1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 20:23:11 +01:00
llvm-mirror/test/CodeGen/AArch64/srem-seteq.ll
David Green 26a0ca2d62 [AArch64] Fold CSEL x, x, cc -> x
This can come up in rare situations, where a csel is created with
identical operands. These can be folded simply to the original value,
allowing the csel to be removed and further simplification to happen.

This patch also removes FCSEL as it is unused, not being produced
anywhere or lowered to anything.

Differential Revision: https://reviews.llvm.org/D101687
2021-05-03 17:34:05 +01:00

279 lines
8.3 KiB
LLVM

; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
; RUN: llc -mtriple=aarch64-unknown-linux-gnu < %s | FileCheck %s
;------------------------------------------------------------------------------;
; Odd divisors
;------------------------------------------------------------------------------;
define i32 @test_srem_odd(i32 %X) nounwind {
; CHECK-LABEL: test_srem_odd:
; CHECK: // %bb.0:
; CHECK-NEXT: mov w8, #52429
; CHECK-NEXT: mov w9, #39321
; CHECK-NEXT: movk w8, #52428, lsl #16
; CHECK-NEXT: movk w9, #6553, lsl #16
; CHECK-NEXT: madd w8, w0, w8, w9
; CHECK-NEXT: mov w9, #858993459
; CHECK-NEXT: cmp w8, w9
; CHECK-NEXT: cset w0, lo
; CHECK-NEXT: ret
%srem = srem i32 %X, 5
%cmp = icmp eq i32 %srem, 0
%ret = zext i1 %cmp to i32
ret i32 %ret
}
define i32 @test_srem_odd_25(i32 %X) nounwind {
; CHECK-LABEL: test_srem_odd_25:
; CHECK: // %bb.0:
; CHECK-NEXT: mov w8, #23593
; CHECK-NEXT: mov w9, #47185
; CHECK-NEXT: movk w8, #49807, lsl #16
; CHECK-NEXT: movk w9, #1310, lsl #16
; CHECK-NEXT: madd w8, w0, w8, w9
; CHECK-NEXT: mov w9, #28835
; CHECK-NEXT: movk w9, #2621, lsl #16
; CHECK-NEXT: cmp w8, w9
; CHECK-NEXT: cset w0, lo
; CHECK-NEXT: ret
%srem = srem i32 %X, 25
%cmp = icmp eq i32 %srem, 0
%ret = zext i1 %cmp to i32
ret i32 %ret
}
; This is like test_srem_odd, except the divisor has bit 30 set.
define i32 @test_srem_odd_bit30(i32 %X) nounwind {
; CHECK-LABEL: test_srem_odd_bit30:
; CHECK: // %bb.0:
; CHECK-NEXT: mov w8, #43691
; CHECK-NEXT: movk w8, #27306, lsl #16
; CHECK-NEXT: orr w9, wzr, #0x1
; CHECK-NEXT: madd w8, w0, w8, w9
; CHECK-NEXT: cmp w8, #3 // =3
; CHECK-NEXT: cset w0, lo
; CHECK-NEXT: ret
%srem = srem i32 %X, 1073741827
%cmp = icmp eq i32 %srem, 0
%ret = zext i1 %cmp to i32
ret i32 %ret
}
; This is like test_srem_odd, except the divisor has bit 31 set.
define i32 @test_srem_odd_bit31(i32 %X) nounwind {
; CHECK-LABEL: test_srem_odd_bit31:
; CHECK: // %bb.0:
; CHECK-NEXT: mov w8, #21845
; CHECK-NEXT: movk w8, #54613, lsl #16
; CHECK-NEXT: orr w9, wzr, #0x1
; CHECK-NEXT: madd w8, w0, w8, w9
; CHECK-NEXT: cmp w8, #3 // =3
; CHECK-NEXT: cset w0, lo
; CHECK-NEXT: ret
%srem = srem i32 %X, 2147483651
%cmp = icmp eq i32 %srem, 0
%ret = zext i1 %cmp to i32
ret i32 %ret
}
;------------------------------------------------------------------------------;
; Even divisors
;------------------------------------------------------------------------------;
define i16 @test_srem_even(i16 %X) nounwind {
; CHECK-LABEL: test_srem_even:
; CHECK: // %bb.0:
; CHECK-NEXT: mov w8, #28087
; CHECK-NEXT: mov w9, #4680
; CHECK-NEXT: madd w8, w0, w8, w9
; CHECK-NEXT: lsl w10, w8, #15
; CHECK-NEXT: bfxil w10, w8, #1, #15
; CHECK-NEXT: cmp w9, w10, uxth
; CHECK-NEXT: cset w0, lo
; CHECK-NEXT: ret
%srem = srem i16 %X, 14
%cmp = icmp ne i16 %srem, 0
%ret = zext i1 %cmp to i16
ret i16 %ret
}
define i32 @test_srem_even_100(i32 %X) nounwind {
; CHECK-LABEL: test_srem_even_100:
; CHECK: // %bb.0:
; CHECK-NEXT: mov w8, #23593
; CHECK-NEXT: mov w9, #47184
; CHECK-NEXT: movk w8, #49807, lsl #16
; CHECK-NEXT: movk w9, #1310, lsl #16
; CHECK-NEXT: madd w8, w0, w8, w9
; CHECK-NEXT: mov w9, #23593
; CHECK-NEXT: ror w8, w8, #2
; CHECK-NEXT: movk w9, #655, lsl #16
; CHECK-NEXT: cmp w8, w9
; CHECK-NEXT: cset w0, lo
; CHECK-NEXT: ret
%srem = srem i32 %X, 100
%cmp = icmp eq i32 %srem, 0
%ret = zext i1 %cmp to i32
ret i32 %ret
}
; This is like test_srem_even, except the divisor has bit 30 set.
define i32 @test_srem_even_bit30(i32 %X) nounwind {
; CHECK-LABEL: test_srem_even_bit30:
; CHECK: // %bb.0:
; CHECK-NEXT: mov w8, #20165
; CHECK-NEXT: movk w8, #64748, lsl #16
; CHECK-NEXT: orr w9, wzr, #0x8
; CHECK-NEXT: madd w8, w0, w8, w9
; CHECK-NEXT: ror w8, w8, #3
; CHECK-NEXT: cmp w8, #3 // =3
; CHECK-NEXT: cset w0, lo
; CHECK-NEXT: ret
%srem = srem i32 %X, 1073741928
%cmp = icmp eq i32 %srem, 0
%ret = zext i1 %cmp to i32
ret i32 %ret
}
; This is like test_srem_odd, except the divisor has bit 31 set.
define i32 @test_srem_even_bit31(i32 %X) nounwind {
; CHECK-LABEL: test_srem_even_bit31:
; CHECK: // %bb.0:
; CHECK-NEXT: mov w8, #1285
; CHECK-NEXT: movk w8, #50437, lsl #16
; CHECK-NEXT: orr w9, wzr, #0x2
; CHECK-NEXT: madd w8, w0, w8, w9
; CHECK-NEXT: ror w8, w8, #1
; CHECK-NEXT: cmp w8, #3 // =3
; CHECK-NEXT: cset w0, lo
; CHECK-NEXT: ret
%srem = srem i32 %X, 2147483750
%cmp = icmp eq i32 %srem, 0
%ret = zext i1 %cmp to i32
ret i32 %ret
}
;------------------------------------------------------------------------------;
; Special case
;------------------------------------------------------------------------------;
; 'NE' predicate is fine too.
define i32 @test_srem_odd_setne(i32 %X) nounwind {
; CHECK-LABEL: test_srem_odd_setne:
; CHECK: // %bb.0:
; CHECK-NEXT: mov w8, #52429
; CHECK-NEXT: mov w9, #39321
; CHECK-NEXT: movk w8, #52428, lsl #16
; CHECK-NEXT: movk w9, #6553, lsl #16
; CHECK-NEXT: madd w8, w0, w8, w9
; CHECK-NEXT: mov w9, #13106
; CHECK-NEXT: movk w9, #13107, lsl #16
; CHECK-NEXT: cmp w8, w9
; CHECK-NEXT: cset w0, hi
; CHECK-NEXT: ret
%srem = srem i32 %X, 5
%cmp = icmp ne i32 %srem, 0
%ret = zext i1 %cmp to i32
ret i32 %ret
}
; The fold is only valid for positive divisors, negative-ones should be negated.
define i32 @test_srem_negative_odd(i32 %X) nounwind {
; CHECK-LABEL: test_srem_negative_odd:
; CHECK: // %bb.0:
; CHECK-NEXT: mov w8, #52429
; CHECK-NEXT: mov w9, #39321
; CHECK-NEXT: movk w8, #52428, lsl #16
; CHECK-NEXT: movk w9, #6553, lsl #16
; CHECK-NEXT: madd w8, w0, w8, w9
; CHECK-NEXT: mov w9, #13106
; CHECK-NEXT: movk w9, #13107, lsl #16
; CHECK-NEXT: cmp w8, w9
; CHECK-NEXT: cset w0, hi
; CHECK-NEXT: ret
%srem = srem i32 %X, -5
%cmp = icmp ne i32 %srem, 0
%ret = zext i1 %cmp to i32
ret i32 %ret
}
define i32 @test_srem_negative_even(i32 %X) nounwind {
; CHECK-LABEL: test_srem_negative_even:
; CHECK: // %bb.0:
; CHECK-NEXT: mov w8, #28087
; CHECK-NEXT: mov w9, #9362
; CHECK-NEXT: movk w8, #46811, lsl #16
; CHECK-NEXT: movk w9, #4681, lsl #16
; CHECK-NEXT: madd w8, w0, w8, w9
; CHECK-NEXT: ror w8, w8, #1
; CHECK-NEXT: cmp w8, w9
; CHECK-NEXT: cset w0, hi
; CHECK-NEXT: ret
%srem = srem i32 %X, -14
%cmp = icmp ne i32 %srem, 0
%ret = zext i1 %cmp to i32
ret i32 %ret
}
;------------------------------------------------------------------------------;
; Negative tests
;------------------------------------------------------------------------------;
; We can lower remainder of division by one much better elsewhere.
define i32 @test_srem_one(i32 %X) nounwind {
; CHECK-LABEL: test_srem_one:
; CHECK: // %bb.0:
; CHECK-NEXT: mov w0, #1
; CHECK-NEXT: ret
%srem = srem i32 %X, 1
%cmp = icmp eq i32 %srem, 0
%ret = zext i1 %cmp to i32
ret i32 %ret
}
; We can lower remainder of division by powers of two much better elsewhere.
define i32 @test_srem_pow2(i32 %X) nounwind {
; CHECK-LABEL: test_srem_pow2:
; CHECK: // %bb.0:
; CHECK-NEXT: add w8, w0, #15 // =15
; CHECK-NEXT: cmp w0, #0 // =0
; CHECK-NEXT: csel w8, w8, w0, lt
; CHECK-NEXT: and w8, w8, #0xfffffff0
; CHECK-NEXT: cmp w0, w8
; CHECK-NEXT: cset w0, eq
; CHECK-NEXT: ret
%srem = srem i32 %X, 16
%cmp = icmp eq i32 %srem, 0
%ret = zext i1 %cmp to i32
ret i32 %ret
}
; The fold is only valid for positive divisors, and we can't negate INT_MIN.
define i32 @test_srem_int_min(i32 %X) nounwind {
; CHECK-LABEL: test_srem_int_min:
; CHECK: // %bb.0:
; CHECK-NEXT: mov w8, #2147483647
; CHECK-NEXT: add w8, w0, w8
; CHECK-NEXT: cmp w0, #0 // =0
; CHECK-NEXT: csel w8, w8, w0, lt
; CHECK-NEXT: and w8, w8, #0x80000000
; CHECK-NEXT: cmn w0, w8
; CHECK-NEXT: cset w0, eq
; CHECK-NEXT: ret
%srem = srem i32 %X, 2147483648
%cmp = icmp eq i32 %srem, 0
%ret = zext i1 %cmp to i32
ret i32 %ret
}
; We can lower remainder of division by all-ones much better elsewhere.
define i32 @test_srem_allones(i32 %X) nounwind {
; CHECK-LABEL: test_srem_allones:
; CHECK: // %bb.0:
; CHECK-NEXT: mov w0, #1
; CHECK-NEXT: ret
%srem = srem i32 %X, 4294967295
%cmp = icmp eq i32 %srem, 0
%ret = zext i1 %cmp to i32
ret i32 %ret
}