1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 03:33:20 +01:00
llvm-mirror/lib/CodeGen/TargetLoweringBase.cpp
Philip Reames 0d007cd82b [Statepoints] Use Indirect operands for spill slots
Teach the statepoint lowering code to emit Indirect stackmap entries for spill inserted by StatepointLowering (i.e. SelectionDAG), but Direct stackmap entries for in-IR allocas which represent manual stack slots. This is what the docs call for (http://llvm.org/docs/StackMaps.html#stack-map-format), but we've been emitting both as Direct. This was pointed out recently on the mailing list as a bug. It also blocks http://reviews.llvm.org/D15632 which extends the lowering to handle vector-of-pointers since only Indirect references can encode a variable sized slot.

To implement this, I introduced a new flag on the StackObject class used to maintian information about stack slots. I original considered (and prototyped in http://reviews.llvm.org/D15632), the idea of using the existing isSpillSlot flag, but end up deciding that was a bit too risky and that the cost of adding a new flag was low. Having the new flag will also allow us - in the future - to emit better comments in verbose assembly which indicate where a particular stack spill around a call comes from. (deopt, gc, regalloc).

Differential Revision: http://reviews.llvm.org/D15759

llvm-svn: 256352
2015-12-23 23:44:28 +00:00

1718 lines
67 KiB
C++

//===-- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ---===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements the TargetLoweringBase class.
//
//===----------------------------------------------------------------------===//
#include "llvm/Target/TargetLowering.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Triple.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/StackMaps.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Mangler.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include <cctype>
using namespace llvm;
static cl::opt<bool> JumpIsExpensiveOverride(
"jump-is-expensive", cl::init(false),
cl::desc("Do not create extra branches to split comparison logic."),
cl::Hidden);
/// InitLibcallNames - Set default libcall names.
///
static void InitLibcallNames(const char **Names, const Triple &TT) {
Names[RTLIB::SHL_I16] = "__ashlhi3";
Names[RTLIB::SHL_I32] = "__ashlsi3";
Names[RTLIB::SHL_I64] = "__ashldi3";
Names[RTLIB::SHL_I128] = "__ashlti3";
Names[RTLIB::SRL_I16] = "__lshrhi3";
Names[RTLIB::SRL_I32] = "__lshrsi3";
Names[RTLIB::SRL_I64] = "__lshrdi3";
Names[RTLIB::SRL_I128] = "__lshrti3";
Names[RTLIB::SRA_I16] = "__ashrhi3";
Names[RTLIB::SRA_I32] = "__ashrsi3";
Names[RTLIB::SRA_I64] = "__ashrdi3";
Names[RTLIB::SRA_I128] = "__ashrti3";
Names[RTLIB::MUL_I8] = "__mulqi3";
Names[RTLIB::MUL_I16] = "__mulhi3";
Names[RTLIB::MUL_I32] = "__mulsi3";
Names[RTLIB::MUL_I64] = "__muldi3";
Names[RTLIB::MUL_I128] = "__multi3";
Names[RTLIB::MULO_I32] = "__mulosi4";
Names[RTLIB::MULO_I64] = "__mulodi4";
Names[RTLIB::MULO_I128] = "__muloti4";
Names[RTLIB::SDIV_I8] = "__divqi3";
Names[RTLIB::SDIV_I16] = "__divhi3";
Names[RTLIB::SDIV_I32] = "__divsi3";
Names[RTLIB::SDIV_I64] = "__divdi3";
Names[RTLIB::SDIV_I128] = "__divti3";
Names[RTLIB::UDIV_I8] = "__udivqi3";
Names[RTLIB::UDIV_I16] = "__udivhi3";
Names[RTLIB::UDIV_I32] = "__udivsi3";
Names[RTLIB::UDIV_I64] = "__udivdi3";
Names[RTLIB::UDIV_I128] = "__udivti3";
Names[RTLIB::SREM_I8] = "__modqi3";
Names[RTLIB::SREM_I16] = "__modhi3";
Names[RTLIB::SREM_I32] = "__modsi3";
Names[RTLIB::SREM_I64] = "__moddi3";
Names[RTLIB::SREM_I128] = "__modti3";
Names[RTLIB::UREM_I8] = "__umodqi3";
Names[RTLIB::UREM_I16] = "__umodhi3";
Names[RTLIB::UREM_I32] = "__umodsi3";
Names[RTLIB::UREM_I64] = "__umoddi3";
Names[RTLIB::UREM_I128] = "__umodti3";
// These are generally not available.
Names[RTLIB::SDIVREM_I8] = nullptr;
Names[RTLIB::SDIVREM_I16] = nullptr;
Names[RTLIB::SDIVREM_I32] = nullptr;
Names[RTLIB::SDIVREM_I64] = nullptr;
Names[RTLIB::SDIVREM_I128] = nullptr;
Names[RTLIB::UDIVREM_I8] = nullptr;
Names[RTLIB::UDIVREM_I16] = nullptr;
Names[RTLIB::UDIVREM_I32] = nullptr;
Names[RTLIB::UDIVREM_I64] = nullptr;
Names[RTLIB::UDIVREM_I128] = nullptr;
Names[RTLIB::NEG_I32] = "__negsi2";
Names[RTLIB::NEG_I64] = "__negdi2";
Names[RTLIB::ADD_F32] = "__addsf3";
Names[RTLIB::ADD_F64] = "__adddf3";
Names[RTLIB::ADD_F80] = "__addxf3";
Names[RTLIB::ADD_F128] = "__addtf3";
Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
Names[RTLIB::SUB_F32] = "__subsf3";
Names[RTLIB::SUB_F64] = "__subdf3";
Names[RTLIB::SUB_F80] = "__subxf3";
Names[RTLIB::SUB_F128] = "__subtf3";
Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
Names[RTLIB::MUL_F32] = "__mulsf3";
Names[RTLIB::MUL_F64] = "__muldf3";
Names[RTLIB::MUL_F80] = "__mulxf3";
Names[RTLIB::MUL_F128] = "__multf3";
Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
Names[RTLIB::DIV_F32] = "__divsf3";
Names[RTLIB::DIV_F64] = "__divdf3";
Names[RTLIB::DIV_F80] = "__divxf3";
Names[RTLIB::DIV_F128] = "__divtf3";
Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
Names[RTLIB::REM_F32] = "fmodf";
Names[RTLIB::REM_F64] = "fmod";
Names[RTLIB::REM_F80] = "fmodl";
Names[RTLIB::REM_F128] = "fmodl";
Names[RTLIB::REM_PPCF128] = "fmodl";
Names[RTLIB::FMA_F32] = "fmaf";
Names[RTLIB::FMA_F64] = "fma";
Names[RTLIB::FMA_F80] = "fmal";
Names[RTLIB::FMA_F128] = "fmal";
Names[RTLIB::FMA_PPCF128] = "fmal";
Names[RTLIB::POWI_F32] = "__powisf2";
Names[RTLIB::POWI_F64] = "__powidf2";
Names[RTLIB::POWI_F80] = "__powixf2";
Names[RTLIB::POWI_F128] = "__powitf2";
Names[RTLIB::POWI_PPCF128] = "__powitf2";
Names[RTLIB::SQRT_F32] = "sqrtf";
Names[RTLIB::SQRT_F64] = "sqrt";
Names[RTLIB::SQRT_F80] = "sqrtl";
Names[RTLIB::SQRT_F128] = "sqrtl";
Names[RTLIB::SQRT_PPCF128] = "sqrtl";
Names[RTLIB::LOG_F32] = "logf";
Names[RTLIB::LOG_F64] = "log";
Names[RTLIB::LOG_F80] = "logl";
Names[RTLIB::LOG_F128] = "logl";
Names[RTLIB::LOG_PPCF128] = "logl";
Names[RTLIB::LOG2_F32] = "log2f";
Names[RTLIB::LOG2_F64] = "log2";
Names[RTLIB::LOG2_F80] = "log2l";
Names[RTLIB::LOG2_F128] = "log2l";
Names[RTLIB::LOG2_PPCF128] = "log2l";
Names[RTLIB::LOG10_F32] = "log10f";
Names[RTLIB::LOG10_F64] = "log10";
Names[RTLIB::LOG10_F80] = "log10l";
Names[RTLIB::LOG10_F128] = "log10l";
Names[RTLIB::LOG10_PPCF128] = "log10l";
Names[RTLIB::EXP_F32] = "expf";
Names[RTLIB::EXP_F64] = "exp";
Names[RTLIB::EXP_F80] = "expl";
Names[RTLIB::EXP_F128] = "expl";
Names[RTLIB::EXP_PPCF128] = "expl";
Names[RTLIB::EXP2_F32] = "exp2f";
Names[RTLIB::EXP2_F64] = "exp2";
Names[RTLIB::EXP2_F80] = "exp2l";
Names[RTLIB::EXP2_F128] = "exp2l";
Names[RTLIB::EXP2_PPCF128] = "exp2l";
Names[RTLIB::SIN_F32] = "sinf";
Names[RTLIB::SIN_F64] = "sin";
Names[RTLIB::SIN_F80] = "sinl";
Names[RTLIB::SIN_F128] = "sinl";
Names[RTLIB::SIN_PPCF128] = "sinl";
Names[RTLIB::COS_F32] = "cosf";
Names[RTLIB::COS_F64] = "cos";
Names[RTLIB::COS_F80] = "cosl";
Names[RTLIB::COS_F128] = "cosl";
Names[RTLIB::COS_PPCF128] = "cosl";
Names[RTLIB::POW_F32] = "powf";
Names[RTLIB::POW_F64] = "pow";
Names[RTLIB::POW_F80] = "powl";
Names[RTLIB::POW_F128] = "powl";
Names[RTLIB::POW_PPCF128] = "powl";
Names[RTLIB::CEIL_F32] = "ceilf";
Names[RTLIB::CEIL_F64] = "ceil";
Names[RTLIB::CEIL_F80] = "ceill";
Names[RTLIB::CEIL_F128] = "ceill";
Names[RTLIB::CEIL_PPCF128] = "ceill";
Names[RTLIB::TRUNC_F32] = "truncf";
Names[RTLIB::TRUNC_F64] = "trunc";
Names[RTLIB::TRUNC_F80] = "truncl";
Names[RTLIB::TRUNC_F128] = "truncl";
Names[RTLIB::TRUNC_PPCF128] = "truncl";
Names[RTLIB::RINT_F32] = "rintf";
Names[RTLIB::RINT_F64] = "rint";
Names[RTLIB::RINT_F80] = "rintl";
Names[RTLIB::RINT_F128] = "rintl";
Names[RTLIB::RINT_PPCF128] = "rintl";
Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
Names[RTLIB::NEARBYINT_F64] = "nearbyint";
Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
Names[RTLIB::NEARBYINT_F128] = "nearbyintl";
Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
Names[RTLIB::ROUND_F32] = "roundf";
Names[RTLIB::ROUND_F64] = "round";
Names[RTLIB::ROUND_F80] = "roundl";
Names[RTLIB::ROUND_F128] = "roundl";
Names[RTLIB::ROUND_PPCF128] = "roundl";
Names[RTLIB::FLOOR_F32] = "floorf";
Names[RTLIB::FLOOR_F64] = "floor";
Names[RTLIB::FLOOR_F80] = "floorl";
Names[RTLIB::FLOOR_F128] = "floorl";
Names[RTLIB::FLOOR_PPCF128] = "floorl";
Names[RTLIB::FMIN_F32] = "fminf";
Names[RTLIB::FMIN_F64] = "fmin";
Names[RTLIB::FMIN_F80] = "fminl";
Names[RTLIB::FMIN_F128] = "fminl";
Names[RTLIB::FMIN_PPCF128] = "fminl";
Names[RTLIB::FMAX_F32] = "fmaxf";
Names[RTLIB::FMAX_F64] = "fmax";
Names[RTLIB::FMAX_F80] = "fmaxl";
Names[RTLIB::FMAX_F128] = "fmaxl";
Names[RTLIB::FMAX_PPCF128] = "fmaxl";
Names[RTLIB::ROUND_F32] = "roundf";
Names[RTLIB::ROUND_F64] = "round";
Names[RTLIB::ROUND_F80] = "roundl";
Names[RTLIB::ROUND_F128] = "roundl";
Names[RTLIB::ROUND_PPCF128] = "roundl";
Names[RTLIB::COPYSIGN_F32] = "copysignf";
Names[RTLIB::COPYSIGN_F64] = "copysign";
Names[RTLIB::COPYSIGN_F80] = "copysignl";
Names[RTLIB::COPYSIGN_F128] = "copysignl";
Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
Names[RTLIB::FPEXT_F64_F128] = "__extenddftf2";
Names[RTLIB::FPEXT_F32_F128] = "__extendsftf2";
Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
Names[RTLIB::FPROUND_F64_F16] = "__truncdfhf2";
Names[RTLIB::FPROUND_F80_F16] = "__truncxfhf2";
Names[RTLIB::FPROUND_F128_F16] = "__trunctfhf2";
Names[RTLIB::FPROUND_PPCF128_F16] = "__trunctfhf2";
Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
Names[RTLIB::FPROUND_F128_F32] = "__trunctfsf2";
Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
Names[RTLIB::FPROUND_F128_F64] = "__trunctfdf2";
Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
Names[RTLIB::FPTOSINT_F128_I32] = "__fixtfsi";
Names[RTLIB::FPTOSINT_F128_I64] = "__fixtfdi";
Names[RTLIB::FPTOSINT_F128_I128] = "__fixtfti";
Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
Names[RTLIB::FPTOUINT_F128_I32] = "__fixunstfsi";
Names[RTLIB::FPTOUINT_F128_I64] = "__fixunstfdi";
Names[RTLIB::FPTOUINT_F128_I128] = "__fixunstfti";
Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
Names[RTLIB::SINTTOFP_I32_F128] = "__floatsitf";
Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
Names[RTLIB::SINTTOFP_I64_F128] = "__floatditf";
Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
Names[RTLIB::SINTTOFP_I128_F128] = "__floattitf";
Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
Names[RTLIB::UINTTOFP_I32_F128] = "__floatunsitf";
Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
Names[RTLIB::UINTTOFP_I64_F128] = "__floatunditf";
Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
Names[RTLIB::UINTTOFP_I128_F128] = "__floatuntitf";
Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
Names[RTLIB::OEQ_F32] = "__eqsf2";
Names[RTLIB::OEQ_F64] = "__eqdf2";
Names[RTLIB::OEQ_F128] = "__eqtf2";
Names[RTLIB::UNE_F32] = "__nesf2";
Names[RTLIB::UNE_F64] = "__nedf2";
Names[RTLIB::UNE_F128] = "__netf2";
Names[RTLIB::OGE_F32] = "__gesf2";
Names[RTLIB::OGE_F64] = "__gedf2";
Names[RTLIB::OGE_F128] = "__getf2";
Names[RTLIB::OLT_F32] = "__ltsf2";
Names[RTLIB::OLT_F64] = "__ltdf2";
Names[RTLIB::OLT_F128] = "__lttf2";
Names[RTLIB::OLE_F32] = "__lesf2";
Names[RTLIB::OLE_F64] = "__ledf2";
Names[RTLIB::OLE_F128] = "__letf2";
Names[RTLIB::OGT_F32] = "__gtsf2";
Names[RTLIB::OGT_F64] = "__gtdf2";
Names[RTLIB::OGT_F128] = "__gttf2";
Names[RTLIB::UO_F32] = "__unordsf2";
Names[RTLIB::UO_F64] = "__unorddf2";
Names[RTLIB::UO_F128] = "__unordtf2";
Names[RTLIB::O_F32] = "__unordsf2";
Names[RTLIB::O_F64] = "__unorddf2";
Names[RTLIB::O_F128] = "__unordtf2";
Names[RTLIB::MEMCPY] = "memcpy";
Names[RTLIB::MEMMOVE] = "memmove";
Names[RTLIB::MEMSET] = "memset";
Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_16] = "__sync_val_compare_and_swap_16";
Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
Names[RTLIB::SYNC_LOCK_TEST_AND_SET_16] = "__sync_lock_test_and_set_16";
Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
Names[RTLIB::SYNC_FETCH_AND_ADD_16] = "__sync_fetch_and_add_16";
Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
Names[RTLIB::SYNC_FETCH_AND_SUB_16] = "__sync_fetch_and_sub_16";
Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
Names[RTLIB::SYNC_FETCH_AND_AND_16] = "__sync_fetch_and_and_16";
Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
Names[RTLIB::SYNC_FETCH_AND_OR_16] = "__sync_fetch_and_or_16";
Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4";
Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
Names[RTLIB::SYNC_FETCH_AND_XOR_16] = "__sync_fetch_and_xor_16";
Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
Names[RTLIB::SYNC_FETCH_AND_NAND_16] = "__sync_fetch_and_nand_16";
Names[RTLIB::SYNC_FETCH_AND_MAX_1] = "__sync_fetch_and_max_1";
Names[RTLIB::SYNC_FETCH_AND_MAX_2] = "__sync_fetch_and_max_2";
Names[RTLIB::SYNC_FETCH_AND_MAX_4] = "__sync_fetch_and_max_4";
Names[RTLIB::SYNC_FETCH_AND_MAX_8] = "__sync_fetch_and_max_8";
Names[RTLIB::SYNC_FETCH_AND_MAX_16] = "__sync_fetch_and_max_16";
Names[RTLIB::SYNC_FETCH_AND_UMAX_1] = "__sync_fetch_and_umax_1";
Names[RTLIB::SYNC_FETCH_AND_UMAX_2] = "__sync_fetch_and_umax_2";
Names[RTLIB::SYNC_FETCH_AND_UMAX_4] = "__sync_fetch_and_umax_4";
Names[RTLIB::SYNC_FETCH_AND_UMAX_8] = "__sync_fetch_and_umax_8";
Names[RTLIB::SYNC_FETCH_AND_UMAX_16] = "__sync_fetch_and_umax_16";
Names[RTLIB::SYNC_FETCH_AND_MIN_1] = "__sync_fetch_and_min_1";
Names[RTLIB::SYNC_FETCH_AND_MIN_2] = "__sync_fetch_and_min_2";
Names[RTLIB::SYNC_FETCH_AND_MIN_4] = "__sync_fetch_and_min_4";
Names[RTLIB::SYNC_FETCH_AND_MIN_8] = "__sync_fetch_and_min_8";
Names[RTLIB::SYNC_FETCH_AND_MIN_16] = "__sync_fetch_and_min_16";
Names[RTLIB::SYNC_FETCH_AND_UMIN_1] = "__sync_fetch_and_umin_1";
Names[RTLIB::SYNC_FETCH_AND_UMIN_2] = "__sync_fetch_and_umin_2";
Names[RTLIB::SYNC_FETCH_AND_UMIN_4] = "__sync_fetch_and_umin_4";
Names[RTLIB::SYNC_FETCH_AND_UMIN_8] = "__sync_fetch_and_umin_8";
Names[RTLIB::SYNC_FETCH_AND_UMIN_16] = "__sync_fetch_and_umin_16";
if (TT.getEnvironment() == Triple::GNU) {
Names[RTLIB::SINCOS_F32] = "sincosf";
Names[RTLIB::SINCOS_F64] = "sincos";
Names[RTLIB::SINCOS_F80] = "sincosl";
Names[RTLIB::SINCOS_F128] = "sincosl";
Names[RTLIB::SINCOS_PPCF128] = "sincosl";
} else {
// These are generally not available.
Names[RTLIB::SINCOS_F32] = nullptr;
Names[RTLIB::SINCOS_F64] = nullptr;
Names[RTLIB::SINCOS_F80] = nullptr;
Names[RTLIB::SINCOS_F128] = nullptr;
Names[RTLIB::SINCOS_PPCF128] = nullptr;
}
if (!TT.isOSOpenBSD()) {
Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = "__stack_chk_fail";
} else {
// These are generally not available.
Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = nullptr;
}
// For f16/f32 conversions, Darwin uses the standard naming scheme, instead
// of the gnueabi-style __gnu_*_ieee.
// FIXME: What about other targets?
if (TT.isOSDarwin()) {
Names[RTLIB::FPEXT_F16_F32] = "__extendhfsf2";
Names[RTLIB::FPROUND_F32_F16] = "__truncsfhf2";
}
}
/// InitLibcallCallingConvs - Set default libcall CallingConvs.
///
static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
CCs[i] = CallingConv::C;
}
}
/// getFPEXT - Return the FPEXT_*_* value for the given types, or
/// UNKNOWN_LIBCALL if there is none.
RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
if (OpVT == MVT::f16) {
if (RetVT == MVT::f32)
return FPEXT_F16_F32;
} else if (OpVT == MVT::f32) {
if (RetVT == MVT::f64)
return FPEXT_F32_F64;
if (RetVT == MVT::f128)
return FPEXT_F32_F128;
} else if (OpVT == MVT::f64) {
if (RetVT == MVT::f128)
return FPEXT_F64_F128;
}
return UNKNOWN_LIBCALL;
}
/// getFPROUND - Return the FPROUND_*_* value for the given types, or
/// UNKNOWN_LIBCALL if there is none.
RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
if (RetVT == MVT::f16) {
if (OpVT == MVT::f32)
return FPROUND_F32_F16;
if (OpVT == MVT::f64)
return FPROUND_F64_F16;
if (OpVT == MVT::f80)
return FPROUND_F80_F16;
if (OpVT == MVT::f128)
return FPROUND_F128_F16;
if (OpVT == MVT::ppcf128)
return FPROUND_PPCF128_F16;
} else if (RetVT == MVT::f32) {
if (OpVT == MVT::f64)
return FPROUND_F64_F32;
if (OpVT == MVT::f80)
return FPROUND_F80_F32;
if (OpVT == MVT::f128)
return FPROUND_F128_F32;
if (OpVT == MVT::ppcf128)
return FPROUND_PPCF128_F32;
} else if (RetVT == MVT::f64) {
if (OpVT == MVT::f80)
return FPROUND_F80_F64;
if (OpVT == MVT::f128)
return FPROUND_F128_F64;
if (OpVT == MVT::ppcf128)
return FPROUND_PPCF128_F64;
}
return UNKNOWN_LIBCALL;
}
/// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
/// UNKNOWN_LIBCALL if there is none.
RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
if (OpVT == MVT::f32) {
if (RetVT == MVT::i32)
return FPTOSINT_F32_I32;
if (RetVT == MVT::i64)
return FPTOSINT_F32_I64;
if (RetVT == MVT::i128)
return FPTOSINT_F32_I128;
} else if (OpVT == MVT::f64) {
if (RetVT == MVT::i32)
return FPTOSINT_F64_I32;
if (RetVT == MVT::i64)
return FPTOSINT_F64_I64;
if (RetVT == MVT::i128)
return FPTOSINT_F64_I128;
} else if (OpVT == MVT::f80) {
if (RetVT == MVT::i32)
return FPTOSINT_F80_I32;
if (RetVT == MVT::i64)
return FPTOSINT_F80_I64;
if (RetVT == MVT::i128)
return FPTOSINT_F80_I128;
} else if (OpVT == MVT::f128) {
if (RetVT == MVT::i32)
return FPTOSINT_F128_I32;
if (RetVT == MVT::i64)
return FPTOSINT_F128_I64;
if (RetVT == MVT::i128)
return FPTOSINT_F128_I128;
} else if (OpVT == MVT::ppcf128) {
if (RetVT == MVT::i32)
return FPTOSINT_PPCF128_I32;
if (RetVT == MVT::i64)
return FPTOSINT_PPCF128_I64;
if (RetVT == MVT::i128)
return FPTOSINT_PPCF128_I128;
}
return UNKNOWN_LIBCALL;
}
/// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
/// UNKNOWN_LIBCALL if there is none.
RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
if (OpVT == MVT::f32) {
if (RetVT == MVT::i32)
return FPTOUINT_F32_I32;
if (RetVT == MVT::i64)
return FPTOUINT_F32_I64;
if (RetVT == MVT::i128)
return FPTOUINT_F32_I128;
} else if (OpVT == MVT::f64) {
if (RetVT == MVT::i32)
return FPTOUINT_F64_I32;
if (RetVT == MVT::i64)
return FPTOUINT_F64_I64;
if (RetVT == MVT::i128)
return FPTOUINT_F64_I128;
} else if (OpVT == MVT::f80) {
if (RetVT == MVT::i32)
return FPTOUINT_F80_I32;
if (RetVT == MVT::i64)
return FPTOUINT_F80_I64;
if (RetVT == MVT::i128)
return FPTOUINT_F80_I128;
} else if (OpVT == MVT::f128) {
if (RetVT == MVT::i32)
return FPTOUINT_F128_I32;
if (RetVT == MVT::i64)
return FPTOUINT_F128_I64;
if (RetVT == MVT::i128)
return FPTOUINT_F128_I128;
} else if (OpVT == MVT::ppcf128) {
if (RetVT == MVT::i32)
return FPTOUINT_PPCF128_I32;
if (RetVT == MVT::i64)
return FPTOUINT_PPCF128_I64;
if (RetVT == MVT::i128)
return FPTOUINT_PPCF128_I128;
}
return UNKNOWN_LIBCALL;
}
/// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
/// UNKNOWN_LIBCALL if there is none.
RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
if (OpVT == MVT::i32) {
if (RetVT == MVT::f32)
return SINTTOFP_I32_F32;
if (RetVT == MVT::f64)
return SINTTOFP_I32_F64;
if (RetVT == MVT::f80)
return SINTTOFP_I32_F80;
if (RetVT == MVT::f128)
return SINTTOFP_I32_F128;
if (RetVT == MVT::ppcf128)
return SINTTOFP_I32_PPCF128;
} else if (OpVT == MVT::i64) {
if (RetVT == MVT::f32)
return SINTTOFP_I64_F32;
if (RetVT == MVT::f64)
return SINTTOFP_I64_F64;
if (RetVT == MVT::f80)
return SINTTOFP_I64_F80;
if (RetVT == MVT::f128)
return SINTTOFP_I64_F128;
if (RetVT == MVT::ppcf128)
return SINTTOFP_I64_PPCF128;
} else if (OpVT == MVT::i128) {
if (RetVT == MVT::f32)
return SINTTOFP_I128_F32;
if (RetVT == MVT::f64)
return SINTTOFP_I128_F64;
if (RetVT == MVT::f80)
return SINTTOFP_I128_F80;
if (RetVT == MVT::f128)
return SINTTOFP_I128_F128;
if (RetVT == MVT::ppcf128)
return SINTTOFP_I128_PPCF128;
}
return UNKNOWN_LIBCALL;
}
/// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
/// UNKNOWN_LIBCALL if there is none.
RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
if (OpVT == MVT::i32) {
if (RetVT == MVT::f32)
return UINTTOFP_I32_F32;
if (RetVT == MVT::f64)
return UINTTOFP_I32_F64;
if (RetVT == MVT::f80)
return UINTTOFP_I32_F80;
if (RetVT == MVT::f128)
return UINTTOFP_I32_F128;
if (RetVT == MVT::ppcf128)
return UINTTOFP_I32_PPCF128;
} else if (OpVT == MVT::i64) {
if (RetVT == MVT::f32)
return UINTTOFP_I64_F32;
if (RetVT == MVT::f64)
return UINTTOFP_I64_F64;
if (RetVT == MVT::f80)
return UINTTOFP_I64_F80;
if (RetVT == MVT::f128)
return UINTTOFP_I64_F128;
if (RetVT == MVT::ppcf128)
return UINTTOFP_I64_PPCF128;
} else if (OpVT == MVT::i128) {
if (RetVT == MVT::f32)
return UINTTOFP_I128_F32;
if (RetVT == MVT::f64)
return UINTTOFP_I128_F64;
if (RetVT == MVT::f80)
return UINTTOFP_I128_F80;
if (RetVT == MVT::f128)
return UINTTOFP_I128_F128;
if (RetVT == MVT::ppcf128)
return UINTTOFP_I128_PPCF128;
}
return UNKNOWN_LIBCALL;
}
RTLIB::Libcall RTLIB::getATOMIC(unsigned Opc, MVT VT) {
#define OP_TO_LIBCALL(Name, Enum) \
case Name: \
switch (VT.SimpleTy) { \
default: \
return UNKNOWN_LIBCALL; \
case MVT::i8: \
return Enum##_1; \
case MVT::i16: \
return Enum##_2; \
case MVT::i32: \
return Enum##_4; \
case MVT::i64: \
return Enum##_8; \
case MVT::i128: \
return Enum##_16; \
}
switch (Opc) {
OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
}
#undef OP_TO_LIBCALL
return UNKNOWN_LIBCALL;
}
/// InitCmpLibcallCCs - Set default comparison libcall CC.
///
static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
CCs[RTLIB::UNE_F32] = ISD::SETNE;
CCs[RTLIB::UNE_F64] = ISD::SETNE;
CCs[RTLIB::UNE_F128] = ISD::SETNE;
CCs[RTLIB::OGE_F32] = ISD::SETGE;
CCs[RTLIB::OGE_F64] = ISD::SETGE;
CCs[RTLIB::OGE_F128] = ISD::SETGE;
CCs[RTLIB::OLT_F32] = ISD::SETLT;
CCs[RTLIB::OLT_F64] = ISD::SETLT;
CCs[RTLIB::OLT_F128] = ISD::SETLT;
CCs[RTLIB::OLE_F32] = ISD::SETLE;
CCs[RTLIB::OLE_F64] = ISD::SETLE;
CCs[RTLIB::OLE_F128] = ISD::SETLE;
CCs[RTLIB::OGT_F32] = ISD::SETGT;
CCs[RTLIB::OGT_F64] = ISD::SETGT;
CCs[RTLIB::OGT_F128] = ISD::SETGT;
CCs[RTLIB::UO_F32] = ISD::SETNE;
CCs[RTLIB::UO_F64] = ISD::SETNE;
CCs[RTLIB::UO_F128] = ISD::SETNE;
CCs[RTLIB::O_F32] = ISD::SETEQ;
CCs[RTLIB::O_F64] = ISD::SETEQ;
CCs[RTLIB::O_F128] = ISD::SETEQ;
}
/// NOTE: The TargetMachine owns TLOF.
TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
initActions();
// Perform these initializations only once.
MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = 8;
MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize
= MaxStoresPerMemmoveOptSize = 4;
UseUnderscoreSetJmp = false;
UseUnderscoreLongJmp = false;
SelectIsExpensive = false;
HasMultipleConditionRegisters = false;
HasExtractBitsInsn = false;
FsqrtIsCheap = false;
JumpIsExpensive = JumpIsExpensiveOverride;
PredictableSelectIsExpensive = false;
MaskAndBranchFoldingIsLegal = false;
EnableExtLdPromotion = false;
HasFloatingPointExceptions = true;
StackPointerRegisterToSaveRestore = 0;
BooleanContents = UndefinedBooleanContent;
BooleanFloatContents = UndefinedBooleanContent;
BooleanVectorContents = UndefinedBooleanContent;
SchedPreferenceInfo = Sched::ILP;
JumpBufSize = 0;
JumpBufAlignment = 0;
MinFunctionAlignment = 0;
PrefFunctionAlignment = 0;
PrefLoopAlignment = 0;
GatherAllAliasesMaxDepth = 6;
MinStackArgumentAlignment = 1;
InsertFencesForAtomic = false;
MinimumJumpTableEntries = 4;
InitLibcallNames(LibcallRoutineNames, TM.getTargetTriple());
InitCmpLibcallCCs(CmpLibcallCCs);
InitLibcallCallingConvs(LibcallCallingConvs);
}
void TargetLoweringBase::initActions() {
// All operations default to being supported.
memset(OpActions, 0, sizeof(OpActions));
memset(LoadExtActions, 0, sizeof(LoadExtActions));
memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
memset(CondCodeActions, 0, sizeof(CondCodeActions));
memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
// Set default actions for various operations.
for (MVT VT : MVT::all_valuetypes()) {
// Default all indexed load / store to expand.
for (unsigned IM = (unsigned)ISD::PRE_INC;
IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
setIndexedLoadAction(IM, VT, Expand);
setIndexedStoreAction(IM, VT, Expand);
}
// Most backends expect to see the node which just returns the value loaded.
setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
// These operations default to expand.
setOperationAction(ISD::FGETSIGN, VT, Expand);
setOperationAction(ISD::CONCAT_VECTORS, VT, Expand);
setOperationAction(ISD::FMINNUM, VT, Expand);
setOperationAction(ISD::FMAXNUM, VT, Expand);
setOperationAction(ISD::FMINNAN, VT, Expand);
setOperationAction(ISD::FMAXNAN, VT, Expand);
setOperationAction(ISD::FMAD, VT, Expand);
setOperationAction(ISD::SMIN, VT, Expand);
setOperationAction(ISD::SMAX, VT, Expand);
setOperationAction(ISD::UMIN, VT, Expand);
setOperationAction(ISD::UMAX, VT, Expand);
// Overflow operations default to expand
setOperationAction(ISD::SADDO, VT, Expand);
setOperationAction(ISD::SSUBO, VT, Expand);
setOperationAction(ISD::UADDO, VT, Expand);
setOperationAction(ISD::USUBO, VT, Expand);
setOperationAction(ISD::SMULO, VT, Expand);
setOperationAction(ISD::UMULO, VT, Expand);
setOperationAction(ISD::BITREVERSE, VT, Expand);
// These library functions default to expand.
setOperationAction(ISD::FROUND, VT, Expand);
// These operations default to expand for vector types.
if (VT.isVector()) {
setOperationAction(ISD::FCOPYSIGN, VT, Expand);
setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand);
setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand);
setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand);
}
// For most targets @llvm.get.dynamic.area.offest just returns 0.
setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
}
// Most targets ignore the @llvm.prefetch intrinsic.
setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
// Most targets also ignore the @llvm.readcyclecounter intrinsic.
setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
// ConstantFP nodes default to expand. Targets can either change this to
// Legal, in which case all fp constants are legal, or use isFPImmLegal()
// to optimize expansions for certain constants.
setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
// These library functions default to expand.
for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) {
setOperationAction(ISD::FLOG , VT, Expand);
setOperationAction(ISD::FLOG2, VT, Expand);
setOperationAction(ISD::FLOG10, VT, Expand);
setOperationAction(ISD::FEXP , VT, Expand);
setOperationAction(ISD::FEXP2, VT, Expand);
setOperationAction(ISD::FFLOOR, VT, Expand);
setOperationAction(ISD::FMINNUM, VT, Expand);
setOperationAction(ISD::FMAXNUM, VT, Expand);
setOperationAction(ISD::FNEARBYINT, VT, Expand);
setOperationAction(ISD::FCEIL, VT, Expand);
setOperationAction(ISD::FRINT, VT, Expand);
setOperationAction(ISD::FTRUNC, VT, Expand);
setOperationAction(ISD::FROUND, VT, Expand);
}
// Default ISD::TRAP to expand (which turns it into abort).
setOperationAction(ISD::TRAP, MVT::Other, Expand);
// On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
// here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
//
setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
}
MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
EVT) const {
return MVT::getIntegerVT(8 * DL.getPointerSize(0));
}
EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy,
const DataLayout &DL) const {
assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
if (LHSTy.isVector())
return LHSTy;
return getScalarShiftAmountTy(DL, LHSTy);
}
/// canOpTrap - Returns true if the operation can trap for the value type.
/// VT must be a legal type.
bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
assert(isTypeLegal(VT));
switch (Op) {
default:
return false;
case ISD::FDIV:
case ISD::FREM:
case ISD::SDIV:
case ISD::UDIV:
case ISD::SREM:
case ISD::UREM:
return true;
}
}
void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
// If the command-line option was specified, ignore this request.
if (!JumpIsExpensiveOverride.getNumOccurrences())
JumpIsExpensive = isExpensive;
}
TargetLoweringBase::LegalizeKind
TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
// If this is a simple type, use the ComputeRegisterProp mechanism.
if (VT.isSimple()) {
MVT SVT = VT.getSimpleVT();
assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
MVT NVT = TransformToType[SVT.SimpleTy];
LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
assert((LA == TypeLegal || LA == TypeSoftenFloat ||
ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger) &&
"Promote may not follow Expand or Promote");
if (LA == TypeSplitVector)
return LegalizeKind(LA,
EVT::getVectorVT(Context, SVT.getVectorElementType(),
SVT.getVectorNumElements() / 2));
if (LA == TypeScalarizeVector)
return LegalizeKind(LA, SVT.getVectorElementType());
return LegalizeKind(LA, NVT);
}
// Handle Extended Scalar Types.
if (!VT.isVector()) {
assert(VT.isInteger() && "Float types must be simple");
unsigned BitSize = VT.getSizeInBits();
// First promote to a power-of-two size, then expand if necessary.
if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
EVT NVT = VT.getRoundIntegerType(Context);
assert(NVT != VT && "Unable to round integer VT");
LegalizeKind NextStep = getTypeConversion(Context, NVT);
// Avoid multi-step promotion.
if (NextStep.first == TypePromoteInteger)
return NextStep;
// Return rounded integer type.
return LegalizeKind(TypePromoteInteger, NVT);
}
return LegalizeKind(TypeExpandInteger,
EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
}
// Handle vector types.
unsigned NumElts = VT.getVectorNumElements();
EVT EltVT = VT.getVectorElementType();
// Vectors with only one element are always scalarized.
if (NumElts == 1)
return LegalizeKind(TypeScalarizeVector, EltVT);
// Try to widen vector elements until the element type is a power of two and
// promote it to a legal type later on, for example:
// <3 x i8> -> <4 x i8> -> <4 x i32>
if (EltVT.isInteger()) {
// Vectors with a number of elements that is not a power of two are always
// widened, for example <3 x i8> -> <4 x i8>.
if (!VT.isPow2VectorType()) {
NumElts = (unsigned)NextPowerOf2(NumElts);
EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
return LegalizeKind(TypeWidenVector, NVT);
}
// Examine the element type.
LegalizeKind LK = getTypeConversion(Context, EltVT);
// If type is to be expanded, split the vector.
// <4 x i140> -> <2 x i140>
if (LK.first == TypeExpandInteger)
return LegalizeKind(TypeSplitVector,
EVT::getVectorVT(Context, EltVT, NumElts / 2));
// Promote the integer element types until a legal vector type is found
// or until the element integer type is too big. If a legal type was not
// found, fallback to the usual mechanism of widening/splitting the
// vector.
EVT OldEltVT = EltVT;
while (1) {
// Increase the bitwidth of the element to the next pow-of-two
// (which is greater than 8 bits).
EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
.getRoundIntegerType(Context);
// Stop trying when getting a non-simple element type.
// Note that vector elements may be greater than legal vector element
// types. Example: X86 XMM registers hold 64bit element on 32bit
// systems.
if (!EltVT.isSimple())
break;
// Build a new vector type and check if it is legal.
MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
// Found a legal promoted vector type.
if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
return LegalizeKind(TypePromoteInteger,
EVT::getVectorVT(Context, EltVT, NumElts));
}
// Reset the type to the unexpanded type if we did not find a legal vector
// type with a promoted vector element type.
EltVT = OldEltVT;
}
// Try to widen the vector until a legal type is found.
// If there is no wider legal type, split the vector.
while (1) {
// Round up to the next power of 2.
NumElts = (unsigned)NextPowerOf2(NumElts);
// If there is no simple vector type with this many elements then there
// cannot be a larger legal vector type. Note that this assumes that
// there are no skipped intermediate vector types in the simple types.
if (!EltVT.isSimple())
break;
MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
if (LargerVector == MVT())
break;
// If this type is legal then widen the vector.
if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
return LegalizeKind(TypeWidenVector, LargerVector);
}
// Widen odd vectors to next power of two.
if (!VT.isPow2VectorType()) {
EVT NVT = VT.getPow2VectorType(Context);
return LegalizeKind(TypeWidenVector, NVT);
}
// Vectors with illegal element types are expanded.
EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
return LegalizeKind(TypeSplitVector, NVT);
}
static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
unsigned &NumIntermediates,
MVT &RegisterVT,
TargetLoweringBase *TLI) {
// Figure out the right, legal destination reg to copy into.
unsigned NumElts = VT.getVectorNumElements();
MVT EltTy = VT.getVectorElementType();
unsigned NumVectorRegs = 1;
// FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
// could break down into LHS/RHS like LegalizeDAG does.
if (!isPowerOf2_32(NumElts)) {
NumVectorRegs = NumElts;
NumElts = 1;
}
// Divide the input until we get to a supported size. This will always
// end with a scalar if the target doesn't support vectors.
while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
NumElts >>= 1;
NumVectorRegs <<= 1;
}
NumIntermediates = NumVectorRegs;
MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
if (!TLI->isTypeLegal(NewVT))
NewVT = EltTy;
IntermediateVT = NewVT;
unsigned NewVTSize = NewVT.getSizeInBits();
// Convert sizes such as i33 to i64.
if (!isPowerOf2_32(NewVTSize))
NewVTSize = NextPowerOf2(NewVTSize);
MVT DestVT = TLI->getRegisterType(NewVT);
RegisterVT = DestVT;
if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16.
return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
// Otherwise, promotion or legal types use the same number of registers as
// the vector decimated to the appropriate level.
return NumVectorRegs;
}
/// isLegalRC - Return true if the value types that can be represented by the
/// specified register class are all legal.
bool TargetLoweringBase::isLegalRC(const TargetRegisterClass *RC) const {
for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
I != E; ++I) {
if (isTypeLegal(*I))
return true;
}
return false;
}
/// Replace/modify any TargetFrameIndex operands with a targte-dependent
/// sequence of memory operands that is recognized by PrologEpilogInserter.
MachineBasicBlock*
TargetLoweringBase::emitPatchPoint(MachineInstr *MI,
MachineBasicBlock *MBB) const {
MachineFunction &MF = *MI->getParent()->getParent();
MachineFrameInfo &MFI = *MF.getFrameInfo();
// We're handling multiple types of operands here:
// PATCHPOINT MetaArgs - live-in, read only, direct
// STATEPOINT Deopt Spill - live-through, read only, indirect
// STATEPOINT Deopt Alloca - live-through, read only, direct
// (We're currently conservative and mark the deopt slots read/write in
// practice.)
// STATEPOINT GC Spill - live-through, read/write, indirect
// STATEPOINT GC Alloca - live-through, read/write, direct
// The live-in vs live-through is handled already (the live through ones are
// all stack slots), but we need to handle the different type of stackmap
// operands and memory effects here.
// MI changes inside this loop as we grow operands.
for(unsigned OperIdx = 0; OperIdx != MI->getNumOperands(); ++OperIdx) {
MachineOperand &MO = MI->getOperand(OperIdx);
if (!MO.isFI())
continue;
// foldMemoryOperand builds a new MI after replacing a single FI operand
// with the canonical set of five x86 addressing-mode operands.
int FI = MO.getIndex();
MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
// Copy operands before the frame-index.
for (unsigned i = 0; i < OperIdx; ++i)
MIB.addOperand(MI->getOperand(i));
// Add frame index operands recognized by stackmaps.cpp
if (MFI.isStatepointSpillSlotObjectIndex(FI)) {
// indirect-mem-ref tag, size, #FI, offset.
// Used for spills inserted by StatepointLowering. This codepath is not
// used for patchpoints/stackmaps at all, for these spilling is done via
// foldMemoryOperand callback only.
assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
MIB.addImm(StackMaps::IndirectMemRefOp);
MIB.addImm(MFI.getObjectSize(FI));
MIB.addOperand(MI->getOperand(OperIdx));
MIB.addImm(0);
} else {
// direct-mem-ref tag, #FI, offset.
// Used by patchpoint, and direct alloca arguments to statepoints
MIB.addImm(StackMaps::DirectMemRefOp);
MIB.addOperand(MI->getOperand(OperIdx));
MIB.addImm(0);
}
// Copy the operands after the frame index.
for (unsigned i = OperIdx + 1; i != MI->getNumOperands(); ++i)
MIB.addOperand(MI->getOperand(i));
// Inherit previous memory operands.
MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
// Add a new memory operand for this FI.
assert(MFI.getObjectOffset(FI) != -1);
unsigned Flags = MachineMemOperand::MOLoad;
if (MI->getOpcode() == TargetOpcode::STATEPOINT) {
Flags |= MachineMemOperand::MOStore;
Flags |= MachineMemOperand::MOVolatile;
}
MachineMemOperand *MMO = MF.getMachineMemOperand(
MachinePointerInfo::getFixedStack(MF, FI), Flags,
MF.getDataLayout().getPointerSize(), MFI.getObjectAlignment(FI));
MIB->addMemOperand(MF, MMO);
// Replace the instruction and update the operand index.
MBB->insert(MachineBasicBlock::iterator(MI), MIB);
OperIdx += (MIB->getNumOperands() - MI->getNumOperands()) - 1;
MI->eraseFromParent();
MI = MIB;
}
return MBB;
}
/// findRepresentativeClass - Return the largest legal super-reg register class
/// of the register class for the specified type and its associated "cost".
// This function is in TargetLowering because it uses RegClassForVT which would
// need to be moved to TargetRegisterInfo and would necessitate moving
// isTypeLegal over as well - a massive change that would just require
// TargetLowering having a TargetRegisterInfo class member that it would use.
std::pair<const TargetRegisterClass *, uint8_t>
TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
MVT VT) const {
const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
if (!RC)
return std::make_pair(RC, 0);
// Compute the set of all super-register classes.
BitVector SuperRegRC(TRI->getNumRegClasses());
for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
SuperRegRC.setBitsInMask(RCI.getMask());
// Find the first legal register class with the largest spill size.
const TargetRegisterClass *BestRC = RC;
for (int i = SuperRegRC.find_first(); i >= 0; i = SuperRegRC.find_next(i)) {
const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
// We want the largest possible spill size.
if (SuperRC->getSize() <= BestRC->getSize())
continue;
if (!isLegalRC(SuperRC))
continue;
BestRC = SuperRC;
}
return std::make_pair(BestRC, 1);
}
/// computeRegisterProperties - Once all of the register classes are added,
/// this allows us to compute derived properties we expose.
void TargetLoweringBase::computeRegisterProperties(
const TargetRegisterInfo *TRI) {
static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
"Too many value types for ValueTypeActions to hold!");
// Everything defaults to needing one register.
for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
NumRegistersForVT[i] = 1;
RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
}
// ...except isVoid, which doesn't need any registers.
NumRegistersForVT[MVT::isVoid] = 0;
// Find the largest integer register class.
unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
// Every integer value type larger than this largest register takes twice as
// many registers to represent as the previous ValueType.
for (unsigned ExpandedReg = LargestIntReg + 1;
ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
TypeExpandInteger);
}
// Inspect all of the ValueType's smaller than the largest integer
// register to see which ones need promotion.
unsigned LegalIntReg = LargestIntReg;
for (unsigned IntReg = LargestIntReg - 1;
IntReg >= (unsigned)MVT::i1; --IntReg) {
MVT IVT = (MVT::SimpleValueType)IntReg;
if (isTypeLegal(IVT)) {
LegalIntReg = IntReg;
} else {
RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
(const MVT::SimpleValueType)LegalIntReg;
ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
}
}
// ppcf128 type is really two f64's.
if (!isTypeLegal(MVT::ppcf128)) {
NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
TransformToType[MVT::ppcf128] = MVT::f64;
ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
}
// Decide how to handle f128. If the target does not have native f128 support,
// expand it to i128 and we will be generating soft float library calls.
if (!isTypeLegal(MVT::f128)) {
NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
TransformToType[MVT::f128] = MVT::i128;
ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
}
// Decide how to handle f64. If the target does not have native f64 support,
// expand it to i64 and we will be generating soft float library calls.
if (!isTypeLegal(MVT::f64)) {
NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
TransformToType[MVT::f64] = MVT::i64;
ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
}
// Decide how to handle f32. If the target does not have native f32 support,
// expand it to i32 and we will be generating soft float library calls.
if (!isTypeLegal(MVT::f32)) {
NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
TransformToType[MVT::f32] = MVT::i32;
ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
}
// Decide how to handle f16. If the target does not have native f16 support,
// promote it to f32, because there are no f16 library calls (except for
// conversions).
if (!isTypeLegal(MVT::f16)) {
NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
TransformToType[MVT::f16] = MVT::f32;
ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
}
// Loop over all of the vector value types to see which need transformations.
for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
MVT VT = (MVT::SimpleValueType) i;
if (isTypeLegal(VT))
continue;
MVT EltVT = VT.getVectorElementType();
unsigned NElts = VT.getVectorNumElements();
bool IsLegalWiderType = false;
LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
switch (PreferredAction) {
case TypePromoteInteger: {
// Try to promote the elements of integer vectors. If no legal
// promotion was found, fall through to the widen-vector method.
for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
MVT SVT = (MVT::SimpleValueType) nVT;
// Promote vectors of integers to vectors with the same number
// of elements, with a wider element type.
if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits()
&& SVT.getVectorNumElements() == NElts && isTypeLegal(SVT)
&& SVT.getScalarType().isInteger()) {
TransformToType[i] = SVT;
RegisterTypeForVT[i] = SVT;
NumRegistersForVT[i] = 1;
ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
IsLegalWiderType = true;
break;
}
}
if (IsLegalWiderType)
break;
}
case TypeWidenVector: {
// Try to widen the vector.
for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
MVT SVT = (MVT::SimpleValueType) nVT;
if (SVT.getVectorElementType() == EltVT
&& SVT.getVectorNumElements() > NElts && isTypeLegal(SVT)) {
TransformToType[i] = SVT;
RegisterTypeForVT[i] = SVT;
NumRegistersForVT[i] = 1;
ValueTypeActions.setTypeAction(VT, TypeWidenVector);
IsLegalWiderType = true;
break;
}
}
if (IsLegalWiderType)
break;
}
case TypeSplitVector:
case TypeScalarizeVector: {
MVT IntermediateVT;
MVT RegisterVT;
unsigned NumIntermediates;
NumRegistersForVT[i] = getVectorTypeBreakdownMVT(VT, IntermediateVT,
NumIntermediates, RegisterVT, this);
RegisterTypeForVT[i] = RegisterVT;
MVT NVT = VT.getPow2VectorType();
if (NVT == VT) {
// Type is already a power of 2. The default action is to split.
TransformToType[i] = MVT::Other;
if (PreferredAction == TypeScalarizeVector)
ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
else if (PreferredAction == TypeSplitVector)
ValueTypeActions.setTypeAction(VT, TypeSplitVector);
else
// Set type action according to the number of elements.
ValueTypeActions.setTypeAction(VT, NElts == 1 ? TypeScalarizeVector
: TypeSplitVector);
} else {
TransformToType[i] = NVT;
ValueTypeActions.setTypeAction(VT, TypeWidenVector);
}
break;
}
default:
llvm_unreachable("Unknown vector legalization action!");
}
}
// Determine the 'representative' register class for each value type.
// An representative register class is the largest (meaning one which is
// not a sub-register class / subreg register class) legal register class for
// a group of value types. For example, on i386, i8, i16, and i32
// representative would be GR32; while on x86_64 it's GR64.
for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
const TargetRegisterClass* RRC;
uint8_t Cost;
std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
RepRegClassForVT[i] = RRC;
RepRegClassCostForVT[i] = Cost;
}
}
EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
EVT VT) const {
assert(!VT.isVector() && "No default SetCC type for vectors!");
return getPointerTy(DL).SimpleTy;
}
MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
return MVT::i32; // return the default value
}
/// getVectorTypeBreakdown - Vector types are broken down into some number of
/// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
/// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
/// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
///
/// This method returns the number of registers needed, and the VT for each
/// register. It also returns the VT and quantity of the intermediate values
/// before they are promoted/expanded.
///
unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
EVT &IntermediateVT,
unsigned &NumIntermediates,
MVT &RegisterVT) const {
unsigned NumElts = VT.getVectorNumElements();
// If there is a wider vector type with the same element type as this one,
// or a promoted vector type that has the same number of elements which
// are wider, then we should convert to that legal vector type.
// This handles things like <2 x float> -> <4 x float> and
// <4 x i1> -> <4 x i32>.
LegalizeTypeAction TA = getTypeAction(Context, VT);
if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
EVT RegisterEVT = getTypeToTransformTo(Context, VT);
if (isTypeLegal(RegisterEVT)) {
IntermediateVT = RegisterEVT;
RegisterVT = RegisterEVT.getSimpleVT();
NumIntermediates = 1;
return 1;
}
}
// Figure out the right, legal destination reg to copy into.
EVT EltTy = VT.getVectorElementType();
unsigned NumVectorRegs = 1;
// FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
// could break down into LHS/RHS like LegalizeDAG does.
if (!isPowerOf2_32(NumElts)) {
NumVectorRegs = NumElts;
NumElts = 1;
}
// Divide the input until we get to a supported size. This will always
// end with a scalar if the target doesn't support vectors.
while (NumElts > 1 && !isTypeLegal(
EVT::getVectorVT(Context, EltTy, NumElts))) {
NumElts >>= 1;
NumVectorRegs <<= 1;
}
NumIntermediates = NumVectorRegs;
EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
if (!isTypeLegal(NewVT))
NewVT = EltTy;
IntermediateVT = NewVT;
MVT DestVT = getRegisterType(Context, NewVT);
RegisterVT = DestVT;
unsigned NewVTSize = NewVT.getSizeInBits();
// Convert sizes such as i33 to i64.
if (!isPowerOf2_32(NewVTSize))
NewVTSize = NextPowerOf2(NewVTSize);
if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16.
return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
// Otherwise, promotion or legal types use the same number of registers as
// the vector decimated to the appropriate level.
return NumVectorRegs;
}
/// Get the EVTs and ArgFlags collections that represent the legalized return
/// type of the given function. This does not require a DAG or a return value,
/// and is suitable for use before any DAGs for the function are constructed.
/// TODO: Move this out of TargetLowering.cpp.
void llvm::GetReturnInfo(Type *ReturnType, AttributeSet attr,
SmallVectorImpl<ISD::OutputArg> &Outs,
const TargetLowering &TLI, const DataLayout &DL) {
SmallVector<EVT, 4> ValueVTs;
ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
unsigned NumValues = ValueVTs.size();
if (NumValues == 0) return;
for (unsigned j = 0, f = NumValues; j != f; ++j) {
EVT VT = ValueVTs[j];
ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
ExtendKind = ISD::SIGN_EXTEND;
else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
ExtendKind = ISD::ZERO_EXTEND;
// FIXME: C calling convention requires the return type to be promoted to
// at least 32-bit. But this is not necessary for non-C calling
// conventions. The frontend should mark functions whose return values
// require promoting with signext or zeroext attributes.
if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
if (VT.bitsLT(MinVT))
VT = MinVT;
}
unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
MVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
// 'inreg' on function refers to return value
ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::InReg))
Flags.setInReg();
// Propagate extension type if any
if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
Flags.setSExt();
else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
Flags.setZExt();
for (unsigned i = 0; i < NumParts; ++i)
Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isFixed=*/true, 0, 0));
}
}
/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
/// function arguments in the caller parameter area. This is the actual
/// alignment, not its logarithm.
unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty,
const DataLayout &DL) const {
return DL.getABITypeAlignment(Ty);
}
bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
const DataLayout &DL, EVT VT,
unsigned AddrSpace,
unsigned Alignment,
bool *Fast) const {
// Check if the specified alignment is sufficient based on the data layout.
// TODO: While using the data layout works in practice, a better solution
// would be to implement this check directly (make this a virtual function).
// For example, the ABI alignment may change based on software platform while
// this function should only be affected by hardware implementation.
Type *Ty = VT.getTypeForEVT(Context);
if (Alignment >= DL.getABITypeAlignment(Ty)) {
// Assume that an access that meets the ABI-specified alignment is fast.
if (Fast != nullptr)
*Fast = true;
return true;
}
// This is a misaligned access.
return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Fast);
}
//===----------------------------------------------------------------------===//
// TargetTransformInfo Helpers
//===----------------------------------------------------------------------===//
int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
enum InstructionOpcodes {
#define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
#define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
#include "llvm/IR/Instruction.def"
};
switch (static_cast<InstructionOpcodes>(Opcode)) {
case Ret: return 0;
case Br: return 0;
case Switch: return 0;
case IndirectBr: return 0;
case Invoke: return 0;
case Resume: return 0;
case Unreachable: return 0;
case CleanupRet: return 0;
case CatchRet: return 0;
case CatchPad: return 0;
case CatchSwitch: return 0;
case CleanupPad: return 0;
case Add: return ISD::ADD;
case FAdd: return ISD::FADD;
case Sub: return ISD::SUB;
case FSub: return ISD::FSUB;
case Mul: return ISD::MUL;
case FMul: return ISD::FMUL;
case UDiv: return ISD::UDIV;
case SDiv: return ISD::SDIV;
case FDiv: return ISD::FDIV;
case URem: return ISD::UREM;
case SRem: return ISD::SREM;
case FRem: return ISD::FREM;
case Shl: return ISD::SHL;
case LShr: return ISD::SRL;
case AShr: return ISD::SRA;
case And: return ISD::AND;
case Or: return ISD::OR;
case Xor: return ISD::XOR;
case Alloca: return 0;
case Load: return ISD::LOAD;
case Store: return ISD::STORE;
case GetElementPtr: return 0;
case Fence: return 0;
case AtomicCmpXchg: return 0;
case AtomicRMW: return 0;
case Trunc: return ISD::TRUNCATE;
case ZExt: return ISD::ZERO_EXTEND;
case SExt: return ISD::SIGN_EXTEND;
case FPToUI: return ISD::FP_TO_UINT;
case FPToSI: return ISD::FP_TO_SINT;
case UIToFP: return ISD::UINT_TO_FP;
case SIToFP: return ISD::SINT_TO_FP;
case FPTrunc: return ISD::FP_ROUND;
case FPExt: return ISD::FP_EXTEND;
case PtrToInt: return ISD::BITCAST;
case IntToPtr: return ISD::BITCAST;
case BitCast: return ISD::BITCAST;
case AddrSpaceCast: return ISD::ADDRSPACECAST;
case ICmp: return ISD::SETCC;
case FCmp: return ISD::SETCC;
case PHI: return 0;
case Call: return 0;
case Select: return ISD::SELECT;
case UserOp1: return 0;
case UserOp2: return 0;
case VAArg: return 0;
case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
case InsertElement: return ISD::INSERT_VECTOR_ELT;
case ShuffleVector: return ISD::VECTOR_SHUFFLE;
case ExtractValue: return ISD::MERGE_VALUES;
case InsertValue: return ISD::MERGE_VALUES;
case LandingPad: return 0;
}
llvm_unreachable("Unknown instruction type encountered!");
}
std::pair<int, MVT>
TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL,
Type *Ty) const {
LLVMContext &C = Ty->getContext();
EVT MTy = getValueType(DL, Ty);
int Cost = 1;
// We keep legalizing the type until we find a legal kind. We assume that
// the only operation that costs anything is the split. After splitting
// we need to handle two types.
while (true) {
LegalizeKind LK = getTypeConversion(C, MTy);
if (LK.first == TypeLegal)
return std::make_pair(Cost, MTy.getSimpleVT());
if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
Cost *= 2;
// Do not loop with f128 type.
if (MTy == LK.second)
return std::make_pair(Cost, MTy.getSimpleVT());
// Keep legalizing the type.
MTy = LK.second;
}
}
Value *TargetLoweringBase::getSafeStackPointerLocation(IRBuilder<> &IRB) const {
if (!TM.getTargetTriple().isAndroid())
return nullptr;
// Android provides a libc function to retrieve the address of the current
// thread's unsafe stack pointer.
Module *M = IRB.GetInsertBlock()->getParent()->getParent();
Type *StackPtrTy = Type::getInt8PtrTy(M->getContext());
Value *Fn = M->getOrInsertFunction("__safestack_pointer_address",
StackPtrTy->getPointerTo(0), nullptr);
return IRB.CreateCall(Fn);
}
//===----------------------------------------------------------------------===//
// Loop Strength Reduction hooks
//===----------------------------------------------------------------------===//
/// isLegalAddressingMode - Return true if the addressing mode represented
/// by AM is legal for this target, for a load/store of the specified type.
bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
const AddrMode &AM, Type *Ty,
unsigned AS) const {
// The default implementation of this implements a conservative RISCy, r+r and
// r+i addr mode.
// Allows a sign-extended 16-bit immediate field.
if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
return false;
// No global is ever allowed as a base.
if (AM.BaseGV)
return false;
// Only support r+r,
switch (AM.Scale) {
case 0: // "r+i" or just "i", depending on HasBaseReg.
break;
case 1:
if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
return false;
// Otherwise we have r+r or r+i.
break;
case 2:
if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
return false;
// Allow 2*r as r+r.
break;
default: // Don't allow n * r
return false;
}
return true;
}