1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 18:54:02 +01:00
llvm-mirror/test/CodeGen/SystemZ/int-ssub-01.ll
Ulrich Weigand 0c16dcd701 [SystemZ] Handle SADDO et.al. and ADD/SUBCARRY
This provides an optimized implementation of SADDO/SSUBO/UADDO/USUBO
as well as ADDCARRY/SUBCARRY on top of the new CC implementation.

In particular, multi-word arithmetic now uses UADDO/ADDCARRY instead
of the old ADDC/ADDE logic, which means we no longer need to use
"glue" links for those instructions.  This also allows making full
use of the memory-based instructions like ALSI, which couldn't be
recognized due to limitations in the DAG matcher previously.

Also, the llvm.sadd.with.overflow et.al. intrinsincs now expand to
directly using the ADD instructions and checking for a CC 3 result.

llvm-svn: 331203
2018-04-30 17:54:28 +00:00

326 lines
10 KiB
LLVM

; Test 32-bit subtraction in which the second operand is variable.
;
; RUN: llc < %s -mtriple=s390x-linux-gnu | FileCheck %s
declare i32 @foo()
; Check SR.
define zeroext i1 @f1(i32 %dummy, i32 %a, i32 %b, i32 *%res) {
; CHECK-LABEL: f1:
; CHECK: sr %r3, %r4
; CHECK-DAG: st %r3, 0(%r5)
; CHECK-DAG: ipm [[REG:%r[0-5]]]
; CHECK-DAG: afi [[REG]], 1342177280
; CHECK-DAG: risbg %r2, [[REG]], 63, 191, 33
; CHECK: br %r14
%t = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
%val = extractvalue {i32, i1} %t, 0
%obit = extractvalue {i32, i1} %t, 1
store i32 %val, i32 *%res
ret i1 %obit
}
; Check using the overflow result for a branch.
define void @f2(i32 %dummy, i32 %a, i32 %b, i32 *%res) {
; CHECK-LABEL: f2:
; CHECK: sr %r3, %r4
; CHECK: st %r3, 0(%r5)
; CHECK: jgo foo@PLT
; CHECK: br %r14
%t = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
%val = extractvalue {i32, i1} %t, 0
%obit = extractvalue {i32, i1} %t, 1
store i32 %val, i32 *%res
br i1 %obit, label %call, label %exit
call:
tail call i32 @foo()
br label %exit
exit:
ret void
}
; ... and the same with the inverted direction.
define void @f3(i32 %dummy, i32 %a, i32 %b, i32 *%res) {
; CHECK-LABEL: f3:
; CHECK: sr %r3, %r4
; CHECK: st %r3, 0(%r5)
; CHECK: jgno foo@PLT
; CHECK: br %r14
%t = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
%val = extractvalue {i32, i1} %t, 0
%obit = extractvalue {i32, i1} %t, 1
store i32 %val, i32 *%res
br i1 %obit, label %exit, label %call
call:
tail call i32 @foo()
br label %exit
exit:
ret void
}
; Check the low end of the S range.
define zeroext i1 @f4(i32 %dummy, i32 %a, i32 *%src, i32 *%res) {
; CHECK-LABEL: f4:
; CHECK: s %r3, 0(%r4)
; CHECK-DAG: st %r3, 0(%r5)
; CHECK-DAG: ipm [[REG:%r[0-5]]]
; CHECK-DAG: afi [[REG]], 1342177280
; CHECK-DAG: risbg %r2, [[REG]], 63, 191, 33
; CHECK: br %r14
%b = load i32, i32 *%src
%t = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
%val = extractvalue {i32, i1} %t, 0
%obit = extractvalue {i32, i1} %t, 1
store i32 %val, i32 *%res
ret i1 %obit
}
; Check the high end of the aligned S range.
define zeroext i1 @f5(i32 %dummy, i32 %a, i32 *%src, i32 *%res) {
; CHECK-LABEL: f5:
; CHECK: s %r3, 4092(%r4)
; CHECK-DAG: st %r3, 0(%r5)
; CHECK-DAG: ipm [[REG:%r[0-5]]]
; CHECK-DAG: afi [[REG]], 1342177280
; CHECK-DAG: risbg %r2, [[REG]], 63, 191, 33
; CHECK: br %r14
%ptr = getelementptr i32, i32 *%src, i64 1023
%b = load i32, i32 *%ptr
%t = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
%val = extractvalue {i32, i1} %t, 0
%obit = extractvalue {i32, i1} %t, 1
store i32 %val, i32 *%res
ret i1 %obit
}
; Check the next word up, which should use SY instead of S.
define zeroext i1 @f6(i32 %dummy, i32 %a, i32 *%src, i32 *%res) {
; CHECK-LABEL: f6:
; CHECK: sy %r3, 4096(%r4)
; CHECK-DAG: st %r3, 0(%r5)
; CHECK-DAG: ipm [[REG:%r[0-5]]]
; CHECK-DAG: afi [[REG]], 1342177280
; CHECK-DAG: risbg %r2, [[REG]], 63, 191, 33
; CHECK: br %r14
%ptr = getelementptr i32, i32 *%src, i64 1024
%b = load i32, i32 *%ptr
%t = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
%val = extractvalue {i32, i1} %t, 0
%obit = extractvalue {i32, i1} %t, 1
store i32 %val, i32 *%res
ret i1 %obit
}
; Check the high end of the aligned SY range.
define zeroext i1 @f7(i32 %dummy, i32 %a, i32 *%src, i32 *%res) {
; CHECK-LABEL: f7:
; CHECK: sy %r3, 524284(%r4)
; CHECK-DAG: st %r3, 0(%r5)
; CHECK-DAG: ipm [[REG:%r[0-5]]]
; CHECK-DAG: afi [[REG]], 1342177280
; CHECK-DAG: risbg %r2, [[REG]], 63, 191, 33
; CHECK: br %r14
%ptr = getelementptr i32, i32 *%src, i64 131071
%b = load i32, i32 *%ptr
%t = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
%val = extractvalue {i32, i1} %t, 0
%obit = extractvalue {i32, i1} %t, 1
store i32 %val, i32 *%res
ret i1 %obit
}
; Check the next word up, which needs separate address logic.
; Other sequences besides this one would be OK.
define zeroext i1 @f8(i32 %dummy, i32 %a, i32 *%src, i32 *%res) {
; CHECK-LABEL: f8:
; CHECK: agfi %r4, 524288
; CHECK: s %r3, 0(%r4)
; CHECK-DAG: st %r3, 0(%r5)
; CHECK-DAG: ipm [[REG:%r[0-5]]]
; CHECK-DAG: afi [[REG]], 1342177280
; CHECK-DAG: risbg %r2, [[REG]], 63, 191, 33
; CHECK: br %r14
%ptr = getelementptr i32, i32 *%src, i64 131072
%b = load i32, i32 *%ptr
%t = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
%val = extractvalue {i32, i1} %t, 0
%obit = extractvalue {i32, i1} %t, 1
store i32 %val, i32 *%res
ret i1 %obit
}
; Check the high end of the negative aligned SY range.
define zeroext i1 @f9(i32 %dummy, i32 %a, i32 *%src, i32 *%res) {
; CHECK-LABEL: f9:
; CHECK: sy %r3, -4(%r4)
; CHECK-DAG: st %r3, 0(%r5)
; CHECK-DAG: ipm [[REG:%r[0-5]]]
; CHECK-DAG: afi [[REG]], 1342177280
; CHECK-DAG: risbg %r2, [[REG]], 63, 191, 33
; CHECK: br %r14
%ptr = getelementptr i32, i32 *%src, i64 -1
%b = load i32, i32 *%ptr
%t = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
%val = extractvalue {i32, i1} %t, 0
%obit = extractvalue {i32, i1} %t, 1
store i32 %val, i32 *%res
ret i1 %obit
}
; Check the low end of the SY range.
define zeroext i1 @f10(i32 %dummy, i32 %a, i32 *%src, i32 *%res) {
; CHECK-LABEL: f10:
; CHECK: sy %r3, -524288(%r4)
; CHECK-DAG: st %r3, 0(%r5)
; CHECK-DAG: ipm [[REG:%r[0-5]]]
; CHECK-DAG: afi [[REG]], 1342177280
; CHECK-DAG: risbg %r2, [[REG]], 63, 191, 33
; CHECK: br %r14
%ptr = getelementptr i32, i32 *%src, i64 -131072
%b = load i32, i32 *%ptr
%t = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
%val = extractvalue {i32, i1} %t, 0
%obit = extractvalue {i32, i1} %t, 1
store i32 %val, i32 *%res
ret i1 %obit
}
; Check the next word down, which needs separate address logic.
; Other sequences besides this one would be OK.
define zeroext i1 @f11(i32 %dummy, i32 %a, i32 *%src, i32 *%res) {
; CHECK-LABEL: f11:
; CHECK: agfi %r4, -524292
; CHECK: s %r3, 0(%r4)
; CHECK-DAG: st %r3, 0(%r5)
; CHECK-DAG: ipm [[REG:%r[0-5]]]
; CHECK-DAG: afi [[REG]], 1342177280
; CHECK-DAG: risbg %r2, [[REG]], 63, 191, 33
; CHECK: br %r14
%ptr = getelementptr i32, i32 *%src, i64 -131073
%b = load i32, i32 *%ptr
%t = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
%val = extractvalue {i32, i1} %t, 0
%obit = extractvalue {i32, i1} %t, 1
store i32 %val, i32 *%res
ret i1 %obit
}
; Check that S allows an index.
define zeroext i1 @f12(i64 %src, i64 %index, i32 %a, i32 *%res) {
; CHECK-LABEL: f12:
; CHECK: s %r4, 4092({{%r3,%r2|%r2,%r3}})
; CHECK-DAG: st %r4, 0(%r5)
; CHECK-DAG: ipm [[REG:%r[0-5]]]
; CHECK-DAG: afi [[REG]], 1342177280
; CHECK-DAG: risbg %r2, [[REG]], 63, 191, 33
; CHECK: br %r14
%add1 = add i64 %src, %index
%add2 = add i64 %add1, 4092
%ptr = inttoptr i64 %add2 to i32 *
%b = load i32, i32 *%ptr
%t = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
%val = extractvalue {i32, i1} %t, 0
%obit = extractvalue {i32, i1} %t, 1
store i32 %val, i32 *%res
ret i1 %obit
}
; Check that SY allows an index.
define zeroext i1 @f13(i64 %src, i64 %index, i32 %a, i32 *%res) {
; CHECK-LABEL: f13:
; CHECK: sy %r4, 4096({{%r3,%r2|%r2,%r3}})
; CHECK-DAG: st %r4, 0(%r5)
; CHECK-DAG: ipm [[REG:%r[0-5]]]
; CHECK-DAG: afi [[REG]], 1342177280
; CHECK-DAG: risbg %r2, [[REG]], 63, 191, 33
; CHECK: br %r14
%add1 = add i64 %src, %index
%add2 = add i64 %add1, 4096
%ptr = inttoptr i64 %add2 to i32 *
%b = load i32, i32 *%ptr
%t = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %a, i32 %b)
%val = extractvalue {i32, i1} %t, 0
%obit = extractvalue {i32, i1} %t, 1
store i32 %val, i32 *%res
ret i1 %obit
}
; Check that subtractions of spilled values can use S rather than SR.
define zeroext i1 @f14(i32 *%ptr0) {
; CHECK-LABEL: f14:
; CHECK: brasl %r14, foo@PLT
; CHECK: s %r2, 16{{[04]}}(%r15)
; CHECK: br %r14
%ptr1 = getelementptr i32, i32 *%ptr0, i64 2
%ptr2 = getelementptr i32, i32 *%ptr0, i64 4
%ptr3 = getelementptr i32, i32 *%ptr0, i64 6
%ptr4 = getelementptr i32, i32 *%ptr0, i64 8
%ptr5 = getelementptr i32, i32 *%ptr0, i64 10
%ptr6 = getelementptr i32, i32 *%ptr0, i64 12
%ptr7 = getelementptr i32, i32 *%ptr0, i64 14
%ptr8 = getelementptr i32, i32 *%ptr0, i64 16
%ptr9 = getelementptr i32, i32 *%ptr0, i64 18
%val0 = load i32, i32 *%ptr0
%val1 = load i32, i32 *%ptr1
%val2 = load i32, i32 *%ptr2
%val3 = load i32, i32 *%ptr3
%val4 = load i32, i32 *%ptr4
%val5 = load i32, i32 *%ptr5
%val6 = load i32, i32 *%ptr6
%val7 = load i32, i32 *%ptr7
%val8 = load i32, i32 *%ptr8
%val9 = load i32, i32 *%ptr9
%ret = call i32 @foo()
%t0 = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %ret, i32 %val0)
%add0 = extractvalue {i32, i1} %t0, 0
%obit0 = extractvalue {i32, i1} %t0, 1
%t1 = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %add0, i32 %val1)
%add1 = extractvalue {i32, i1} %t1, 0
%obit1 = extractvalue {i32, i1} %t1, 1
%res1 = or i1 %obit0, %obit1
%t2 = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %add1, i32 %val2)
%add2 = extractvalue {i32, i1} %t2, 0
%obit2 = extractvalue {i32, i1} %t2, 1
%res2 = or i1 %res1, %obit2
%t3 = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %add2, i32 %val3)
%add3 = extractvalue {i32, i1} %t3, 0
%obit3 = extractvalue {i32, i1} %t3, 1
%res3 = or i1 %res2, %obit3
%t4 = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %add3, i32 %val4)
%add4 = extractvalue {i32, i1} %t4, 0
%obit4 = extractvalue {i32, i1} %t4, 1
%res4 = or i1 %res3, %obit4
%t5 = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %add4, i32 %val5)
%add5 = extractvalue {i32, i1} %t5, 0
%obit5 = extractvalue {i32, i1} %t5, 1
%res5 = or i1 %res4, %obit5
%t6 = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %add5, i32 %val6)
%add6 = extractvalue {i32, i1} %t6, 0
%obit6 = extractvalue {i32, i1} %t6, 1
%res6 = or i1 %res5, %obit6
%t7 = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %add6, i32 %val7)
%add7 = extractvalue {i32, i1} %t7, 0
%obit7 = extractvalue {i32, i1} %t7, 1
%res7 = or i1 %res6, %obit7
%t8 = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %add7, i32 %val8)
%add8 = extractvalue {i32, i1} %t8, 0
%obit8 = extractvalue {i32, i1} %t8, 1
%res8 = or i1 %res7, %obit8
%t9 = call {i32, i1} @llvm.ssub.with.overflow.i32(i32 %add8, i32 %val9)
%add9 = extractvalue {i32, i1} %t9, 0
%obit9 = extractvalue {i32, i1} %t9, 1
%res9 = or i1 %res8, %obit9
ret i1 %res9
}
declare {i32, i1} @llvm.ssub.with.overflow.i32(i32, i32) nounwind readnone