1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 10:42:39 +01:00
llvm-mirror/include/llvm/CodeGen/LiveRegUnits.h
Kazu Hirata 39185b091b [llvm] Remove redundant return and continue statements (NFC)
Identified with readability-redundant-control-flow.
2021-01-14 20:30:34 -08:00

178 lines
6.2 KiB
C++

//===- llvm/CodeGen/LiveRegUnits.h - Register Unit Set ----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// A set of register units. It is intended for register liveness tracking.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_LIVEREGUNITS_H
#define LLVM_CODEGEN_LIVEREGUNITS_H
#include "llvm/ADT/BitVector.h"
#include "llvm/CodeGen/MachineInstrBundle.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/MC/LaneBitmask.h"
#include "llvm/MC/MCRegisterInfo.h"
#include <cstdint>
namespace llvm {
class MachineInstr;
class MachineBasicBlock;
/// A set of register units used to track register liveness.
class LiveRegUnits {
const TargetRegisterInfo *TRI = nullptr;
BitVector Units;
public:
/// Constructs a new empty LiveRegUnits set.
LiveRegUnits() = default;
/// Constructs and initialize an empty LiveRegUnits set.
LiveRegUnits(const TargetRegisterInfo &TRI) {
init(TRI);
}
/// For a machine instruction \p MI, adds all register units used in
/// \p UsedRegUnits and defined or clobbered in \p ModifiedRegUnits. This is
/// useful when walking over a range of instructions to track registers
/// used or defined seperately.
static void accumulateUsedDefed(const MachineInstr &MI,
LiveRegUnits &ModifiedRegUnits,
LiveRegUnits &UsedRegUnits,
const TargetRegisterInfo *TRI) {
for (ConstMIBundleOperands O(MI); O.isValid(); ++O) {
if (O->isRegMask())
ModifiedRegUnits.addRegsInMask(O->getRegMask());
if (!O->isReg())
continue;
Register Reg = O->getReg();
if (!Reg.isPhysical())
continue;
if (O->isDef()) {
// Some architectures (e.g. AArch64 XZR/WZR) have registers that are
// constant and may be used as destinations to indicate the generated
// value is discarded. No need to track such case as a def.
if (!TRI->isConstantPhysReg(Reg))
ModifiedRegUnits.addReg(Reg);
} else {
assert(O->isUse() && "Reg operand not a def and not a use");
UsedRegUnits.addReg(Reg);
}
}
}
/// Initialize and clear the set.
void init(const TargetRegisterInfo &TRI) {
this->TRI = &TRI;
Units.reset();
Units.resize(TRI.getNumRegUnits());
}
/// Clears the set.
void clear() { Units.reset(); }
/// Returns true if the set is empty.
bool empty() const { return Units.none(); }
/// Adds register units covered by physical register \p Reg.
void addReg(MCPhysReg Reg) {
for (MCRegUnitIterator Unit(Reg, TRI); Unit.isValid(); ++Unit)
Units.set(*Unit);
}
/// Adds register units covered by physical register \p Reg that are
/// part of the lanemask \p Mask.
void addRegMasked(MCPhysReg Reg, LaneBitmask Mask) {
for (MCRegUnitMaskIterator Unit(Reg, TRI); Unit.isValid(); ++Unit) {
LaneBitmask UnitMask = (*Unit).second;
if (UnitMask.none() || (UnitMask & Mask).any())
Units.set((*Unit).first);
}
}
/// Removes all register units covered by physical register \p Reg.
void removeReg(MCPhysReg Reg) {
for (MCRegUnitIterator Unit(Reg, TRI); Unit.isValid(); ++Unit)
Units.reset(*Unit);
}
/// Removes register units not preserved by the regmask \p RegMask.
/// The regmask has the same format as the one in the RegMask machine operand.
void removeRegsNotPreserved(const uint32_t *RegMask);
/// Adds register units not preserved by the regmask \p RegMask.
/// The regmask has the same format as the one in the RegMask machine operand.
void addRegsInMask(const uint32_t *RegMask);
/// Returns true if no part of physical register \p Reg is live.
bool available(MCPhysReg Reg) const {
for (MCRegUnitIterator Unit(Reg, TRI); Unit.isValid(); ++Unit) {
if (Units.test(*Unit))
return false;
}
return true;
}
/// Updates liveness when stepping backwards over the instruction \p MI.
/// This removes all register units defined or clobbered in \p MI and then
/// adds the units used (as in use operands) in \p MI.
void stepBackward(const MachineInstr &MI);
/// Adds all register units used, defined or clobbered in \p MI.
/// This is useful when walking over a range of instruction to find registers
/// unused over the whole range.
void accumulate(const MachineInstr &MI);
/// Adds registers living out of block \p MBB.
/// Live out registers are the union of the live-in registers of the successor
/// blocks and pristine registers. Live out registers of the end block are the
/// callee saved registers.
void addLiveOuts(const MachineBasicBlock &MBB);
/// Adds registers living into block \p MBB.
void addLiveIns(const MachineBasicBlock &MBB);
/// Adds all register units marked in the bitvector \p RegUnits.
void addUnits(const BitVector &RegUnits) {
Units |= RegUnits;
}
/// Removes all register units marked in the bitvector \p RegUnits.
void removeUnits(const BitVector &RegUnits) {
Units.reset(RegUnits);
}
/// Return the internal bitvector representation of the set.
const BitVector &getBitVector() const {
return Units;
}
private:
/// Adds pristine registers. Pristine registers are callee saved registers
/// that are unused in the function.
void addPristines(const MachineFunction &MF);
};
/// Returns an iterator range over all physical register and mask operands for
/// \p MI and bundled instructions. This also skips any debug operands.
inline iterator_range<filter_iterator<
ConstMIBundleOperands, std::function<bool(const MachineOperand &)>>>
phys_regs_and_masks(const MachineInstr &MI) {
std::function<bool(const MachineOperand &)> Pred =
[](const MachineOperand &MOP) {
return MOP.isRegMask() || (MOP.isReg() && !MOP.isDebug() &&
Register::isPhysicalRegister(MOP.getReg()));
};
return make_filter_range(const_mi_bundle_ops(MI), Pred);
}
} // end namespace llvm
#endif // LLVM_CODEGEN_LIVEREGUNITS_H