1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-19 19:12:56 +02:00
llvm-mirror/lib/CodeGen/RegAllocBasic.cpp
Quentin Colombet a3456a760c [RABasic] Properly update the LiveRegMatrix when LR splitting occur
Prior to this patch we used to not touch the LiveRegMatrix while doing
live-range splitting. In other words, when live-range splitting was
occurring, the LiveRegMatrix was not reflecting the changes.
This is generally fine because it means the query to the LiveRegMatrix
will be conservately correct. However, when decisions are taken based on
what is going to happen on the interferences (e.g., when we spill a
register and know that it is going to be available for another one), we
might hit an assertion that the color used for the assignment is still
in use.

This patch makes sure the changes on the live-ranges are properly
reflected in the LiveRegMatrix, so the assertions don't break.
An alternative could have been to remove the assertion, but it would
make the invariants of the code and the general reasoning more
complicated in my opnion.

http://llvm.org/PR33057

llvm-svn: 304603
2017-06-02 22:46:31 +00:00

333 lines
11 KiB
C++

//===-- RegAllocBasic.cpp - Basic Register Allocator ----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the RABasic function pass, which provides a minimal
// implementation of the basic register allocator.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/Passes.h"
#include "AllocationOrder.h"
#include "LiveDebugVariables.h"
#include "RegAllocBase.h"
#include "Spiller.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/LiveRangeEdit.h"
#include "llvm/CodeGen/LiveRegMatrix.h"
#include "llvm/CodeGen/LiveStackAnalysis.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/CodeGen/VirtRegMap.h"
#include "llvm/PassAnalysisSupport.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include <cstdlib>
#include <queue>
using namespace llvm;
#define DEBUG_TYPE "regalloc"
static RegisterRegAlloc basicRegAlloc("basic", "basic register allocator",
createBasicRegisterAllocator);
namespace {
struct CompSpillWeight {
bool operator()(LiveInterval *A, LiveInterval *B) const {
return A->weight < B->weight;
}
};
}
namespace {
/// RABasic provides a minimal implementation of the basic register allocation
/// algorithm. It prioritizes live virtual registers by spill weight and spills
/// whenever a register is unavailable. This is not practical in production but
/// provides a useful baseline both for measuring other allocators and comparing
/// the speed of the basic algorithm against other styles of allocators.
class RABasic : public MachineFunctionPass,
public RegAllocBase,
private LiveRangeEdit::Delegate {
// context
MachineFunction *MF;
// state
std::unique_ptr<Spiller> SpillerInstance;
std::priority_queue<LiveInterval*, std::vector<LiveInterval*>,
CompSpillWeight> Queue;
// Scratch space. Allocated here to avoid repeated malloc calls in
// selectOrSplit().
BitVector UsableRegs;
bool LRE_CanEraseVirtReg(unsigned) override;
void LRE_WillShrinkVirtReg(unsigned) override;
public:
RABasic();
/// Return the pass name.
StringRef getPassName() const override { return "Basic Register Allocator"; }
/// RABasic analysis usage.
void getAnalysisUsage(AnalysisUsage &AU) const override;
void releaseMemory() override;
Spiller &spiller() override { return *SpillerInstance; }
void enqueue(LiveInterval *LI) override {
Queue.push(LI);
}
LiveInterval *dequeue() override {
if (Queue.empty())
return nullptr;
LiveInterval *LI = Queue.top();
Queue.pop();
return LI;
}
unsigned selectOrSplit(LiveInterval &VirtReg,
SmallVectorImpl<unsigned> &SplitVRegs) override;
/// Perform register allocation.
bool runOnMachineFunction(MachineFunction &mf) override;
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::NoPHIs);
}
// Helper for spilling all live virtual registers currently unified under preg
// that interfere with the most recently queried lvr. Return true if spilling
// was successful, and append any new spilled/split intervals to splitLVRs.
bool spillInterferences(LiveInterval &VirtReg, unsigned PhysReg,
SmallVectorImpl<unsigned> &SplitVRegs);
static char ID;
};
char RABasic::ID = 0;
} // end anonymous namespace
char &llvm::RABasicID = RABasic::ID;
INITIALIZE_PASS_BEGIN(RABasic, "regallocbasic", "Basic Register Allocator",
false, false)
INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables)
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer)
INITIALIZE_PASS_DEPENDENCY(MachineScheduler)
INITIALIZE_PASS_DEPENDENCY(LiveStacks)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
INITIALIZE_PASS_DEPENDENCY(VirtRegMap)
INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix)
INITIALIZE_PASS_END(RABasic, "regallocbasic", "Basic Register Allocator", false,
false)
bool RABasic::LRE_CanEraseVirtReg(unsigned VirtReg) {
if (VRM->hasPhys(VirtReg)) {
LiveInterval &LI = LIS->getInterval(VirtReg);
Matrix->unassign(LI);
aboutToRemoveInterval(LI);
return true;
}
// Unassigned virtreg is probably in the priority queue.
// RegAllocBase will erase it after dequeueing.
return false;
}
void RABasic::LRE_WillShrinkVirtReg(unsigned VirtReg) {
if (!VRM->hasPhys(VirtReg))
return;
// Register is assigned, put it back on the queue for reassignment.
LiveInterval &LI = LIS->getInterval(VirtReg);
Matrix->unassign(LI);
enqueue(&LI);
}
RABasic::RABasic(): MachineFunctionPass(ID) {
}
void RABasic::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequired<AAResultsWrapperPass>();
AU.addPreserved<AAResultsWrapperPass>();
AU.addRequired<LiveIntervals>();
AU.addPreserved<LiveIntervals>();
AU.addPreserved<SlotIndexes>();
AU.addRequired<LiveDebugVariables>();
AU.addPreserved<LiveDebugVariables>();
AU.addRequired<LiveStacks>();
AU.addPreserved<LiveStacks>();
AU.addRequired<MachineBlockFrequencyInfo>();
AU.addPreserved<MachineBlockFrequencyInfo>();
AU.addRequiredID(MachineDominatorsID);
AU.addPreservedID(MachineDominatorsID);
AU.addRequired<MachineLoopInfo>();
AU.addPreserved<MachineLoopInfo>();
AU.addRequired<VirtRegMap>();
AU.addPreserved<VirtRegMap>();
AU.addRequired<LiveRegMatrix>();
AU.addPreserved<LiveRegMatrix>();
MachineFunctionPass::getAnalysisUsage(AU);
}
void RABasic::releaseMemory() {
SpillerInstance.reset();
}
// Spill or split all live virtual registers currently unified under PhysReg
// that interfere with VirtReg. The newly spilled or split live intervals are
// returned by appending them to SplitVRegs.
bool RABasic::spillInterferences(LiveInterval &VirtReg, unsigned PhysReg,
SmallVectorImpl<unsigned> &SplitVRegs) {
// Record each interference and determine if all are spillable before mutating
// either the union or live intervals.
SmallVector<LiveInterval*, 8> Intfs;
// Collect interferences assigned to any alias of the physical register.
for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
Q.collectInterferingVRegs();
for (unsigned i = Q.interferingVRegs().size(); i; --i) {
LiveInterval *Intf = Q.interferingVRegs()[i - 1];
if (!Intf->isSpillable() || Intf->weight > VirtReg.weight)
return false;
Intfs.push_back(Intf);
}
}
DEBUG(dbgs() << "spilling " << TRI->getName(PhysReg) <<
" interferences with " << VirtReg << "\n");
assert(!Intfs.empty() && "expected interference");
// Spill each interfering vreg allocated to PhysReg or an alias.
for (unsigned i = 0, e = Intfs.size(); i != e; ++i) {
LiveInterval &Spill = *Intfs[i];
// Skip duplicates.
if (!VRM->hasPhys(Spill.reg))
continue;
// Deallocate the interfering vreg by removing it from the union.
// A LiveInterval instance may not be in a union during modification!
Matrix->unassign(Spill);
// Spill the extracted interval.
LiveRangeEdit LRE(&Spill, SplitVRegs, *MF, *LIS, VRM, this, &DeadRemats);
spiller().spill(LRE);
}
return true;
}
// Driver for the register assignment and splitting heuristics.
// Manages iteration over the LiveIntervalUnions.
//
// This is a minimal implementation of register assignment and splitting that
// spills whenever we run out of registers.
//
// selectOrSplit can only be called once per live virtual register. We then do a
// single interference test for each register the correct class until we find an
// available register. So, the number of interference tests in the worst case is
// |vregs| * |machineregs|. And since the number of interference tests is
// minimal, there is no value in caching them outside the scope of
// selectOrSplit().
unsigned RABasic::selectOrSplit(LiveInterval &VirtReg,
SmallVectorImpl<unsigned> &SplitVRegs) {
// Populate a list of physical register spill candidates.
SmallVector<unsigned, 8> PhysRegSpillCands;
// Check for an available register in this class.
AllocationOrder Order(VirtReg.reg, *VRM, RegClassInfo, Matrix);
while (unsigned PhysReg = Order.next()) {
// Check for interference in PhysReg
switch (Matrix->checkInterference(VirtReg, PhysReg)) {
case LiveRegMatrix::IK_Free:
// PhysReg is available, allocate it.
return PhysReg;
case LiveRegMatrix::IK_VirtReg:
// Only virtual registers in the way, we may be able to spill them.
PhysRegSpillCands.push_back(PhysReg);
continue;
default:
// RegMask or RegUnit interference.
continue;
}
}
// Try to spill another interfering reg with less spill weight.
for (SmallVectorImpl<unsigned>::iterator PhysRegI = PhysRegSpillCands.begin(),
PhysRegE = PhysRegSpillCands.end(); PhysRegI != PhysRegE; ++PhysRegI) {
if (!spillInterferences(VirtReg, *PhysRegI, SplitVRegs))
continue;
assert(!Matrix->checkInterference(VirtReg, *PhysRegI) &&
"Interference after spill.");
// Tell the caller to allocate to this newly freed physical register.
return *PhysRegI;
}
// No other spill candidates were found, so spill the current VirtReg.
DEBUG(dbgs() << "spilling: " << VirtReg << '\n');
if (!VirtReg.isSpillable())
return ~0u;
LiveRangeEdit LRE(&VirtReg, SplitVRegs, *MF, *LIS, VRM, this, &DeadRemats);
spiller().spill(LRE);
// The live virtual register requesting allocation was spilled, so tell
// the caller not to allocate anything during this round.
return 0;
}
bool RABasic::runOnMachineFunction(MachineFunction &mf) {
DEBUG(dbgs() << "********** BASIC REGISTER ALLOCATION **********\n"
<< "********** Function: "
<< mf.getName() << '\n');
MF = &mf;
RegAllocBase::init(getAnalysis<VirtRegMap>(),
getAnalysis<LiveIntervals>(),
getAnalysis<LiveRegMatrix>());
calculateSpillWeightsAndHints(*LIS, *MF, VRM,
getAnalysis<MachineLoopInfo>(),
getAnalysis<MachineBlockFrequencyInfo>());
SpillerInstance.reset(createInlineSpiller(*this, *MF, *VRM));
allocatePhysRegs();
postOptimization();
// Diagnostic output before rewriting
DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *VRM << "\n");
releaseMemory();
return true;
}
FunctionPass* llvm::createBasicRegisterAllocator()
{
return new RABasic();
}