mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-24 19:52:54 +01:00
57ab1e6b3b
There is no need to do this within an analysis. That method shouldn't even be reached if this predicate holds as the actual useful optimization is in the analysis manager itself. llvm-svn: 290614
730 lines
27 KiB
C++
730 lines
27 KiB
C++
//===- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation -==//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the generic AliasAnalysis interface which is used as the
|
|
// common interface used by all clients and implementations of alias analysis.
|
|
//
|
|
// This file also implements the default version of the AliasAnalysis interface
|
|
// that is to be used when no other implementation is specified. This does some
|
|
// simple tests that detect obvious cases: two different global pointers cannot
|
|
// alias, a global cannot alias a malloc, two different mallocs cannot alias,
|
|
// etc.
|
|
//
|
|
// This alias analysis implementation really isn't very good for anything, but
|
|
// it is very fast, and makes a nice clean default implementation. Because it
|
|
// handles lots of little corner cases, other, more complex, alias analysis
|
|
// implementations may choose to rely on this pass to resolve these simple and
|
|
// easy cases.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/BasicAliasAnalysis.h"
|
|
#include "llvm/Analysis/CFG.h"
|
|
#include "llvm/Analysis/CFLAndersAliasAnalysis.h"
|
|
#include "llvm/Analysis/CFLSteensAliasAnalysis.h"
|
|
#include "llvm/Analysis/CaptureTracking.h"
|
|
#include "llvm/Analysis/GlobalsModRef.h"
|
|
#include "llvm/Analysis/ObjCARCAliasAnalysis.h"
|
|
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
|
|
#include "llvm/Analysis/ScopedNoAliasAA.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/TypeBasedAliasAnalysis.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/Pass.h"
|
|
using namespace llvm;
|
|
|
|
/// Allow disabling BasicAA from the AA results. This is particularly useful
|
|
/// when testing to isolate a single AA implementation.
|
|
static cl::opt<bool> DisableBasicAA("disable-basicaa", cl::Hidden,
|
|
cl::init(false));
|
|
|
|
AAResults::AAResults(AAResults &&Arg)
|
|
: TLI(Arg.TLI), AAs(std::move(Arg.AAs)), AADeps(std::move(Arg.AADeps)) {
|
|
for (auto &AA : AAs)
|
|
AA->setAAResults(this);
|
|
}
|
|
|
|
AAResults::~AAResults() {
|
|
// FIXME; It would be nice to at least clear out the pointers back to this
|
|
// aggregation here, but we end up with non-nesting lifetimes in the legacy
|
|
// pass manager that prevent this from working. In the legacy pass manager
|
|
// we'll end up with dangling references here in some cases.
|
|
#if 0
|
|
for (auto &AA : AAs)
|
|
AA->setAAResults(nullptr);
|
|
#endif
|
|
}
|
|
|
|
bool AAResults::invalidate(Function &F, const PreservedAnalyses &PA,
|
|
FunctionAnalysisManager::Invalidator &Inv) {
|
|
// Check if the AA manager itself has been invalidated.
|
|
auto PAC = PA.getChecker<AAManager>();
|
|
if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
|
|
return true; // The manager needs to be blown away, clear everything.
|
|
|
|
// Check all of the dependencies registered.
|
|
for (AnalysisKey *ID : AADeps)
|
|
if (Inv.invalidate(ID, F, PA))
|
|
return true;
|
|
|
|
// Everything we depend on is still fine, so are we. Nothing to invalidate.
|
|
return false;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Default chaining methods
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
AliasResult AAResults::alias(const MemoryLocation &LocA,
|
|
const MemoryLocation &LocB) {
|
|
for (const auto &AA : AAs) {
|
|
auto Result = AA->alias(LocA, LocB);
|
|
if (Result != MayAlias)
|
|
return Result;
|
|
}
|
|
return MayAlias;
|
|
}
|
|
|
|
bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc,
|
|
bool OrLocal) {
|
|
for (const auto &AA : AAs)
|
|
if (AA->pointsToConstantMemory(Loc, OrLocal))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
ModRefInfo AAResults::getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) {
|
|
ModRefInfo Result = MRI_ModRef;
|
|
|
|
for (const auto &AA : AAs) {
|
|
Result = ModRefInfo(Result & AA->getArgModRefInfo(CS, ArgIdx));
|
|
|
|
// Early-exit the moment we reach the bottom of the lattice.
|
|
if (Result == MRI_NoModRef)
|
|
return Result;
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
ModRefInfo AAResults::getModRefInfo(Instruction *I, ImmutableCallSite Call) {
|
|
// We may have two calls
|
|
if (auto CS = ImmutableCallSite(I)) {
|
|
// Check if the two calls modify the same memory
|
|
return getModRefInfo(CS, Call);
|
|
} else if (I->isFenceLike()) {
|
|
// If this is a fence, just return MRI_ModRef.
|
|
return MRI_ModRef;
|
|
} else {
|
|
// Otherwise, check if the call modifies or references the
|
|
// location this memory access defines. The best we can say
|
|
// is that if the call references what this instruction
|
|
// defines, it must be clobbered by this location.
|
|
const MemoryLocation DefLoc = MemoryLocation::get(I);
|
|
if (getModRefInfo(Call, DefLoc) != MRI_NoModRef)
|
|
return MRI_ModRef;
|
|
}
|
|
return MRI_NoModRef;
|
|
}
|
|
|
|
ModRefInfo AAResults::getModRefInfo(ImmutableCallSite CS,
|
|
const MemoryLocation &Loc) {
|
|
ModRefInfo Result = MRI_ModRef;
|
|
|
|
for (const auto &AA : AAs) {
|
|
Result = ModRefInfo(Result & AA->getModRefInfo(CS, Loc));
|
|
|
|
// Early-exit the moment we reach the bottom of the lattice.
|
|
if (Result == MRI_NoModRef)
|
|
return Result;
|
|
}
|
|
|
|
// Try to refine the mod-ref info further using other API entry points to the
|
|
// aggregate set of AA results.
|
|
auto MRB = getModRefBehavior(CS);
|
|
if (MRB == FMRB_DoesNotAccessMemory ||
|
|
MRB == FMRB_OnlyAccessesInaccessibleMem)
|
|
return MRI_NoModRef;
|
|
|
|
if (onlyReadsMemory(MRB))
|
|
Result = ModRefInfo(Result & MRI_Ref);
|
|
else if (doesNotReadMemory(MRB))
|
|
Result = ModRefInfo(Result & MRI_Mod);
|
|
|
|
if (onlyAccessesArgPointees(MRB) || onlyAccessesInaccessibleOrArgMem(MRB)) {
|
|
bool DoesAlias = false;
|
|
ModRefInfo AllArgsMask = MRI_NoModRef;
|
|
if (doesAccessArgPointees(MRB)) {
|
|
for (auto AI = CS.arg_begin(), AE = CS.arg_end(); AI != AE; ++AI) {
|
|
const Value *Arg = *AI;
|
|
if (!Arg->getType()->isPointerTy())
|
|
continue;
|
|
unsigned ArgIdx = std::distance(CS.arg_begin(), AI);
|
|
MemoryLocation ArgLoc = MemoryLocation::getForArgument(CS, ArgIdx, TLI);
|
|
AliasResult ArgAlias = alias(ArgLoc, Loc);
|
|
if (ArgAlias != NoAlias) {
|
|
ModRefInfo ArgMask = getArgModRefInfo(CS, ArgIdx);
|
|
DoesAlias = true;
|
|
AllArgsMask = ModRefInfo(AllArgsMask | ArgMask);
|
|
}
|
|
}
|
|
}
|
|
if (!DoesAlias)
|
|
return MRI_NoModRef;
|
|
Result = ModRefInfo(Result & AllArgsMask);
|
|
}
|
|
|
|
// If Loc is a constant memory location, the call definitely could not
|
|
// modify the memory location.
|
|
if ((Result & MRI_Mod) &&
|
|
pointsToConstantMemory(Loc, /*OrLocal*/ false))
|
|
Result = ModRefInfo(Result & ~MRI_Mod);
|
|
|
|
return Result;
|
|
}
|
|
|
|
ModRefInfo AAResults::getModRefInfo(ImmutableCallSite CS1,
|
|
ImmutableCallSite CS2) {
|
|
ModRefInfo Result = MRI_ModRef;
|
|
|
|
for (const auto &AA : AAs) {
|
|
Result = ModRefInfo(Result & AA->getModRefInfo(CS1, CS2));
|
|
|
|
// Early-exit the moment we reach the bottom of the lattice.
|
|
if (Result == MRI_NoModRef)
|
|
return Result;
|
|
}
|
|
|
|
// Try to refine the mod-ref info further using other API entry points to the
|
|
// aggregate set of AA results.
|
|
|
|
// If CS1 or CS2 are readnone, they don't interact.
|
|
auto CS1B = getModRefBehavior(CS1);
|
|
if (CS1B == FMRB_DoesNotAccessMemory)
|
|
return MRI_NoModRef;
|
|
|
|
auto CS2B = getModRefBehavior(CS2);
|
|
if (CS2B == FMRB_DoesNotAccessMemory)
|
|
return MRI_NoModRef;
|
|
|
|
// If they both only read from memory, there is no dependence.
|
|
if (onlyReadsMemory(CS1B) && onlyReadsMemory(CS2B))
|
|
return MRI_NoModRef;
|
|
|
|
// If CS1 only reads memory, the only dependence on CS2 can be
|
|
// from CS1 reading memory written by CS2.
|
|
if (onlyReadsMemory(CS1B))
|
|
Result = ModRefInfo(Result & MRI_Ref);
|
|
else if (doesNotReadMemory(CS1B))
|
|
Result = ModRefInfo(Result & MRI_Mod);
|
|
|
|
// If CS2 only access memory through arguments, accumulate the mod/ref
|
|
// information from CS1's references to the memory referenced by
|
|
// CS2's arguments.
|
|
if (onlyAccessesArgPointees(CS2B)) {
|
|
ModRefInfo R = MRI_NoModRef;
|
|
if (doesAccessArgPointees(CS2B)) {
|
|
for (auto I = CS2.arg_begin(), E = CS2.arg_end(); I != E; ++I) {
|
|
const Value *Arg = *I;
|
|
if (!Arg->getType()->isPointerTy())
|
|
continue;
|
|
unsigned CS2ArgIdx = std::distance(CS2.arg_begin(), I);
|
|
auto CS2ArgLoc = MemoryLocation::getForArgument(CS2, CS2ArgIdx, TLI);
|
|
|
|
// ArgMask indicates what CS2 might do to CS2ArgLoc, and the dependence
|
|
// of CS1 on that location is the inverse.
|
|
ModRefInfo ArgMask = getArgModRefInfo(CS2, CS2ArgIdx);
|
|
if (ArgMask == MRI_Mod)
|
|
ArgMask = MRI_ModRef;
|
|
else if (ArgMask == MRI_Ref)
|
|
ArgMask = MRI_Mod;
|
|
|
|
ArgMask = ModRefInfo(ArgMask & getModRefInfo(CS1, CS2ArgLoc));
|
|
|
|
R = ModRefInfo((R | ArgMask) & Result);
|
|
if (R == Result)
|
|
break;
|
|
}
|
|
}
|
|
return R;
|
|
}
|
|
|
|
// If CS1 only accesses memory through arguments, check if CS2 references
|
|
// any of the memory referenced by CS1's arguments. If not, return NoModRef.
|
|
if (onlyAccessesArgPointees(CS1B)) {
|
|
ModRefInfo R = MRI_NoModRef;
|
|
if (doesAccessArgPointees(CS1B)) {
|
|
for (auto I = CS1.arg_begin(), E = CS1.arg_end(); I != E; ++I) {
|
|
const Value *Arg = *I;
|
|
if (!Arg->getType()->isPointerTy())
|
|
continue;
|
|
unsigned CS1ArgIdx = std::distance(CS1.arg_begin(), I);
|
|
auto CS1ArgLoc = MemoryLocation::getForArgument(CS1, CS1ArgIdx, TLI);
|
|
|
|
// ArgMask indicates what CS1 might do to CS1ArgLoc; if CS1 might Mod
|
|
// CS1ArgLoc, then we care about either a Mod or a Ref by CS2. If CS1
|
|
// might Ref, then we care only about a Mod by CS2.
|
|
ModRefInfo ArgMask = getArgModRefInfo(CS1, CS1ArgIdx);
|
|
ModRefInfo ArgR = getModRefInfo(CS2, CS1ArgLoc);
|
|
if (((ArgMask & MRI_Mod) != MRI_NoModRef &&
|
|
(ArgR & MRI_ModRef) != MRI_NoModRef) ||
|
|
((ArgMask & MRI_Ref) != MRI_NoModRef &&
|
|
(ArgR & MRI_Mod) != MRI_NoModRef))
|
|
R = ModRefInfo((R | ArgMask) & Result);
|
|
|
|
if (R == Result)
|
|
break;
|
|
}
|
|
}
|
|
return R;
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
FunctionModRefBehavior AAResults::getModRefBehavior(ImmutableCallSite CS) {
|
|
FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
|
|
|
|
for (const auto &AA : AAs) {
|
|
Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(CS));
|
|
|
|
// Early-exit the moment we reach the bottom of the lattice.
|
|
if (Result == FMRB_DoesNotAccessMemory)
|
|
return Result;
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
FunctionModRefBehavior AAResults::getModRefBehavior(const Function *F) {
|
|
FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
|
|
|
|
for (const auto &AA : AAs) {
|
|
Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(F));
|
|
|
|
// Early-exit the moment we reach the bottom of the lattice.
|
|
if (Result == FMRB_DoesNotAccessMemory)
|
|
return Result;
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Helper method implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ModRefInfo AAResults::getModRefInfo(const LoadInst *L,
|
|
const MemoryLocation &Loc) {
|
|
// Be conservative in the face of volatile/atomic.
|
|
if (!L->isUnordered())
|
|
return MRI_ModRef;
|
|
|
|
// If the load address doesn't alias the given address, it doesn't read
|
|
// or write the specified memory.
|
|
if (Loc.Ptr && !alias(MemoryLocation::get(L), Loc))
|
|
return MRI_NoModRef;
|
|
|
|
// Otherwise, a load just reads.
|
|
return MRI_Ref;
|
|
}
|
|
|
|
ModRefInfo AAResults::getModRefInfo(const StoreInst *S,
|
|
const MemoryLocation &Loc) {
|
|
// Be conservative in the face of volatile/atomic.
|
|
if (!S->isUnordered())
|
|
return MRI_ModRef;
|
|
|
|
if (Loc.Ptr) {
|
|
// If the store address cannot alias the pointer in question, then the
|
|
// specified memory cannot be modified by the store.
|
|
if (!alias(MemoryLocation::get(S), Loc))
|
|
return MRI_NoModRef;
|
|
|
|
// If the pointer is a pointer to constant memory, then it could not have
|
|
// been modified by this store.
|
|
if (pointsToConstantMemory(Loc))
|
|
return MRI_NoModRef;
|
|
}
|
|
|
|
// Otherwise, a store just writes.
|
|
return MRI_Mod;
|
|
}
|
|
|
|
ModRefInfo AAResults::getModRefInfo(const VAArgInst *V,
|
|
const MemoryLocation &Loc) {
|
|
|
|
if (Loc.Ptr) {
|
|
// If the va_arg address cannot alias the pointer in question, then the
|
|
// specified memory cannot be accessed by the va_arg.
|
|
if (!alias(MemoryLocation::get(V), Loc))
|
|
return MRI_NoModRef;
|
|
|
|
// If the pointer is a pointer to constant memory, then it could not have
|
|
// been modified by this va_arg.
|
|
if (pointsToConstantMemory(Loc))
|
|
return MRI_NoModRef;
|
|
}
|
|
|
|
// Otherwise, a va_arg reads and writes.
|
|
return MRI_ModRef;
|
|
}
|
|
|
|
ModRefInfo AAResults::getModRefInfo(const CatchPadInst *CatchPad,
|
|
const MemoryLocation &Loc) {
|
|
if (Loc.Ptr) {
|
|
// If the pointer is a pointer to constant memory,
|
|
// then it could not have been modified by this catchpad.
|
|
if (pointsToConstantMemory(Loc))
|
|
return MRI_NoModRef;
|
|
}
|
|
|
|
// Otherwise, a catchpad reads and writes.
|
|
return MRI_ModRef;
|
|
}
|
|
|
|
ModRefInfo AAResults::getModRefInfo(const CatchReturnInst *CatchRet,
|
|
const MemoryLocation &Loc) {
|
|
if (Loc.Ptr) {
|
|
// If the pointer is a pointer to constant memory,
|
|
// then it could not have been modified by this catchpad.
|
|
if (pointsToConstantMemory(Loc))
|
|
return MRI_NoModRef;
|
|
}
|
|
|
|
// Otherwise, a catchret reads and writes.
|
|
return MRI_ModRef;
|
|
}
|
|
|
|
ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX,
|
|
const MemoryLocation &Loc) {
|
|
// Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
|
|
if (isStrongerThanMonotonic(CX->getSuccessOrdering()))
|
|
return MRI_ModRef;
|
|
|
|
// If the cmpxchg address does not alias the location, it does not access it.
|
|
if (Loc.Ptr && !alias(MemoryLocation::get(CX), Loc))
|
|
return MRI_NoModRef;
|
|
|
|
return MRI_ModRef;
|
|
}
|
|
|
|
ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW,
|
|
const MemoryLocation &Loc) {
|
|
// Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
|
|
if (isStrongerThanMonotonic(RMW->getOrdering()))
|
|
return MRI_ModRef;
|
|
|
|
// If the atomicrmw address does not alias the location, it does not access it.
|
|
if (Loc.Ptr && !alias(MemoryLocation::get(RMW), Loc))
|
|
return MRI_NoModRef;
|
|
|
|
return MRI_ModRef;
|
|
}
|
|
|
|
/// \brief Return information about whether a particular call site modifies
|
|
/// or reads the specified memory location \p MemLoc before instruction \p I
|
|
/// in a BasicBlock. A ordered basic block \p OBB can be used to speed up
|
|
/// instruction-ordering queries inside the BasicBlock containing \p I.
|
|
/// FIXME: this is really just shoring-up a deficiency in alias analysis.
|
|
/// BasicAA isn't willing to spend linear time determining whether an alloca
|
|
/// was captured before or after this particular call, while we are. However,
|
|
/// with a smarter AA in place, this test is just wasting compile time.
|
|
ModRefInfo AAResults::callCapturesBefore(const Instruction *I,
|
|
const MemoryLocation &MemLoc,
|
|
DominatorTree *DT,
|
|
OrderedBasicBlock *OBB) {
|
|
if (!DT)
|
|
return MRI_ModRef;
|
|
|
|
const Value *Object =
|
|
GetUnderlyingObject(MemLoc.Ptr, I->getModule()->getDataLayout());
|
|
if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) ||
|
|
isa<Constant>(Object))
|
|
return MRI_ModRef;
|
|
|
|
ImmutableCallSite CS(I);
|
|
if (!CS.getInstruction() || CS.getInstruction() == Object)
|
|
return MRI_ModRef;
|
|
|
|
if (llvm::PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true,
|
|
/* StoreCaptures */ true, I, DT,
|
|
/* include Object */ true,
|
|
/* OrderedBasicBlock */ OBB))
|
|
return MRI_ModRef;
|
|
|
|
unsigned ArgNo = 0;
|
|
ModRefInfo R = MRI_NoModRef;
|
|
for (auto CI = CS.data_operands_begin(), CE = CS.data_operands_end();
|
|
CI != CE; ++CI, ++ArgNo) {
|
|
// Only look at the no-capture or byval pointer arguments. If this
|
|
// pointer were passed to arguments that were neither of these, then it
|
|
// couldn't be no-capture.
|
|
if (!(*CI)->getType()->isPointerTy() ||
|
|
(!CS.doesNotCapture(ArgNo) &&
|
|
ArgNo < CS.getNumArgOperands() && !CS.isByValArgument(ArgNo)))
|
|
continue;
|
|
|
|
// If this is a no-capture pointer argument, see if we can tell that it
|
|
// is impossible to alias the pointer we're checking. If not, we have to
|
|
// assume that the call could touch the pointer, even though it doesn't
|
|
// escape.
|
|
if (isNoAlias(MemoryLocation(*CI), MemoryLocation(Object)))
|
|
continue;
|
|
if (CS.doesNotAccessMemory(ArgNo))
|
|
continue;
|
|
if (CS.onlyReadsMemory(ArgNo)) {
|
|
R = MRI_Ref;
|
|
continue;
|
|
}
|
|
return MRI_ModRef;
|
|
}
|
|
return R;
|
|
}
|
|
|
|
/// canBasicBlockModify - Return true if it is possible for execution of the
|
|
/// specified basic block to modify the location Loc.
|
|
///
|
|
bool AAResults::canBasicBlockModify(const BasicBlock &BB,
|
|
const MemoryLocation &Loc) {
|
|
return canInstructionRangeModRef(BB.front(), BB.back(), Loc, MRI_Mod);
|
|
}
|
|
|
|
/// canInstructionRangeModRef - Return true if it is possible for the
|
|
/// execution of the specified instructions to mod\ref (according to the
|
|
/// mode) the location Loc. The instructions to consider are all
|
|
/// of the instructions in the range of [I1,I2] INCLUSIVE.
|
|
/// I1 and I2 must be in the same basic block.
|
|
bool AAResults::canInstructionRangeModRef(const Instruction &I1,
|
|
const Instruction &I2,
|
|
const MemoryLocation &Loc,
|
|
const ModRefInfo Mode) {
|
|
assert(I1.getParent() == I2.getParent() &&
|
|
"Instructions not in same basic block!");
|
|
BasicBlock::const_iterator I = I1.getIterator();
|
|
BasicBlock::const_iterator E = I2.getIterator();
|
|
++E; // Convert from inclusive to exclusive range.
|
|
|
|
for (; I != E; ++I) // Check every instruction in range
|
|
if (getModRefInfo(&*I, Loc) & Mode)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
// Provide a definition for the root virtual destructor.
|
|
AAResults::Concept::~Concept() {}
|
|
|
|
// Provide a definition for the static object used to identify passes.
|
|
AnalysisKey AAManager::Key;
|
|
|
|
namespace {
|
|
/// A wrapper pass for external alias analyses. This just squirrels away the
|
|
/// callback used to run any analyses and register their results.
|
|
struct ExternalAAWrapperPass : ImmutablePass {
|
|
typedef std::function<void(Pass &, Function &, AAResults &)> CallbackT;
|
|
|
|
CallbackT CB;
|
|
|
|
static char ID;
|
|
|
|
ExternalAAWrapperPass() : ImmutablePass(ID) {
|
|
initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
explicit ExternalAAWrapperPass(CallbackT CB)
|
|
: ImmutablePass(ID), CB(std::move(CB)) {
|
|
initializeExternalAAWrapperPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesAll();
|
|
}
|
|
};
|
|
}
|
|
|
|
char ExternalAAWrapperPass::ID = 0;
|
|
INITIALIZE_PASS(ExternalAAWrapperPass, "external-aa", "External Alias Analysis",
|
|
false, true)
|
|
|
|
ImmutablePass *
|
|
llvm::createExternalAAWrapperPass(ExternalAAWrapperPass::CallbackT Callback) {
|
|
return new ExternalAAWrapperPass(std::move(Callback));
|
|
}
|
|
|
|
AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) {
|
|
initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
char AAResultsWrapperPass::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa",
|
|
"Function Alias Analysis Results", false, true)
|
|
INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(CFLAndersAAWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(CFLSteensAAWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(ExternalAAWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass)
|
|
INITIALIZE_PASS_END(AAResultsWrapperPass, "aa",
|
|
"Function Alias Analysis Results", false, true)
|
|
|
|
FunctionPass *llvm::createAAResultsWrapperPass() {
|
|
return new AAResultsWrapperPass();
|
|
}
|
|
|
|
/// Run the wrapper pass to rebuild an aggregation over known AA passes.
|
|
///
|
|
/// This is the legacy pass manager's interface to the new-style AA results
|
|
/// aggregation object. Because this is somewhat shoe-horned into the legacy
|
|
/// pass manager, we hard code all the specific alias analyses available into
|
|
/// it. While the particular set enabled is configured via commandline flags,
|
|
/// adding a new alias analysis to LLVM will require adding support for it to
|
|
/// this list.
|
|
bool AAResultsWrapperPass::runOnFunction(Function &F) {
|
|
// NB! This *must* be reset before adding new AA results to the new
|
|
// AAResults object because in the legacy pass manager, each instance
|
|
// of these will refer to the *same* immutable analyses, registering and
|
|
// unregistering themselves with them. We need to carefully tear down the
|
|
// previous object first, in this case replacing it with an empty one, before
|
|
// registering new results.
|
|
AAR.reset(
|
|
new AAResults(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI()));
|
|
|
|
// BasicAA is always available for function analyses. Also, we add it first
|
|
// so that it can trump TBAA results when it proves MustAlias.
|
|
// FIXME: TBAA should have an explicit mode to support this and then we
|
|
// should reconsider the ordering here.
|
|
if (!DisableBasicAA)
|
|
AAR->addAAResult(getAnalysis<BasicAAWrapperPass>().getResult());
|
|
|
|
// Populate the results with the currently available AAs.
|
|
if (auto *WrapperPass = getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
|
|
AAR->addAAResult(WrapperPass->getResult());
|
|
if (auto *WrapperPass = getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
|
|
AAR->addAAResult(WrapperPass->getResult());
|
|
if (auto *WrapperPass =
|
|
getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
|
|
AAR->addAAResult(WrapperPass->getResult());
|
|
if (auto *WrapperPass = getAnalysisIfAvailable<GlobalsAAWrapperPass>())
|
|
AAR->addAAResult(WrapperPass->getResult());
|
|
if (auto *WrapperPass = getAnalysisIfAvailable<SCEVAAWrapperPass>())
|
|
AAR->addAAResult(WrapperPass->getResult());
|
|
if (auto *WrapperPass = getAnalysisIfAvailable<CFLAndersAAWrapperPass>())
|
|
AAR->addAAResult(WrapperPass->getResult());
|
|
if (auto *WrapperPass = getAnalysisIfAvailable<CFLSteensAAWrapperPass>())
|
|
AAR->addAAResult(WrapperPass->getResult());
|
|
|
|
// If available, run an external AA providing callback over the results as
|
|
// well.
|
|
if (auto *WrapperPass = getAnalysisIfAvailable<ExternalAAWrapperPass>())
|
|
if (WrapperPass->CB)
|
|
WrapperPass->CB(*this, F, *AAR);
|
|
|
|
// Analyses don't mutate the IR, so return false.
|
|
return false;
|
|
}
|
|
|
|
void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesAll();
|
|
AU.addRequired<BasicAAWrapperPass>();
|
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
|
|
|
// We also need to mark all the alias analysis passes we will potentially
|
|
// probe in runOnFunction as used here to ensure the legacy pass manager
|
|
// preserves them. This hard coding of lists of alias analyses is specific to
|
|
// the legacy pass manager.
|
|
AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
|
|
AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
|
|
AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
|
|
AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
|
|
AU.addUsedIfAvailable<SCEVAAWrapperPass>();
|
|
AU.addUsedIfAvailable<CFLAndersAAWrapperPass>();
|
|
AU.addUsedIfAvailable<CFLSteensAAWrapperPass>();
|
|
}
|
|
|
|
AAResults llvm::createLegacyPMAAResults(Pass &P, Function &F,
|
|
BasicAAResult &BAR) {
|
|
AAResults AAR(P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI());
|
|
|
|
// Add in our explicitly constructed BasicAA results.
|
|
if (!DisableBasicAA)
|
|
AAR.addAAResult(BAR);
|
|
|
|
// Populate the results with the other currently available AAs.
|
|
if (auto *WrapperPass =
|
|
P.getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
|
|
AAR.addAAResult(WrapperPass->getResult());
|
|
if (auto *WrapperPass = P.getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
|
|
AAR.addAAResult(WrapperPass->getResult());
|
|
if (auto *WrapperPass =
|
|
P.getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
|
|
AAR.addAAResult(WrapperPass->getResult());
|
|
if (auto *WrapperPass = P.getAnalysisIfAvailable<GlobalsAAWrapperPass>())
|
|
AAR.addAAResult(WrapperPass->getResult());
|
|
if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLAndersAAWrapperPass>())
|
|
AAR.addAAResult(WrapperPass->getResult());
|
|
if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLSteensAAWrapperPass>())
|
|
AAR.addAAResult(WrapperPass->getResult());
|
|
|
|
return AAR;
|
|
}
|
|
|
|
bool llvm::isNoAliasCall(const Value *V) {
|
|
if (auto CS = ImmutableCallSite(V))
|
|
return CS.paramHasAttr(0, Attribute::NoAlias);
|
|
return false;
|
|
}
|
|
|
|
bool llvm::isNoAliasArgument(const Value *V) {
|
|
if (const Argument *A = dyn_cast<Argument>(V))
|
|
return A->hasNoAliasAttr();
|
|
return false;
|
|
}
|
|
|
|
bool llvm::isIdentifiedObject(const Value *V) {
|
|
if (isa<AllocaInst>(V))
|
|
return true;
|
|
if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
|
|
return true;
|
|
if (isNoAliasCall(V))
|
|
return true;
|
|
if (const Argument *A = dyn_cast<Argument>(V))
|
|
return A->hasNoAliasAttr() || A->hasByValAttr();
|
|
return false;
|
|
}
|
|
|
|
bool llvm::isIdentifiedFunctionLocal(const Value *V) {
|
|
return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V);
|
|
}
|
|
|
|
void llvm::getAAResultsAnalysisUsage(AnalysisUsage &AU) {
|
|
// This function needs to be in sync with llvm::createLegacyPMAAResults -- if
|
|
// more alias analyses are added to llvm::createLegacyPMAAResults, they need
|
|
// to be added here also.
|
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
|
AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
|
|
AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
|
|
AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
|
|
AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
|
|
AU.addUsedIfAvailable<CFLAndersAAWrapperPass>();
|
|
AU.addUsedIfAvailable<CFLSteensAAWrapperPass>();
|
|
}
|