP(cgp) {}
|
|
CodeGenDAGPatterns &CGP;
|
|
|
|
bool operator()(const PatternToMatch *LHS, const PatternToMatch *RHS) {
|
|
const TreePatternNode *LHSSrc = LHS->getSrcPattern();
|
|
const TreePatternNode *RHSSrc = RHS->getSrcPattern();
|
|
|
|
MVT LHSVT = (LHSSrc->getNumTypes() != 0 ? LHSSrc->getType(0) : MVT::Other);
|
|
MVT RHSVT = (RHSSrc->getNumTypes() != 0 ? RHSSrc->getType(0) : MVT::Other);
|
|
if (LHSVT.isVector() != RHSVT.isVector())
|
|
return RHSVT.isVector();
|
|
|
|
if (LHSVT.isFloatingPoint() != RHSVT.isFloatingPoint())
|
|
return RHSVT.isFloatingPoint();
|
|
|
|
// Otherwise, if the patterns might both match, sort based on complexity,
|
|
// which means that we prefer to match patterns that cover more nodes in the
|
|
// input over nodes that cover fewer.
|
|
unsigned LHSSize = LHS->getPatternComplexity(CGP);
|
|
unsigned RHSSize = RHS->getPatternComplexity(CGP);
|
|
if (LHSSize > RHSSize) return true; // LHS -> bigger -> less cost
|
|
if (LHSSize < RHSSize) return false;
|
|
|
|
// If the patterns have equal complexity, compare generated instruction cost
|
|
unsigned LHSCost = getResultPatternCost(LHS->getDstPattern(), CGP);
|
|
unsigned RHSCost = getResultPatternCost(RHS->getDstPattern(), CGP);
|
|
if (LHSCost < RHSCost) return true;
|
|
if (LHSCost > RHSCost) return false;
|
|
|
|
unsigned LHSPatSize = getResultPatternSize(LHS->getDstPattern(), CGP);
|
|
unsigned RHSPatSize = getResultPatternSize(RHS->getDstPattern(), CGP);
|
|
if (LHSPatSize < RHSPatSize) return true;
|
|
if (LHSPatSize > RHSPatSize) return false;
|
|
|
|
// Sort based on the UID of the pattern, giving us a deterministic ordering
|
|
// if all other sorting conditions fail.
|
|
assert(LHS == RHS || LHS->ID != RHS->ID);
|
|
return LHS->ID < RHS->ID;
|
|
}
|
|
};
|
|
} // End anonymous namespace
|
|
|
|
|
|
void DAGISelEmitter::run(raw_ostream &OS) {
|
|
emitSourceFileHeader("DAG Instruction Selector for the " +
|
|
CGP.getTargetInfo().getName() + " target", OS);
|
|
|
|
OS << "// *** NOTE: This file is #included into the middle of the target\n"
|
|
<< "// *** instruction selector class. These functions are really "
|
|
<< "methods.\n\n";
|
|
|
|
DEBUG(errs() << "\n\nALL PATTERNS TO MATCH:\n\n";
|
|
for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(),
|
|
E = CGP.ptm_end(); I != E; ++I) {
|
|
errs() << "PATTERN: "; I->getSrcPattern()->dump();
|
|
errs() << "\nRESULT: "; I->getDstPattern()->dump();
|
|
errs() << "\n";
|
|
});
|
|
|
|
// Add all the patterns to a temporary list so we can sort them.
|
|
std::vector<const PatternToMatch*> Patterns;
|
|
for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(), E = CGP.ptm_end();
|
|
I != E; ++I)
|
|
Patterns.push_back(&*I);
|
|
|
|
// We want to process the matches in order of minimal cost. Sort the patterns
|
|
// so the least cost one is at the start.
|
|
std::sort(Patterns.begin(), Patterns.end(), PatternSortingPredicate(CGP));
|
|
|
|
|
|
// Convert each variant of each pattern into a Matcher.
|
|
std::vector<Matcher*> PatternMatchers;
|
|
for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
|
|
for (unsigned Variant = 0; ; ++Variant) {
|
|
if (Matcher *M = ConvertPatternToMatcher(*Patterns[i], Variant, CGP))
|
|
PatternMatchers.push_back(M);
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
|
|
Matcher *TheMatcher = new ScopeMatcher(PatternMatchers);
|
|
|
|
TheMatcher = OptimizeMatcher(TheMatcher, CGP);
|
|
//Matcher->dump();
|
|
EmitMatcherTable(TheMatcher, CGP, OS);
|
|
delete TheMatcher;
|
|
}
|
|
|
|
namespace llvm {
|
|
|
|
void EmitDAGISel(RecordKeeper &RK, raw_ostream &OS) {
|
|
DAGISelEmitter(RK).run(OS);
|
|
}
|
|
|
|
} // End llvm namespace
|