1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-24 03:33:20 +01:00
llvm-mirror/tools/llvm-mca/Dispatch.cpp
Andrea Di Biagio 905db8a3d6 [llvm-mca] Simplify code. NFC.
Now both method DispatchUnit::checkRAT() and DispatchUnit::canDispatch take as
input an Instruction refrence instead of an instruction descriptor.
This was requested by Simon in D44488 to simplify the diff.

llvm-svn: 327640
2018-03-15 16:13:12 +00:00

321 lines
10 KiB
C++

//===--------------------- Dispatch.cpp -------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
///
/// This file implements methods declared by class RegisterFile, DispatchUnit
/// and RetireControlUnit.
///
//===----------------------------------------------------------------------===//
#include "Dispatch.h"
#include "Backend.h"
#include "HWEventListener.h"
#include "Scheduler.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
#define DEBUG_TYPE "llvm-mca"
namespace mca {
void RegisterFile::addRegisterMapping(WriteState &WS) {
unsigned RegID = WS.getRegisterID();
assert(RegID && "Adding an invalid register definition?");
RegisterMappings[RegID] = &WS;
for (MCSubRegIterator I(RegID, &MRI); I.isValid(); ++I)
RegisterMappings[*I] = &WS;
if (MaxUsedMappings == NumUsedMappings)
MaxUsedMappings++;
NumUsedMappings++;
TotalMappingsCreated++;
// If this is a partial update, then we are done.
if (!WS.fullyUpdatesSuperRegs())
return;
for (MCSuperRegIterator I(RegID, &MRI); I.isValid(); ++I)
RegisterMappings[*I] = &WS;
}
void RegisterFile::invalidateRegisterMapping(const WriteState &WS) {
unsigned RegID = WS.getRegisterID();
bool ShouldInvalidateSuperRegs = WS.fullyUpdatesSuperRegs();
assert(RegID != 0 && "Invalidating an already invalid register?");
assert(WS.getCyclesLeft() != -512 &&
"Invalidating a write of unknown cycles!");
assert(WS.getCyclesLeft() <= 0 && "Invalid cycles left for this write!");
if (!RegisterMappings[RegID])
return;
assert(NumUsedMappings);
NumUsedMappings--;
if (RegisterMappings[RegID] == &WS)
RegisterMappings[RegID] = nullptr;
for (MCSubRegIterator I(RegID, &MRI); I.isValid(); ++I)
if (RegisterMappings[*I] == &WS)
RegisterMappings[*I] = nullptr;
if (!ShouldInvalidateSuperRegs)
return;
for (MCSuperRegIterator I(RegID, &MRI); I.isValid(); ++I)
if (RegisterMappings[*I] == &WS)
RegisterMappings[*I] = nullptr;
}
// Update the number of used mappings in the event of instruction retired.
// This mehod delegates to the register file the task of invalidating
// register mappings that were created for instruction IS.
void DispatchUnit::invalidateRegisterMappings(const Instruction &IS) {
for (const std::unique_ptr<WriteState> &WS : IS.getDefs()) {
DEBUG(dbgs() << "[RAT] Invalidating mapping for: ");
DEBUG(WS->dump());
RAT->invalidateRegisterMapping(*WS.get());
}
}
void RegisterFile::collectWrites(SmallVectorImpl<WriteState *> &Writes,
unsigned RegID) const {
assert(RegID && RegID < RegisterMappings.size());
WriteState *WS = RegisterMappings[RegID];
if (WS) {
DEBUG(dbgs() << "Found a dependent use of RegID=" << RegID << '\n');
Writes.push_back(WS);
}
// Handle potential partial register updates.
for (MCSubRegIterator I(RegID, &MRI); I.isValid(); ++I) {
WS = RegisterMappings[*I];
if (WS && std::find(Writes.begin(), Writes.end(), WS) == Writes.end()) {
DEBUG(dbgs() << "Found a dependent use of subReg " << *I << " (part of "
<< RegID << ")\n");
Writes.push_back(WS);
}
}
}
bool RegisterFile::isAvailable(unsigned NumRegWrites) {
if (!TotalMappings)
return true;
if (NumRegWrites > TotalMappings) {
// The user specified a too small number of registers.
// Artificially set the number of temporaries to NumRegWrites.
errs() << "warning: not enough temporaries in the register file. "
<< "The register file size has been automatically increased to "
<< NumRegWrites << '\n';
TotalMappings = NumRegWrites;
}
return NumRegWrites + NumUsedMappings <= TotalMappings;
}
#ifndef NDEBUG
void RegisterFile::dump() const {
for (unsigned I = 0, E = MRI.getNumRegs(); I < E; ++I)
if (RegisterMappings[I]) {
dbgs() << MRI.getName(I) << ", " << I << ", ";
RegisterMappings[I]->dump();
}
dbgs() << "TotalMappingsCreated: " << TotalMappingsCreated
<< ", MaxUsedMappings: " << MaxUsedMappings
<< ", NumUsedMappings: " << NumUsedMappings << '\n';
}
#endif
// Reserves a number of slots, and returns a new token.
unsigned RetireControlUnit::reserveSlot(unsigned Index, unsigned NumMicroOps) {
assert(isAvailable(NumMicroOps));
unsigned NormalizedQuantity =
std::min(NumMicroOps, static_cast<unsigned>(Queue.size()));
// Zero latency instructions may have zero mOps. Artificially bump this
// value to 1. Although zero latency instructions don't consume scheduler
// resources, they still consume one slot in the retire queue.
NormalizedQuantity = std::max(NormalizedQuantity, 1U);
unsigned TokenID = NextAvailableSlotIdx;
Queue[NextAvailableSlotIdx] = {Index, NormalizedQuantity, false};
NextAvailableSlotIdx += NormalizedQuantity;
NextAvailableSlotIdx %= Queue.size();
AvailableSlots -= NormalizedQuantity;
return TokenID;
}
void DispatchUnit::notifyInstructionDispatched(unsigned Index) {
DEBUG(dbgs() << "[E] Instruction Dispatched: " << Index << '\n');
Owner->notifyInstructionEvent(
HWInstructionEvent(HWInstructionEvent::Dispatched, Index));
}
void DispatchUnit::notifyInstructionRetired(unsigned Index) {
DEBUG(dbgs() << "[E] Instruction Retired: " << Index << '\n');
Owner->notifyInstructionEvent(
HWInstructionEvent(HWInstructionEvent::Retired, Index));
const Instruction &IS = Owner->getInstruction(Index);
invalidateRegisterMappings(IS);
Owner->eraseInstruction(Index);
}
void RetireControlUnit::cycleEvent() {
if (isEmpty())
return;
unsigned NumRetired = 0;
while (!isEmpty()) {
if (MaxRetirePerCycle != 0 && NumRetired == MaxRetirePerCycle)
break;
RUToken &Current = Queue[CurrentInstructionSlotIdx];
assert(Current.NumSlots && "Reserved zero slots?");
if (!Current.Executed)
break;
Owner->notifyInstructionRetired(Current.Index);
CurrentInstructionSlotIdx += Current.NumSlots;
CurrentInstructionSlotIdx %= Queue.size();
AvailableSlots += Current.NumSlots;
NumRetired++;
}
}
void RetireControlUnit::onInstructionExecuted(unsigned TokenID) {
assert(Queue.size() > TokenID);
assert(Queue[TokenID].Executed == false && Queue[TokenID].Index != ~0U);
Queue[TokenID].Executed = true;
}
#ifndef NDEBUG
void RetireControlUnit::dump() const {
dbgs() << "Retire Unit: { Total Slots=" << Queue.size()
<< ", Available Slots=" << AvailableSlots << " }\n";
}
#endif
bool DispatchUnit::checkRAT(const Instruction &Instr) {
const InstrDesc &Desc = Instr.getDesc();
unsigned NumWrites = Desc.Writes.size();
if (RAT->isAvailable(NumWrites))
return true;
DispatchStalls[DS_RAT_REG_UNAVAILABLE]++;
return false;
}
bool DispatchUnit::checkRCU(const InstrDesc &Desc) {
unsigned NumMicroOps = Desc.NumMicroOps;
if (RCU->isAvailable(NumMicroOps))
return true;
DispatchStalls[DS_RCU_TOKEN_UNAVAILABLE]++;
return false;
}
bool DispatchUnit::checkScheduler(const InstrDesc &Desc) {
// If this is a zero-latency instruction, then it bypasses
// the scheduler.
switch (SC->canBeDispatched(Desc)) {
case Scheduler::HWS_AVAILABLE:
return true;
case Scheduler::HWS_QUEUE_UNAVAILABLE:
DispatchStalls[DS_SQ_TOKEN_UNAVAILABLE]++;
break;
case Scheduler::HWS_LD_QUEUE_UNAVAILABLE:
DispatchStalls[DS_LDQ_TOKEN_UNAVAILABLE]++;
break;
case Scheduler::HWS_ST_QUEUE_UNAVAILABLE:
DispatchStalls[DS_STQ_TOKEN_UNAVAILABLE]++;
break;
case Scheduler::HWS_DISPATCH_GROUP_RESTRICTION:
DispatchStalls[DS_DISPATCH_GROUP_RESTRICTION]++;
}
return false;
}
void DispatchUnit::updateRAWDependencies(ReadState &RS,
const MCSubtargetInfo &STI) {
SmallVector<WriteState *, 4> DependentWrites;
collectWrites(DependentWrites, RS.getRegisterID());
RS.setDependentWrites(DependentWrites.size());
DEBUG(dbgs() << "Found " << DependentWrites.size() << " dependent writes\n");
// We know that this read depends on all the writes in DependentWrites.
// For each write, check if we have ReadAdvance information, and use it
// to figure out in how many cycles this read becomes available.
const ReadDescriptor &RD = RS.getDescriptor();
if (!RD.HasReadAdvanceEntries) {
for (WriteState *WS : DependentWrites)
WS->addUser(&RS, /* ReadAdvance */ 0);
return;
}
const MCSchedModel &SM = STI.getSchedModel();
const MCSchedClassDesc *SC = SM.getSchedClassDesc(RD.SchedClassID);
for (WriteState *WS : DependentWrites) {
unsigned WriteResID = WS->getWriteResourceID();
int ReadAdvance = STI.getReadAdvanceCycles(SC, RD.OpIndex, WriteResID);
WS->addUser(&RS, ReadAdvance);
}
// Prepare the set for another round.
DependentWrites.clear();
}
unsigned DispatchUnit::dispatch(unsigned IID, Instruction *NewInst,
const MCSubtargetInfo &STI) {
assert(!CarryOver && "Cannot dispatch another instruction!");
unsigned NumMicroOps = NewInst->getDesc().NumMicroOps;
if (NumMicroOps > DispatchWidth) {
assert(AvailableEntries == DispatchWidth);
AvailableEntries = 0;
CarryOver = NumMicroOps - DispatchWidth;
} else {
assert(AvailableEntries >= NumMicroOps);
AvailableEntries -= NumMicroOps;
}
// Update RAW dependencies.
for (std::unique_ptr<ReadState> &RS : NewInst->getUses())
updateRAWDependencies(*RS, STI);
// Allocate temporary registers in the register file.
for (std::unique_ptr<WriteState> &WS : NewInst->getDefs())
addNewRegisterMapping(*WS);
// Set the cycles left before the write-back stage.
const InstrDesc &D = NewInst->getDesc();
NewInst->setCyclesLeft(D.MaxLatency);
// Reserve slots in the RCU.
unsigned RCUTokenID = RCU->reserveSlot(IID, NumMicroOps);
NewInst->setRCUTokenID(RCUTokenID);
notifyInstructionDispatched(IID);
SC->scheduleInstruction(IID, NewInst);
return RCUTokenID;
}
#ifndef NDEBUG
void DispatchUnit::dump() const {
RAT->dump();
RCU->dump();
unsigned DSRAT = DispatchStalls[DS_RAT_REG_UNAVAILABLE];
unsigned DSRCU = DispatchStalls[DS_RCU_TOKEN_UNAVAILABLE];
unsigned DSSCHEDQ = DispatchStalls[DS_SQ_TOKEN_UNAVAILABLE];
unsigned DSLQ = DispatchStalls[DS_LDQ_TOKEN_UNAVAILABLE];
unsigned DSSQ = DispatchStalls[DS_STQ_TOKEN_UNAVAILABLE];
dbgs() << "STALLS --- RAT: " << DSRAT << ", RCU: " << DSRCU
<< ", SCHED_QUEUE: " << DSSCHEDQ << ", LOAD_QUEUE: " << DSLQ
<< ", STORE_QUEUE: " << DSSQ << '\n';
}
#endif
} // namespace mca