1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-23 03:02:36 +01:00
llvm-mirror/lib/Transforms/Vectorize/VPlan.h
Florian Hahn 9a4f506dca Revert "[VPlan] Use VPValue def for VPWidenSelectRecipe."
This reverts commit a8e50f1c6e7b404aab8fedb972f003a4d6a6434e.

This reportedly breaks building the Linux kernel.
  https://bugs.llvm.org/show_bug.cgi?id=48142
2020-11-10 22:50:46 +00:00

2091 lines
76 KiB
C++

//===- VPlan.h - Represent A Vectorizer Plan --------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This file contains the declarations of the Vectorization Plan base classes:
/// 1. VPBasicBlock and VPRegionBlock that inherit from a common pure virtual
/// VPBlockBase, together implementing a Hierarchical CFG;
/// 2. Specializations of GraphTraits that allow VPBlockBase graphs to be
/// treated as proper graphs for generic algorithms;
/// 3. Pure virtual VPRecipeBase serving as the base class for recipes contained
/// within VPBasicBlocks;
/// 4. VPInstruction, a concrete Recipe and VPUser modeling a single planned
/// instruction;
/// 5. The VPlan class holding a candidate for vectorization;
/// 6. The VPlanPrinter class providing a way to print a plan in dot format;
/// These are documented in docs/VectorizationPlan.rst.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
#define LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
#include "VPlanLoopInfo.h"
#include "VPlanValue.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/ilist.h"
#include "llvm/ADT/ilist_node.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/IRBuilder.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <map>
#include <string>
namespace llvm {
class BasicBlock;
class DominatorTree;
class InnerLoopVectorizer;
class LoopInfo;
class raw_ostream;
class RecurrenceDescriptor;
class Value;
class VPBasicBlock;
class VPRegionBlock;
class VPlan;
class VPlanSlp;
/// A range of powers-of-2 vectorization factors with fixed start and
/// adjustable end. The range includes start and excludes end, e.g.,:
/// [1, 9) = {1, 2, 4, 8}
struct VFRange {
// A power of 2.
const ElementCount Start;
// Need not be a power of 2. If End <= Start range is empty.
ElementCount End;
bool isEmpty() const {
return End.getKnownMinValue() <= Start.getKnownMinValue();
}
VFRange(const ElementCount &Start, const ElementCount &End)
: Start(Start), End(End) {
assert(Start.isScalable() == End.isScalable() &&
"Both Start and End should have the same scalable flag");
assert(isPowerOf2_32(Start.getKnownMinValue()) &&
"Expected Start to be a power of 2");
}
};
using VPlanPtr = std::unique_ptr<VPlan>;
/// In what follows, the term "input IR" refers to code that is fed into the
/// vectorizer whereas the term "output IR" refers to code that is generated by
/// the vectorizer.
/// VPIteration represents a single point in the iteration space of the output
/// (vectorized and/or unrolled) IR loop.
struct VPIteration {
/// in [0..UF)
unsigned Part;
/// in [0..VF)
unsigned Lane;
};
/// This is a helper struct for maintaining vectorization state. It's used for
/// mapping values from the original loop to their corresponding values in
/// the new loop. Two mappings are maintained: one for vectorized values and
/// one for scalarized values. Vectorized values are represented with UF
/// vector values in the new loop, and scalarized values are represented with
/// UF x VF scalar values in the new loop. UF and VF are the unroll and
/// vectorization factors, respectively.
///
/// Entries can be added to either map with setVectorValue and setScalarValue,
/// which assert that an entry was not already added before. If an entry is to
/// replace an existing one, call resetVectorValue and resetScalarValue. This is
/// currently needed to modify the mapped values during "fix-up" operations that
/// occur once the first phase of widening is complete. These operations include
/// type truncation and the second phase of recurrence widening.
///
/// Entries from either map can be retrieved using the getVectorValue and
/// getScalarValue functions, which assert that the desired value exists.
struct VectorizerValueMap {
friend struct VPTransformState;
private:
/// The unroll factor. Each entry in the vector map contains UF vector values.
unsigned UF;
/// The vectorization factor. Each entry in the scalar map contains UF x VF
/// scalar values.
ElementCount VF;
/// The vector and scalar map storage. We use std::map and not DenseMap
/// because insertions to DenseMap invalidate its iterators.
using VectorParts = SmallVector<Value *, 2>;
using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
std::map<Value *, VectorParts> VectorMapStorage;
std::map<Value *, ScalarParts> ScalarMapStorage;
public:
/// Construct an empty map with the given unroll and vectorization factors.
VectorizerValueMap(unsigned UF, ElementCount VF) : UF(UF), VF(VF) {}
/// \return True if the map has any vector entry for \p Key.
bool hasAnyVectorValue(Value *Key) const {
return VectorMapStorage.count(Key);
}
/// \return True if the map has a vector entry for \p Key and \p Part.
bool hasVectorValue(Value *Key, unsigned Part) const {
assert(Part < UF && "Queried Vector Part is too large.");
if (!hasAnyVectorValue(Key))
return false;
const VectorParts &Entry = VectorMapStorage.find(Key)->second;
assert(Entry.size() == UF && "VectorParts has wrong dimensions.");
return Entry[Part] != nullptr;
}
/// \return True if the map has any scalar entry for \p Key.
bool hasAnyScalarValue(Value *Key) const {
return ScalarMapStorage.count(Key);
}
/// \return True if the map has a scalar entry for \p Key and \p Instance.
bool hasScalarValue(Value *Key, const VPIteration &Instance) const {
assert(Instance.Part < UF && "Queried Scalar Part is too large.");
assert(Instance.Lane < VF.getKnownMinValue() &&
"Queried Scalar Lane is too large.");
assert(!VF.isScalable() && "VF is assumed to be non scalable.");
if (!hasAnyScalarValue(Key))
return false;
const ScalarParts &Entry = ScalarMapStorage.find(Key)->second;
assert(Entry.size() == UF && "ScalarParts has wrong dimensions.");
assert(Entry[Instance.Part].size() == VF.getKnownMinValue() &&
"ScalarParts has wrong dimensions.");
return Entry[Instance.Part][Instance.Lane] != nullptr;
}
/// Retrieve the existing vector value that corresponds to \p Key and
/// \p Part.
Value *getVectorValue(Value *Key, unsigned Part) {
assert(hasVectorValue(Key, Part) && "Getting non-existent value.");
return VectorMapStorage[Key][Part];
}
/// Retrieve the existing scalar value that corresponds to \p Key and
/// \p Instance.
Value *getScalarValue(Value *Key, const VPIteration &Instance) {
assert(hasScalarValue(Key, Instance) && "Getting non-existent value.");
return ScalarMapStorage[Key][Instance.Part][Instance.Lane];
}
/// Set a vector value associated with \p Key and \p Part. Assumes such a
/// value is not already set. If it is, use resetVectorValue() instead.
void setVectorValue(Value *Key, unsigned Part, Value *Vector) {
assert(!hasVectorValue(Key, Part) && "Vector value already set for part");
if (!VectorMapStorage.count(Key)) {
VectorParts Entry(UF);
VectorMapStorage[Key] = Entry;
}
VectorMapStorage[Key][Part] = Vector;
}
/// Set a scalar value associated with \p Key and \p Instance. Assumes such a
/// value is not already set.
void setScalarValue(Value *Key, const VPIteration &Instance, Value *Scalar) {
assert(!hasScalarValue(Key, Instance) && "Scalar value already set");
if (!ScalarMapStorage.count(Key)) {
ScalarParts Entry(UF);
// TODO: Consider storing uniform values only per-part, as they occupy
// lane 0 only, keeping the other VF-1 redundant entries null.
for (unsigned Part = 0; Part < UF; ++Part)
Entry[Part].resize(VF.getKnownMinValue(), nullptr);
ScalarMapStorage[Key] = Entry;
}
ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar;
}
/// Reset the vector value associated with \p Key for the given \p Part.
/// This function can be used to update values that have already been
/// vectorized. This is the case for "fix-up" operations including type
/// truncation and the second phase of recurrence vectorization.
void resetVectorValue(Value *Key, unsigned Part, Value *Vector) {
assert(hasVectorValue(Key, Part) && "Vector value not set for part");
VectorMapStorage[Key][Part] = Vector;
}
/// Reset the scalar value associated with \p Key for \p Part and \p Lane.
/// This function can be used to update values that have already been
/// scalarized. This is the case for "fix-up" operations including scalar phi
/// nodes for scalarized and predicated instructions.
void resetScalarValue(Value *Key, const VPIteration &Instance,
Value *Scalar) {
assert(hasScalarValue(Key, Instance) &&
"Scalar value not set for part and lane");
ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar;
}
};
/// This class is used to enable the VPlan to invoke a method of ILV. This is
/// needed until the method is refactored out of ILV and becomes reusable.
struct VPCallback {
virtual ~VPCallback() {}
virtual Value *getOrCreateVectorValues(Value *V, unsigned Part) = 0;
virtual Value *getOrCreateScalarValue(Value *V,
const VPIteration &Instance) = 0;
};
/// VPTransformState holds information passed down when "executing" a VPlan,
/// needed for generating the output IR.
struct VPTransformState {
VPTransformState(ElementCount VF, unsigned UF, LoopInfo *LI,
DominatorTree *DT, IRBuilder<> &Builder,
VectorizerValueMap &ValueMap, InnerLoopVectorizer *ILV,
VPCallback &Callback)
: VF(VF), UF(UF), Instance(), LI(LI), DT(DT), Builder(Builder),
ValueMap(ValueMap), ILV(ILV), Callback(Callback) {}
/// The chosen Vectorization and Unroll Factors of the loop being vectorized.
ElementCount VF;
unsigned UF;
/// Hold the indices to generate specific scalar instructions. Null indicates
/// that all instances are to be generated, using either scalar or vector
/// instructions.
Optional<VPIteration> Instance;
struct DataState {
/// A type for vectorized values in the new loop. Each value from the
/// original loop, when vectorized, is represented by UF vector values in
/// the new unrolled loop, where UF is the unroll factor.
typedef SmallVector<Value *, 2> PerPartValuesTy;
DenseMap<VPValue *, PerPartValuesTy> PerPartOutput;
} Data;
/// Get the generated Value for a given VPValue and a given Part. Note that
/// as some Defs are still created by ILV and managed in its ValueMap, this
/// method will delegate the call to ILV in such cases in order to provide
/// callers a consistent API.
/// \see set.
Value *get(VPValue *Def, unsigned Part) {
// If Values have been set for this Def return the one relevant for \p Part.
if (Data.PerPartOutput.count(Def))
return Data.PerPartOutput[Def][Part];
// Def is managed by ILV: bring the Values from ValueMap.
return Callback.getOrCreateVectorValues(VPValue2Value[Def], Part);
}
/// Get the generated Value for a given VPValue and given Part and Lane.
Value *get(VPValue *Def, const VPIteration &Instance) {
// If the Def is managed directly by VPTransformState, extract the lane from
// the relevant part. Note that currently only VPInstructions and external
// defs are managed by VPTransformState. Other Defs are still created by ILV
// and managed in its ValueMap. For those this method currently just
// delegates the call to ILV below.
if (Data.PerPartOutput.count(Def)) {
auto *VecPart = Data.PerPartOutput[Def][Instance.Part];
if (!VecPart->getType()->isVectorTy()) {
assert(Instance.Lane == 0 && "cannot get lane > 0 for scalar");
return VecPart;
}
// TODO: Cache created scalar values.
return Builder.CreateExtractElement(VecPart,
Builder.getInt32(Instance.Lane));
}
return Callback.getOrCreateScalarValue(VPValue2Value[Def], Instance);
}
/// Set the generated Value for a given VPValue and a given Part.
void set(VPValue *Def, Value *V, unsigned Part) {
if (!Data.PerPartOutput.count(Def)) {
DataState::PerPartValuesTy Entry(UF);
Data.PerPartOutput[Def] = Entry;
}
Data.PerPartOutput[Def][Part] = V;
}
void set(VPValue *Def, Value *IRDef, Value *V, unsigned Part);
/// Hold state information used when constructing the CFG of the output IR,
/// traversing the VPBasicBlocks and generating corresponding IR BasicBlocks.
struct CFGState {
/// The previous VPBasicBlock visited. Initially set to null.
VPBasicBlock *PrevVPBB = nullptr;
/// The previous IR BasicBlock created or used. Initially set to the new
/// header BasicBlock.
BasicBlock *PrevBB = nullptr;
/// The last IR BasicBlock in the output IR. Set to the new latch
/// BasicBlock, used for placing the newly created BasicBlocks.
BasicBlock *LastBB = nullptr;
/// A mapping of each VPBasicBlock to the corresponding BasicBlock. In case
/// of replication, maps the BasicBlock of the last replica created.
SmallDenseMap<VPBasicBlock *, BasicBlock *> VPBB2IRBB;
/// Vector of VPBasicBlocks whose terminator instruction needs to be fixed
/// up at the end of vector code generation.
SmallVector<VPBasicBlock *, 8> VPBBsToFix;
CFGState() = default;
} CFG;
/// Hold a pointer to LoopInfo to register new basic blocks in the loop.
LoopInfo *LI;
/// Hold a pointer to Dominator Tree to register new basic blocks in the loop.
DominatorTree *DT;
/// Hold a reference to the IRBuilder used to generate output IR code.
IRBuilder<> &Builder;
/// Hold a reference to the Value state information used when generating the
/// Values of the output IR.
VectorizerValueMap &ValueMap;
/// Hold a reference to a mapping between VPValues in VPlan and original
/// Values they correspond to.
VPValue2ValueTy VPValue2Value;
/// Hold the canonical scalar IV of the vector loop (start=0, step=VF*UF).
Value *CanonicalIV = nullptr;
/// Hold the trip count of the scalar loop.
Value *TripCount = nullptr;
/// Hold a pointer to InnerLoopVectorizer to reuse its IR generation methods.
InnerLoopVectorizer *ILV;
VPCallback &Callback;
};
/// VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
/// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock.
class VPBlockBase {
friend class VPBlockUtils;
const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).
/// An optional name for the block.
std::string Name;
/// The immediate VPRegionBlock which this VPBlockBase belongs to, or null if
/// it is a topmost VPBlockBase.
VPRegionBlock *Parent = nullptr;
/// List of predecessor blocks.
SmallVector<VPBlockBase *, 1> Predecessors;
/// List of successor blocks.
SmallVector<VPBlockBase *, 1> Successors;
/// Successor selector, null for zero or single successor blocks.
VPValue *CondBit = nullptr;
/// Current block predicate - null if the block does not need a predicate.
VPValue *Predicate = nullptr;
/// VPlan containing the block. Can only be set on the entry block of the
/// plan.
VPlan *Plan = nullptr;
/// Add \p Successor as the last successor to this block.
void appendSuccessor(VPBlockBase *Successor) {
assert(Successor && "Cannot add nullptr successor!");
Successors.push_back(Successor);
}
/// Add \p Predecessor as the last predecessor to this block.
void appendPredecessor(VPBlockBase *Predecessor) {
assert(Predecessor && "Cannot add nullptr predecessor!");
Predecessors.push_back(Predecessor);
}
/// Remove \p Predecessor from the predecessors of this block.
void removePredecessor(VPBlockBase *Predecessor) {
auto Pos = std::find(Predecessors.begin(), Predecessors.end(), Predecessor);
assert(Pos && "Predecessor does not exist");
Predecessors.erase(Pos);
}
/// Remove \p Successor from the successors of this block.
void removeSuccessor(VPBlockBase *Successor) {
auto Pos = std::find(Successors.begin(), Successors.end(), Successor);
assert(Pos && "Successor does not exist");
Successors.erase(Pos);
}
protected:
VPBlockBase(const unsigned char SC, const std::string &N)
: SubclassID(SC), Name(N) {}
public:
/// An enumeration for keeping track of the concrete subclass of VPBlockBase
/// that are actually instantiated. Values of this enumeration are kept in the
/// SubclassID field of the VPBlockBase objects. They are used for concrete
/// type identification.
using VPBlockTy = enum { VPBasicBlockSC, VPRegionBlockSC };
using VPBlocksTy = SmallVectorImpl<VPBlockBase *>;
virtual ~VPBlockBase() = default;
const std::string &getName() const { return Name; }
void setName(const Twine &newName) { Name = newName.str(); }
/// \return an ID for the concrete type of this object.
/// This is used to implement the classof checks. This should not be used
/// for any other purpose, as the values may change as LLVM evolves.
unsigned getVPBlockID() const { return SubclassID; }
VPRegionBlock *getParent() { return Parent; }
const VPRegionBlock *getParent() const { return Parent; }
/// \return A pointer to the plan containing the current block.
VPlan *getPlan();
const VPlan *getPlan() const;
/// Sets the pointer of the plan containing the block. The block must be the
/// entry block into the VPlan.
void setPlan(VPlan *ParentPlan);
void setParent(VPRegionBlock *P) { Parent = P; }
/// \return the VPBasicBlock that is the entry of this VPBlockBase,
/// recursively, if the latter is a VPRegionBlock. Otherwise, if this
/// VPBlockBase is a VPBasicBlock, it is returned.
const VPBasicBlock *getEntryBasicBlock() const;
VPBasicBlock *getEntryBasicBlock();
/// \return the VPBasicBlock that is the exit of this VPBlockBase,
/// recursively, if the latter is a VPRegionBlock. Otherwise, if this
/// VPBlockBase is a VPBasicBlock, it is returned.
const VPBasicBlock *getExitBasicBlock() const;
VPBasicBlock *getExitBasicBlock();
const VPBlocksTy &getSuccessors() const { return Successors; }
VPBlocksTy &getSuccessors() { return Successors; }
const VPBlocksTy &getPredecessors() const { return Predecessors; }
VPBlocksTy &getPredecessors() { return Predecessors; }
/// \return the successor of this VPBlockBase if it has a single successor.
/// Otherwise return a null pointer.
VPBlockBase *getSingleSuccessor() const {
return (Successors.size() == 1 ? *Successors.begin() : nullptr);
}
/// \return the predecessor of this VPBlockBase if it has a single
/// predecessor. Otherwise return a null pointer.
VPBlockBase *getSinglePredecessor() const {
return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr);
}
size_t getNumSuccessors() const { return Successors.size(); }
size_t getNumPredecessors() const { return Predecessors.size(); }
/// An Enclosing Block of a block B is any block containing B, including B
/// itself. \return the closest enclosing block starting from "this", which
/// has successors. \return the root enclosing block if all enclosing blocks
/// have no successors.
VPBlockBase *getEnclosingBlockWithSuccessors();
/// \return the closest enclosing block starting from "this", which has
/// predecessors. \return the root enclosing block if all enclosing blocks
/// have no predecessors.
VPBlockBase *getEnclosingBlockWithPredecessors();
/// \return the successors either attached directly to this VPBlockBase or, if
/// this VPBlockBase is the exit block of a VPRegionBlock and has no
/// successors of its own, search recursively for the first enclosing
/// VPRegionBlock that has successors and return them. If no such
/// VPRegionBlock exists, return the (empty) successors of the topmost
/// VPBlockBase reached.
const VPBlocksTy &getHierarchicalSuccessors() {
return getEnclosingBlockWithSuccessors()->getSuccessors();
}
/// \return the hierarchical successor of this VPBlockBase if it has a single
/// hierarchical successor. Otherwise return a null pointer.
VPBlockBase *getSingleHierarchicalSuccessor() {
return getEnclosingBlockWithSuccessors()->getSingleSuccessor();
}
/// \return the predecessors either attached directly to this VPBlockBase or,
/// if this VPBlockBase is the entry block of a VPRegionBlock and has no
/// predecessors of its own, search recursively for the first enclosing
/// VPRegionBlock that has predecessors and return them. If no such
/// VPRegionBlock exists, return the (empty) predecessors of the topmost
/// VPBlockBase reached.
const VPBlocksTy &getHierarchicalPredecessors() {
return getEnclosingBlockWithPredecessors()->getPredecessors();
}
/// \return the hierarchical predecessor of this VPBlockBase if it has a
/// single hierarchical predecessor. Otherwise return a null pointer.
VPBlockBase *getSingleHierarchicalPredecessor() {
return getEnclosingBlockWithPredecessors()->getSinglePredecessor();
}
/// \return the condition bit selecting the successor.
VPValue *getCondBit() { return CondBit; }
const VPValue *getCondBit() const { return CondBit; }
void setCondBit(VPValue *CV) { CondBit = CV; }
VPValue *getPredicate() { return Predicate; }
const VPValue *getPredicate() const { return Predicate; }
void setPredicate(VPValue *Pred) { Predicate = Pred; }
/// Set a given VPBlockBase \p Successor as the single successor of this
/// VPBlockBase. This VPBlockBase is not added as predecessor of \p Successor.
/// This VPBlockBase must have no successors.
void setOneSuccessor(VPBlockBase *Successor) {
assert(Successors.empty() && "Setting one successor when others exist.");
appendSuccessor(Successor);
}
/// Set two given VPBlockBases \p IfTrue and \p IfFalse to be the two
/// successors of this VPBlockBase. \p Condition is set as the successor
/// selector. This VPBlockBase is not added as predecessor of \p IfTrue or \p
/// IfFalse. This VPBlockBase must have no successors.
void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse,
VPValue *Condition) {
assert(Successors.empty() && "Setting two successors when others exist.");
assert(Condition && "Setting two successors without condition!");
CondBit = Condition;
appendSuccessor(IfTrue);
appendSuccessor(IfFalse);
}
/// Set each VPBasicBlock in \p NewPreds as predecessor of this VPBlockBase.
/// This VPBlockBase must have no predecessors. This VPBlockBase is not added
/// as successor of any VPBasicBlock in \p NewPreds.
void setPredecessors(ArrayRef<VPBlockBase *> NewPreds) {
assert(Predecessors.empty() && "Block predecessors already set.");
for (auto *Pred : NewPreds)
appendPredecessor(Pred);
}
/// Remove all the predecessor of this block.
void clearPredecessors() { Predecessors.clear(); }
/// Remove all the successors of this block and set to null its condition bit
void clearSuccessors() {
Successors.clear();
CondBit = nullptr;
}
/// The method which generates the output IR that correspond to this
/// VPBlockBase, thereby "executing" the VPlan.
virtual void execute(struct VPTransformState *State) = 0;
/// Delete all blocks reachable from a given VPBlockBase, inclusive.
static void deleteCFG(VPBlockBase *Entry);
void printAsOperand(raw_ostream &OS, bool PrintType) const {
OS << getName();
}
void print(raw_ostream &OS) const {
// TODO: Only printing VPBB name for now since we only have dot printing
// support for VPInstructions/Recipes.
printAsOperand(OS, false);
}
/// Return true if it is legal to hoist instructions into this block.
bool isLegalToHoistInto() {
// There are currently no constraints that prevent an instruction to be
// hoisted into a VPBlockBase.
return true;
}
};
/// VPRecipeBase is a base class modeling a sequence of one or more output IR
/// instructions.
class VPRecipeBase : public ilist_node_with_parent<VPRecipeBase, VPBasicBlock> {
friend VPBasicBlock;
friend class VPBlockUtils;
const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).
/// Each VPRecipe belongs to a single VPBasicBlock.
VPBasicBlock *Parent = nullptr;
public:
/// An enumeration for keeping track of the concrete subclass of VPRecipeBase
/// that is actually instantiated. Values of this enumeration are kept in the
/// SubclassID field of the VPRecipeBase objects. They are used for concrete
/// type identification.
using VPRecipeTy = enum {
VPBlendSC,
VPBranchOnMaskSC,
VPInstructionSC,
VPInterleaveSC,
VPPredInstPHISC,
VPReductionSC,
VPReplicateSC,
VPWidenCallSC,
VPWidenCanonicalIVSC,
VPWidenGEPSC,
VPWidenIntOrFpInductionSC,
VPWidenMemoryInstructionSC,
VPWidenPHISC,
VPWidenSC,
VPWidenSelectSC
};
VPRecipeBase(const unsigned char SC) : SubclassID(SC) {}
virtual ~VPRecipeBase() = default;
/// \return an ID for the concrete type of this object.
/// This is used to implement the classof checks. This should not be used
/// for any other purpose, as the values may change as LLVM evolves.
unsigned getVPRecipeID() const { return SubclassID; }
/// \return the VPBasicBlock which this VPRecipe belongs to.
VPBasicBlock *getParent() { return Parent; }
const VPBasicBlock *getParent() const { return Parent; }
/// The method which generates the output IR instructions that correspond to
/// this VPRecipe, thereby "executing" the VPlan.
virtual void execute(struct VPTransformState &State) = 0;
/// Each recipe prints itself.
virtual void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const = 0;
/// Dump the recipe to stderr (for debugging).
void dump() const;
/// Insert an unlinked recipe into a basic block immediately before
/// the specified recipe.
void insertBefore(VPRecipeBase *InsertPos);
/// Insert an unlinked Recipe into a basic block immediately after
/// the specified Recipe.
void insertAfter(VPRecipeBase *InsertPos);
/// Unlink this recipe from its current VPBasicBlock and insert it into
/// the VPBasicBlock that MovePos lives in, right after MovePos.
void moveAfter(VPRecipeBase *MovePos);
/// This method unlinks 'this' from the containing basic block, but does not
/// delete it.
void removeFromParent();
/// This method unlinks 'this' from the containing basic block and deletes it.
///
/// \returns an iterator pointing to the element after the erased one
iplist<VPRecipeBase>::iterator eraseFromParent();
/// Returns a pointer to a VPUser, if the recipe inherits from VPUser or
/// nullptr otherwise.
VPUser *toVPUser();
/// Returns a pointer to a VPValue, if the recipe inherits from VPValue or
/// nullptr otherwise.
VPValue *toVPValue();
const VPValue *toVPValue() const;
/// Returns the underlying instruction, if the recipe is a VPValue or nullptr
/// otherwise.
Instruction *getUnderlyingInstr() {
if (auto *VPV = toVPValue())
return cast_or_null<Instruction>(VPV->getUnderlyingValue());
return nullptr;
}
const Instruction *getUnderlyingInstr() const {
if (auto *VPV = toVPValue())
return cast_or_null<Instruction>(VPV->getUnderlyingValue());
return nullptr;
}
};
inline bool VPUser::classof(const VPRecipeBase *Recipe) {
return Recipe->getVPRecipeID() == VPRecipeBase::VPInstructionSC ||
Recipe->getVPRecipeID() == VPRecipeBase::VPWidenSC ||
Recipe->getVPRecipeID() == VPRecipeBase::VPWidenCallSC ||
Recipe->getVPRecipeID() == VPRecipeBase::VPWidenSelectSC ||
Recipe->getVPRecipeID() == VPRecipeBase::VPWidenGEPSC ||
Recipe->getVPRecipeID() == VPRecipeBase::VPBlendSC ||
Recipe->getVPRecipeID() == VPRecipeBase::VPInterleaveSC ||
Recipe->getVPRecipeID() == VPRecipeBase::VPReplicateSC ||
Recipe->getVPRecipeID() == VPRecipeBase::VPBranchOnMaskSC ||
Recipe->getVPRecipeID() == VPRecipeBase::VPWidenMemoryInstructionSC;
}
/// This is a concrete Recipe that models a single VPlan-level instruction.
/// While as any Recipe it may generate a sequence of IR instructions when
/// executed, these instructions would always form a single-def expression as
/// the VPInstruction is also a single def-use vertex.
class VPInstruction : public VPUser, public VPValue, public VPRecipeBase {
friend class VPlanSlp;
public:
/// VPlan opcodes, extending LLVM IR with idiomatics instructions.
enum {
Not = Instruction::OtherOpsEnd + 1,
ICmpULE,
SLPLoad,
SLPStore,
ActiveLaneMask,
};
private:
typedef unsigned char OpcodeTy;
OpcodeTy Opcode;
/// Utility method serving execute(): generates a single instance of the
/// modeled instruction.
void generateInstruction(VPTransformState &State, unsigned Part);
protected:
void setUnderlyingInstr(Instruction *I) { setUnderlyingValue(I); }
public:
VPInstruction(unsigned Opcode, ArrayRef<VPValue *> Operands)
: VPUser(Operands), VPValue(VPValue::VPInstructionSC),
VPRecipeBase(VPRecipeBase::VPInstructionSC), Opcode(Opcode) {}
VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands)
: VPInstruction(Opcode, ArrayRef<VPValue *>(Operands)) {}
/// Method to support type inquiry through isa, cast, and dyn_cast.
static inline bool classof(const VPValue *V) {
return V->getVPValueID() == VPValue::VPInstructionSC;
}
VPInstruction *clone() const {
SmallVector<VPValue *, 2> Operands(operands());
return new VPInstruction(Opcode, Operands);
}
/// Method to support type inquiry through isa, cast, and dyn_cast.
static inline bool classof(const VPRecipeBase *R) {
return R->getVPRecipeID() == VPRecipeBase::VPInstructionSC;
}
unsigned getOpcode() const { return Opcode; }
/// Generate the instruction.
/// TODO: We currently execute only per-part unless a specific instance is
/// provided.
void execute(VPTransformState &State) override;
/// Print the Recipe.
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override;
/// Print the VPInstruction.
void print(raw_ostream &O) const;
void print(raw_ostream &O, VPSlotTracker &SlotTracker) const;
/// Return true if this instruction may modify memory.
bool mayWriteToMemory() const {
// TODO: we can use attributes of the called function to rule out memory
// modifications.
return Opcode == Instruction::Store || Opcode == Instruction::Call ||
Opcode == Instruction::Invoke || Opcode == SLPStore;
}
bool hasResult() const {
// CallInst may or may not have a result, depending on the called function.
// Conservatively return calls have results for now.
switch (getOpcode()) {
case Instruction::Ret:
case Instruction::Br:
case Instruction::Store:
case Instruction::Switch:
case Instruction::IndirectBr:
case Instruction::Resume:
case Instruction::CatchRet:
case Instruction::Unreachable:
case Instruction::Fence:
case Instruction::AtomicRMW:
return false;
default:
return true;
}
}
};
/// VPWidenRecipe is a recipe for producing a copy of vector type its
/// ingredient. This recipe covers most of the traditional vectorization cases
/// where each ingredient transforms into a vectorized version of itself.
class VPWidenRecipe : public VPRecipeBase, public VPUser {
/// Hold the instruction to be widened.
Instruction &Ingredient;
public:
template <typename IterT>
VPWidenRecipe(Instruction &I, iterator_range<IterT> Operands)
: VPRecipeBase(VPWidenSC), VPUser(Operands), Ingredient(I) {}
~VPWidenRecipe() override = default;
/// Method to support type inquiry through isa, cast, and dyn_cast.
static inline bool classof(const VPRecipeBase *V) {
return V->getVPRecipeID() == VPRecipeBase::VPWidenSC;
}
/// Produce widened copies of all Ingredients.
void execute(VPTransformState &State) override;
/// Print the recipe.
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override;
};
/// A recipe for widening Call instructions.
class VPWidenCallRecipe : public VPRecipeBase, public VPValue, public VPUser {
public:
template <typename IterT>
VPWidenCallRecipe(CallInst &I, iterator_range<IterT> CallArguments)
: VPRecipeBase(VPRecipeBase::VPWidenCallSC),
VPValue(VPValue::VPVWidenCallSC, &I), VPUser(CallArguments) {}
~VPWidenCallRecipe() override = default;
/// Method to support type inquiry through isa, cast, and dyn_cast.
static inline bool classof(const VPRecipeBase *V) {
return V->getVPRecipeID() == VPRecipeBase::VPWidenCallSC;
}
/// Produce a widened version of the call instruction.
void execute(VPTransformState &State) override;
/// Print the recipe.
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override;
};
/// A recipe for widening select instructions.
class VPWidenSelectRecipe : public VPRecipeBase, public VPUser {
private:
/// Hold the select to be widened.
SelectInst &Ingredient;
/// Is the condition of the select loop invariant?
bool InvariantCond;
public:
template <typename IterT>
VPWidenSelectRecipe(SelectInst &I, iterator_range<IterT> Operands,
bool InvariantCond)
: VPRecipeBase(VPWidenSelectSC), VPUser(Operands), Ingredient(I),
InvariantCond(InvariantCond) {}
~VPWidenSelectRecipe() override = default;
/// Method to support type inquiry through isa, cast, and dyn_cast.
static inline bool classof(const VPRecipeBase *V) {
return V->getVPRecipeID() == VPRecipeBase::VPWidenSelectSC;
}
/// Produce a widened version of the select instruction.
void execute(VPTransformState &State) override;
/// Print the recipe.
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override;
};
/// A recipe for handling GEP instructions.
class VPWidenGEPRecipe : public VPRecipeBase, public VPUser {
GetElementPtrInst *GEP;
bool IsPtrLoopInvariant;
SmallBitVector IsIndexLoopInvariant;
public:
template <typename IterT>
VPWidenGEPRecipe(GetElementPtrInst *GEP, iterator_range<IterT> Operands)
: VPRecipeBase(VPWidenGEPSC), VPUser(Operands), GEP(GEP),
IsIndexLoopInvariant(GEP->getNumIndices(), false) {}
template <typename IterT>
VPWidenGEPRecipe(GetElementPtrInst *GEP, iterator_range<IterT> Operands,
Loop *OrigLoop)
: VPRecipeBase(VPWidenGEPSC), VPUser(Operands), GEP(GEP),
IsIndexLoopInvariant(GEP->getNumIndices(), false) {
IsPtrLoopInvariant = OrigLoop->isLoopInvariant(GEP->getPointerOperand());
for (auto Index : enumerate(GEP->indices()))
IsIndexLoopInvariant[Index.index()] =
OrigLoop->isLoopInvariant(Index.value().get());
}
~VPWidenGEPRecipe() override = default;
/// Method to support type inquiry through isa, cast, and dyn_cast.
static inline bool classof(const VPRecipeBase *V) {
return V->getVPRecipeID() == VPRecipeBase::VPWidenGEPSC;
}
/// Generate the gep nodes.
void execute(VPTransformState &State) override;
/// Print the recipe.
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override;
};
/// A recipe for handling phi nodes of integer and floating-point inductions,
/// producing their vector and scalar values.
class VPWidenIntOrFpInductionRecipe : public VPRecipeBase {
PHINode *IV;
TruncInst *Trunc;
public:
VPWidenIntOrFpInductionRecipe(PHINode *IV, TruncInst *Trunc = nullptr)
: VPRecipeBase(VPWidenIntOrFpInductionSC), IV(IV), Trunc(Trunc) {}
~VPWidenIntOrFpInductionRecipe() override = default;
/// Method to support type inquiry through isa, cast, and dyn_cast.
static inline bool classof(const VPRecipeBase *V) {
return V->getVPRecipeID() == VPRecipeBase::VPWidenIntOrFpInductionSC;
}
/// Generate the vectorized and scalarized versions of the phi node as
/// needed by their users.
void execute(VPTransformState &State) override;
/// Print the recipe.
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override;
};
/// A recipe for handling all phi nodes except for integer and FP inductions.
class VPWidenPHIRecipe : public VPRecipeBase {
PHINode *Phi;
public:
VPWidenPHIRecipe(PHINode *Phi) : VPRecipeBase(VPWidenPHISC), Phi(Phi) {}
~VPWidenPHIRecipe() override = default;
/// Method to support type inquiry through isa, cast, and dyn_cast.
static inline bool classof(const VPRecipeBase *V) {
return V->getVPRecipeID() == VPRecipeBase::VPWidenPHISC;
}
/// Generate the phi/select nodes.
void execute(VPTransformState &State) override;
/// Print the recipe.
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override;
};
/// A recipe for vectorizing a phi-node as a sequence of mask-based select
/// instructions.
class VPBlendRecipe : public VPRecipeBase, public VPUser {
PHINode *Phi;
public:
/// The blend operation is a User of the incoming values and of their
/// respective masks, ordered [I0, M0, I1, M1, ...]. Note that a single value
/// might be incoming with a full mask for which there is no VPValue.
VPBlendRecipe(PHINode *Phi, ArrayRef<VPValue *> Operands)
: VPRecipeBase(VPBlendSC), VPUser(Operands), Phi(Phi) {
assert(Operands.size() > 0 &&
((Operands.size() == 1) || (Operands.size() % 2 == 0)) &&
"Expected either a single incoming value or a positive even number "
"of operands");
}
/// Method to support type inquiry through isa, cast, and dyn_cast.
static inline bool classof(const VPRecipeBase *V) {
return V->getVPRecipeID() == VPRecipeBase::VPBlendSC;
}
/// Return the number of incoming values, taking into account that a single
/// incoming value has no mask.
unsigned getNumIncomingValues() const { return (getNumOperands() + 1) / 2; }
/// Return incoming value number \p Idx.
VPValue *getIncomingValue(unsigned Idx) const { return getOperand(Idx * 2); }
/// Return mask number \p Idx.
VPValue *getMask(unsigned Idx) const { return getOperand(Idx * 2 + 1); }
/// Generate the phi/select nodes.
void execute(VPTransformState &State) override;
/// Print the recipe.
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override;
};
/// VPInterleaveRecipe is a recipe for transforming an interleave group of load
/// or stores into one wide load/store and shuffles.
class VPInterleaveRecipe : public VPRecipeBase, public VPUser {
const InterleaveGroup<Instruction> *IG;
public:
VPInterleaveRecipe(const InterleaveGroup<Instruction> *IG, VPValue *Addr,
VPValue *Mask)
: VPRecipeBase(VPInterleaveSC), VPUser({Addr}), IG(IG) {
if (Mask)
addOperand(Mask);
}
~VPInterleaveRecipe() override = default;
/// Method to support type inquiry through isa, cast, and dyn_cast.
static inline bool classof(const VPRecipeBase *V) {
return V->getVPRecipeID() == VPRecipeBase::VPInterleaveSC;
}
/// Return the address accessed by this recipe.
VPValue *getAddr() const {
return getOperand(0); // Address is the 1st, mandatory operand.
}
/// Return the mask used by this recipe. Note that a full mask is represented
/// by a nullptr.
VPValue *getMask() const {
// Mask is optional and therefore the last, currently 2nd operand.
return getNumOperands() == 2 ? getOperand(1) : nullptr;
}
/// Generate the wide load or store, and shuffles.
void execute(VPTransformState &State) override;
/// Print the recipe.
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override;
const InterleaveGroup<Instruction> *getInterleaveGroup() { return IG; }
};
/// A recipe to represent inloop reduction operations, performing a reduction on
/// a vector operand into a scalar value, and adding the result to a chain.
class VPReductionRecipe : public VPRecipeBase {
/// The recurrence decriptor for the reduction in question.
RecurrenceDescriptor *RdxDesc;
/// The original instruction being converted to a reduction.
Instruction *I;
/// The VPValue of the vector value to be reduced.
VPValue *VecOp;
/// The VPValue of the scalar Chain being accumulated.
VPValue *ChainOp;
/// The VPValue of the condition for the block.
VPValue *CondOp;
/// Fast math flags to use for the resulting reduction operation.
bool NoNaN;
/// Pointer to the TTI, needed to create the target reduction
const TargetTransformInfo *TTI;
public:
VPReductionRecipe(RecurrenceDescriptor *R, Instruction *I, VPValue *ChainOp,
VPValue *VecOp, VPValue *CondOp, bool NoNaN,
const TargetTransformInfo *TTI)
: VPRecipeBase(VPReductionSC), RdxDesc(R), I(I), VecOp(VecOp),
ChainOp(ChainOp), CondOp(CondOp), NoNaN(NoNaN), TTI(TTI) {}
~VPReductionRecipe() override = default;
/// Method to support type inquiry through isa, cast, and dyn_cast.
static inline bool classof(const VPRecipeBase *V) {
return V->getVPRecipeID() == VPRecipeBase::VPReductionSC;
}
/// Generate the reduction in the loop
void execute(VPTransformState &State) override;
/// Print the recipe.
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override;
};
/// VPReplicateRecipe replicates a given instruction producing multiple scalar
/// copies of the original scalar type, one per lane, instead of producing a
/// single copy of widened type for all lanes. If the instruction is known to be
/// uniform only one copy, per lane zero, will be generated.
class VPReplicateRecipe : public VPRecipeBase, public VPUser {
/// The instruction being replicated.
Instruction *Ingredient;
/// Indicator if only a single replica per lane is needed.
bool IsUniform;
/// Indicator if the replicas are also predicated.
bool IsPredicated;
/// Indicator if the scalar values should also be packed into a vector.
bool AlsoPack;
public:
template <typename IterT>
VPReplicateRecipe(Instruction *I, iterator_range<IterT> Operands,
bool IsUniform, bool IsPredicated = false)
: VPRecipeBase(VPReplicateSC), VPUser(Operands), Ingredient(I),
IsUniform(IsUniform), IsPredicated(IsPredicated) {
// Retain the previous behavior of predicateInstructions(), where an
// insert-element of a predicated instruction got hoisted into the
// predicated basic block iff it was its only user. This is achieved by
// having predicated instructions also pack their values into a vector by
// default unless they have a replicated user which uses their scalar value.
AlsoPack = IsPredicated && !I->use_empty();
}
~VPReplicateRecipe() override = default;
/// Method to support type inquiry through isa, cast, and dyn_cast.
static inline bool classof(const VPRecipeBase *V) {
return V->getVPRecipeID() == VPRecipeBase::VPReplicateSC;
}
/// Generate replicas of the desired Ingredient. Replicas will be generated
/// for all parts and lanes unless a specific part and lane are specified in
/// the \p State.
void execute(VPTransformState &State) override;
void setAlsoPack(bool Pack) { AlsoPack = Pack; }
/// Print the recipe.
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override;
};
/// A recipe for generating conditional branches on the bits of a mask.
class VPBranchOnMaskRecipe : public VPRecipeBase, public VPUser {
public:
VPBranchOnMaskRecipe(VPValue *BlockInMask) : VPRecipeBase(VPBranchOnMaskSC) {
if (BlockInMask) // nullptr means all-one mask.
addOperand(BlockInMask);
}
/// Method to support type inquiry through isa, cast, and dyn_cast.
static inline bool classof(const VPRecipeBase *V) {
return V->getVPRecipeID() == VPRecipeBase::VPBranchOnMaskSC;
}
/// Generate the extraction of the appropriate bit from the block mask and the
/// conditional branch.
void execute(VPTransformState &State) override;
/// Print the recipe.
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override {
O << " +\n" << Indent << "\"BRANCH-ON-MASK ";
if (VPValue *Mask = getMask())
Mask->print(O, SlotTracker);
else
O << " All-One";
O << "\\l\"";
}
/// Return the mask used by this recipe. Note that a full mask is represented
/// by a nullptr.
VPValue *getMask() const {
assert(getNumOperands() <= 1 && "should have either 0 or 1 operands");
// Mask is optional.
return getNumOperands() == 1 ? getOperand(0) : nullptr;
}
};
/// VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when
/// control converges back from a Branch-on-Mask. The phi nodes are needed in
/// order to merge values that are set under such a branch and feed their uses.
/// The phi nodes can be scalar or vector depending on the users of the value.
/// This recipe works in concert with VPBranchOnMaskRecipe.
class VPPredInstPHIRecipe : public VPRecipeBase {
Instruction *PredInst;
public:
/// Construct a VPPredInstPHIRecipe given \p PredInst whose value needs a phi
/// nodes after merging back from a Branch-on-Mask.
VPPredInstPHIRecipe(Instruction *PredInst)
: VPRecipeBase(VPPredInstPHISC), PredInst(PredInst) {}
~VPPredInstPHIRecipe() override = default;
/// Method to support type inquiry through isa, cast, and dyn_cast.
static inline bool classof(const VPRecipeBase *V) {
return V->getVPRecipeID() == VPRecipeBase::VPPredInstPHISC;
}
/// Generates phi nodes for live-outs as needed to retain SSA form.
void execute(VPTransformState &State) override;
/// Print the recipe.
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override;
};
/// A Recipe for widening load/store operations.
/// The recipe uses the following VPValues:
/// - For load: Address, optional mask
/// - For store: Address, stored value, optional mask
/// TODO: We currently execute only per-part unless a specific instance is
/// provided.
class VPWidenMemoryInstructionRecipe : public VPRecipeBase,
public VPValue,
public VPUser {
void setMask(VPValue *Mask) {
if (!Mask)
return;
addOperand(Mask);
}
bool isMasked() const {
return isStore() ? getNumOperands() == 3 : getNumOperands() == 2;
}
public:
VPWidenMemoryInstructionRecipe(LoadInst &Load, VPValue *Addr, VPValue *Mask)
: VPRecipeBase(VPWidenMemoryInstructionSC),
VPValue(VPValue::VPMemoryInstructionSC, &Load), VPUser({Addr}) {
setMask(Mask);
}
VPWidenMemoryInstructionRecipe(StoreInst &Store, VPValue *Addr,
VPValue *StoredValue, VPValue *Mask)
: VPRecipeBase(VPWidenMemoryInstructionSC),
VPValue(VPValue::VPMemoryInstructionSC, &Store),
VPUser({Addr, StoredValue}) {
setMask(Mask);
}
/// Method to support type inquiry through isa, cast, and dyn_cast.
static inline bool classof(const VPRecipeBase *V) {
return V->getVPRecipeID() == VPRecipeBase::VPWidenMemoryInstructionSC;
}
/// Return the address accessed by this recipe.
VPValue *getAddr() const {
return getOperand(0); // Address is the 1st, mandatory operand.
}
/// Return the mask used by this recipe. Note that a full mask is represented
/// by a nullptr.
VPValue *getMask() const {
// Mask is optional and therefore the last operand.
return isMasked() ? getOperand(getNumOperands() - 1) : nullptr;
}
/// Returns true if this recipe is a store.
bool isStore() const { return isa<StoreInst>(getUnderlyingInstr()); }
/// Return the address accessed by this recipe.
VPValue *getStoredValue() const {
assert(isStore() && "Stored value only available for store instructions");
return getOperand(1); // Stored value is the 2nd, mandatory operand.
}
/// Generate the wide load/store.
void execute(VPTransformState &State) override;
/// Print the recipe.
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override;
};
/// A Recipe for widening the canonical induction variable of the vector loop.
class VPWidenCanonicalIVRecipe : public VPRecipeBase {
/// A VPValue representing the canonical vector IV.
VPValue Val;
public:
VPWidenCanonicalIVRecipe() : VPRecipeBase(VPWidenCanonicalIVSC) {}
~VPWidenCanonicalIVRecipe() override = default;
/// Return the VPValue representing the canonical vector induction variable of
/// the vector loop.
const VPValue *getVPValue() const { return &Val; }
VPValue *getVPValue() { return &Val; }
/// Method to support type inquiry through isa, cast, and dyn_cast.
static inline bool classof(const VPRecipeBase *V) {
return V->getVPRecipeID() == VPRecipeBase::VPWidenCanonicalIVSC;
}
/// Generate a canonical vector induction variable of the vector loop, with
/// start = {<Part*VF, Part*VF+1, ..., Part*VF+VF-1> for 0 <= Part < UF}, and
/// step = <VF*UF, VF*UF, ..., VF*UF>.
void execute(VPTransformState &State) override;
/// Print the recipe.
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override;
};
/// VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph. It
/// holds a sequence of zero or more VPRecipe's each representing a sequence of
/// output IR instructions.
class VPBasicBlock : public VPBlockBase {
public:
using RecipeListTy = iplist<VPRecipeBase>;
private:
/// The VPRecipes held in the order of output instructions to generate.
RecipeListTy Recipes;
public:
VPBasicBlock(const Twine &Name = "", VPRecipeBase *Recipe = nullptr)
: VPBlockBase(VPBasicBlockSC, Name.str()) {
if (Recipe)
appendRecipe(Recipe);
}
~VPBasicBlock() override { Recipes.clear(); }
/// Instruction iterators...
using iterator = RecipeListTy::iterator;
using const_iterator = RecipeListTy::const_iterator;
using reverse_iterator = RecipeListTy::reverse_iterator;
using const_reverse_iterator = RecipeListTy::const_reverse_iterator;
//===--------------------------------------------------------------------===//
/// Recipe iterator methods
///
inline iterator begin() { return Recipes.begin(); }
inline const_iterator begin() const { return Recipes.begin(); }
inline iterator end() { return Recipes.end(); }
inline const_iterator end() const { return Recipes.end(); }
inline reverse_iterator rbegin() { return Recipes.rbegin(); }
inline const_reverse_iterator rbegin() const { return Recipes.rbegin(); }
inline reverse_iterator rend() { return Recipes.rend(); }
inline const_reverse_iterator rend() const { return Recipes.rend(); }
inline size_t size() const { return Recipes.size(); }
inline bool empty() const { return Recipes.empty(); }
inline const VPRecipeBase &front() const { return Recipes.front(); }
inline VPRecipeBase &front() { return Recipes.front(); }
inline const VPRecipeBase &back() const { return Recipes.back(); }
inline VPRecipeBase &back() { return Recipes.back(); }
/// Returns a reference to the list of recipes.
RecipeListTy &getRecipeList() { return Recipes; }
/// Returns a pointer to a member of the recipe list.
static RecipeListTy VPBasicBlock::*getSublistAccess(VPRecipeBase *) {
return &VPBasicBlock::Recipes;
}
/// Method to support type inquiry through isa, cast, and dyn_cast.
static inline bool classof(const VPBlockBase *V) {
return V->getVPBlockID() == VPBlockBase::VPBasicBlockSC;
}
void insert(VPRecipeBase *Recipe, iterator InsertPt) {
assert(Recipe && "No recipe to append.");
assert(!Recipe->Parent && "Recipe already in VPlan");
Recipe->Parent = this;
Recipes.insert(InsertPt, Recipe);
}
/// Augment the existing recipes of a VPBasicBlock with an additional
/// \p Recipe as the last recipe.
void appendRecipe(VPRecipeBase *Recipe) { insert(Recipe, end()); }
/// The method which generates the output IR instructions that correspond to
/// this VPBasicBlock, thereby "executing" the VPlan.
void execute(struct VPTransformState *State) override;
/// Replace all operands of VPUsers in the block with \p NewValue and also
/// replaces all uses of VPValues defined in the block with NewValue.
void dropAllReferences(VPValue *NewValue);
/// Return the position of the first non-phi node recipe in the block.
iterator getFirstNonPhi();
private:
/// Create an IR BasicBlock to hold the output instructions generated by this
/// VPBasicBlock, and return it. Update the CFGState accordingly.
BasicBlock *createEmptyBasicBlock(VPTransformState::CFGState &CFG);
};
/// VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks
/// which form a Single-Entry-Single-Exit subgraph of the output IR CFG.
/// A VPRegionBlock may indicate that its contents are to be replicated several
/// times. This is designed to support predicated scalarization, in which a
/// scalar if-then code structure needs to be generated VF * UF times. Having
/// this replication indicator helps to keep a single model for multiple
/// candidate VF's. The actual replication takes place only once the desired VF
/// and UF have been determined.
class VPRegionBlock : public VPBlockBase {
/// Hold the Single Entry of the SESE region modelled by the VPRegionBlock.
VPBlockBase *Entry;
/// Hold the Single Exit of the SESE region modelled by the VPRegionBlock.
VPBlockBase *Exit;
/// An indicator whether this region is to generate multiple replicated
/// instances of output IR corresponding to its VPBlockBases.
bool IsReplicator;
public:
VPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exit,
const std::string &Name = "", bool IsReplicator = false)
: VPBlockBase(VPRegionBlockSC, Name), Entry(Entry), Exit(Exit),
IsReplicator(IsReplicator) {
assert(Entry->getPredecessors().empty() && "Entry block has predecessors.");
assert(Exit->getSuccessors().empty() && "Exit block has successors.");
Entry->setParent(this);
Exit->setParent(this);
}
VPRegionBlock(const std::string &Name = "", bool IsReplicator = false)
: VPBlockBase(VPRegionBlockSC, Name), Entry(nullptr), Exit(nullptr),
IsReplicator(IsReplicator) {}
~VPRegionBlock() override {
if (Entry)
deleteCFG(Entry);
}
/// Method to support type inquiry through isa, cast, and dyn_cast.
static inline bool classof(const VPBlockBase *V) {
return V->getVPBlockID() == VPBlockBase::VPRegionBlockSC;
}
const VPBlockBase *getEntry() const { return Entry; }
VPBlockBase *getEntry() { return Entry; }
/// Set \p EntryBlock as the entry VPBlockBase of this VPRegionBlock. \p
/// EntryBlock must have no predecessors.
void setEntry(VPBlockBase *EntryBlock) {
assert(EntryBlock->getPredecessors().empty() &&
"Entry block cannot have predecessors.");
Entry = EntryBlock;
EntryBlock->setParent(this);
}
// FIXME: DominatorTreeBase is doing 'A->getParent()->front()'. 'front' is a
// specific interface of llvm::Function, instead of using
// GraphTraints::getEntryNode. We should add a new template parameter to
// DominatorTreeBase representing the Graph type.
VPBlockBase &front() const { return *Entry; }
const VPBlockBase *getExit() const { return Exit; }
VPBlockBase *getExit() { return Exit; }
/// Set \p ExitBlock as the exit VPBlockBase of this VPRegionBlock. \p
/// ExitBlock must have no successors.
void setExit(VPBlockBase *ExitBlock) {
assert(ExitBlock->getSuccessors().empty() &&
"Exit block cannot have successors.");
Exit = ExitBlock;
ExitBlock->setParent(this);
}
/// An indicator whether this region is to generate multiple replicated
/// instances of output IR corresponding to its VPBlockBases.
bool isReplicator() const { return IsReplicator; }
/// The method which generates the output IR instructions that correspond to
/// this VPRegionBlock, thereby "executing" the VPlan.
void execute(struct VPTransformState *State) override;
};
//===----------------------------------------------------------------------===//
// GraphTraits specializations for VPlan Hierarchical Control-Flow Graphs //
//===----------------------------------------------------------------------===//
// The following set of template specializations implement GraphTraits to treat
// any VPBlockBase as a node in a graph of VPBlockBases. It's important to note
// that VPBlockBase traits don't recurse into VPRegioBlocks, i.e., if the
// VPBlockBase is a VPRegionBlock, this specialization provides access to its
// successors/predecessors but not to the blocks inside the region.
template <> struct GraphTraits<VPBlockBase *> {
using NodeRef = VPBlockBase *;
using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator;
static NodeRef getEntryNode(NodeRef N) { return N; }
static inline ChildIteratorType child_begin(NodeRef N) {
return N->getSuccessors().begin();
}
static inline ChildIteratorType child_end(NodeRef N) {
return N->getSuccessors().end();
}
};
template <> struct GraphTraits<const VPBlockBase *> {
using NodeRef = const VPBlockBase *;
using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::const_iterator;
static NodeRef getEntryNode(NodeRef N) { return N; }
static inline ChildIteratorType child_begin(NodeRef N) {
return N->getSuccessors().begin();
}
static inline ChildIteratorType child_end(NodeRef N) {
return N->getSuccessors().end();
}
};
// Inverse order specialization for VPBasicBlocks. Predecessors are used instead
// of successors for the inverse traversal.
template <> struct GraphTraits<Inverse<VPBlockBase *>> {
using NodeRef = VPBlockBase *;
using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator;
static NodeRef getEntryNode(Inverse<NodeRef> B) { return B.Graph; }
static inline ChildIteratorType child_begin(NodeRef N) {
return N->getPredecessors().begin();
}
static inline ChildIteratorType child_end(NodeRef N) {
return N->getPredecessors().end();
}
};
// The following set of template specializations implement GraphTraits to
// treat VPRegionBlock as a graph and recurse inside its nodes. It's important
// to note that the blocks inside the VPRegionBlock are treated as VPBlockBases
// (i.e., no dyn_cast is performed, VPBlockBases specialization is used), so
// there won't be automatic recursion into other VPBlockBases that turn to be
// VPRegionBlocks.
template <>
struct GraphTraits<VPRegionBlock *> : public GraphTraits<VPBlockBase *> {
using GraphRef = VPRegionBlock *;
using nodes_iterator = df_iterator<NodeRef>;
static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); }
static nodes_iterator nodes_begin(GraphRef N) {
return nodes_iterator::begin(N->getEntry());
}
static nodes_iterator nodes_end(GraphRef N) {
// df_iterator::end() returns an empty iterator so the node used doesn't
// matter.
return nodes_iterator::end(N);
}
};
template <>
struct GraphTraits<const VPRegionBlock *>
: public GraphTraits<const VPBlockBase *> {
using GraphRef = const VPRegionBlock *;
using nodes_iterator = df_iterator<NodeRef>;
static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); }
static nodes_iterator nodes_begin(GraphRef N) {
return nodes_iterator::begin(N->getEntry());
}
static nodes_iterator nodes_end(GraphRef N) {
// df_iterator::end() returns an empty iterator so the node used doesn't
// matter.
return nodes_iterator::end(N);
}
};
template <>
struct GraphTraits<Inverse<VPRegionBlock *>>
: public GraphTraits<Inverse<VPBlockBase *>> {
using GraphRef = VPRegionBlock *;
using nodes_iterator = df_iterator<NodeRef>;
static NodeRef getEntryNode(Inverse<GraphRef> N) {
return N.Graph->getExit();
}
static nodes_iterator nodes_begin(GraphRef N) {
return nodes_iterator::begin(N->getExit());
}
static nodes_iterator nodes_end(GraphRef N) {
// df_iterator::end() returns an empty iterator so the node used doesn't
// matter.
return nodes_iterator::end(N);
}
};
/// VPlan models a candidate for vectorization, encoding various decisions take
/// to produce efficient output IR, including which branches, basic-blocks and
/// output IR instructions to generate, and their cost. VPlan holds a
/// Hierarchical-CFG of VPBasicBlocks and VPRegionBlocks rooted at an Entry
/// VPBlock.
class VPlan {
friend class VPlanPrinter;
friend class VPSlotTracker;
/// Hold the single entry to the Hierarchical CFG of the VPlan.
VPBlockBase *Entry;
/// Holds the VFs applicable to this VPlan.
SmallSetVector<ElementCount, 2> VFs;
/// Holds the name of the VPlan, for printing.
std::string Name;
/// Holds all the external definitions created for this VPlan.
// TODO: Introduce a specific representation for external definitions in
// VPlan. External definitions must be immutable and hold a pointer to its
// underlying IR that will be used to implement its structural comparison
// (operators '==' and '<').
SmallPtrSet<VPValue *, 16> VPExternalDefs;
/// Represents the backedge taken count of the original loop, for folding
/// the tail.
VPValue *BackedgeTakenCount = nullptr;
/// Holds a mapping between Values and their corresponding VPValue inside
/// VPlan.
Value2VPValueTy Value2VPValue;
/// Contains all VPValues that been allocated by addVPValue directly and need
/// to be free when the plan's destructor is called.
SmallVector<VPValue *, 16> VPValuesToFree;
/// Holds the VPLoopInfo analysis for this VPlan.
VPLoopInfo VPLInfo;
/// Holds the condition bit values built during VPInstruction to VPRecipe transformation.
SmallVector<VPValue *, 4> VPCBVs;
public:
VPlan(VPBlockBase *Entry = nullptr) : Entry(Entry) {
if (Entry)
Entry->setPlan(this);
}
~VPlan() {
if (Entry)
VPBlockBase::deleteCFG(Entry);
for (VPValue *VPV : VPValuesToFree)
delete VPV;
if (BackedgeTakenCount)
delete BackedgeTakenCount;
for (VPValue *Def : VPExternalDefs)
delete Def;
for (VPValue *CBV : VPCBVs)
delete CBV;
}
/// Generate the IR code for this VPlan.
void execute(struct VPTransformState *State);
VPBlockBase *getEntry() { return Entry; }
const VPBlockBase *getEntry() const { return Entry; }
VPBlockBase *setEntry(VPBlockBase *Block) {
Entry = Block;
Block->setPlan(this);
return Entry;
}
/// The backedge taken count of the original loop.
VPValue *getOrCreateBackedgeTakenCount() {
if (!BackedgeTakenCount)
BackedgeTakenCount = new VPValue();
return BackedgeTakenCount;
}
void addVF(ElementCount VF) { VFs.insert(VF); }
bool hasVF(ElementCount VF) { return VFs.count(VF); }
const std::string &getName() const { return Name; }
void setName(const Twine &newName) { Name = newName.str(); }
/// Add \p VPVal to the pool of external definitions if it's not already
/// in the pool.
void addExternalDef(VPValue *VPVal) {
VPExternalDefs.insert(VPVal);
}
/// Add \p CBV to the vector of condition bit values.
void addCBV(VPValue *CBV) {
VPCBVs.push_back(CBV);
}
void addVPValue(Value *V) {
assert(V && "Trying to add a null Value to VPlan");
assert(!Value2VPValue.count(V) && "Value already exists in VPlan");
VPValue *VPV = new VPValue(V);
Value2VPValue[V] = VPV;
VPValuesToFree.push_back(VPV);
}
void addVPValue(Value *V, VPValue *VPV) {
assert(V && "Trying to add a null Value to VPlan");
assert(!Value2VPValue.count(V) && "Value already exists in VPlan");
Value2VPValue[V] = VPV;
}
void addOrReplaceVPValue(Value *V, VPValue *VPV) {
assert(V && "Trying to add a null Value to VPlan");
auto I = Value2VPValue.find(V);
if (I == Value2VPValue.end())
Value2VPValue[V] = VPV;
else
I->second = VPV;
}
VPValue *getVPValue(Value *V) {
assert(V && "Trying to get the VPValue of a null Value");
assert(Value2VPValue.count(V) && "Value does not exist in VPlan");
return Value2VPValue[V];
}
VPValue *getOrAddVPValue(Value *V) {
assert(V && "Trying to get or add the VPValue of a null Value");
if (!Value2VPValue.count(V))
addVPValue(V);
return getVPValue(V);
}
void removeVPValueFor(Value *V) { Value2VPValue.erase(V); }
/// Return the VPLoopInfo analysis for this VPlan.
VPLoopInfo &getVPLoopInfo() { return VPLInfo; }
const VPLoopInfo &getVPLoopInfo() const { return VPLInfo; }
/// Dump the plan to stderr (for debugging).
void dump() const;
/// Returns a range mapping the values the range \p Operands to their
/// corresponding VPValues.
iterator_range<mapped_iterator<Use *, std::function<VPValue *(Value *)>>>
mapToVPValues(User::op_range Operands) {
std::function<VPValue *(Value *)> Fn = [this](Value *Op) {
return getOrAddVPValue(Op);
};
return map_range(Operands, Fn);
}
private:
/// Add to the given dominator tree the header block and every new basic block
/// that was created between it and the latch block, inclusive.
static void updateDominatorTree(DominatorTree *DT, BasicBlock *LoopLatchBB,
BasicBlock *LoopPreHeaderBB,
BasicBlock *LoopExitBB);
};
/// VPlanPrinter prints a given VPlan to a given output stream. The printing is
/// indented and follows the dot format.
class VPlanPrinter {
friend inline raw_ostream &operator<<(raw_ostream &OS, const VPlan &Plan);
friend inline raw_ostream &operator<<(raw_ostream &OS,
const struct VPlanIngredient &I);
private:
raw_ostream &OS;
const VPlan &Plan;
unsigned Depth = 0;
unsigned TabWidth = 2;
std::string Indent;
unsigned BID = 0;
SmallDenseMap<const VPBlockBase *, unsigned> BlockID;
VPSlotTracker SlotTracker;
VPlanPrinter(raw_ostream &O, const VPlan &P)
: OS(O), Plan(P), SlotTracker(&P) {}
/// Handle indentation.
void bumpIndent(int b) { Indent = std::string((Depth += b) * TabWidth, ' '); }
/// Print a given \p Block of the Plan.
void dumpBlock(const VPBlockBase *Block);
/// Print the information related to the CFG edges going out of a given
/// \p Block, followed by printing the successor blocks themselves.
void dumpEdges(const VPBlockBase *Block);
/// Print a given \p BasicBlock, including its VPRecipes, followed by printing
/// its successor blocks.
void dumpBasicBlock(const VPBasicBlock *BasicBlock);
/// Print a given \p Region of the Plan.
void dumpRegion(const VPRegionBlock *Region);
unsigned getOrCreateBID(const VPBlockBase *Block) {
return BlockID.count(Block) ? BlockID[Block] : BlockID[Block] = BID++;
}
const Twine getOrCreateName(const VPBlockBase *Block);
const Twine getUID(const VPBlockBase *Block);
/// Print the information related to a CFG edge between two VPBlockBases.
void drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden,
const Twine &Label);
void dump();
static void printAsIngredient(raw_ostream &O, const Value *V);
};
struct VPlanIngredient {
const Value *V;
VPlanIngredient(const Value *V) : V(V) {}
};
inline raw_ostream &operator<<(raw_ostream &OS, const VPlanIngredient &I) {
VPlanPrinter::printAsIngredient(OS, I.V);
return OS;
}
inline raw_ostream &operator<<(raw_ostream &OS, const VPlan &Plan) {
VPlanPrinter Printer(OS, Plan);
Printer.dump();
return OS;
}
//===----------------------------------------------------------------------===//
// VPlan Utilities
//===----------------------------------------------------------------------===//
/// Class that provides utilities for VPBlockBases in VPlan.
class VPBlockUtils {
public:
VPBlockUtils() = delete;
/// Insert disconnected VPBlockBase \p NewBlock after \p BlockPtr. Add \p
/// NewBlock as successor of \p BlockPtr and \p BlockPtr as predecessor of \p
/// NewBlock, and propagate \p BlockPtr parent to \p NewBlock. If \p BlockPtr
/// has more than one successor, its conditional bit is propagated to \p
/// NewBlock. \p NewBlock must have neither successors nor predecessors.
static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr) {
assert(NewBlock->getSuccessors().empty() &&
"Can't insert new block with successors.");
// TODO: move successors from BlockPtr to NewBlock when this functionality
// is necessary. For now, setBlockSingleSuccessor will assert if BlockPtr
// already has successors.
BlockPtr->setOneSuccessor(NewBlock);
NewBlock->setPredecessors({BlockPtr});
NewBlock->setParent(BlockPtr->getParent());
}
/// Insert disconnected VPBlockBases \p IfTrue and \p IfFalse after \p
/// BlockPtr. Add \p IfTrue and \p IfFalse as succesors of \p BlockPtr and \p
/// BlockPtr as predecessor of \p IfTrue and \p IfFalse. Propagate \p BlockPtr
/// parent to \p IfTrue and \p IfFalse. \p Condition is set as the successor
/// selector. \p BlockPtr must have no successors and \p IfTrue and \p IfFalse
/// must have neither successors nor predecessors.
static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse,
VPValue *Condition, VPBlockBase *BlockPtr) {
assert(IfTrue->getSuccessors().empty() &&
"Can't insert IfTrue with successors.");
assert(IfFalse->getSuccessors().empty() &&
"Can't insert IfFalse with successors.");
BlockPtr->setTwoSuccessors(IfTrue, IfFalse, Condition);
IfTrue->setPredecessors({BlockPtr});
IfFalse->setPredecessors({BlockPtr});
IfTrue->setParent(BlockPtr->getParent());
IfFalse->setParent(BlockPtr->getParent());
}
/// Connect VPBlockBases \p From and \p To bi-directionally. Append \p To to
/// the successors of \p From and \p From to the predecessors of \p To. Both
/// VPBlockBases must have the same parent, which can be null. Both
/// VPBlockBases can be already connected to other VPBlockBases.
static void connectBlocks(VPBlockBase *From, VPBlockBase *To) {
assert((From->getParent() == To->getParent()) &&
"Can't connect two block with different parents");
assert(From->getNumSuccessors() < 2 &&
"Blocks can't have more than two successors.");
From->appendSuccessor(To);
To->appendPredecessor(From);
}
/// Disconnect VPBlockBases \p From and \p To bi-directionally. Remove \p To
/// from the successors of \p From and \p From from the predecessors of \p To.
static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To) {
assert(To && "Successor to disconnect is null.");
From->removeSuccessor(To);
To->removePredecessor(From);
}
/// Returns true if the edge \p FromBlock -> \p ToBlock is a back-edge.
static bool isBackEdge(const VPBlockBase *FromBlock,
const VPBlockBase *ToBlock, const VPLoopInfo *VPLI) {
assert(FromBlock->getParent() == ToBlock->getParent() &&
FromBlock->getParent() && "Must be in same region");
const VPLoop *FromLoop = VPLI->getLoopFor(FromBlock);
const VPLoop *ToLoop = VPLI->getLoopFor(ToBlock);
if (!FromLoop || !ToLoop || FromLoop != ToLoop)
return false;
// A back-edge is a branch from the loop latch to its header.
return ToLoop->isLoopLatch(FromBlock) && ToBlock == ToLoop->getHeader();
}
/// Returns true if \p Block is a loop latch
static bool blockIsLoopLatch(const VPBlockBase *Block,
const VPLoopInfo *VPLInfo) {
if (const VPLoop *ParentVPL = VPLInfo->getLoopFor(Block))
return ParentVPL->isLoopLatch(Block);
return false;
}
/// Count and return the number of succesors of \p PredBlock excluding any
/// backedges.
static unsigned countSuccessorsNoBE(VPBlockBase *PredBlock,
VPLoopInfo *VPLI) {
unsigned Count = 0;
for (VPBlockBase *SuccBlock : PredBlock->getSuccessors()) {
if (!VPBlockUtils::isBackEdge(PredBlock, SuccBlock, VPLI))
Count++;
}
return Count;
}
};
class VPInterleavedAccessInfo {
DenseMap<VPInstruction *, InterleaveGroup<VPInstruction> *>
InterleaveGroupMap;
/// Type for mapping of instruction based interleave groups to VPInstruction
/// interleave groups
using Old2NewTy = DenseMap<InterleaveGroup<Instruction> *,
InterleaveGroup<VPInstruction> *>;
/// Recursively \p Region and populate VPlan based interleave groups based on
/// \p IAI.
void visitRegion(VPRegionBlock *Region, Old2NewTy &Old2New,
InterleavedAccessInfo &IAI);
/// Recursively traverse \p Block and populate VPlan based interleave groups
/// based on \p IAI.
void visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
InterleavedAccessInfo &IAI);
public:
VPInterleavedAccessInfo(VPlan &Plan, InterleavedAccessInfo &IAI);
~VPInterleavedAccessInfo() {
SmallPtrSet<InterleaveGroup<VPInstruction> *, 4> DelSet;
// Avoid releasing a pointer twice.
for (auto &I : InterleaveGroupMap)
DelSet.insert(I.second);
for (auto *Ptr : DelSet)
delete Ptr;
}
/// Get the interleave group that \p Instr belongs to.
///
/// \returns nullptr if doesn't have such group.
InterleaveGroup<VPInstruction> *
getInterleaveGroup(VPInstruction *Instr) const {
if (InterleaveGroupMap.count(Instr))
return InterleaveGroupMap.find(Instr)->second;
return nullptr;
}
};
/// Class that maps (parts of) an existing VPlan to trees of combined
/// VPInstructions.
class VPlanSlp {
enum class OpMode { Failed, Load, Opcode };
/// A DenseMapInfo implementation for using SmallVector<VPValue *, 4> as
/// DenseMap keys.
struct BundleDenseMapInfo {
static SmallVector<VPValue *, 4> getEmptyKey() {
return {reinterpret_cast<VPValue *>(-1)};
}
static SmallVector<VPValue *, 4> getTombstoneKey() {
return {reinterpret_cast<VPValue *>(-2)};
}
static unsigned getHashValue(const SmallVector<VPValue *, 4> &V) {
return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
}
static bool isEqual(const SmallVector<VPValue *, 4> &LHS,
const SmallVector<VPValue *, 4> &RHS) {
return LHS == RHS;
}
};
/// Mapping of values in the original VPlan to a combined VPInstruction.
DenseMap<SmallVector<VPValue *, 4>, VPInstruction *, BundleDenseMapInfo>
BundleToCombined;
VPInterleavedAccessInfo &IAI;
/// Basic block to operate on. For now, only instructions in a single BB are
/// considered.
const VPBasicBlock &BB;
/// Indicates whether we managed to combine all visited instructions or not.
bool CompletelySLP = true;
/// Width of the widest combined bundle in bits.
unsigned WidestBundleBits = 0;
using MultiNodeOpTy =
typename std::pair<VPInstruction *, SmallVector<VPValue *, 4>>;
// Input operand bundles for the current multi node. Each multi node operand
// bundle contains values not matching the multi node's opcode. They will
// be reordered in reorderMultiNodeOps, once we completed building a
// multi node.
SmallVector<MultiNodeOpTy, 4> MultiNodeOps;
/// Indicates whether we are building a multi node currently.
bool MultiNodeActive = false;
/// Check if we can vectorize Operands together.
bool areVectorizable(ArrayRef<VPValue *> Operands) const;
/// Add combined instruction \p New for the bundle \p Operands.
void addCombined(ArrayRef<VPValue *> Operands, VPInstruction *New);
/// Indicate we hit a bundle we failed to combine. Returns nullptr for now.
VPInstruction *markFailed();
/// Reorder operands in the multi node to maximize sequential memory access
/// and commutative operations.
SmallVector<MultiNodeOpTy, 4> reorderMultiNodeOps();
/// Choose the best candidate to use for the lane after \p Last. The set of
/// candidates to choose from are values with an opcode matching \p Last's
/// or loads consecutive to \p Last.
std::pair<OpMode, VPValue *> getBest(OpMode Mode, VPValue *Last,
SmallPtrSetImpl<VPValue *> &Candidates,
VPInterleavedAccessInfo &IAI);
/// Print bundle \p Values to dbgs().
void dumpBundle(ArrayRef<VPValue *> Values);
public:
VPlanSlp(VPInterleavedAccessInfo &IAI, VPBasicBlock &BB) : IAI(IAI), BB(BB) {}
~VPlanSlp() = default;
/// Tries to build an SLP tree rooted at \p Operands and returns a
/// VPInstruction combining \p Operands, if they can be combined.
VPInstruction *buildGraph(ArrayRef<VPValue *> Operands);
/// Return the width of the widest combined bundle in bits.
unsigned getWidestBundleBits() const { return WidestBundleBits; }
/// Return true if all visited instruction can be combined.
bool isCompletelySLP() const { return CompletelySLP; }
};
} // end namespace llvm
#endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H