1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 19:12:56 +02:00
llvm-mirror/include/llvm/LTO/Config.h
Peter Collingbourne cef2ce70e8 LTO: Simplify caching interface.
The NativeObjectOutput class has a design problem: it mixes up the caching
policy with the interface for output streams, which makes the client-side
code hard to follow and would for example make it harder to replace the
cache implementation in an arbitrary client.

This change separates the two aspects by moving the caching policy
to a separate field in Config, replacing NativeObjectOutput with a
NativeObjectStream class which only deals with streams and does not need to
be overridden by most clients and introducing an AddFile callback for adding
files (e.g. from the cache) to the link.

Differential Revision: https://reviews.llvm.org/D24622

llvm-svn: 282299
2016-09-23 21:33:43 +00:00

228 lines
9.3 KiB
C++

//===-Config.h - LLVM Link Time Optimizer Configuration -------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the lto::Config data structure, which allows clients to
// configure LTO.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LTO_CONFIG_H
#define LLVM_LTO_CONFIG_H
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Target/TargetOptions.h"
#include <functional>
namespace llvm {
class Error;
class Module;
class ModuleSummaryIndex;
class raw_pwrite_stream;
namespace lto {
/// LTO configuration. A linker can configure LTO by setting fields in this data
/// structure and passing it to the lto::LTO constructor.
struct Config {
std::string CPU;
std::string Features;
TargetOptions Options;
std::vector<std::string> MAttrs;
Reloc::Model RelocModel = Reloc::PIC_;
CodeModel::Model CodeModel = CodeModel::Default;
CodeGenOpt::Level CGOptLevel = CodeGenOpt::Default;
unsigned OptLevel = 2;
bool DisableVerify = false;
/// Disable entirely the optimizer, including importing for ThinLTO
bool CodeGenOnly = false;
/// If this field is set, the set of passes run in the middle-end optimizer
/// will be the one specified by the string. Only works with the new pass
/// manager as the old one doesn't have this ability.
std::string OptPipeline;
// If this field is set, it has the same effect of specifying an AA pipeline
// identified by the string. Only works with the new pass manager, in
// conjunction OptPipeline.
std::string AAPipeline;
/// Setting this field will replace target triples in input files with this
/// triple.
std::string OverrideTriple;
/// Setting this field will replace unspecified target triples in input files
/// with this triple.
std::string DefaultTriple;
bool ShouldDiscardValueNames = true;
DiagnosticHandlerFunction DiagHandler;
/// If this field is set, LTO will write input file paths and symbol
/// resolutions here in llvm-lto2 command line flag format. This can be
/// used for testing and for running the LTO pipeline outside of the linker
/// with llvm-lto2.
std::unique_ptr<raw_ostream> ResolutionFile;
/// The following callbacks deal with tasks, which normally represent the
/// entire optimization and code generation pipeline for what will become a
/// single native object file. Each task has a unique identifier between 0 and
/// getMaxTasks()-1, which is supplied to the callback via the Task parameter.
/// A task represents the entire pipeline for ThinLTO and regular
/// (non-parallel) LTO, but a parallel code generation task will be split into
/// N tasks before code generation, where N is the parallelism level.
///
/// LTO may decide to stop processing a task at any time, for example if the
/// module is empty or if a module hook (see below) returns false. For this
/// reason, the client should not expect to receive exactly getMaxTasks()
/// native object files.
/// A module hook may be used by a linker to perform actions during the LTO
/// pipeline. For example, a linker may use this function to implement
/// -save-temps. If this function returns false, any further processing for
/// that task is aborted.
///
/// Module hooks must be thread safe with respect to the linker's internal
/// data structures. A module hook will never be called concurrently from
/// multiple threads with the same task ID, or the same module.
///
/// Note that in out-of-process backend scenarios, none of the hooks will be
/// called for ThinLTO tasks.
typedef std::function<bool(unsigned Task, const Module &)> ModuleHookFn;
/// This module hook is called after linking (regular LTO) or loading
/// (ThinLTO) the module, before modifying it.
ModuleHookFn PreOptModuleHook;
/// This hook is called after promoting any internal functions
/// (ThinLTO-specific).
ModuleHookFn PostPromoteModuleHook;
/// This hook is called after internalizing the module.
ModuleHookFn PostInternalizeModuleHook;
/// This hook is called after importing from other modules (ThinLTO-specific).
ModuleHookFn PostImportModuleHook;
/// This module hook is called after optimization is complete.
ModuleHookFn PostOptModuleHook;
/// This module hook is called before code generation. It is similar to the
/// PostOptModuleHook, but for parallel code generation it is called after
/// splitting the module.
ModuleHookFn PreCodeGenModuleHook;
/// A combined index hook is called after all per-module indexes have been
/// combined (ThinLTO-specific). It can be used to implement -save-temps for
/// the combined index.
///
/// If this function returns false, any further processing for ThinLTO tasks
/// is aborted.
///
/// It is called regardless of whether the backend is in-process, although it
/// is not called from individual backend processes.
typedef std::function<bool(const ModuleSummaryIndex &Index)>
CombinedIndexHookFn;
CombinedIndexHookFn CombinedIndexHook;
Config() {}
// FIXME: Remove once MSVC can synthesize move ops.
Config(Config &&X)
: CPU(std::move(X.CPU)), Features(std::move(X.Features)),
Options(std::move(X.Options)), MAttrs(std::move(X.MAttrs)),
RelocModel(std::move(X.RelocModel)), CodeModel(std::move(X.CodeModel)),
CGOptLevel(std::move(X.CGOptLevel)), OptLevel(std::move(X.OptLevel)),
DisableVerify(std::move(X.DisableVerify)),
OptPipeline(std::move(X.OptPipeline)),
AAPipeline(std::move(X.AAPipeline)),
OverrideTriple(std::move(X.OverrideTriple)),
DefaultTriple(std::move(X.DefaultTriple)),
ShouldDiscardValueNames(std::move(X.ShouldDiscardValueNames)),
DiagHandler(std::move(X.DiagHandler)),
ResolutionFile(std::move(X.ResolutionFile)),
PreOptModuleHook(std::move(X.PreOptModuleHook)),
PostPromoteModuleHook(std::move(X.PostPromoteModuleHook)),
PostInternalizeModuleHook(std::move(X.PostInternalizeModuleHook)),
PostImportModuleHook(std::move(X.PostImportModuleHook)),
PostOptModuleHook(std::move(X.PostOptModuleHook)),
PreCodeGenModuleHook(std::move(X.PreCodeGenModuleHook)),
CombinedIndexHook(std::move(X.CombinedIndexHook)) {}
// FIXME: Remove once MSVC can synthesize move ops.
Config &operator=(Config &&X) {
CPU = std::move(X.CPU);
Features = std::move(X.Features);
Options = std::move(X.Options);
MAttrs = std::move(X.MAttrs);
RelocModel = std::move(X.RelocModel);
CodeModel = std::move(X.CodeModel);
CGOptLevel = std::move(X.CGOptLevel);
OptLevel = std::move(X.OptLevel);
DisableVerify = std::move(X.DisableVerify);
OptPipeline = std::move(X.OptPipeline);
AAPipeline = std::move(X.AAPipeline);
OverrideTriple = std::move(X.OverrideTriple);
DefaultTriple = std::move(X.DefaultTriple);
ShouldDiscardValueNames = std::move(X.ShouldDiscardValueNames);
DiagHandler = std::move(X.DiagHandler);
ResolutionFile = std::move(X.ResolutionFile);
PreOptModuleHook = std::move(X.PreOptModuleHook);
PostPromoteModuleHook = std::move(X.PostPromoteModuleHook);
PostInternalizeModuleHook = std::move(X.PostInternalizeModuleHook);
PostImportModuleHook = std::move(X.PostImportModuleHook);
PostOptModuleHook = std::move(X.PostOptModuleHook);
PreCodeGenModuleHook = std::move(X.PreCodeGenModuleHook);
CombinedIndexHook = std::move(X.CombinedIndexHook);
return *this;
}
/// This is a convenience function that configures this Config object to write
/// temporary files named after the given OutputFileName for each of the LTO
/// phases to disk. A client can use this function to implement -save-temps.
///
/// FIXME: Temporary files derived from ThinLTO backends are currently named
/// after the input file name, rather than the output file name, when
/// UseInputModulePath is set to true.
///
/// Specifically, it (1) sets each of the above module hooks and the combined
/// index hook to a function that calls the hook function (if any) that was
/// present in the appropriate field when the addSaveTemps function was
/// called, and writes the module to a bitcode file with a name prefixed by
/// the given output file name, and (2) creates a resolution file whose name
/// is prefixed by the given output file name and sets ResolutionFile to its
/// file handle.
Error addSaveTemps(std::string OutputFileName,
bool UseInputModulePath = false);
};
/// A derived class of LLVMContext that initializes itself according to a given
/// Config object. The purpose of this class is to tie ownership of the
/// diagnostic handler to the context, as opposed to the Config object (which
/// may be ephemeral).
struct LTOLLVMContext : LLVMContext {
static void funcDiagHandler(const DiagnosticInfo &DI, void *Context) {
auto *Fn = static_cast<DiagnosticHandlerFunction *>(Context);
(*Fn)(DI);
}
LTOLLVMContext(const Config &C) : DiagHandler(C.DiagHandler) {
setDiscardValueNames(C.ShouldDiscardValueNames);
enableDebugTypeODRUniquing();
setDiagnosticHandler(funcDiagHandler, &DiagHandler, true);
}
DiagnosticHandlerFunction DiagHandler;
};
}
}
#endif