mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 20:23:11 +01:00
284813cf0f
llvm-svn: 309993
915 lines
30 KiB
C++
915 lines
30 KiB
C++
//===- MipsDelaySlotFiller.cpp - Mips Delay Slot Filler -------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Simple pass to fill delay slots with useful instructions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "MCTargetDesc/MipsMCNaCl.h"
|
|
#include "Mips.h"
|
|
#include "MipsInstrInfo.h"
|
|
#include "MipsRegisterInfo.h"
|
|
#include "MipsSubtarget.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/PointerUnion.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/PseudoSourceValue.h"
|
|
#include "llvm/MC/MCInstrDesc.h"
|
|
#include "llvm/MC/MCRegisterInfo.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CodeGen.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include "llvm/Target/TargetSubtargetInfo.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <iterator>
|
|
#include <memory>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "delay-slot-filler"
|
|
|
|
STATISTIC(FilledSlots, "Number of delay slots filled");
|
|
STATISTIC(UsefulSlots, "Number of delay slots filled with instructions that"
|
|
" are not NOP.");
|
|
|
|
static cl::opt<bool> DisableDelaySlotFiller(
|
|
"disable-mips-delay-filler",
|
|
cl::init(false),
|
|
cl::desc("Fill all delay slots with NOPs."),
|
|
cl::Hidden);
|
|
|
|
static cl::opt<bool> DisableForwardSearch(
|
|
"disable-mips-df-forward-search",
|
|
cl::init(true),
|
|
cl::desc("Disallow MIPS delay filler to search forward."),
|
|
cl::Hidden);
|
|
|
|
static cl::opt<bool> DisableSuccBBSearch(
|
|
"disable-mips-df-succbb-search",
|
|
cl::init(true),
|
|
cl::desc("Disallow MIPS delay filler to search successor basic blocks."),
|
|
cl::Hidden);
|
|
|
|
static cl::opt<bool> DisableBackwardSearch(
|
|
"disable-mips-df-backward-search",
|
|
cl::init(false),
|
|
cl::desc("Disallow MIPS delay filler to search backward."),
|
|
cl::Hidden);
|
|
|
|
enum CompactBranchPolicy {
|
|
CB_Never, ///< The policy 'never' may in some circumstances or for some
|
|
///< ISAs not be absolutely adhered to.
|
|
CB_Optimal, ///< Optimal is the default and will produce compact branches
|
|
///< when delay slots cannot be filled.
|
|
CB_Always ///< 'always' may in some circumstances may not be
|
|
///< absolutely adhered to there may not be a corresponding
|
|
///< compact form of a branch.
|
|
};
|
|
|
|
static cl::opt<CompactBranchPolicy> MipsCompactBranchPolicy(
|
|
"mips-compact-branches",cl::Optional,
|
|
cl::init(CB_Optimal),
|
|
cl::desc("MIPS Specific: Compact branch policy."),
|
|
cl::values(
|
|
clEnumValN(CB_Never, "never", "Do not use compact branches if possible."),
|
|
clEnumValN(CB_Optimal, "optimal", "Use compact branches where appropiate (default)."),
|
|
clEnumValN(CB_Always, "always", "Always use compact branches if possible.")
|
|
)
|
|
);
|
|
|
|
namespace {
|
|
|
|
using Iter = MachineBasicBlock::iterator;
|
|
using ReverseIter = MachineBasicBlock::reverse_iterator;
|
|
using BB2BrMap = SmallDenseMap<MachineBasicBlock *, MachineInstr *, 2>;
|
|
|
|
class RegDefsUses {
|
|
public:
|
|
RegDefsUses(const TargetRegisterInfo &TRI);
|
|
|
|
void init(const MachineInstr &MI);
|
|
|
|
/// This function sets all caller-saved registers in Defs.
|
|
void setCallerSaved(const MachineInstr &MI);
|
|
|
|
/// This function sets all unallocatable registers in Defs.
|
|
void setUnallocatableRegs(const MachineFunction &MF);
|
|
|
|
/// Set bits in Uses corresponding to MBB's live-out registers except for
|
|
/// the registers that are live-in to SuccBB.
|
|
void addLiveOut(const MachineBasicBlock &MBB,
|
|
const MachineBasicBlock &SuccBB);
|
|
|
|
bool update(const MachineInstr &MI, unsigned Begin, unsigned End);
|
|
|
|
private:
|
|
bool checkRegDefsUses(BitVector &NewDefs, BitVector &NewUses, unsigned Reg,
|
|
bool IsDef) const;
|
|
|
|
/// Returns true if Reg or its alias is in RegSet.
|
|
bool isRegInSet(const BitVector &RegSet, unsigned Reg) const;
|
|
|
|
const TargetRegisterInfo &TRI;
|
|
BitVector Defs, Uses;
|
|
};
|
|
|
|
/// Base class for inspecting loads and stores.
|
|
class InspectMemInstr {
|
|
public:
|
|
InspectMemInstr(bool ForbidMemInstr_) : ForbidMemInstr(ForbidMemInstr_) {}
|
|
virtual ~InspectMemInstr() = default;
|
|
|
|
/// Return true if MI cannot be moved to delay slot.
|
|
bool hasHazard(const MachineInstr &MI);
|
|
|
|
protected:
|
|
/// Flags indicating whether loads or stores have been seen.
|
|
bool OrigSeenLoad = false;
|
|
bool OrigSeenStore = false;
|
|
bool SeenLoad = false;
|
|
bool SeenStore = false;
|
|
|
|
/// Memory instructions are not allowed to move to delay slot if this flag
|
|
/// is true.
|
|
bool ForbidMemInstr;
|
|
|
|
private:
|
|
virtual bool hasHazard_(const MachineInstr &MI) = 0;
|
|
};
|
|
|
|
/// This subclass rejects any memory instructions.
|
|
class NoMemInstr : public InspectMemInstr {
|
|
public:
|
|
NoMemInstr() : InspectMemInstr(true) {}
|
|
|
|
private:
|
|
bool hasHazard_(const MachineInstr &MI) override { return true; }
|
|
};
|
|
|
|
/// This subclass accepts loads from stacks and constant loads.
|
|
class LoadFromStackOrConst : public InspectMemInstr {
|
|
public:
|
|
LoadFromStackOrConst() : InspectMemInstr(false) {}
|
|
|
|
private:
|
|
bool hasHazard_(const MachineInstr &MI) override;
|
|
};
|
|
|
|
/// This subclass uses memory dependence information to determine whether a
|
|
/// memory instruction can be moved to a delay slot.
|
|
class MemDefsUses : public InspectMemInstr {
|
|
public:
|
|
MemDefsUses(const DataLayout &DL, const MachineFrameInfo *MFI);
|
|
|
|
private:
|
|
using ValueType = PointerUnion<const Value *, const PseudoSourceValue *>;
|
|
|
|
bool hasHazard_(const MachineInstr &MI) override;
|
|
|
|
/// Update Defs and Uses. Return true if there exist dependences that
|
|
/// disqualify the delay slot candidate between V and values in Uses and
|
|
/// Defs.
|
|
bool updateDefsUses(ValueType V, bool MayStore);
|
|
|
|
/// Get the list of underlying objects of MI's memory operand.
|
|
bool getUnderlyingObjects(const MachineInstr &MI,
|
|
SmallVectorImpl<ValueType> &Objects) const;
|
|
|
|
const MachineFrameInfo *MFI;
|
|
SmallPtrSet<ValueType, 4> Uses, Defs;
|
|
const DataLayout &DL;
|
|
|
|
/// Flags indicating whether loads or stores with no underlying objects have
|
|
/// been seen.
|
|
bool SeenNoObjLoad = false;
|
|
bool SeenNoObjStore = false;
|
|
};
|
|
|
|
class Filler : public MachineFunctionPass {
|
|
public:
|
|
Filler() : MachineFunctionPass(ID) {}
|
|
|
|
StringRef getPassName() const override { return "Mips Delay Slot Filler"; }
|
|
|
|
bool runOnMachineFunction(MachineFunction &F) override {
|
|
TM = &F.getTarget();
|
|
bool Changed = false;
|
|
for (MachineFunction::iterator FI = F.begin(), FE = F.end();
|
|
FI != FE; ++FI)
|
|
Changed |= runOnMachineBasicBlock(*FI);
|
|
|
|
// This pass invalidates liveness information when it reorders
|
|
// instructions to fill delay slot. Without this, -verify-machineinstrs
|
|
// will fail.
|
|
if (Changed)
|
|
F.getRegInfo().invalidateLiveness();
|
|
|
|
return Changed;
|
|
}
|
|
|
|
MachineFunctionProperties getRequiredProperties() const override {
|
|
return MachineFunctionProperties().set(
|
|
MachineFunctionProperties::Property::NoVRegs);
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<MachineBranchProbabilityInfo>();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
private:
|
|
bool runOnMachineBasicBlock(MachineBasicBlock &MBB);
|
|
|
|
Iter replaceWithCompactBranch(MachineBasicBlock &MBB, Iter Branch,
|
|
const DebugLoc &DL);
|
|
|
|
/// This function checks if it is valid to move Candidate to the delay slot
|
|
/// and returns true if it isn't. It also updates memory and register
|
|
/// dependence information.
|
|
bool delayHasHazard(const MachineInstr &Candidate, RegDefsUses &RegDU,
|
|
InspectMemInstr &IM) const;
|
|
|
|
/// This function searches range [Begin, End) for an instruction that can be
|
|
/// moved to the delay slot. Returns true on success.
|
|
template<typename IterTy>
|
|
bool searchRange(MachineBasicBlock &MBB, IterTy Begin, IterTy End,
|
|
RegDefsUses &RegDU, InspectMemInstr &IM, Iter Slot,
|
|
IterTy &Filler) const;
|
|
|
|
/// This function searches in the backward direction for an instruction that
|
|
/// can be moved to the delay slot. Returns true on success.
|
|
bool searchBackward(MachineBasicBlock &MBB, MachineInstr &Slot) const;
|
|
|
|
/// This function searches MBB in the forward direction for an instruction
|
|
/// that can be moved to the delay slot. Returns true on success.
|
|
bool searchForward(MachineBasicBlock &MBB, Iter Slot) const;
|
|
|
|
/// This function searches one of MBB's successor blocks for an instruction
|
|
/// that can be moved to the delay slot and inserts clones of the
|
|
/// instruction into the successor's predecessor blocks.
|
|
bool searchSuccBBs(MachineBasicBlock &MBB, Iter Slot) const;
|
|
|
|
/// Pick a successor block of MBB. Return NULL if MBB doesn't have a
|
|
/// successor block that is not a landing pad.
|
|
MachineBasicBlock *selectSuccBB(MachineBasicBlock &B) const;
|
|
|
|
/// This function analyzes MBB and returns an instruction with an unoccupied
|
|
/// slot that branches to Dst.
|
|
std::pair<MipsInstrInfo::BranchType, MachineInstr *>
|
|
getBranch(MachineBasicBlock &MBB, const MachineBasicBlock &Dst) const;
|
|
|
|
/// Examine Pred and see if it is possible to insert an instruction into
|
|
/// one of its branches delay slot or its end.
|
|
bool examinePred(MachineBasicBlock &Pred, const MachineBasicBlock &Succ,
|
|
RegDefsUses &RegDU, bool &HasMultipleSuccs,
|
|
BB2BrMap &BrMap) const;
|
|
|
|
bool terminateSearch(const MachineInstr &Candidate) const;
|
|
|
|
const TargetMachine *TM = nullptr;
|
|
|
|
static char ID;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char Filler::ID = 0;
|
|
|
|
static bool hasUnoccupiedSlot(const MachineInstr *MI) {
|
|
return MI->hasDelaySlot() && !MI->isBundledWithSucc();
|
|
}
|
|
|
|
/// This function inserts clones of Filler into predecessor blocks.
|
|
static void insertDelayFiller(Iter Filler, const BB2BrMap &BrMap) {
|
|
MachineFunction *MF = Filler->getParent()->getParent();
|
|
|
|
for (BB2BrMap::const_iterator I = BrMap.begin(); I != BrMap.end(); ++I) {
|
|
if (I->second) {
|
|
MIBundleBuilder(I->second).append(MF->CloneMachineInstr(&*Filler));
|
|
++UsefulSlots;
|
|
} else {
|
|
I->first->insert(I->first->end(), MF->CloneMachineInstr(&*Filler));
|
|
}
|
|
}
|
|
}
|
|
|
|
/// This function adds registers Filler defines to MBB's live-in register list.
|
|
static void addLiveInRegs(Iter Filler, MachineBasicBlock &MBB) {
|
|
for (unsigned I = 0, E = Filler->getNumOperands(); I != E; ++I) {
|
|
const MachineOperand &MO = Filler->getOperand(I);
|
|
unsigned R;
|
|
|
|
if (!MO.isReg() || !MO.isDef() || !(R = MO.getReg()))
|
|
continue;
|
|
|
|
#ifndef NDEBUG
|
|
const MachineFunction &MF = *MBB.getParent();
|
|
assert(MF.getSubtarget().getRegisterInfo()->getAllocatableSet(MF).test(R) &&
|
|
"Shouldn't move an instruction with unallocatable registers across "
|
|
"basic block boundaries.");
|
|
#endif
|
|
|
|
if (!MBB.isLiveIn(R))
|
|
MBB.addLiveIn(R);
|
|
}
|
|
}
|
|
|
|
RegDefsUses::RegDefsUses(const TargetRegisterInfo &TRI)
|
|
: TRI(TRI), Defs(TRI.getNumRegs(), false), Uses(TRI.getNumRegs(), false) {}
|
|
|
|
void RegDefsUses::init(const MachineInstr &MI) {
|
|
// Add all register operands which are explicit and non-variadic.
|
|
update(MI, 0, MI.getDesc().getNumOperands());
|
|
|
|
// If MI is a call, add RA to Defs to prevent users of RA from going into
|
|
// delay slot.
|
|
if (MI.isCall())
|
|
Defs.set(Mips::RA);
|
|
|
|
// Add all implicit register operands of branch instructions except
|
|
// register AT.
|
|
if (MI.isBranch()) {
|
|
update(MI, MI.getDesc().getNumOperands(), MI.getNumOperands());
|
|
Defs.reset(Mips::AT);
|
|
}
|
|
}
|
|
|
|
void RegDefsUses::setCallerSaved(const MachineInstr &MI) {
|
|
assert(MI.isCall());
|
|
|
|
// Add RA/RA_64 to Defs to prevent users of RA/RA_64 from going into
|
|
// the delay slot. The reason is that RA/RA_64 must not be changed
|
|
// in the delay slot so that the callee can return to the caller.
|
|
if (MI.definesRegister(Mips::RA) || MI.definesRegister(Mips::RA_64)) {
|
|
Defs.set(Mips::RA);
|
|
Defs.set(Mips::RA_64);
|
|
}
|
|
|
|
// If MI is a call, add all caller-saved registers to Defs.
|
|
BitVector CallerSavedRegs(TRI.getNumRegs(), true);
|
|
|
|
CallerSavedRegs.reset(Mips::ZERO);
|
|
CallerSavedRegs.reset(Mips::ZERO_64);
|
|
|
|
for (const MCPhysReg *R = TRI.getCalleeSavedRegs(MI.getParent()->getParent());
|
|
*R; ++R)
|
|
for (MCRegAliasIterator AI(*R, &TRI, true); AI.isValid(); ++AI)
|
|
CallerSavedRegs.reset(*AI);
|
|
|
|
Defs |= CallerSavedRegs;
|
|
}
|
|
|
|
void RegDefsUses::setUnallocatableRegs(const MachineFunction &MF) {
|
|
BitVector AllocSet = TRI.getAllocatableSet(MF);
|
|
|
|
for (unsigned R : AllocSet.set_bits())
|
|
for (MCRegAliasIterator AI(R, &TRI, false); AI.isValid(); ++AI)
|
|
AllocSet.set(*AI);
|
|
|
|
AllocSet.set(Mips::ZERO);
|
|
AllocSet.set(Mips::ZERO_64);
|
|
|
|
Defs |= AllocSet.flip();
|
|
}
|
|
|
|
void RegDefsUses::addLiveOut(const MachineBasicBlock &MBB,
|
|
const MachineBasicBlock &SuccBB) {
|
|
for (MachineBasicBlock::const_succ_iterator SI = MBB.succ_begin(),
|
|
SE = MBB.succ_end(); SI != SE; ++SI)
|
|
if (*SI != &SuccBB)
|
|
for (const auto &LI : (*SI)->liveins())
|
|
Uses.set(LI.PhysReg);
|
|
}
|
|
|
|
bool RegDefsUses::update(const MachineInstr &MI, unsigned Begin, unsigned End) {
|
|
BitVector NewDefs(TRI.getNumRegs()), NewUses(TRI.getNumRegs());
|
|
bool HasHazard = false;
|
|
|
|
for (unsigned I = Begin; I != End; ++I) {
|
|
const MachineOperand &MO = MI.getOperand(I);
|
|
|
|
if (MO.isReg() && MO.getReg())
|
|
HasHazard |= checkRegDefsUses(NewDefs, NewUses, MO.getReg(), MO.isDef());
|
|
}
|
|
|
|
Defs |= NewDefs;
|
|
Uses |= NewUses;
|
|
|
|
return HasHazard;
|
|
}
|
|
|
|
bool RegDefsUses::checkRegDefsUses(BitVector &NewDefs, BitVector &NewUses,
|
|
unsigned Reg, bool IsDef) const {
|
|
if (IsDef) {
|
|
NewDefs.set(Reg);
|
|
// check whether Reg has already been defined or used.
|
|
return (isRegInSet(Defs, Reg) || isRegInSet(Uses, Reg));
|
|
}
|
|
|
|
NewUses.set(Reg);
|
|
// check whether Reg has already been defined.
|
|
return isRegInSet(Defs, Reg);
|
|
}
|
|
|
|
bool RegDefsUses::isRegInSet(const BitVector &RegSet, unsigned Reg) const {
|
|
// Check Reg and all aliased Registers.
|
|
for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI)
|
|
if (RegSet.test(*AI))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
bool InspectMemInstr::hasHazard(const MachineInstr &MI) {
|
|
if (!MI.mayStore() && !MI.mayLoad())
|
|
return false;
|
|
|
|
if (ForbidMemInstr)
|
|
return true;
|
|
|
|
OrigSeenLoad = SeenLoad;
|
|
OrigSeenStore = SeenStore;
|
|
SeenLoad |= MI.mayLoad();
|
|
SeenStore |= MI.mayStore();
|
|
|
|
// If MI is an ordered or volatile memory reference, disallow moving
|
|
// subsequent loads and stores to delay slot.
|
|
if (MI.hasOrderedMemoryRef() && (OrigSeenLoad || OrigSeenStore)) {
|
|
ForbidMemInstr = true;
|
|
return true;
|
|
}
|
|
|
|
return hasHazard_(MI);
|
|
}
|
|
|
|
bool LoadFromStackOrConst::hasHazard_(const MachineInstr &MI) {
|
|
if (MI.mayStore())
|
|
return true;
|
|
|
|
if (!MI.hasOneMemOperand() || !(*MI.memoperands_begin())->getPseudoValue())
|
|
return true;
|
|
|
|
if (const PseudoSourceValue *PSV =
|
|
(*MI.memoperands_begin())->getPseudoValue()) {
|
|
if (isa<FixedStackPseudoSourceValue>(PSV))
|
|
return false;
|
|
return !PSV->isConstant(nullptr) && !PSV->isStack();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
MemDefsUses::MemDefsUses(const DataLayout &DL, const MachineFrameInfo *MFI_)
|
|
: InspectMemInstr(false), MFI(MFI_), DL(DL) {}
|
|
|
|
bool MemDefsUses::hasHazard_(const MachineInstr &MI) {
|
|
bool HasHazard = false;
|
|
SmallVector<ValueType, 4> Objs;
|
|
|
|
// Check underlying object list.
|
|
if (getUnderlyingObjects(MI, Objs)) {
|
|
for (SmallVectorImpl<ValueType>::const_iterator I = Objs.begin();
|
|
I != Objs.end(); ++I)
|
|
HasHazard |= updateDefsUses(*I, MI.mayStore());
|
|
|
|
return HasHazard;
|
|
}
|
|
|
|
// No underlying objects found.
|
|
HasHazard = MI.mayStore() && (OrigSeenLoad || OrigSeenStore);
|
|
HasHazard |= MI.mayLoad() || OrigSeenStore;
|
|
|
|
SeenNoObjLoad |= MI.mayLoad();
|
|
SeenNoObjStore |= MI.mayStore();
|
|
|
|
return HasHazard;
|
|
}
|
|
|
|
bool MemDefsUses::updateDefsUses(ValueType V, bool MayStore) {
|
|
if (MayStore)
|
|
return !Defs.insert(V).second || Uses.count(V) || SeenNoObjStore ||
|
|
SeenNoObjLoad;
|
|
|
|
Uses.insert(V);
|
|
return Defs.count(V) || SeenNoObjStore;
|
|
}
|
|
|
|
bool MemDefsUses::
|
|
getUnderlyingObjects(const MachineInstr &MI,
|
|
SmallVectorImpl<ValueType> &Objects) const {
|
|
if (!MI.hasOneMemOperand() ||
|
|
(!(*MI.memoperands_begin())->getValue() &&
|
|
!(*MI.memoperands_begin())->getPseudoValue()))
|
|
return false;
|
|
|
|
if (const PseudoSourceValue *PSV =
|
|
(*MI.memoperands_begin())->getPseudoValue()) {
|
|
if (!PSV->isAliased(MFI))
|
|
return false;
|
|
Objects.push_back(PSV);
|
|
return true;
|
|
}
|
|
|
|
const Value *V = (*MI.memoperands_begin())->getValue();
|
|
|
|
SmallVector<Value *, 4> Objs;
|
|
GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL);
|
|
|
|
for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), E = Objs.end();
|
|
I != E; ++I) {
|
|
if (!isIdentifiedObject(V))
|
|
return false;
|
|
|
|
Objects.push_back(*I);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Replace Branch with the compact branch instruction.
|
|
Iter Filler::replaceWithCompactBranch(MachineBasicBlock &MBB, Iter Branch,
|
|
const DebugLoc &DL) {
|
|
const MipsSubtarget &STI = MBB.getParent()->getSubtarget<MipsSubtarget>();
|
|
const MipsInstrInfo *TII = STI.getInstrInfo();
|
|
|
|
unsigned NewOpcode = TII->getEquivalentCompactForm(Branch);
|
|
Branch = TII->genInstrWithNewOpc(NewOpcode, Branch);
|
|
|
|
std::next(Branch)->eraseFromParent();
|
|
return Branch;
|
|
}
|
|
|
|
// For given opcode returns opcode of corresponding instruction with short
|
|
// delay slot.
|
|
// For the pseudo TAILCALL*_MM instructions return the short delay slot
|
|
// form. Unfortunately, TAILCALL<->b16 is denied as b16 has a limited range
|
|
// that is too short to make use of for tail calls.
|
|
static int getEquivalentCallShort(int Opcode) {
|
|
switch (Opcode) {
|
|
case Mips::BGEZAL:
|
|
return Mips::BGEZALS_MM;
|
|
case Mips::BLTZAL:
|
|
return Mips::BLTZALS_MM;
|
|
case Mips::JAL:
|
|
return Mips::JALS_MM;
|
|
case Mips::JALR:
|
|
return Mips::JALRS_MM;
|
|
case Mips::JALR16_MM:
|
|
return Mips::JALRS16_MM;
|
|
case Mips::TAILCALL_MM:
|
|
llvm_unreachable("Attempting to shorten the TAILCALL_MM pseudo!");
|
|
case Mips::TAILCALLREG:
|
|
return Mips::JR16_MM;
|
|
default:
|
|
llvm_unreachable("Unexpected call instruction for microMIPS.");
|
|
}
|
|
}
|
|
|
|
/// runOnMachineBasicBlock - Fill in delay slots for the given basic block.
|
|
/// We assume there is only one delay slot per delayed instruction.
|
|
bool Filler::runOnMachineBasicBlock(MachineBasicBlock &MBB) {
|
|
bool Changed = false;
|
|
const MipsSubtarget &STI = MBB.getParent()->getSubtarget<MipsSubtarget>();
|
|
bool InMicroMipsMode = STI.inMicroMipsMode();
|
|
const MipsInstrInfo *TII = STI.getInstrInfo();
|
|
|
|
if (InMicroMipsMode && STI.hasMips32r6()) {
|
|
// This is microMIPS32r6 or microMIPS64r6 processor. Delay slot for
|
|
// branching instructions is not needed.
|
|
return Changed;
|
|
}
|
|
|
|
for (Iter I = MBB.begin(); I != MBB.end(); ++I) {
|
|
if (!hasUnoccupiedSlot(&*I))
|
|
continue;
|
|
|
|
++FilledSlots;
|
|
Changed = true;
|
|
|
|
// Delay slot filling is disabled at -O0.
|
|
if (!DisableDelaySlotFiller && (TM->getOptLevel() != CodeGenOpt::None)) {
|
|
bool Filled = false;
|
|
|
|
if (MipsCompactBranchPolicy.getValue() != CB_Always ||
|
|
!TII->getEquivalentCompactForm(I)) {
|
|
if (searchBackward(MBB, *I)) {
|
|
Filled = true;
|
|
} else if (I->isTerminator()) {
|
|
if (searchSuccBBs(MBB, I)) {
|
|
Filled = true;
|
|
}
|
|
} else if (searchForward(MBB, I)) {
|
|
Filled = true;
|
|
}
|
|
}
|
|
|
|
if (Filled) {
|
|
// Get instruction with delay slot.
|
|
MachineBasicBlock::instr_iterator DSI = I.getInstrIterator();
|
|
|
|
if (InMicroMipsMode && TII->getInstSizeInBytes(*std::next(DSI)) == 2 &&
|
|
DSI->isCall()) {
|
|
// If instruction in delay slot is 16b change opcode to
|
|
// corresponding instruction with short delay slot.
|
|
|
|
// TODO: Implement an instruction mapping table of 16bit opcodes to
|
|
// 32bit opcodes so that an instruction can be expanded. This would
|
|
// save 16 bits as a TAILCALL_MM pseudo requires a fullsized nop.
|
|
// TODO: Permit b16 when branching backwards to the the same function
|
|
// if it is in range.
|
|
DSI->setDesc(TII->get(getEquivalentCallShort(DSI->getOpcode())));
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// For microMIPS if instruction is BEQ or BNE with one ZERO register, then
|
|
// instead of adding NOP replace this instruction with the corresponding
|
|
// compact branch instruction, i.e. BEQZC or BNEZC. Additionally
|
|
// PseudoReturn and PseudoIndirectBranch are expanded to JR_MM, so they can
|
|
// be replaced with JRC16_MM.
|
|
|
|
// For MIPSR6 attempt to produce the corresponding compact (no delay slot)
|
|
// form of the CTI. For indirect jumps this will not require inserting a
|
|
// NOP and for branches will hopefully avoid requiring a NOP.
|
|
if ((InMicroMipsMode ||
|
|
(STI.hasMips32r6() && MipsCompactBranchPolicy != CB_Never)) &&
|
|
TII->getEquivalentCompactForm(I)) {
|
|
I = replaceWithCompactBranch(MBB, I, I->getDebugLoc());
|
|
continue;
|
|
}
|
|
|
|
// Bundle the NOP to the instruction with the delay slot.
|
|
BuildMI(MBB, std::next(I), I->getDebugLoc(), TII->get(Mips::NOP));
|
|
MIBundleBuilder(MBB, I, std::next(I, 2));
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
template<typename IterTy>
|
|
bool Filler::searchRange(MachineBasicBlock &MBB, IterTy Begin, IterTy End,
|
|
RegDefsUses &RegDU, InspectMemInstr& IM, Iter Slot,
|
|
IterTy &Filler) const {
|
|
for (IterTy I = Begin; I != End;) {
|
|
IterTy CurrI = I;
|
|
++I;
|
|
|
|
// skip debug value
|
|
if (CurrI->isDebugValue())
|
|
continue;
|
|
|
|
if (terminateSearch(*CurrI))
|
|
break;
|
|
|
|
assert((!CurrI->isCall() && !CurrI->isReturn() && !CurrI->isBranch()) &&
|
|
"Cannot put calls, returns or branches in delay slot.");
|
|
|
|
if (CurrI->isKill()) {
|
|
CurrI->eraseFromParent();
|
|
continue;
|
|
}
|
|
|
|
if (delayHasHazard(*CurrI, RegDU, IM))
|
|
continue;
|
|
|
|
const MipsSubtarget &STI = MBB.getParent()->getSubtarget<MipsSubtarget>();
|
|
if (STI.isTargetNaCl()) {
|
|
// In NaCl, instructions that must be masked are forbidden in delay slots.
|
|
// We only check for loads, stores and SP changes. Calls, returns and
|
|
// branches are not checked because non-NaCl targets never put them in
|
|
// delay slots.
|
|
unsigned AddrIdx;
|
|
if ((isBasePlusOffsetMemoryAccess(CurrI->getOpcode(), &AddrIdx) &&
|
|
baseRegNeedsLoadStoreMask(CurrI->getOperand(AddrIdx).getReg())) ||
|
|
CurrI->modifiesRegister(Mips::SP, STI.getRegisterInfo()))
|
|
continue;
|
|
}
|
|
|
|
bool InMicroMipsMode = STI.inMicroMipsMode();
|
|
const MipsInstrInfo *TII = STI.getInstrInfo();
|
|
unsigned Opcode = (*Slot).getOpcode();
|
|
// This is complicated by the tail call optimization. For non-PIC code
|
|
// there is only a 32bit sized unconditional branch which can be assumed
|
|
// to be able to reach the target. b16 only has a range of +/- 1 KB.
|
|
// It's entirely possible that the target function is reachable with b16
|
|
// but we don't have enough information to make that decision.
|
|
if (InMicroMipsMode && TII->getInstSizeInBytes(*CurrI) == 2 &&
|
|
(Opcode == Mips::JR || Opcode == Mips::PseudoIndirectBranch ||
|
|
Opcode == Mips::PseudoReturn || Opcode == Mips::TAILCALL))
|
|
continue;
|
|
|
|
Filler = CurrI;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Filler::searchBackward(MachineBasicBlock &MBB, MachineInstr &Slot) const {
|
|
if (DisableBackwardSearch)
|
|
return false;
|
|
|
|
auto *Fn = MBB.getParent();
|
|
RegDefsUses RegDU(*Fn->getSubtarget().getRegisterInfo());
|
|
MemDefsUses MemDU(Fn->getDataLayout(), &Fn->getFrameInfo());
|
|
ReverseIter Filler;
|
|
|
|
RegDU.init(Slot);
|
|
|
|
MachineBasicBlock::iterator SlotI = Slot;
|
|
if (!searchRange(MBB, ++SlotI.getReverse(), MBB.rend(), RegDU, MemDU, Slot,
|
|
Filler))
|
|
return false;
|
|
|
|
MBB.splice(std::next(SlotI), &MBB, Filler.getReverse());
|
|
MIBundleBuilder(MBB, SlotI, std::next(SlotI, 2));
|
|
++UsefulSlots;
|
|
return true;
|
|
}
|
|
|
|
bool Filler::searchForward(MachineBasicBlock &MBB, Iter Slot) const {
|
|
// Can handle only calls.
|
|
if (DisableForwardSearch || !Slot->isCall())
|
|
return false;
|
|
|
|
RegDefsUses RegDU(*MBB.getParent()->getSubtarget().getRegisterInfo());
|
|
NoMemInstr NM;
|
|
Iter Filler;
|
|
|
|
RegDU.setCallerSaved(*Slot);
|
|
|
|
if (!searchRange(MBB, std::next(Slot), MBB.end(), RegDU, NM, Slot, Filler))
|
|
return false;
|
|
|
|
MBB.splice(std::next(Slot), &MBB, Filler);
|
|
MIBundleBuilder(MBB, Slot, std::next(Slot, 2));
|
|
++UsefulSlots;
|
|
return true;
|
|
}
|
|
|
|
bool Filler::searchSuccBBs(MachineBasicBlock &MBB, Iter Slot) const {
|
|
if (DisableSuccBBSearch)
|
|
return false;
|
|
|
|
MachineBasicBlock *SuccBB = selectSuccBB(MBB);
|
|
|
|
if (!SuccBB)
|
|
return false;
|
|
|
|
RegDefsUses RegDU(*MBB.getParent()->getSubtarget().getRegisterInfo());
|
|
bool HasMultipleSuccs = false;
|
|
BB2BrMap BrMap;
|
|
std::unique_ptr<InspectMemInstr> IM;
|
|
Iter Filler;
|
|
auto *Fn = MBB.getParent();
|
|
|
|
// Iterate over SuccBB's predecessor list.
|
|
for (MachineBasicBlock::pred_iterator PI = SuccBB->pred_begin(),
|
|
PE = SuccBB->pred_end(); PI != PE; ++PI)
|
|
if (!examinePred(**PI, *SuccBB, RegDU, HasMultipleSuccs, BrMap))
|
|
return false;
|
|
|
|
// Do not allow moving instructions which have unallocatable register operands
|
|
// across basic block boundaries.
|
|
RegDU.setUnallocatableRegs(*Fn);
|
|
|
|
// Only allow moving loads from stack or constants if any of the SuccBB's
|
|
// predecessors have multiple successors.
|
|
if (HasMultipleSuccs) {
|
|
IM.reset(new LoadFromStackOrConst());
|
|
} else {
|
|
const MachineFrameInfo &MFI = Fn->getFrameInfo();
|
|
IM.reset(new MemDefsUses(Fn->getDataLayout(), &MFI));
|
|
}
|
|
|
|
if (!searchRange(MBB, SuccBB->begin(), SuccBB->end(), RegDU, *IM, Slot,
|
|
Filler))
|
|
return false;
|
|
|
|
insertDelayFiller(Filler, BrMap);
|
|
addLiveInRegs(Filler, *SuccBB);
|
|
Filler->eraseFromParent();
|
|
|
|
return true;
|
|
}
|
|
|
|
MachineBasicBlock *Filler::selectSuccBB(MachineBasicBlock &B) const {
|
|
if (B.succ_empty())
|
|
return nullptr;
|
|
|
|
// Select the successor with the larget edge weight.
|
|
auto &Prob = getAnalysis<MachineBranchProbabilityInfo>();
|
|
MachineBasicBlock *S = *std::max_element(
|
|
B.succ_begin(), B.succ_end(),
|
|
[&](const MachineBasicBlock *Dst0, const MachineBasicBlock *Dst1) {
|
|
return Prob.getEdgeProbability(&B, Dst0) <
|
|
Prob.getEdgeProbability(&B, Dst1);
|
|
});
|
|
return S->isEHPad() ? nullptr : S;
|
|
}
|
|
|
|
std::pair<MipsInstrInfo::BranchType, MachineInstr *>
|
|
Filler::getBranch(MachineBasicBlock &MBB, const MachineBasicBlock &Dst) const {
|
|
const MipsInstrInfo *TII =
|
|
MBB.getParent()->getSubtarget<MipsSubtarget>().getInstrInfo();
|
|
MachineBasicBlock *TrueBB = nullptr, *FalseBB = nullptr;
|
|
SmallVector<MachineInstr*, 2> BranchInstrs;
|
|
SmallVector<MachineOperand, 2> Cond;
|
|
|
|
MipsInstrInfo::BranchType R =
|
|
TII->analyzeBranch(MBB, TrueBB, FalseBB, Cond, false, BranchInstrs);
|
|
|
|
if ((R == MipsInstrInfo::BT_None) || (R == MipsInstrInfo::BT_NoBranch))
|
|
return std::make_pair(R, nullptr);
|
|
|
|
if (R != MipsInstrInfo::BT_CondUncond) {
|
|
if (!hasUnoccupiedSlot(BranchInstrs[0]))
|
|
return std::make_pair(MipsInstrInfo::BT_None, nullptr);
|
|
|
|
assert(((R != MipsInstrInfo::BT_Uncond) || (TrueBB == &Dst)));
|
|
|
|
return std::make_pair(R, BranchInstrs[0]);
|
|
}
|
|
|
|
assert((TrueBB == &Dst) || (FalseBB == &Dst));
|
|
|
|
// Examine the conditional branch. See if its slot is occupied.
|
|
if (hasUnoccupiedSlot(BranchInstrs[0]))
|
|
return std::make_pair(MipsInstrInfo::BT_Cond, BranchInstrs[0]);
|
|
|
|
// If that fails, try the unconditional branch.
|
|
if (hasUnoccupiedSlot(BranchInstrs[1]) && (FalseBB == &Dst))
|
|
return std::make_pair(MipsInstrInfo::BT_Uncond, BranchInstrs[1]);
|
|
|
|
return std::make_pair(MipsInstrInfo::BT_None, nullptr);
|
|
}
|
|
|
|
bool Filler::examinePred(MachineBasicBlock &Pred, const MachineBasicBlock &Succ,
|
|
RegDefsUses &RegDU, bool &HasMultipleSuccs,
|
|
BB2BrMap &BrMap) const {
|
|
std::pair<MipsInstrInfo::BranchType, MachineInstr *> P =
|
|
getBranch(Pred, Succ);
|
|
|
|
// Return if either getBranch wasn't able to analyze the branches or there
|
|
// were no branches with unoccupied slots.
|
|
if (P.first == MipsInstrInfo::BT_None)
|
|
return false;
|
|
|
|
if ((P.first != MipsInstrInfo::BT_Uncond) &&
|
|
(P.first != MipsInstrInfo::BT_NoBranch)) {
|
|
HasMultipleSuccs = true;
|
|
RegDU.addLiveOut(Pred, Succ);
|
|
}
|
|
|
|
BrMap[&Pred] = P.second;
|
|
return true;
|
|
}
|
|
|
|
bool Filler::delayHasHazard(const MachineInstr &Candidate, RegDefsUses &RegDU,
|
|
InspectMemInstr &IM) const {
|
|
assert(!Candidate.isKill() &&
|
|
"KILL instructions should have been eliminated at this point.");
|
|
|
|
bool HasHazard = Candidate.isImplicitDef();
|
|
|
|
HasHazard |= IM.hasHazard(Candidate);
|
|
HasHazard |= RegDU.update(Candidate, 0, Candidate.getNumOperands());
|
|
|
|
return HasHazard;
|
|
}
|
|
|
|
bool Filler::terminateSearch(const MachineInstr &Candidate) const {
|
|
return (Candidate.isTerminator() || Candidate.isCall() ||
|
|
Candidate.isPosition() || Candidate.isInlineAsm() ||
|
|
Candidate.hasUnmodeledSideEffects());
|
|
}
|
|
|
|
/// createMipsDelaySlotFillerPass - Returns a pass that fills in delay
|
|
/// slots in Mips MachineFunctions
|
|
FunctionPass *llvm::createMipsDelaySlotFillerPass() { return new Filler(); }
|