1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-24 21:42:54 +02:00
llvm-mirror/test/Analysis/LoopAccessAnalysis/non-wrapping-pointer.ll
Adam Nemet 8912979930 [LAA] Try to prove non-wrapping of pointers if SCEV cannot
Summary:
Scalar evolution does not propagate the non-wrapping flags to values
that are derived from a non-wrapping induction variable because
the non-wrapping property could be flow-sensitive.

This change is a first attempt to establish the non-wrapping property in
some simple cases.  The main idea is to look through the operations
defining the pointer.  As long as we arrive to a non-wrapping AddRec via
a small chain of non-wrapping instruction, the pointer should not wrap
either.

I believe that this essentially is what Andy described in
http://article.gmane.org/gmane.comp.compilers.llvm.cvs/220731 as the way
forward.

Reviewers: aschwaighofer, nadav, sanjoy, atrick

Reviewed By: atrick

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D10472

llvm-svn: 240798
2015-06-26 17:25:43 +00:00

42 lines
1.1 KiB
LLVM

; RUN: opt -basicaa -loop-accesses -analyze < %s | FileCheck %s
; For this loop:
; for (int i = 0; i < n; i++)
; A[2 * i] = A[2 * i] + B[i];
;
; , SCEV is unable to prove that A[2 * i] does not overflow. However,
; analyzing the IR helps us to conclude it and in turn allow dependence
; analysis.
target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128"
; CHECK: Memory dependences are safe{{$}}
define void @f(i16* noalias %a,
i16* noalias %b, i64 %N) {
entry:
br label %for.body
for.body: ; preds = %for.body, %entry
%ind = phi i64 [ 0, %entry ], [ %inc, %for.body ]
%mul = mul nuw nsw i64 %ind, 2
%arrayidxA = getelementptr inbounds i16, i16* %a, i64 %mul
%loadA = load i16, i16* %arrayidxA, align 2
%arrayidxB = getelementptr inbounds i16, i16* %b, i64 %ind
%loadB = load i16, i16* %arrayidxB, align 2
%add = mul i16 %loadA, %loadB
store i16 %add, i16* %arrayidxA, align 2
%inc = add nuw nsw i64 %ind, 1
%exitcond = icmp eq i64 %inc, %N
br i1 %exitcond, label %for.end, label %for.body
for.end: ; preds = %for.body
ret void
}