mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-25 04:02:41 +01:00
1b906aeb05
llvm-svn: 303820
297 lines
10 KiB
C++
297 lines
10 KiB
C++
//==- llvm/CodeGen/MachineDominators.h - Machine Dom Calculation -*- C++ -*-==//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines classes mirroring those in llvm/Analysis/Dominators.h,
|
|
// but for target-specific code rather than target-independent IR.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_CODEGEN_MACHINEDOMINATORS_H
|
|
#define LLVM_CODEGEN_MACHINEDOMINATORS_H
|
|
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/Support/GenericDomTree.h"
|
|
#include "llvm/Support/GenericDomTreeConstruction.h"
|
|
#include <cassert>
|
|
#include <memory>
|
|
#include <vector>
|
|
|
|
namespace llvm {
|
|
|
|
template<>
|
|
inline void DominatorTreeBase<MachineBasicBlock>::addRoot(MachineBasicBlock* MBB) {
|
|
this->Roots.push_back(MBB);
|
|
}
|
|
|
|
extern template class DomTreeNodeBase<MachineBasicBlock>;
|
|
extern template class DominatorTreeBase<MachineBasicBlock>;
|
|
|
|
using MachineDomTreeNode = DomTreeNodeBase<MachineBasicBlock>;
|
|
|
|
//===-------------------------------------
|
|
/// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
|
|
/// compute a normal dominator tree.
|
|
///
|
|
class MachineDominatorTree : public MachineFunctionPass {
|
|
/// \brief Helper structure used to hold all the basic blocks
|
|
/// involved in the split of a critical edge.
|
|
struct CriticalEdge {
|
|
MachineBasicBlock *FromBB;
|
|
MachineBasicBlock *ToBB;
|
|
MachineBasicBlock *NewBB;
|
|
};
|
|
|
|
/// \brief Pile up all the critical edges to be split.
|
|
/// The splitting of a critical edge is local and thus, it is possible
|
|
/// to apply several of those changes at the same time.
|
|
mutable SmallVector<CriticalEdge, 32> CriticalEdgesToSplit;
|
|
|
|
/// \brief Remember all the basic blocks that are inserted during
|
|
/// edge splitting.
|
|
/// Invariant: NewBBs == all the basic blocks contained in the NewBB
|
|
/// field of all the elements of CriticalEdgesToSplit.
|
|
/// I.e., forall elt in CriticalEdgesToSplit, it exists BB in NewBBs
|
|
/// such as BB == elt.NewBB.
|
|
mutable SmallSet<MachineBasicBlock *, 32> NewBBs;
|
|
|
|
/// The DominatorTreeBase that is used to compute a normal dominator tree
|
|
std::unique_ptr<DominatorTreeBase<MachineBasicBlock>> DT;
|
|
|
|
/// \brief Apply all the recorded critical edges to the DT.
|
|
/// This updates the underlying DT information in a way that uses
|
|
/// the fast query path of DT as much as possible.
|
|
///
|
|
/// \post CriticalEdgesToSplit.empty().
|
|
void applySplitCriticalEdges() const;
|
|
|
|
public:
|
|
static char ID; // Pass ID, replacement for typeid
|
|
|
|
MachineDominatorTree();
|
|
|
|
DominatorTreeBase<MachineBasicBlock> &getBase() {
|
|
if (!DT)
|
|
DT.reset(new DominatorTreeBase<MachineBasicBlock>(false));
|
|
applySplitCriticalEdges();
|
|
return *DT;
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override;
|
|
|
|
/// getRoots - Return the root blocks of the current CFG. This may include
|
|
/// multiple blocks if we are computing post dominators. For forward
|
|
/// dominators, this will always be a single block (the entry node).
|
|
///
|
|
inline const std::vector<MachineBasicBlock*> &getRoots() const {
|
|
applySplitCriticalEdges();
|
|
return DT->getRoots();
|
|
}
|
|
|
|
inline MachineBasicBlock *getRoot() const {
|
|
applySplitCriticalEdges();
|
|
return DT->getRoot();
|
|
}
|
|
|
|
inline MachineDomTreeNode *getRootNode() const {
|
|
applySplitCriticalEdges();
|
|
return DT->getRootNode();
|
|
}
|
|
|
|
bool runOnMachineFunction(MachineFunction &F) override;
|
|
|
|
inline bool dominates(const MachineDomTreeNode* A,
|
|
const MachineDomTreeNode* B) const {
|
|
applySplitCriticalEdges();
|
|
return DT->dominates(A, B);
|
|
}
|
|
|
|
inline bool dominates(const MachineBasicBlock* A,
|
|
const MachineBasicBlock* B) const {
|
|
applySplitCriticalEdges();
|
|
return DT->dominates(A, B);
|
|
}
|
|
|
|
// dominates - Return true if A dominates B. This performs the
|
|
// special checks necessary if A and B are in the same basic block.
|
|
bool dominates(const MachineInstr *A, const MachineInstr *B) const {
|
|
applySplitCriticalEdges();
|
|
const MachineBasicBlock *BBA = A->getParent(), *BBB = B->getParent();
|
|
if (BBA != BBB) return DT->dominates(BBA, BBB);
|
|
|
|
// Loop through the basic block until we find A or B.
|
|
MachineBasicBlock::const_iterator I = BBA->begin();
|
|
for (; &*I != A && &*I != B; ++I)
|
|
/*empty*/ ;
|
|
|
|
//if(!DT.IsPostDominators) {
|
|
// A dominates B if it is found first in the basic block.
|
|
return &*I == A;
|
|
//} else {
|
|
// // A post-dominates B if B is found first in the basic block.
|
|
// return &*I == B;
|
|
//}
|
|
}
|
|
|
|
inline bool properlyDominates(const MachineDomTreeNode* A,
|
|
const MachineDomTreeNode* B) const {
|
|
applySplitCriticalEdges();
|
|
return DT->properlyDominates(A, B);
|
|
}
|
|
|
|
inline bool properlyDominates(const MachineBasicBlock* A,
|
|
const MachineBasicBlock* B) const {
|
|
applySplitCriticalEdges();
|
|
return DT->properlyDominates(A, B);
|
|
}
|
|
|
|
/// findNearestCommonDominator - Find nearest common dominator basic block
|
|
/// for basic block A and B. If there is no such block then return NULL.
|
|
inline MachineBasicBlock *findNearestCommonDominator(MachineBasicBlock *A,
|
|
MachineBasicBlock *B) {
|
|
applySplitCriticalEdges();
|
|
return DT->findNearestCommonDominator(A, B);
|
|
}
|
|
|
|
inline MachineDomTreeNode *operator[](MachineBasicBlock *BB) const {
|
|
applySplitCriticalEdges();
|
|
return DT->getNode(BB);
|
|
}
|
|
|
|
/// getNode - return the (Post)DominatorTree node for the specified basic
|
|
/// block. This is the same as using operator[] on this class.
|
|
///
|
|
inline MachineDomTreeNode *getNode(MachineBasicBlock *BB) const {
|
|
applySplitCriticalEdges();
|
|
return DT->getNode(BB);
|
|
}
|
|
|
|
/// addNewBlock - Add a new node to the dominator tree information. This
|
|
/// creates a new node as a child of DomBB dominator node,linking it into
|
|
/// the children list of the immediate dominator.
|
|
inline MachineDomTreeNode *addNewBlock(MachineBasicBlock *BB,
|
|
MachineBasicBlock *DomBB) {
|
|
applySplitCriticalEdges();
|
|
return DT->addNewBlock(BB, DomBB);
|
|
}
|
|
|
|
/// changeImmediateDominator - This method is used to update the dominator
|
|
/// tree information when a node's immediate dominator changes.
|
|
///
|
|
inline void changeImmediateDominator(MachineBasicBlock *N,
|
|
MachineBasicBlock* NewIDom) {
|
|
applySplitCriticalEdges();
|
|
DT->changeImmediateDominator(N, NewIDom);
|
|
}
|
|
|
|
inline void changeImmediateDominator(MachineDomTreeNode *N,
|
|
MachineDomTreeNode* NewIDom) {
|
|
applySplitCriticalEdges();
|
|
DT->changeImmediateDominator(N, NewIDom);
|
|
}
|
|
|
|
/// eraseNode - Removes a node from the dominator tree. Block must not
|
|
/// dominate any other blocks. Removes node from its immediate dominator's
|
|
/// children list. Deletes dominator node associated with basic block BB.
|
|
inline void eraseNode(MachineBasicBlock *BB) {
|
|
applySplitCriticalEdges();
|
|
DT->eraseNode(BB);
|
|
}
|
|
|
|
/// splitBlock - BB is split and now it has one successor. Update dominator
|
|
/// tree to reflect this change.
|
|
inline void splitBlock(MachineBasicBlock* NewBB) {
|
|
applySplitCriticalEdges();
|
|
DT->splitBlock(NewBB);
|
|
}
|
|
|
|
/// isReachableFromEntry - Return true if A is dominated by the entry
|
|
/// block of the function containing it.
|
|
bool isReachableFromEntry(const MachineBasicBlock *A) {
|
|
applySplitCriticalEdges();
|
|
return DT->isReachableFromEntry(A);
|
|
}
|
|
|
|
void releaseMemory() override;
|
|
|
|
void verifyAnalysis() const override;
|
|
|
|
void print(raw_ostream &OS, const Module*) const override;
|
|
|
|
/// \brief Record that the critical edge (FromBB, ToBB) has been
|
|
/// split with NewBB.
|
|
/// This is best to use this method instead of directly update the
|
|
/// underlying information, because this helps mitigating the
|
|
/// number of time the DT information is invalidated.
|
|
///
|
|
/// \note Do not use this method with regular edges.
|
|
///
|
|
/// \note To benefit from the compile time improvement incurred by this
|
|
/// method, the users of this method have to limit the queries to the DT
|
|
/// interface between two edges splitting. In other words, they have to
|
|
/// pack the splitting of critical edges as much as possible.
|
|
void recordSplitCriticalEdge(MachineBasicBlock *FromBB,
|
|
MachineBasicBlock *ToBB,
|
|
MachineBasicBlock *NewBB) {
|
|
bool Inserted = NewBBs.insert(NewBB).second;
|
|
(void)Inserted;
|
|
assert(Inserted &&
|
|
"A basic block inserted via edge splitting cannot appear twice");
|
|
CriticalEdgesToSplit.push_back({FromBB, ToBB, NewBB});
|
|
}
|
|
|
|
/// \brief Verify the correctness of the domtree by re-computing it.
|
|
///
|
|
/// This should only be used for debugging as it aborts the program if the
|
|
/// verification fails.
|
|
void verifyDomTree() const;
|
|
};
|
|
|
|
//===-------------------------------------
|
|
/// DominatorTree GraphTraits specialization so the DominatorTree can be
|
|
/// iterable by generic graph iterators.
|
|
///
|
|
|
|
template <class Node, class ChildIterator>
|
|
struct MachineDomTreeGraphTraitsBase {
|
|
using NodeRef = Node *;
|
|
using ChildIteratorType = ChildIterator;
|
|
|
|
static NodeRef getEntryNode(NodeRef N) { return N; }
|
|
static ChildIteratorType child_begin(NodeRef N) { return N->begin(); }
|
|
static ChildIteratorType child_end(NodeRef N) { return N->end(); }
|
|
};
|
|
|
|
template <class T> struct GraphTraits;
|
|
|
|
template <>
|
|
struct GraphTraits<MachineDomTreeNode *>
|
|
: public MachineDomTreeGraphTraitsBase<MachineDomTreeNode,
|
|
MachineDomTreeNode::iterator> {};
|
|
|
|
template <>
|
|
struct GraphTraits<const MachineDomTreeNode *>
|
|
: public MachineDomTreeGraphTraitsBase<const MachineDomTreeNode,
|
|
MachineDomTreeNode::const_iterator> {
|
|
};
|
|
|
|
template <> struct GraphTraits<MachineDominatorTree*>
|
|
: public GraphTraits<MachineDomTreeNode *> {
|
|
static NodeRef getEntryNode(MachineDominatorTree *DT) {
|
|
return DT->getRootNode();
|
|
}
|
|
};
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif // LLVM_CODEGEN_MACHINEDOMINATORS_H
|