mirror of
https://github.com/RPCS3/llvm-mirror.git
synced 2024-11-24 03:33:20 +01:00
905db8a3d6
Now both method DispatchUnit::checkRAT() and DispatchUnit::canDispatch take as input an Instruction refrence instead of an instruction descriptor. This was requested by Simon in D44488 to simplify the diff. llvm-svn: 327640
321 lines
10 KiB
C++
321 lines
10 KiB
C++
//===--------------------- Dispatch.cpp -------------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
///
|
|
/// This file implements methods declared by class RegisterFile, DispatchUnit
|
|
/// and RetireControlUnit.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Dispatch.h"
|
|
#include "Backend.h"
|
|
#include "HWEventListener.h"
|
|
#include "Scheduler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "llvm-mca"
|
|
|
|
namespace mca {
|
|
|
|
void RegisterFile::addRegisterMapping(WriteState &WS) {
|
|
unsigned RegID = WS.getRegisterID();
|
|
assert(RegID && "Adding an invalid register definition?");
|
|
|
|
RegisterMappings[RegID] = &WS;
|
|
for (MCSubRegIterator I(RegID, &MRI); I.isValid(); ++I)
|
|
RegisterMappings[*I] = &WS;
|
|
if (MaxUsedMappings == NumUsedMappings)
|
|
MaxUsedMappings++;
|
|
NumUsedMappings++;
|
|
TotalMappingsCreated++;
|
|
// If this is a partial update, then we are done.
|
|
if (!WS.fullyUpdatesSuperRegs())
|
|
return;
|
|
|
|
for (MCSuperRegIterator I(RegID, &MRI); I.isValid(); ++I)
|
|
RegisterMappings[*I] = &WS;
|
|
}
|
|
|
|
void RegisterFile::invalidateRegisterMapping(const WriteState &WS) {
|
|
unsigned RegID = WS.getRegisterID();
|
|
bool ShouldInvalidateSuperRegs = WS.fullyUpdatesSuperRegs();
|
|
|
|
assert(RegID != 0 && "Invalidating an already invalid register?");
|
|
assert(WS.getCyclesLeft() != -512 &&
|
|
"Invalidating a write of unknown cycles!");
|
|
assert(WS.getCyclesLeft() <= 0 && "Invalid cycles left for this write!");
|
|
if (!RegisterMappings[RegID])
|
|
return;
|
|
|
|
assert(NumUsedMappings);
|
|
NumUsedMappings--;
|
|
|
|
if (RegisterMappings[RegID] == &WS)
|
|
RegisterMappings[RegID] = nullptr;
|
|
|
|
for (MCSubRegIterator I(RegID, &MRI); I.isValid(); ++I)
|
|
if (RegisterMappings[*I] == &WS)
|
|
RegisterMappings[*I] = nullptr;
|
|
|
|
if (!ShouldInvalidateSuperRegs)
|
|
return;
|
|
|
|
for (MCSuperRegIterator I(RegID, &MRI); I.isValid(); ++I)
|
|
if (RegisterMappings[*I] == &WS)
|
|
RegisterMappings[*I] = nullptr;
|
|
}
|
|
|
|
// Update the number of used mappings in the event of instruction retired.
|
|
// This mehod delegates to the register file the task of invalidating
|
|
// register mappings that were created for instruction IS.
|
|
void DispatchUnit::invalidateRegisterMappings(const Instruction &IS) {
|
|
for (const std::unique_ptr<WriteState> &WS : IS.getDefs()) {
|
|
DEBUG(dbgs() << "[RAT] Invalidating mapping for: ");
|
|
DEBUG(WS->dump());
|
|
RAT->invalidateRegisterMapping(*WS.get());
|
|
}
|
|
}
|
|
|
|
void RegisterFile::collectWrites(SmallVectorImpl<WriteState *> &Writes,
|
|
unsigned RegID) const {
|
|
assert(RegID && RegID < RegisterMappings.size());
|
|
WriteState *WS = RegisterMappings[RegID];
|
|
if (WS) {
|
|
DEBUG(dbgs() << "Found a dependent use of RegID=" << RegID << '\n');
|
|
Writes.push_back(WS);
|
|
}
|
|
|
|
// Handle potential partial register updates.
|
|
for (MCSubRegIterator I(RegID, &MRI); I.isValid(); ++I) {
|
|
WS = RegisterMappings[*I];
|
|
if (WS && std::find(Writes.begin(), Writes.end(), WS) == Writes.end()) {
|
|
DEBUG(dbgs() << "Found a dependent use of subReg " << *I << " (part of "
|
|
<< RegID << ")\n");
|
|
Writes.push_back(WS);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool RegisterFile::isAvailable(unsigned NumRegWrites) {
|
|
if (!TotalMappings)
|
|
return true;
|
|
if (NumRegWrites > TotalMappings) {
|
|
// The user specified a too small number of registers.
|
|
// Artificially set the number of temporaries to NumRegWrites.
|
|
errs() << "warning: not enough temporaries in the register file. "
|
|
<< "The register file size has been automatically increased to "
|
|
<< NumRegWrites << '\n';
|
|
TotalMappings = NumRegWrites;
|
|
}
|
|
|
|
return NumRegWrites + NumUsedMappings <= TotalMappings;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
void RegisterFile::dump() const {
|
|
for (unsigned I = 0, E = MRI.getNumRegs(); I < E; ++I)
|
|
if (RegisterMappings[I]) {
|
|
dbgs() << MRI.getName(I) << ", " << I << ", ";
|
|
RegisterMappings[I]->dump();
|
|
}
|
|
|
|
dbgs() << "TotalMappingsCreated: " << TotalMappingsCreated
|
|
<< ", MaxUsedMappings: " << MaxUsedMappings
|
|
<< ", NumUsedMappings: " << NumUsedMappings << '\n';
|
|
}
|
|
#endif
|
|
|
|
// Reserves a number of slots, and returns a new token.
|
|
unsigned RetireControlUnit::reserveSlot(unsigned Index, unsigned NumMicroOps) {
|
|
assert(isAvailable(NumMicroOps));
|
|
unsigned NormalizedQuantity =
|
|
std::min(NumMicroOps, static_cast<unsigned>(Queue.size()));
|
|
// Zero latency instructions may have zero mOps. Artificially bump this
|
|
// value to 1. Although zero latency instructions don't consume scheduler
|
|
// resources, they still consume one slot in the retire queue.
|
|
NormalizedQuantity = std::max(NormalizedQuantity, 1U);
|
|
unsigned TokenID = NextAvailableSlotIdx;
|
|
Queue[NextAvailableSlotIdx] = {Index, NormalizedQuantity, false};
|
|
NextAvailableSlotIdx += NormalizedQuantity;
|
|
NextAvailableSlotIdx %= Queue.size();
|
|
AvailableSlots -= NormalizedQuantity;
|
|
return TokenID;
|
|
}
|
|
|
|
void DispatchUnit::notifyInstructionDispatched(unsigned Index) {
|
|
DEBUG(dbgs() << "[E] Instruction Dispatched: " << Index << '\n');
|
|
Owner->notifyInstructionEvent(
|
|
HWInstructionEvent(HWInstructionEvent::Dispatched, Index));
|
|
}
|
|
|
|
void DispatchUnit::notifyInstructionRetired(unsigned Index) {
|
|
DEBUG(dbgs() << "[E] Instruction Retired: " << Index << '\n');
|
|
Owner->notifyInstructionEvent(
|
|
HWInstructionEvent(HWInstructionEvent::Retired, Index));
|
|
|
|
const Instruction &IS = Owner->getInstruction(Index);
|
|
invalidateRegisterMappings(IS);
|
|
Owner->eraseInstruction(Index);
|
|
}
|
|
|
|
void RetireControlUnit::cycleEvent() {
|
|
if (isEmpty())
|
|
return;
|
|
|
|
unsigned NumRetired = 0;
|
|
while (!isEmpty()) {
|
|
if (MaxRetirePerCycle != 0 && NumRetired == MaxRetirePerCycle)
|
|
break;
|
|
RUToken &Current = Queue[CurrentInstructionSlotIdx];
|
|
assert(Current.NumSlots && "Reserved zero slots?");
|
|
if (!Current.Executed)
|
|
break;
|
|
Owner->notifyInstructionRetired(Current.Index);
|
|
CurrentInstructionSlotIdx += Current.NumSlots;
|
|
CurrentInstructionSlotIdx %= Queue.size();
|
|
AvailableSlots += Current.NumSlots;
|
|
NumRetired++;
|
|
}
|
|
}
|
|
|
|
void RetireControlUnit::onInstructionExecuted(unsigned TokenID) {
|
|
assert(Queue.size() > TokenID);
|
|
assert(Queue[TokenID].Executed == false && Queue[TokenID].Index != ~0U);
|
|
Queue[TokenID].Executed = true;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
void RetireControlUnit::dump() const {
|
|
dbgs() << "Retire Unit: { Total Slots=" << Queue.size()
|
|
<< ", Available Slots=" << AvailableSlots << " }\n";
|
|
}
|
|
#endif
|
|
|
|
bool DispatchUnit::checkRAT(const Instruction &Instr) {
|
|
const InstrDesc &Desc = Instr.getDesc();
|
|
unsigned NumWrites = Desc.Writes.size();
|
|
if (RAT->isAvailable(NumWrites))
|
|
return true;
|
|
DispatchStalls[DS_RAT_REG_UNAVAILABLE]++;
|
|
return false;
|
|
}
|
|
|
|
bool DispatchUnit::checkRCU(const InstrDesc &Desc) {
|
|
unsigned NumMicroOps = Desc.NumMicroOps;
|
|
if (RCU->isAvailable(NumMicroOps))
|
|
return true;
|
|
DispatchStalls[DS_RCU_TOKEN_UNAVAILABLE]++;
|
|
return false;
|
|
}
|
|
|
|
bool DispatchUnit::checkScheduler(const InstrDesc &Desc) {
|
|
// If this is a zero-latency instruction, then it bypasses
|
|
// the scheduler.
|
|
switch (SC->canBeDispatched(Desc)) {
|
|
case Scheduler::HWS_AVAILABLE:
|
|
return true;
|
|
case Scheduler::HWS_QUEUE_UNAVAILABLE:
|
|
DispatchStalls[DS_SQ_TOKEN_UNAVAILABLE]++;
|
|
break;
|
|
case Scheduler::HWS_LD_QUEUE_UNAVAILABLE:
|
|
DispatchStalls[DS_LDQ_TOKEN_UNAVAILABLE]++;
|
|
break;
|
|
case Scheduler::HWS_ST_QUEUE_UNAVAILABLE:
|
|
DispatchStalls[DS_STQ_TOKEN_UNAVAILABLE]++;
|
|
break;
|
|
case Scheduler::HWS_DISPATCH_GROUP_RESTRICTION:
|
|
DispatchStalls[DS_DISPATCH_GROUP_RESTRICTION]++;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void DispatchUnit::updateRAWDependencies(ReadState &RS,
|
|
const MCSubtargetInfo &STI) {
|
|
SmallVector<WriteState *, 4> DependentWrites;
|
|
|
|
collectWrites(DependentWrites, RS.getRegisterID());
|
|
RS.setDependentWrites(DependentWrites.size());
|
|
DEBUG(dbgs() << "Found " << DependentWrites.size() << " dependent writes\n");
|
|
// We know that this read depends on all the writes in DependentWrites.
|
|
// For each write, check if we have ReadAdvance information, and use it
|
|
// to figure out in how many cycles this read becomes available.
|
|
const ReadDescriptor &RD = RS.getDescriptor();
|
|
if (!RD.HasReadAdvanceEntries) {
|
|
for (WriteState *WS : DependentWrites)
|
|
WS->addUser(&RS, /* ReadAdvance */ 0);
|
|
return;
|
|
}
|
|
|
|
const MCSchedModel &SM = STI.getSchedModel();
|
|
const MCSchedClassDesc *SC = SM.getSchedClassDesc(RD.SchedClassID);
|
|
for (WriteState *WS : DependentWrites) {
|
|
unsigned WriteResID = WS->getWriteResourceID();
|
|
int ReadAdvance = STI.getReadAdvanceCycles(SC, RD.OpIndex, WriteResID);
|
|
WS->addUser(&RS, ReadAdvance);
|
|
}
|
|
// Prepare the set for another round.
|
|
DependentWrites.clear();
|
|
}
|
|
|
|
unsigned DispatchUnit::dispatch(unsigned IID, Instruction *NewInst,
|
|
const MCSubtargetInfo &STI) {
|
|
assert(!CarryOver && "Cannot dispatch another instruction!");
|
|
unsigned NumMicroOps = NewInst->getDesc().NumMicroOps;
|
|
if (NumMicroOps > DispatchWidth) {
|
|
assert(AvailableEntries == DispatchWidth);
|
|
AvailableEntries = 0;
|
|
CarryOver = NumMicroOps - DispatchWidth;
|
|
} else {
|
|
assert(AvailableEntries >= NumMicroOps);
|
|
AvailableEntries -= NumMicroOps;
|
|
}
|
|
|
|
// Update RAW dependencies.
|
|
for (std::unique_ptr<ReadState> &RS : NewInst->getUses())
|
|
updateRAWDependencies(*RS, STI);
|
|
|
|
// Allocate temporary registers in the register file.
|
|
for (std::unique_ptr<WriteState> &WS : NewInst->getDefs())
|
|
addNewRegisterMapping(*WS);
|
|
|
|
// Set the cycles left before the write-back stage.
|
|
const InstrDesc &D = NewInst->getDesc();
|
|
NewInst->setCyclesLeft(D.MaxLatency);
|
|
|
|
// Reserve slots in the RCU.
|
|
unsigned RCUTokenID = RCU->reserveSlot(IID, NumMicroOps);
|
|
NewInst->setRCUTokenID(RCUTokenID);
|
|
notifyInstructionDispatched(IID);
|
|
|
|
SC->scheduleInstruction(IID, NewInst);
|
|
return RCUTokenID;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
void DispatchUnit::dump() const {
|
|
RAT->dump();
|
|
RCU->dump();
|
|
|
|
unsigned DSRAT = DispatchStalls[DS_RAT_REG_UNAVAILABLE];
|
|
unsigned DSRCU = DispatchStalls[DS_RCU_TOKEN_UNAVAILABLE];
|
|
unsigned DSSCHEDQ = DispatchStalls[DS_SQ_TOKEN_UNAVAILABLE];
|
|
unsigned DSLQ = DispatchStalls[DS_LDQ_TOKEN_UNAVAILABLE];
|
|
unsigned DSSQ = DispatchStalls[DS_STQ_TOKEN_UNAVAILABLE];
|
|
|
|
dbgs() << "STALLS --- RAT: " << DSRAT << ", RCU: " << DSRCU
|
|
<< ", SCHED_QUEUE: " << DSSCHEDQ << ", LOAD_QUEUE: " << DSLQ
|
|
<< ", STORE_QUEUE: " << DSSQ << '\n';
|
|
}
|
|
#endif
|
|
|
|
} // namespace mca
|