1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-25 12:12:47 +01:00
llvm-mirror/lib/Demangle/MicrosoftDemangle.cpp
Varun Gandhi 52a271678f [Demangle] Support demangling Swift calling convention in MS demangler.
Previously, Clang was able to mangle the Swift calling
convention but 'MicrosoftDemangle.cpp' was not able to demangle it.

Reviewed By: compnerd, rnk

Differential Revision: https://reviews.llvm.org/D95053
2021-01-27 13:24:54 -08:00

2380 lines
76 KiB
C++

//===- MicrosoftDemangle.cpp ----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines a demangler for MSVC-style mangled symbols.
//
// This file has no dependencies on the rest of LLVM so that it can be
// easily reused in other programs such as libcxxabi.
//
//===----------------------------------------------------------------------===//
#include "llvm/Demangle/MicrosoftDemangle.h"
#include "llvm/Demangle/Demangle.h"
#include "llvm/Demangle/MicrosoftDemangleNodes.h"
#include "llvm/Demangle/DemangleConfig.h"
#include "llvm/Demangle/StringView.h"
#include "llvm/Demangle/Utility.h"
#include <array>
#include <cctype>
#include <cstdio>
#include <tuple>
using namespace llvm;
using namespace ms_demangle;
static bool startsWithDigit(StringView S) {
return !S.empty() && std::isdigit(S.front());
}
struct NodeList {
Node *N = nullptr;
NodeList *Next = nullptr;
};
static bool isMemberPointer(StringView MangledName, bool &Error) {
Error = false;
switch (MangledName.popFront()) {
case '$':
// This is probably an rvalue reference (e.g. $$Q), and you cannot have an
// rvalue reference to a member.
return false;
case 'A':
// 'A' indicates a reference, and you cannot have a reference to a member
// function or member.
return false;
case 'P':
case 'Q':
case 'R':
case 'S':
// These 4 values indicate some kind of pointer, but we still don't know
// what.
break;
default:
// isMemberPointer() is called only if isPointerType() returns true,
// and it rejects other prefixes.
DEMANGLE_UNREACHABLE;
}
// If it starts with a number, then 6 indicates a non-member function
// pointer, and 8 indicates a member function pointer.
if (startsWithDigit(MangledName)) {
if (MangledName[0] != '6' && MangledName[0] != '8') {
Error = true;
return false;
}
return (MangledName[0] == '8');
}
// Remove ext qualifiers since those can appear on either type and are
// therefore not indicative.
MangledName.consumeFront('E'); // 64-bit
MangledName.consumeFront('I'); // restrict
MangledName.consumeFront('F'); // unaligned
if (MangledName.empty()) {
Error = true;
return false;
}
// The next value should be either ABCD (non-member) or QRST (member).
switch (MangledName.front()) {
case 'A':
case 'B':
case 'C':
case 'D':
return false;
case 'Q':
case 'R':
case 'S':
case 'T':
return true;
default:
Error = true;
return false;
}
}
static SpecialIntrinsicKind
consumeSpecialIntrinsicKind(StringView &MangledName) {
if (MangledName.consumeFront("?_7"))
return SpecialIntrinsicKind::Vftable;
if (MangledName.consumeFront("?_8"))
return SpecialIntrinsicKind::Vbtable;
if (MangledName.consumeFront("?_9"))
return SpecialIntrinsicKind::VcallThunk;
if (MangledName.consumeFront("?_A"))
return SpecialIntrinsicKind::Typeof;
if (MangledName.consumeFront("?_B"))
return SpecialIntrinsicKind::LocalStaticGuard;
if (MangledName.consumeFront("?_C"))
return SpecialIntrinsicKind::StringLiteralSymbol;
if (MangledName.consumeFront("?_P"))
return SpecialIntrinsicKind::UdtReturning;
if (MangledName.consumeFront("?_R0"))
return SpecialIntrinsicKind::RttiTypeDescriptor;
if (MangledName.consumeFront("?_R1"))
return SpecialIntrinsicKind::RttiBaseClassDescriptor;
if (MangledName.consumeFront("?_R2"))
return SpecialIntrinsicKind::RttiBaseClassArray;
if (MangledName.consumeFront("?_R3"))
return SpecialIntrinsicKind::RttiClassHierarchyDescriptor;
if (MangledName.consumeFront("?_R4"))
return SpecialIntrinsicKind::RttiCompleteObjLocator;
if (MangledName.consumeFront("?_S"))
return SpecialIntrinsicKind::LocalVftable;
if (MangledName.consumeFront("?__E"))
return SpecialIntrinsicKind::DynamicInitializer;
if (MangledName.consumeFront("?__F"))
return SpecialIntrinsicKind::DynamicAtexitDestructor;
if (MangledName.consumeFront("?__J"))
return SpecialIntrinsicKind::LocalStaticThreadGuard;
return SpecialIntrinsicKind::None;
}
static bool startsWithLocalScopePattern(StringView S) {
if (!S.consumeFront('?'))
return false;
size_t End = S.find('?');
if (End == StringView::npos)
return false;
StringView Candidate = S.substr(0, End);
if (Candidate.empty())
return false;
// \?[0-9]\?
// ?@? is the discriminator 0.
if (Candidate.size() == 1)
return Candidate[0] == '@' || (Candidate[0] >= '0' && Candidate[0] <= '9');
// If it's not 0-9, then it's an encoded number terminated with an @
if (Candidate.back() != '@')
return false;
Candidate = Candidate.dropBack();
// An encoded number starts with B-P and all subsequent digits are in A-P.
// Note that the reason the first digit cannot be A is two fold. First, it
// would create an ambiguity with ?A which delimits the beginning of an
// anonymous namespace. Second, A represents 0, and you don't start a multi
// digit number with a leading 0. Presumably the anonymous namespace
// ambiguity is also why single digit encoded numbers use 0-9 rather than A-J.
if (Candidate[0] < 'B' || Candidate[0] > 'P')
return false;
Candidate = Candidate.dropFront();
while (!Candidate.empty()) {
if (Candidate[0] < 'A' || Candidate[0] > 'P')
return false;
Candidate = Candidate.dropFront();
}
return true;
}
static bool isTagType(StringView S) {
switch (S.front()) {
case 'T': // union
case 'U': // struct
case 'V': // class
case 'W': // enum
return true;
}
return false;
}
static bool isCustomType(StringView S) { return S[0] == '?'; }
static bool isPointerType(StringView S) {
if (S.startsWith("$$Q")) // foo &&
return true;
switch (S.front()) {
case 'A': // foo &
case 'P': // foo *
case 'Q': // foo *const
case 'R': // foo *volatile
case 'S': // foo *const volatile
return true;
}
return false;
}
static bool isArrayType(StringView S) { return S[0] == 'Y'; }
static bool isFunctionType(StringView S) {
return S.startsWith("$$A8@@") || S.startsWith("$$A6");
}
static FunctionRefQualifier
demangleFunctionRefQualifier(StringView &MangledName) {
if (MangledName.consumeFront('G'))
return FunctionRefQualifier::Reference;
else if (MangledName.consumeFront('H'))
return FunctionRefQualifier::RValueReference;
return FunctionRefQualifier::None;
}
static std::pair<Qualifiers, PointerAffinity>
demanglePointerCVQualifiers(StringView &MangledName) {
if (MangledName.consumeFront("$$Q"))
return std::make_pair(Q_None, PointerAffinity::RValueReference);
switch (MangledName.popFront()) {
case 'A':
return std::make_pair(Q_None, PointerAffinity::Reference);
case 'P':
return std::make_pair(Q_None, PointerAffinity::Pointer);
case 'Q':
return std::make_pair(Q_Const, PointerAffinity::Pointer);
case 'R':
return std::make_pair(Q_Volatile, PointerAffinity::Pointer);
case 'S':
return std::make_pair(Qualifiers(Q_Const | Q_Volatile),
PointerAffinity::Pointer);
}
// This function is only called if isPointerType() returns true,
// and it only returns true for the six cases listed above.
DEMANGLE_UNREACHABLE;
}
StringView Demangler::copyString(StringView Borrowed) {
char *Stable = Arena.allocUnalignedBuffer(Borrowed.size() + 1);
std::strcpy(Stable, Borrowed.begin());
return {Stable, Borrowed.size()};
}
SpecialTableSymbolNode *
Demangler::demangleSpecialTableSymbolNode(StringView &MangledName,
SpecialIntrinsicKind K) {
NamedIdentifierNode *NI = Arena.alloc<NamedIdentifierNode>();
switch (K) {
case SpecialIntrinsicKind::Vftable:
NI->Name = "`vftable'";
break;
case SpecialIntrinsicKind::Vbtable:
NI->Name = "`vbtable'";
break;
case SpecialIntrinsicKind::LocalVftable:
NI->Name = "`local vftable'";
break;
case SpecialIntrinsicKind::RttiCompleteObjLocator:
NI->Name = "`RTTI Complete Object Locator'";
break;
default:
DEMANGLE_UNREACHABLE;
}
QualifiedNameNode *QN = demangleNameScopeChain(MangledName, NI);
SpecialTableSymbolNode *STSN = Arena.alloc<SpecialTableSymbolNode>();
STSN->Name = QN;
bool IsMember = false;
if (MangledName.empty()) {
Error = true;
return nullptr;
}
char Front = MangledName.popFront();
if (Front != '6' && Front != '7') {
Error = true;
return nullptr;
}
std::tie(STSN->Quals, IsMember) = demangleQualifiers(MangledName);
if (!MangledName.consumeFront('@'))
STSN->TargetName = demangleFullyQualifiedTypeName(MangledName);
return STSN;
}
LocalStaticGuardVariableNode *
Demangler::demangleLocalStaticGuard(StringView &MangledName, bool IsThread) {
LocalStaticGuardIdentifierNode *LSGI =
Arena.alloc<LocalStaticGuardIdentifierNode>();
LSGI->IsThread = IsThread;
QualifiedNameNode *QN = demangleNameScopeChain(MangledName, LSGI);
LocalStaticGuardVariableNode *LSGVN =
Arena.alloc<LocalStaticGuardVariableNode>();
LSGVN->Name = QN;
if (MangledName.consumeFront("4IA"))
LSGVN->IsVisible = false;
else if (MangledName.consumeFront("5"))
LSGVN->IsVisible = true;
else {
Error = true;
return nullptr;
}
if (!MangledName.empty())
LSGI->ScopeIndex = demangleUnsigned(MangledName);
return LSGVN;
}
static NamedIdentifierNode *synthesizeNamedIdentifier(ArenaAllocator &Arena,
StringView Name) {
NamedIdentifierNode *Id = Arena.alloc<NamedIdentifierNode>();
Id->Name = Name;
return Id;
}
static QualifiedNameNode *synthesizeQualifiedName(ArenaAllocator &Arena,
IdentifierNode *Identifier) {
QualifiedNameNode *QN = Arena.alloc<QualifiedNameNode>();
QN->Components = Arena.alloc<NodeArrayNode>();
QN->Components->Count = 1;
QN->Components->Nodes = Arena.allocArray<Node *>(1);
QN->Components->Nodes[0] = Identifier;
return QN;
}
static QualifiedNameNode *synthesizeQualifiedName(ArenaAllocator &Arena,
StringView Name) {
NamedIdentifierNode *Id = synthesizeNamedIdentifier(Arena, Name);
return synthesizeQualifiedName(Arena, Id);
}
static VariableSymbolNode *synthesizeVariable(ArenaAllocator &Arena,
TypeNode *Type,
StringView VariableName) {
VariableSymbolNode *VSN = Arena.alloc<VariableSymbolNode>();
VSN->Type = Type;
VSN->Name = synthesizeQualifiedName(Arena, VariableName);
return VSN;
}
VariableSymbolNode *Demangler::demangleUntypedVariable(
ArenaAllocator &Arena, StringView &MangledName, StringView VariableName) {
NamedIdentifierNode *NI = synthesizeNamedIdentifier(Arena, VariableName);
QualifiedNameNode *QN = demangleNameScopeChain(MangledName, NI);
VariableSymbolNode *VSN = Arena.alloc<VariableSymbolNode>();
VSN->Name = QN;
if (MangledName.consumeFront("8"))
return VSN;
Error = true;
return nullptr;
}
VariableSymbolNode *
Demangler::demangleRttiBaseClassDescriptorNode(ArenaAllocator &Arena,
StringView &MangledName) {
RttiBaseClassDescriptorNode *RBCDN =
Arena.alloc<RttiBaseClassDescriptorNode>();
RBCDN->NVOffset = demangleUnsigned(MangledName);
RBCDN->VBPtrOffset = demangleSigned(MangledName);
RBCDN->VBTableOffset = demangleUnsigned(MangledName);
RBCDN->Flags = demangleUnsigned(MangledName);
if (Error)
return nullptr;
VariableSymbolNode *VSN = Arena.alloc<VariableSymbolNode>();
VSN->Name = demangleNameScopeChain(MangledName, RBCDN);
MangledName.consumeFront('8');
return VSN;
}
FunctionSymbolNode *Demangler::demangleInitFiniStub(StringView &MangledName,
bool IsDestructor) {
DynamicStructorIdentifierNode *DSIN =
Arena.alloc<DynamicStructorIdentifierNode>();
DSIN->IsDestructor = IsDestructor;
bool IsKnownStaticDataMember = false;
if (MangledName.consumeFront('?'))
IsKnownStaticDataMember = true;
SymbolNode *Symbol = demangleDeclarator(MangledName);
if (Error)
return nullptr;
FunctionSymbolNode *FSN = nullptr;
if (Symbol->kind() == NodeKind::VariableSymbol) {
DSIN->Variable = static_cast<VariableSymbolNode *>(Symbol);
// Older versions of clang mangled this type of symbol incorrectly. They
// would omit the leading ? and they would only emit a single @ at the end.
// The correct mangling is a leading ? and 2 trailing @ signs. Handle
// both cases.
int AtCount = IsKnownStaticDataMember ? 2 : 1;
for (int I = 0; I < AtCount; ++I) {
if (MangledName.consumeFront('@'))
continue;
Error = true;
return nullptr;
}
FSN = demangleFunctionEncoding(MangledName);
if (FSN)
FSN->Name = synthesizeQualifiedName(Arena, DSIN);
} else {
if (IsKnownStaticDataMember) {
// This was supposed to be a static data member, but we got a function.
Error = true;
return nullptr;
}
FSN = static_cast<FunctionSymbolNode *>(Symbol);
DSIN->Name = Symbol->Name;
FSN->Name = synthesizeQualifiedName(Arena, DSIN);
}
return FSN;
}
SymbolNode *Demangler::demangleSpecialIntrinsic(StringView &MangledName) {
SpecialIntrinsicKind SIK = consumeSpecialIntrinsicKind(MangledName);
switch (SIK) {
case SpecialIntrinsicKind::None:
return nullptr;
case SpecialIntrinsicKind::StringLiteralSymbol:
return demangleStringLiteral(MangledName);
case SpecialIntrinsicKind::Vftable:
case SpecialIntrinsicKind::Vbtable:
case SpecialIntrinsicKind::LocalVftable:
case SpecialIntrinsicKind::RttiCompleteObjLocator:
return demangleSpecialTableSymbolNode(MangledName, SIK);
case SpecialIntrinsicKind::VcallThunk:
return demangleVcallThunkNode(MangledName);
case SpecialIntrinsicKind::LocalStaticGuard:
return demangleLocalStaticGuard(MangledName, /*IsThread=*/false);
case SpecialIntrinsicKind::LocalStaticThreadGuard:
return demangleLocalStaticGuard(MangledName, /*IsThread=*/true);
case SpecialIntrinsicKind::RttiTypeDescriptor: {
TypeNode *T = demangleType(MangledName, QualifierMangleMode::Result);
if (Error)
break;
if (!MangledName.consumeFront("@8"))
break;
if (!MangledName.empty())
break;
return synthesizeVariable(Arena, T, "`RTTI Type Descriptor'");
}
case SpecialIntrinsicKind::RttiBaseClassArray:
return demangleUntypedVariable(Arena, MangledName,
"`RTTI Base Class Array'");
case SpecialIntrinsicKind::RttiClassHierarchyDescriptor:
return demangleUntypedVariable(Arena, MangledName,
"`RTTI Class Hierarchy Descriptor'");
case SpecialIntrinsicKind::RttiBaseClassDescriptor:
return demangleRttiBaseClassDescriptorNode(Arena, MangledName);
case SpecialIntrinsicKind::DynamicInitializer:
return demangleInitFiniStub(MangledName, /*IsDestructor=*/false);
case SpecialIntrinsicKind::DynamicAtexitDestructor:
return demangleInitFiniStub(MangledName, /*IsDestructor=*/true);
case SpecialIntrinsicKind::Typeof:
case SpecialIntrinsicKind::UdtReturning:
// It's unclear which tools produces these manglings, so demangling
// support is not (yet?) implemented.
break;
case SpecialIntrinsicKind::Unknown:
DEMANGLE_UNREACHABLE; // Never returned by consumeSpecialIntrinsicKind.
}
Error = true;
return nullptr;
}
IdentifierNode *
Demangler::demangleFunctionIdentifierCode(StringView &MangledName) {
assert(MangledName.startsWith('?'));
MangledName = MangledName.dropFront();
if (MangledName.empty()) {
Error = true;
return nullptr;
}
if (MangledName.consumeFront("__"))
return demangleFunctionIdentifierCode(
MangledName, FunctionIdentifierCodeGroup::DoubleUnder);
if (MangledName.consumeFront("_"))
return demangleFunctionIdentifierCode(MangledName,
FunctionIdentifierCodeGroup::Under);
return demangleFunctionIdentifierCode(MangledName,
FunctionIdentifierCodeGroup::Basic);
}
StructorIdentifierNode *
Demangler::demangleStructorIdentifier(StringView &MangledName,
bool IsDestructor) {
StructorIdentifierNode *N = Arena.alloc<StructorIdentifierNode>();
N->IsDestructor = IsDestructor;
return N;
}
ConversionOperatorIdentifierNode *
Demangler::demangleConversionOperatorIdentifier(StringView &MangledName) {
ConversionOperatorIdentifierNode *N =
Arena.alloc<ConversionOperatorIdentifierNode>();
return N;
}
LiteralOperatorIdentifierNode *
Demangler::demangleLiteralOperatorIdentifier(StringView &MangledName) {
LiteralOperatorIdentifierNode *N =
Arena.alloc<LiteralOperatorIdentifierNode>();
N->Name = demangleSimpleString(MangledName, /*Memorize=*/false);
return N;
}
IntrinsicFunctionKind
Demangler::translateIntrinsicFunctionCode(char CH,
FunctionIdentifierCodeGroup Group) {
using IFK = IntrinsicFunctionKind;
if (!(CH >= '0' && CH <= '9') && !(CH >= 'A' && CH <= 'Z')) {
Error = true;
return IFK::None;
}
// Not all ? identifiers are intrinsics *functions*. This function only maps
// operator codes for the special functions, all others are handled elsewhere,
// hence the IFK::None entries in the table.
static IFK Basic[36] = {
IFK::None, // ?0 # Foo::Foo()
IFK::None, // ?1 # Foo::~Foo()
IFK::New, // ?2 # operator new
IFK::Delete, // ?3 # operator delete
IFK::Assign, // ?4 # operator=
IFK::RightShift, // ?5 # operator>>
IFK::LeftShift, // ?6 # operator<<
IFK::LogicalNot, // ?7 # operator!
IFK::Equals, // ?8 # operator==
IFK::NotEquals, // ?9 # operator!=
IFK::ArraySubscript, // ?A # operator[]
IFK::None, // ?B # Foo::operator <type>()
IFK::Pointer, // ?C # operator->
IFK::Dereference, // ?D # operator*
IFK::Increment, // ?E # operator++
IFK::Decrement, // ?F # operator--
IFK::Minus, // ?G # operator-
IFK::Plus, // ?H # operator+
IFK::BitwiseAnd, // ?I # operator&
IFK::MemberPointer, // ?J # operator->*
IFK::Divide, // ?K # operator/
IFK::Modulus, // ?L # operator%
IFK::LessThan, // ?M operator<
IFK::LessThanEqual, // ?N operator<=
IFK::GreaterThan, // ?O operator>
IFK::GreaterThanEqual, // ?P operator>=
IFK::Comma, // ?Q operator,
IFK::Parens, // ?R operator()
IFK::BitwiseNot, // ?S operator~
IFK::BitwiseXor, // ?T operator^
IFK::BitwiseOr, // ?U operator|
IFK::LogicalAnd, // ?V operator&&
IFK::LogicalOr, // ?W operator||
IFK::TimesEqual, // ?X operator*=
IFK::PlusEqual, // ?Y operator+=
IFK::MinusEqual, // ?Z operator-=
};
static IFK Under[36] = {
IFK::DivEqual, // ?_0 operator/=
IFK::ModEqual, // ?_1 operator%=
IFK::RshEqual, // ?_2 operator>>=
IFK::LshEqual, // ?_3 operator<<=
IFK::BitwiseAndEqual, // ?_4 operator&=
IFK::BitwiseOrEqual, // ?_5 operator|=
IFK::BitwiseXorEqual, // ?_6 operator^=
IFK::None, // ?_7 # vftable
IFK::None, // ?_8 # vbtable
IFK::None, // ?_9 # vcall
IFK::None, // ?_A # typeof
IFK::None, // ?_B # local static guard
IFK::None, // ?_C # string literal
IFK::VbaseDtor, // ?_D # vbase destructor
IFK::VecDelDtor, // ?_E # vector deleting destructor
IFK::DefaultCtorClosure, // ?_F # default constructor closure
IFK::ScalarDelDtor, // ?_G # scalar deleting destructor
IFK::VecCtorIter, // ?_H # vector constructor iterator
IFK::VecDtorIter, // ?_I # vector destructor iterator
IFK::VecVbaseCtorIter, // ?_J # vector vbase constructor iterator
IFK::VdispMap, // ?_K # virtual displacement map
IFK::EHVecCtorIter, // ?_L # eh vector constructor iterator
IFK::EHVecDtorIter, // ?_M # eh vector destructor iterator
IFK::EHVecVbaseCtorIter, // ?_N # eh vector vbase constructor iterator
IFK::CopyCtorClosure, // ?_O # copy constructor closure
IFK::None, // ?_P<name> # udt returning <name>
IFK::None, // ?_Q # <unknown>
IFK::None, // ?_R0 - ?_R4 # RTTI Codes
IFK::None, // ?_S # local vftable
IFK::LocalVftableCtorClosure, // ?_T # local vftable constructor closure
IFK::ArrayNew, // ?_U operator new[]
IFK::ArrayDelete, // ?_V operator delete[]
IFK::None, // ?_W <unused>
IFK::None, // ?_X <unused>
IFK::None, // ?_Y <unused>
IFK::None, // ?_Z <unused>
};
static IFK DoubleUnder[36] = {
IFK::None, // ?__0 <unused>
IFK::None, // ?__1 <unused>
IFK::None, // ?__2 <unused>
IFK::None, // ?__3 <unused>
IFK::None, // ?__4 <unused>
IFK::None, // ?__5 <unused>
IFK::None, // ?__6 <unused>
IFK::None, // ?__7 <unused>
IFK::None, // ?__8 <unused>
IFK::None, // ?__9 <unused>
IFK::ManVectorCtorIter, // ?__A managed vector ctor iterator
IFK::ManVectorDtorIter, // ?__B managed vector dtor iterator
IFK::EHVectorCopyCtorIter, // ?__C EH vector copy ctor iterator
IFK::EHVectorVbaseCopyCtorIter, // ?__D EH vector vbase copy ctor iter
IFK::None, // ?__E dynamic initializer for `T'
IFK::None, // ?__F dynamic atexit destructor for `T'
IFK::VectorCopyCtorIter, // ?__G vector copy constructor iter
IFK::VectorVbaseCopyCtorIter, // ?__H vector vbase copy ctor iter
IFK::ManVectorVbaseCopyCtorIter, // ?__I managed vector vbase copy ctor
// iter
IFK::None, // ?__J local static thread guard
IFK::None, // ?__K operator ""_name
IFK::CoAwait, // ?__L operator co_await
IFK::Spaceship, // ?__M operator<=>
IFK::None, // ?__N <unused>
IFK::None, // ?__O <unused>
IFK::None, // ?__P <unused>
IFK::None, // ?__Q <unused>
IFK::None, // ?__R <unused>
IFK::None, // ?__S <unused>
IFK::None, // ?__T <unused>
IFK::None, // ?__U <unused>
IFK::None, // ?__V <unused>
IFK::None, // ?__W <unused>
IFK::None, // ?__X <unused>
IFK::None, // ?__Y <unused>
IFK::None, // ?__Z <unused>
};
int Index = (CH >= '0' && CH <= '9') ? (CH - '0') : (CH - 'A' + 10);
switch (Group) {
case FunctionIdentifierCodeGroup::Basic:
return Basic[Index];
case FunctionIdentifierCodeGroup::Under:
return Under[Index];
case FunctionIdentifierCodeGroup::DoubleUnder:
return DoubleUnder[Index];
}
DEMANGLE_UNREACHABLE;
}
IdentifierNode *
Demangler::demangleFunctionIdentifierCode(StringView &MangledName,
FunctionIdentifierCodeGroup Group) {
if (MangledName.empty()) {
Error = true;
return nullptr;
}
switch (Group) {
case FunctionIdentifierCodeGroup::Basic:
switch (char CH = MangledName.popFront()) {
case '0':
case '1':
return demangleStructorIdentifier(MangledName, CH == '1');
case 'B':
return demangleConversionOperatorIdentifier(MangledName);
default:
return Arena.alloc<IntrinsicFunctionIdentifierNode>(
translateIntrinsicFunctionCode(CH, Group));
}
case FunctionIdentifierCodeGroup::Under:
return Arena.alloc<IntrinsicFunctionIdentifierNode>(
translateIntrinsicFunctionCode(MangledName.popFront(), Group));
case FunctionIdentifierCodeGroup::DoubleUnder:
switch (char CH = MangledName.popFront()) {
case 'K':
return demangleLiteralOperatorIdentifier(MangledName);
default:
return Arena.alloc<IntrinsicFunctionIdentifierNode>(
translateIntrinsicFunctionCode(CH, Group));
}
}
DEMANGLE_UNREACHABLE;
}
SymbolNode *Demangler::demangleEncodedSymbol(StringView &MangledName,
QualifiedNameNode *Name) {
if (MangledName.empty()) {
Error = true;
return nullptr;
}
// Read a variable.
switch (MangledName.front()) {
case '0':
case '1':
case '2':
case '3':
case '4': {
StorageClass SC = demangleVariableStorageClass(MangledName);
return demangleVariableEncoding(MangledName, SC);
}
}
FunctionSymbolNode *FSN = demangleFunctionEncoding(MangledName);
IdentifierNode *UQN = Name->getUnqualifiedIdentifier();
if (UQN->kind() == NodeKind::ConversionOperatorIdentifier) {
ConversionOperatorIdentifierNode *COIN =
static_cast<ConversionOperatorIdentifierNode *>(UQN);
if (FSN)
COIN->TargetType = FSN->Signature->ReturnType;
}
return FSN;
}
SymbolNode *Demangler::demangleDeclarator(StringView &MangledName) {
// What follows is a main symbol name. This may include namespaces or class
// back references.
QualifiedNameNode *QN = demangleFullyQualifiedSymbolName(MangledName);
if (Error)
return nullptr;
SymbolNode *Symbol = demangleEncodedSymbol(MangledName, QN);
if (Error)
return nullptr;
Symbol->Name = QN;
IdentifierNode *UQN = QN->getUnqualifiedIdentifier();
if (UQN->kind() == NodeKind::ConversionOperatorIdentifier) {
ConversionOperatorIdentifierNode *COIN =
static_cast<ConversionOperatorIdentifierNode *>(UQN);
if (!COIN->TargetType) {
Error = true;
return nullptr;
}
}
return Symbol;
}
SymbolNode *Demangler::demangleMD5Name(StringView &MangledName) {
assert(MangledName.startsWith("??@"));
// This is an MD5 mangled name. We can't demangle it, just return the
// mangled name.
// An MD5 mangled name is ??@ followed by 32 characters and a terminating @.
size_t MD5Last = MangledName.find('@', strlen("??@"));
if (MD5Last == StringView::npos) {
Error = true;
return nullptr;
}
const char *Start = MangledName.begin();
MangledName = MangledName.dropFront(MD5Last + 1);
// There are two additional special cases for MD5 names:
// 1. For complete object locators where the object name is long enough
// for the object to have an MD5 name, the complete object locator is
// called ??@...@??_R4@ (with a trailing "??_R4@" instead of the usual
// leading "??_R4". This is handled here.
// 2. For catchable types, in versions of MSVC before 2015 (<1900) or after
// 2017.2 (>= 1914), the catchable type mangling is _CT??@...@??@...@8
// instead of_CT??@...@8 with just one MD5 name. Since we don't yet
// demangle catchable types anywhere, this isn't handled for MD5 names
// either.
MangledName.consumeFront("??_R4@");
StringView MD5(Start, MangledName.begin());
SymbolNode *S = Arena.alloc<SymbolNode>(NodeKind::Md5Symbol);
S->Name = synthesizeQualifiedName(Arena, MD5);
return S;
}
SymbolNode *Demangler::demangleTypeinfoName(StringView &MangledName) {
assert(MangledName.startsWith('.'));
MangledName.consumeFront('.');
TypeNode *T = demangleType(MangledName, QualifierMangleMode::Result);
if (Error || !MangledName.empty()) {
Error = true;
return nullptr;
}
return synthesizeVariable(Arena, T, "`RTTI Type Descriptor Name'");
}
// Parser entry point.
SymbolNode *Demangler::parse(StringView &MangledName) {
// Typeinfo names are strings stored in RTTI data. They're not symbol names.
// It's still useful to demangle them. They're the only demangled entity
// that doesn't start with a "?" but a ".".
if (MangledName.startsWith('.'))
return demangleTypeinfoName(MangledName);
if (MangledName.startsWith("??@"))
return demangleMD5Name(MangledName);
// MSVC-style mangled symbols must start with '?'.
if (!MangledName.startsWith('?')) {
Error = true;
return nullptr;
}
MangledName.consumeFront('?');
// ?$ is a template instantiation, but all other names that start with ? are
// operators / special names.
if (SymbolNode *SI = demangleSpecialIntrinsic(MangledName))
return SI;
return demangleDeclarator(MangledName);
}
TagTypeNode *Demangler::parseTagUniqueName(StringView &MangledName) {
if (!MangledName.consumeFront(".?A"))
return nullptr;
MangledName.consumeFront(".?A");
if (MangledName.empty())
return nullptr;
return demangleClassType(MangledName);
}
// <type-encoding> ::= <storage-class> <variable-type>
// <storage-class> ::= 0 # private static member
// ::= 1 # protected static member
// ::= 2 # public static member
// ::= 3 # global
// ::= 4 # static local
VariableSymbolNode *Demangler::demangleVariableEncoding(StringView &MangledName,
StorageClass SC) {
VariableSymbolNode *VSN = Arena.alloc<VariableSymbolNode>();
VSN->Type = demangleType(MangledName, QualifierMangleMode::Drop);
VSN->SC = SC;
if (Error)
return nullptr;
// <variable-type> ::= <type> <cvr-qualifiers>
// ::= <type> <pointee-cvr-qualifiers> # pointers, references
switch (VSN->Type->kind()) {
case NodeKind::PointerType: {
PointerTypeNode *PTN = static_cast<PointerTypeNode *>(VSN->Type);
Qualifiers ExtraChildQuals = Q_None;
PTN->Quals = Qualifiers(VSN->Type->Quals |
demanglePointerExtQualifiers(MangledName));
bool IsMember = false;
std::tie(ExtraChildQuals, IsMember) = demangleQualifiers(MangledName);
if (PTN->ClassParent) {
QualifiedNameNode *BackRefName =
demangleFullyQualifiedTypeName(MangledName);
(void)BackRefName;
}
PTN->Pointee->Quals = Qualifiers(PTN->Pointee->Quals | ExtraChildQuals);
break;
}
default:
VSN->Type->Quals = demangleQualifiers(MangledName).first;
break;
}
return VSN;
}
// Sometimes numbers are encoded in mangled symbols. For example,
// "int (*x)[20]" is a valid C type (x is a pointer to an array of
// length 20), so we need some way to embed numbers as part of symbols.
// This function parses it.
//
// <number> ::= [?] <non-negative integer>
//
// <non-negative integer> ::= <decimal digit> # when 1 <= Number <= 10
// ::= <hex digit>+ @ # when Number == 0 or >= 10
//
// <hex-digit> ::= [A-P] # A = 0, B = 1, ...
std::pair<uint64_t, bool> Demangler::demangleNumber(StringView &MangledName) {
bool IsNegative = MangledName.consumeFront('?');
if (startsWithDigit(MangledName)) {
uint64_t Ret = MangledName[0] - '0' + 1;
MangledName = MangledName.dropFront(1);
return {Ret, IsNegative};
}
uint64_t Ret = 0;
for (size_t i = 0; i < MangledName.size(); ++i) {
char C = MangledName[i];
if (C == '@') {
MangledName = MangledName.dropFront(i + 1);
return {Ret, IsNegative};
}
if ('A' <= C && C <= 'P') {
Ret = (Ret << 4) + (C - 'A');
continue;
}
break;
}
Error = true;
return {0ULL, false};
}
uint64_t Demangler::demangleUnsigned(StringView &MangledName) {
bool IsNegative = false;
uint64_t Number = 0;
std::tie(Number, IsNegative) = demangleNumber(MangledName);
if (IsNegative)
Error = true;
return Number;
}
int64_t Demangler::demangleSigned(StringView &MangledName) {
bool IsNegative = false;
uint64_t Number = 0;
std::tie(Number, IsNegative) = demangleNumber(MangledName);
if (Number > INT64_MAX)
Error = true;
int64_t I = static_cast<int64_t>(Number);
return IsNegative ? -I : I;
}
// First 10 strings can be referenced by special BackReferences ?0, ?1, ..., ?9.
// Memorize it.
void Demangler::memorizeString(StringView S) {
if (Backrefs.NamesCount >= BackrefContext::Max)
return;
for (size_t i = 0; i < Backrefs.NamesCount; ++i)
if (S == Backrefs.Names[i]->Name)
return;
NamedIdentifierNode *N = Arena.alloc<NamedIdentifierNode>();
N->Name = S;
Backrefs.Names[Backrefs.NamesCount++] = N;
}
NamedIdentifierNode *Demangler::demangleBackRefName(StringView &MangledName) {
assert(startsWithDigit(MangledName));
size_t I = MangledName[0] - '0';
if (I >= Backrefs.NamesCount) {
Error = true;
return nullptr;
}
MangledName = MangledName.dropFront();
return Backrefs.Names[I];
}
void Demangler::memorizeIdentifier(IdentifierNode *Identifier) {
// Render this class template name into a string buffer so that we can
// memorize it for the purpose of back-referencing.
OutputStream OS;
if (!initializeOutputStream(nullptr, nullptr, OS, 1024))
// FIXME: Propagate out-of-memory as an error?
std::terminate();
Identifier->output(OS, OF_Default);
OS << '\0';
char *Name = OS.getBuffer();
StringView Owned = copyString(Name);
memorizeString(Owned);
std::free(Name);
}
IdentifierNode *
Demangler::demangleTemplateInstantiationName(StringView &MangledName,
NameBackrefBehavior NBB) {
assert(MangledName.startsWith("?$"));
MangledName.consumeFront("?$");
BackrefContext OuterContext;
std::swap(OuterContext, Backrefs);
IdentifierNode *Identifier =
demangleUnqualifiedSymbolName(MangledName, NBB_Simple);
if (!Error)
Identifier->TemplateParams = demangleTemplateParameterList(MangledName);
std::swap(OuterContext, Backrefs);
if (Error)
return nullptr;
if (NBB & NBB_Template) {
// NBB_Template is only set for types and non-leaf names ("a::" in "a::b").
// Structors and conversion operators only makes sense in a leaf name, so
// reject them in NBB_Template contexts.
if (Identifier->kind() == NodeKind::ConversionOperatorIdentifier ||
Identifier->kind() == NodeKind::StructorIdentifier) {
Error = true;
return nullptr;
}
memorizeIdentifier(Identifier);
}
return Identifier;
}
NamedIdentifierNode *Demangler::demangleSimpleName(StringView &MangledName,
bool Memorize) {
StringView S = demangleSimpleString(MangledName, Memorize);
if (Error)
return nullptr;
NamedIdentifierNode *Name = Arena.alloc<NamedIdentifierNode>();
Name->Name = S;
return Name;
}
static bool isRebasedHexDigit(char C) { return (C >= 'A' && C <= 'P'); }
static uint8_t rebasedHexDigitToNumber(char C) {
assert(isRebasedHexDigit(C));
return (C <= 'J') ? (C - 'A') : (10 + C - 'K');
}
uint8_t Demangler::demangleCharLiteral(StringView &MangledName) {
assert(!MangledName.empty());
if (!MangledName.startsWith('?'))
return MangledName.popFront();
MangledName = MangledName.dropFront();
if (MangledName.empty())
goto CharLiteralError;
if (MangledName.consumeFront('$')) {
// Two hex digits
if (MangledName.size() < 2)
goto CharLiteralError;
StringView Nibbles = MangledName.substr(0, 2);
if (!isRebasedHexDigit(Nibbles[0]) || !isRebasedHexDigit(Nibbles[1]))
goto CharLiteralError;
// Don't append the null terminator.
uint8_t C1 = rebasedHexDigitToNumber(Nibbles[0]);
uint8_t C2 = rebasedHexDigitToNumber(Nibbles[1]);
MangledName = MangledName.dropFront(2);
return (C1 << 4) | C2;
}
if (startsWithDigit(MangledName)) {
const char *Lookup = ",/\\:. \n\t'-";
char C = Lookup[MangledName[0] - '0'];
MangledName = MangledName.dropFront();
return C;
}
if (MangledName[0] >= 'a' && MangledName[0] <= 'z') {
char Lookup[26] = {'\xE1', '\xE2', '\xE3', '\xE4', '\xE5', '\xE6', '\xE7',
'\xE8', '\xE9', '\xEA', '\xEB', '\xEC', '\xED', '\xEE',
'\xEF', '\xF0', '\xF1', '\xF2', '\xF3', '\xF4', '\xF5',
'\xF6', '\xF7', '\xF8', '\xF9', '\xFA'};
char C = Lookup[MangledName[0] - 'a'];
MangledName = MangledName.dropFront();
return C;
}
if (MangledName[0] >= 'A' && MangledName[0] <= 'Z') {
char Lookup[26] = {'\xC1', '\xC2', '\xC3', '\xC4', '\xC5', '\xC6', '\xC7',
'\xC8', '\xC9', '\xCA', '\xCB', '\xCC', '\xCD', '\xCE',
'\xCF', '\xD0', '\xD1', '\xD2', '\xD3', '\xD4', '\xD5',
'\xD6', '\xD7', '\xD8', '\xD9', '\xDA'};
char C = Lookup[MangledName[0] - 'A'];
MangledName = MangledName.dropFront();
return C;
}
CharLiteralError:
Error = true;
return '\0';
}
wchar_t Demangler::demangleWcharLiteral(StringView &MangledName) {
uint8_t C1, C2;
C1 = demangleCharLiteral(MangledName);
if (Error || MangledName.empty())
goto WCharLiteralError;
C2 = demangleCharLiteral(MangledName);
if (Error)
goto WCharLiteralError;
return ((wchar_t)C1 << 8) | (wchar_t)C2;
WCharLiteralError:
Error = true;
return L'\0';
}
static void writeHexDigit(char *Buffer, uint8_t Digit) {
assert(Digit <= 15);
*Buffer = (Digit < 10) ? ('0' + Digit) : ('A' + Digit - 10);
}
static void outputHex(OutputStream &OS, unsigned C) {
assert (C != 0);
// It's easier to do the math if we can work from right to left, but we need
// to print the numbers from left to right. So render this into a temporary
// buffer first, then output the temporary buffer. Each byte is of the form
// \xAB, which means that each byte needs 4 characters. Since there are at
// most 4 bytes, we need a 4*4+1 = 17 character temporary buffer.
char TempBuffer[17];
::memset(TempBuffer, 0, sizeof(TempBuffer));
constexpr int MaxPos = sizeof(TempBuffer) - 1;
int Pos = MaxPos - 1; // TempBuffer[MaxPos] is the terminating \0.
while (C != 0) {
for (int I = 0; I < 2; ++I) {
writeHexDigit(&TempBuffer[Pos--], C % 16);
C /= 16;
}
}
TempBuffer[Pos--] = 'x';
assert(Pos >= 0);
TempBuffer[Pos--] = '\\';
OS << StringView(&TempBuffer[Pos + 1]);
}
static void outputEscapedChar(OutputStream &OS, unsigned C) {
switch (C) {
case '\0': // nul
OS << "\\0";
return;
case '\'': // single quote
OS << "\\\'";
return;
case '\"': // double quote
OS << "\\\"";
return;
case '\\': // backslash
OS << "\\\\";
return;
case '\a': // bell
OS << "\\a";
return;
case '\b': // backspace
OS << "\\b";
return;
case '\f': // form feed
OS << "\\f";
return;
case '\n': // new line
OS << "\\n";
return;
case '\r': // carriage return
OS << "\\r";
return;
case '\t': // tab
OS << "\\t";
return;
case '\v': // vertical tab
OS << "\\v";
return;
default:
break;
}
if (C > 0x1F && C < 0x7F) {
// Standard ascii char.
OS << (char)C;
return;
}
outputHex(OS, C);
}
static unsigned countTrailingNullBytes(const uint8_t *StringBytes, int Length) {
const uint8_t *End = StringBytes + Length - 1;
unsigned Count = 0;
while (Length > 0 && *End == 0) {
--Length;
--End;
++Count;
}
return Count;
}
static unsigned countEmbeddedNulls(const uint8_t *StringBytes,
unsigned Length) {
unsigned Result = 0;
for (unsigned I = 0; I < Length; ++I) {
if (*StringBytes++ == 0)
++Result;
}
return Result;
}
// A mangled (non-wide) string literal stores the total length of the string it
// refers to (passed in NumBytes), and it contains up to 32 bytes of actual text
// (passed in StringBytes, NumChars).
static unsigned guessCharByteSize(const uint8_t *StringBytes, unsigned NumChars,
uint64_t NumBytes) {
assert(NumBytes > 0);
// If the number of bytes is odd, this is guaranteed to be a char string.
if (NumBytes % 2 == 1)
return 1;
// All strings can encode at most 32 bytes of data. If it's less than that,
// then we encoded the entire string. In this case we check for a 1-byte,
// 2-byte, or 4-byte null terminator.
if (NumBytes < 32) {
unsigned TrailingNulls = countTrailingNullBytes(StringBytes, NumChars);
if (TrailingNulls >= 4 && NumBytes % 4 == 0)
return 4;
if (TrailingNulls >= 2)
return 2;
return 1;
}
// The whole string was not able to be encoded. Try to look at embedded null
// terminators to guess. The heuristic is that we count all embedded null
// terminators. If more than 2/3 are null, it's a char32. If more than 1/3
// are null, it's a char16. Otherwise it's a char8. This obviously isn't
// perfect and is biased towards languages that have ascii alphabets, but this
// was always going to be best effort since the encoding is lossy.
unsigned Nulls = countEmbeddedNulls(StringBytes, NumChars);
if (Nulls >= 2 * NumChars / 3 && NumBytes % 4 == 0)
return 4;
if (Nulls >= NumChars / 3)
return 2;
return 1;
}
static unsigned decodeMultiByteChar(const uint8_t *StringBytes,
unsigned CharIndex, unsigned CharBytes) {
assert(CharBytes == 1 || CharBytes == 2 || CharBytes == 4);
unsigned Offset = CharIndex * CharBytes;
unsigned Result = 0;
StringBytes = StringBytes + Offset;
for (unsigned I = 0; I < CharBytes; ++I) {
unsigned C = static_cast<unsigned>(StringBytes[I]);
Result |= C << (8 * I);
}
return Result;
}
FunctionSymbolNode *Demangler::demangleVcallThunkNode(StringView &MangledName) {
FunctionSymbolNode *FSN = Arena.alloc<FunctionSymbolNode>();
VcallThunkIdentifierNode *VTIN = Arena.alloc<VcallThunkIdentifierNode>();
FSN->Signature = Arena.alloc<ThunkSignatureNode>();
FSN->Signature->FunctionClass = FC_NoParameterList;
FSN->Name = demangleNameScopeChain(MangledName, VTIN);
if (!Error)
Error = !MangledName.consumeFront("$B");
if (!Error)
VTIN->OffsetInVTable = demangleUnsigned(MangledName);
if (!Error)
Error = !MangledName.consumeFront('A');
if (!Error)
FSN->Signature->CallConvention = demangleCallingConvention(MangledName);
return (Error) ? nullptr : FSN;
}
EncodedStringLiteralNode *
Demangler::demangleStringLiteral(StringView &MangledName) {
// This function uses goto, so declare all variables up front.
OutputStream OS;
StringView CRC;
uint64_t StringByteSize;
bool IsWcharT = false;
bool IsNegative = false;
size_t CrcEndPos = 0;
char *ResultBuffer = nullptr;
EncodedStringLiteralNode *Result = Arena.alloc<EncodedStringLiteralNode>();
// Must happen before the first `goto StringLiteralError`.
if (!initializeOutputStream(nullptr, nullptr, OS, 1024))
// FIXME: Propagate out-of-memory as an error?
std::terminate();
// Prefix indicating the beginning of a string literal
if (!MangledName.consumeFront("@_"))
goto StringLiteralError;
if (MangledName.empty())
goto StringLiteralError;
// Char Type (regular or wchar_t)
switch (MangledName.popFront()) {
case '1':
IsWcharT = true;
DEMANGLE_FALLTHROUGH;
case '0':
break;
default:
goto StringLiteralError;
}
// Encoded Length
std::tie(StringByteSize, IsNegative) = demangleNumber(MangledName);
if (Error || IsNegative || StringByteSize < (IsWcharT ? 2 : 1))
goto StringLiteralError;
// CRC 32 (always 8 characters plus a terminator)
CrcEndPos = MangledName.find('@');
if (CrcEndPos == StringView::npos)
goto StringLiteralError;
CRC = MangledName.substr(0, CrcEndPos);
MangledName = MangledName.dropFront(CrcEndPos + 1);
if (MangledName.empty())
goto StringLiteralError;
if (IsWcharT) {
Result->Char = CharKind::Wchar;
if (StringByteSize > 64)
Result->IsTruncated = true;
while (!MangledName.consumeFront('@')) {
if (MangledName.size() < 2)
goto StringLiteralError;
wchar_t W = demangleWcharLiteral(MangledName);
if (StringByteSize != 2 || Result->IsTruncated)
outputEscapedChar(OS, W);
StringByteSize -= 2;
if (Error)
goto StringLiteralError;
}
} else {
// The max byte length is actually 32, but some compilers mangled strings
// incorrectly, so we have to assume it can go higher.
constexpr unsigned MaxStringByteLength = 32 * 4;
uint8_t StringBytes[MaxStringByteLength];
unsigned BytesDecoded = 0;
while (!MangledName.consumeFront('@')) {
if (MangledName.size() < 1 || BytesDecoded >= MaxStringByteLength)
goto StringLiteralError;
StringBytes[BytesDecoded++] = demangleCharLiteral(MangledName);
}
if (StringByteSize > BytesDecoded)
Result->IsTruncated = true;
unsigned CharBytes =
guessCharByteSize(StringBytes, BytesDecoded, StringByteSize);
assert(StringByteSize % CharBytes == 0);
switch (CharBytes) {
case 1:
Result->Char = CharKind::Char;
break;
case 2:
Result->Char = CharKind::Char16;
break;
case 4:
Result->Char = CharKind::Char32;
break;
default:
DEMANGLE_UNREACHABLE;
}
const unsigned NumChars = BytesDecoded / CharBytes;
for (unsigned CharIndex = 0; CharIndex < NumChars; ++CharIndex) {
unsigned NextChar =
decodeMultiByteChar(StringBytes, CharIndex, CharBytes);
if (CharIndex + 1 < NumChars || Result->IsTruncated)
outputEscapedChar(OS, NextChar);
}
}
OS << '\0';
ResultBuffer = OS.getBuffer();
Result->DecodedString = copyString(ResultBuffer);
std::free(ResultBuffer);
return Result;
StringLiteralError:
Error = true;
std::free(OS.getBuffer());
return nullptr;
}
// Returns MangledName's prefix before the first '@', or an error if
// MangledName contains no '@' or the prefix has length 0.
StringView Demangler::demangleSimpleString(StringView &MangledName,
bool Memorize) {
StringView S;
for (size_t i = 0; i < MangledName.size(); ++i) {
if (MangledName[i] != '@')
continue;
if (i == 0)
break;
S = MangledName.substr(0, i);
MangledName = MangledName.dropFront(i + 1);
if (Memorize)
memorizeString(S);
return S;
}
Error = true;
return {};
}
NamedIdentifierNode *
Demangler::demangleAnonymousNamespaceName(StringView &MangledName) {
assert(MangledName.startsWith("?A"));
MangledName.consumeFront("?A");
NamedIdentifierNode *Node = Arena.alloc<NamedIdentifierNode>();
Node->Name = "`anonymous namespace'";
size_t EndPos = MangledName.find('@');
if (EndPos == StringView::npos) {
Error = true;
return nullptr;
}
StringView NamespaceKey = MangledName.substr(0, EndPos);
memorizeString(NamespaceKey);
MangledName = MangledName.substr(EndPos + 1);
return Node;
}
NamedIdentifierNode *
Demangler::demangleLocallyScopedNamePiece(StringView &MangledName) {
assert(startsWithLocalScopePattern(MangledName));
NamedIdentifierNode *Identifier = Arena.alloc<NamedIdentifierNode>();
MangledName.consumeFront('?');
uint64_t Number = 0;
bool IsNegative = false;
std::tie(Number, IsNegative) = demangleNumber(MangledName);
assert(!IsNegative);
// One ? to terminate the number
MangledName.consumeFront('?');
assert(!Error);
Node *Scope = parse(MangledName);
if (Error)
return nullptr;
// Render the parent symbol's name into a buffer.
OutputStream OS;
if (!initializeOutputStream(nullptr, nullptr, OS, 1024))
// FIXME: Propagate out-of-memory as an error?
std::terminate();
OS << '`';
Scope->output(OS, OF_Default);
OS << '\'';
OS << "::`" << Number << "'";
OS << '\0';
char *Result = OS.getBuffer();
Identifier->Name = copyString(Result);
std::free(Result);
return Identifier;
}
// Parses a type name in the form of A@B@C@@ which represents C::B::A.
QualifiedNameNode *
Demangler::demangleFullyQualifiedTypeName(StringView &MangledName) {
IdentifierNode *Identifier =
demangleUnqualifiedTypeName(MangledName, /*Memorize=*/true);
if (Error)
return nullptr;
assert(Identifier);
QualifiedNameNode *QN = demangleNameScopeChain(MangledName, Identifier);
if (Error)
return nullptr;
assert(QN);
return QN;
}
// Parses a symbol name in the form of A@B@C@@ which represents C::B::A.
// Symbol names have slightly different rules regarding what can appear
// so we separate out the implementations for flexibility.
QualifiedNameNode *
Demangler::demangleFullyQualifiedSymbolName(StringView &MangledName) {
// This is the final component of a symbol name (i.e. the leftmost component
// of a mangled name. Since the only possible template instantiation that
// can appear in this context is a function template, and since those are
// not saved for the purposes of name backreferences, only backref simple
// names.
IdentifierNode *Identifier =
demangleUnqualifiedSymbolName(MangledName, NBB_Simple);
if (Error)
return nullptr;
QualifiedNameNode *QN = demangleNameScopeChain(MangledName, Identifier);
if (Error)
return nullptr;
if (Identifier->kind() == NodeKind::StructorIdentifier) {
if (QN->Components->Count < 2) {
Error = true;
return nullptr;
}
StructorIdentifierNode *SIN =
static_cast<StructorIdentifierNode *>(Identifier);
Node *ClassNode = QN->Components->Nodes[QN->Components->Count - 2];
SIN->Class = static_cast<IdentifierNode *>(ClassNode);
}
assert(QN);
return QN;
}
IdentifierNode *Demangler::demangleUnqualifiedTypeName(StringView &MangledName,
bool Memorize) {
// An inner-most name can be a back-reference, because a fully-qualified name
// (e.g. Scope + Inner) can contain other fully qualified names inside of
// them (for example template parameters), and these nested parameters can
// refer to previously mangled types.
if (startsWithDigit(MangledName))
return demangleBackRefName(MangledName);
if (MangledName.startsWith("?$"))
return demangleTemplateInstantiationName(MangledName, NBB_Template);
return demangleSimpleName(MangledName, Memorize);
}
IdentifierNode *
Demangler::demangleUnqualifiedSymbolName(StringView &MangledName,
NameBackrefBehavior NBB) {
if (startsWithDigit(MangledName))
return demangleBackRefName(MangledName);
if (MangledName.startsWith("?$"))
return demangleTemplateInstantiationName(MangledName, NBB);
if (MangledName.startsWith('?'))
return demangleFunctionIdentifierCode(MangledName);
return demangleSimpleName(MangledName, /*Memorize=*/(NBB & NBB_Simple) != 0);
}
IdentifierNode *Demangler::demangleNameScopePiece(StringView &MangledName) {
if (startsWithDigit(MangledName))
return demangleBackRefName(MangledName);
if (MangledName.startsWith("?$"))
return demangleTemplateInstantiationName(MangledName, NBB_Template);
if (MangledName.startsWith("?A"))
return demangleAnonymousNamespaceName(MangledName);
if (startsWithLocalScopePattern(MangledName))
return demangleLocallyScopedNamePiece(MangledName);
return demangleSimpleName(MangledName, /*Memorize=*/true);
}
static NodeArrayNode *nodeListToNodeArray(ArenaAllocator &Arena, NodeList *Head,
size_t Count) {
NodeArrayNode *N = Arena.alloc<NodeArrayNode>();
N->Count = Count;
N->Nodes = Arena.allocArray<Node *>(Count);
for (size_t I = 0; I < Count; ++I) {
N->Nodes[I] = Head->N;
Head = Head->Next;
}
return N;
}
QualifiedNameNode *
Demangler::demangleNameScopeChain(StringView &MangledName,
IdentifierNode *UnqualifiedName) {
NodeList *Head = Arena.alloc<NodeList>();
Head->N = UnqualifiedName;
size_t Count = 1;
while (!MangledName.consumeFront("@")) {
++Count;
NodeList *NewHead = Arena.alloc<NodeList>();
NewHead->Next = Head;
Head = NewHead;
if (MangledName.empty()) {
Error = true;
return nullptr;
}
assert(!Error);
IdentifierNode *Elem = demangleNameScopePiece(MangledName);
if (Error)
return nullptr;
Head->N = Elem;
}
QualifiedNameNode *QN = Arena.alloc<QualifiedNameNode>();
QN->Components = nodeListToNodeArray(Arena, Head, Count);
return QN;
}
FuncClass Demangler::demangleFunctionClass(StringView &MangledName) {
switch (MangledName.popFront()) {
case '9':
return FuncClass(FC_ExternC | FC_NoParameterList);
case 'A':
return FC_Private;
case 'B':
return FuncClass(FC_Private | FC_Far);
case 'C':
return FuncClass(FC_Private | FC_Static);
case 'D':
return FuncClass(FC_Private | FC_Static | FC_Far);
case 'E':
return FuncClass(FC_Private | FC_Virtual);
case 'F':
return FuncClass(FC_Private | FC_Virtual | FC_Far);
case 'G':
return FuncClass(FC_Private | FC_StaticThisAdjust);
case 'H':
return FuncClass(FC_Private | FC_StaticThisAdjust | FC_Far);
case 'I':
return FuncClass(FC_Protected);
case 'J':
return FuncClass(FC_Protected | FC_Far);
case 'K':
return FuncClass(FC_Protected | FC_Static);
case 'L':
return FuncClass(FC_Protected | FC_Static | FC_Far);
case 'M':
return FuncClass(FC_Protected | FC_Virtual);
case 'N':
return FuncClass(FC_Protected | FC_Virtual | FC_Far);
case 'O':
return FuncClass(FC_Protected | FC_Virtual | FC_StaticThisAdjust);
case 'P':
return FuncClass(FC_Protected | FC_Virtual | FC_StaticThisAdjust | FC_Far);
case 'Q':
return FuncClass(FC_Public);
case 'R':
return FuncClass(FC_Public | FC_Far);
case 'S':
return FuncClass(FC_Public | FC_Static);
case 'T':
return FuncClass(FC_Public | FC_Static | FC_Far);
case 'U':
return FuncClass(FC_Public | FC_Virtual);
case 'V':
return FuncClass(FC_Public | FC_Virtual | FC_Far);
case 'W':
return FuncClass(FC_Public | FC_Virtual | FC_StaticThisAdjust);
case 'X':
return FuncClass(FC_Public | FC_Virtual | FC_StaticThisAdjust | FC_Far);
case 'Y':
return FuncClass(FC_Global);
case 'Z':
return FuncClass(FC_Global | FC_Far);
case '$': {
FuncClass VFlag = FC_VirtualThisAdjust;
if (MangledName.consumeFront('R'))
VFlag = FuncClass(VFlag | FC_VirtualThisAdjustEx);
if (MangledName.empty())
break;
switch (MangledName.popFront()) {
case '0':
return FuncClass(FC_Private | FC_Virtual | VFlag);
case '1':
return FuncClass(FC_Private | FC_Virtual | VFlag | FC_Far);
case '2':
return FuncClass(FC_Protected | FC_Virtual | VFlag);
case '3':
return FuncClass(FC_Protected | FC_Virtual | VFlag | FC_Far);
case '4':
return FuncClass(FC_Public | FC_Virtual | VFlag);
case '5':
return FuncClass(FC_Public | FC_Virtual | VFlag | FC_Far);
}
}
}
Error = true;
return FC_Public;
}
CallingConv Demangler::demangleCallingConvention(StringView &MangledName) {
if (MangledName.empty()) {
Error = true;
return CallingConv::None;
}
switch (MangledName.popFront()) {
case 'A':
case 'B':
return CallingConv::Cdecl;
case 'C':
case 'D':
return CallingConv::Pascal;
case 'E':
case 'F':
return CallingConv::Thiscall;
case 'G':
case 'H':
return CallingConv::Stdcall;
case 'I':
case 'J':
return CallingConv::Fastcall;
case 'M':
case 'N':
return CallingConv::Clrcall;
case 'O':
case 'P':
return CallingConv::Eabi;
case 'Q':
return CallingConv::Vectorcall;
case 'S':
return CallingConv::Swift;
}
return CallingConv::None;
}
StorageClass Demangler::demangleVariableStorageClass(StringView &MangledName) {
assert(MangledName.front() >= '0' && MangledName.front() <= '4');
switch (MangledName.popFront()) {
case '0':
return StorageClass::PrivateStatic;
case '1':
return StorageClass::ProtectedStatic;
case '2':
return StorageClass::PublicStatic;
case '3':
return StorageClass::Global;
case '4':
return StorageClass::FunctionLocalStatic;
}
DEMANGLE_UNREACHABLE;
}
std::pair<Qualifiers, bool>
Demangler::demangleQualifiers(StringView &MangledName) {
if (MangledName.empty()) {
Error = true;
return std::make_pair(Q_None, false);
}
switch (MangledName.popFront()) {
// Member qualifiers
case 'Q':
return std::make_pair(Q_None, true);
case 'R':
return std::make_pair(Q_Const, true);
case 'S':
return std::make_pair(Q_Volatile, true);
case 'T':
return std::make_pair(Qualifiers(Q_Const | Q_Volatile), true);
// Non-Member qualifiers
case 'A':
return std::make_pair(Q_None, false);
case 'B':
return std::make_pair(Q_Const, false);
case 'C':
return std::make_pair(Q_Volatile, false);
case 'D':
return std::make_pair(Qualifiers(Q_Const | Q_Volatile), false);
}
Error = true;
return std::make_pair(Q_None, false);
}
// <variable-type> ::= <type> <cvr-qualifiers>
// ::= <type> <pointee-cvr-qualifiers> # pointers, references
TypeNode *Demangler::demangleType(StringView &MangledName,
QualifierMangleMode QMM) {
Qualifiers Quals = Q_None;
bool IsMember = false;
if (QMM == QualifierMangleMode::Mangle) {
std::tie(Quals, IsMember) = demangleQualifiers(MangledName);
} else if (QMM == QualifierMangleMode::Result) {
if (MangledName.consumeFront('?'))
std::tie(Quals, IsMember) = demangleQualifiers(MangledName);
}
if (MangledName.empty()) {
Error = true;
return nullptr;
}
TypeNode *Ty = nullptr;
if (isTagType(MangledName))
Ty = demangleClassType(MangledName);
else if (isPointerType(MangledName)) {
if (isMemberPointer(MangledName, Error))
Ty = demangleMemberPointerType(MangledName);
else if (!Error)
Ty = demanglePointerType(MangledName);
else
return nullptr;
} else if (isArrayType(MangledName))
Ty = demangleArrayType(MangledName);
else if (isFunctionType(MangledName)) {
if (MangledName.consumeFront("$$A8@@"))
Ty = demangleFunctionType(MangledName, true);
else {
assert(MangledName.startsWith("$$A6"));
MangledName.consumeFront("$$A6");
Ty = demangleFunctionType(MangledName, false);
}
} else if (isCustomType(MangledName)) {
Ty = demangleCustomType(MangledName);
} else {
Ty = demanglePrimitiveType(MangledName);
}
if (!Ty || Error)
return Ty;
Ty->Quals = Qualifiers(Ty->Quals | Quals);
return Ty;
}
bool Demangler::demangleThrowSpecification(StringView &MangledName) {
if (MangledName.consumeFront("_E"))
return true;
if (MangledName.consumeFront('Z'))
return false;
Error = true;
return false;
}
FunctionSignatureNode *Demangler::demangleFunctionType(StringView &MangledName,
bool HasThisQuals) {
FunctionSignatureNode *FTy = Arena.alloc<FunctionSignatureNode>();
if (HasThisQuals) {
FTy->Quals = demanglePointerExtQualifiers(MangledName);
FTy->RefQualifier = demangleFunctionRefQualifier(MangledName);
FTy->Quals = Qualifiers(FTy->Quals | demangleQualifiers(MangledName).first);
}
// Fields that appear on both member and non-member functions.
FTy->CallConvention = demangleCallingConvention(MangledName);
// <return-type> ::= <type>
// ::= @ # structors (they have no declared return type)
bool IsStructor = MangledName.consumeFront('@');
if (!IsStructor)
FTy->ReturnType = demangleType(MangledName, QualifierMangleMode::Result);
FTy->Params = demangleFunctionParameterList(MangledName, FTy->IsVariadic);
FTy->IsNoexcept = demangleThrowSpecification(MangledName);
return FTy;
}
FunctionSymbolNode *
Demangler::demangleFunctionEncoding(StringView &MangledName) {
FuncClass ExtraFlags = FC_None;
if (MangledName.consumeFront("$$J0"))
ExtraFlags = FC_ExternC;
if (MangledName.empty()) {
Error = true;
return nullptr;
}
FuncClass FC = demangleFunctionClass(MangledName);
FC = FuncClass(ExtraFlags | FC);
FunctionSignatureNode *FSN = nullptr;
ThunkSignatureNode *TTN = nullptr;
if (FC & FC_StaticThisAdjust) {
TTN = Arena.alloc<ThunkSignatureNode>();
TTN->ThisAdjust.StaticOffset = demangleSigned(MangledName);
} else if (FC & FC_VirtualThisAdjust) {
TTN = Arena.alloc<ThunkSignatureNode>();
if (FC & FC_VirtualThisAdjustEx) {
TTN->ThisAdjust.VBPtrOffset = demangleSigned(MangledName);
TTN->ThisAdjust.VBOffsetOffset = demangleSigned(MangledName);
}
TTN->ThisAdjust.VtordispOffset = demangleSigned(MangledName);
TTN->ThisAdjust.StaticOffset = demangleSigned(MangledName);
}
if (FC & FC_NoParameterList) {
// This is an extern "C" function whose full signature hasn't been mangled.
// This happens when we need to mangle a local symbol inside of an extern
// "C" function.
FSN = Arena.alloc<FunctionSignatureNode>();
} else {
bool HasThisQuals = !(FC & (FC_Global | FC_Static));
FSN = demangleFunctionType(MangledName, HasThisQuals);
}
if (Error)
return nullptr;
if (TTN) {
*static_cast<FunctionSignatureNode *>(TTN) = *FSN;
FSN = TTN;
}
FSN->FunctionClass = FC;
FunctionSymbolNode *Symbol = Arena.alloc<FunctionSymbolNode>();
Symbol->Signature = FSN;
return Symbol;
}
CustomTypeNode *Demangler::demangleCustomType(StringView &MangledName) {
assert(MangledName.startsWith('?'));
MangledName.popFront();
CustomTypeNode *CTN = Arena.alloc<CustomTypeNode>();
CTN->Identifier = demangleUnqualifiedTypeName(MangledName, /*Memorize=*/true);
if (!MangledName.consumeFront('@'))
Error = true;
if (Error)
return nullptr;
return CTN;
}
// Reads a primitive type.
PrimitiveTypeNode *Demangler::demanglePrimitiveType(StringView &MangledName) {
if (MangledName.consumeFront("$$T"))
return Arena.alloc<PrimitiveTypeNode>(PrimitiveKind::Nullptr);
switch (MangledName.popFront()) {
case 'X':
return Arena.alloc<PrimitiveTypeNode>(PrimitiveKind::Void);
case 'D':
return Arena.alloc<PrimitiveTypeNode>(PrimitiveKind::Char);
case 'C':
return Arena.alloc<PrimitiveTypeNode>(PrimitiveKind::Schar);
case 'E':
return Arena.alloc<PrimitiveTypeNode>(PrimitiveKind::Uchar);
case 'F':
return Arena.alloc<PrimitiveTypeNode>(PrimitiveKind::Short);
case 'G':
return Arena.alloc<PrimitiveTypeNode>(PrimitiveKind::Ushort);
case 'H':
return Arena.alloc<PrimitiveTypeNode>(PrimitiveKind::Int);
case 'I':
return Arena.alloc<PrimitiveTypeNode>(PrimitiveKind::Uint);
case 'J':
return Arena.alloc<PrimitiveTypeNode>(PrimitiveKind::Long);
case 'K':
return Arena.alloc<PrimitiveTypeNode>(PrimitiveKind::Ulong);
case 'M':
return Arena.alloc<PrimitiveTypeNode>(PrimitiveKind::Float);
case 'N':
return Arena.alloc<PrimitiveTypeNode>(PrimitiveKind::Double);
case 'O':
return Arena.alloc<PrimitiveTypeNode>(PrimitiveKind::Ldouble);
case '_': {
if (MangledName.empty()) {
Error = true;
return nullptr;
}
switch (MangledName.popFront()) {
case 'N':
return Arena.alloc<PrimitiveTypeNode>(PrimitiveKind::Bool);
case 'J':
return Arena.alloc<PrimitiveTypeNode>(PrimitiveKind::Int64);
case 'K':
return Arena.alloc<PrimitiveTypeNode>(PrimitiveKind::Uint64);
case 'W':
return Arena.alloc<PrimitiveTypeNode>(PrimitiveKind::Wchar);
case 'Q':
return Arena.alloc<PrimitiveTypeNode>(PrimitiveKind::Char8);
case 'S':
return Arena.alloc<PrimitiveTypeNode>(PrimitiveKind::Char16);
case 'U':
return Arena.alloc<PrimitiveTypeNode>(PrimitiveKind::Char32);
}
break;
}
}
Error = true;
return nullptr;
}
TagTypeNode *Demangler::demangleClassType(StringView &MangledName) {
TagTypeNode *TT = nullptr;
switch (MangledName.popFront()) {
case 'T':
TT = Arena.alloc<TagTypeNode>(TagKind::Union);
break;
case 'U':
TT = Arena.alloc<TagTypeNode>(TagKind::Struct);
break;
case 'V':
TT = Arena.alloc<TagTypeNode>(TagKind::Class);
break;
case 'W':
if (!MangledName.consumeFront('4')) {
Error = true;
return nullptr;
}
TT = Arena.alloc<TagTypeNode>(TagKind::Enum);
break;
default:
assert(false);
}
TT->QualifiedName = demangleFullyQualifiedTypeName(MangledName);
return TT;
}
// <pointer-type> ::= E? <pointer-cvr-qualifiers> <ext-qualifiers> <type>
// # the E is required for 64-bit non-static pointers
PointerTypeNode *Demangler::demanglePointerType(StringView &MangledName) {
PointerTypeNode *Pointer = Arena.alloc<PointerTypeNode>();
std::tie(Pointer->Quals, Pointer->Affinity) =
demanglePointerCVQualifiers(MangledName);
if (MangledName.consumeFront("6")) {
Pointer->Pointee = demangleFunctionType(MangledName, false);
return Pointer;
}
Qualifiers ExtQuals = demanglePointerExtQualifiers(MangledName);
Pointer->Quals = Qualifiers(Pointer->Quals | ExtQuals);
Pointer->Pointee = demangleType(MangledName, QualifierMangleMode::Mangle);
return Pointer;
}
PointerTypeNode *Demangler::demangleMemberPointerType(StringView &MangledName) {
PointerTypeNode *Pointer = Arena.alloc<PointerTypeNode>();
std::tie(Pointer->Quals, Pointer->Affinity) =
demanglePointerCVQualifiers(MangledName);
assert(Pointer->Affinity == PointerAffinity::Pointer);
Qualifiers ExtQuals = demanglePointerExtQualifiers(MangledName);
Pointer->Quals = Qualifiers(Pointer->Quals | ExtQuals);
// isMemberPointer() only returns true if there is at least one character
// after the qualifiers.
if (MangledName.consumeFront("8")) {
Pointer->ClassParent = demangleFullyQualifiedTypeName(MangledName);
Pointer->Pointee = demangleFunctionType(MangledName, true);
} else {
Qualifiers PointeeQuals = Q_None;
bool IsMember = false;
std::tie(PointeeQuals, IsMember) = demangleQualifiers(MangledName);
assert(IsMember || Error);
Pointer->ClassParent = demangleFullyQualifiedTypeName(MangledName);
Pointer->Pointee = demangleType(MangledName, QualifierMangleMode::Drop);
if (Pointer->Pointee)
Pointer->Pointee->Quals = PointeeQuals;
}
return Pointer;
}
Qualifiers Demangler::demanglePointerExtQualifiers(StringView &MangledName) {
Qualifiers Quals = Q_None;
if (MangledName.consumeFront('E'))
Quals = Qualifiers(Quals | Q_Pointer64);
if (MangledName.consumeFront('I'))
Quals = Qualifiers(Quals | Q_Restrict);
if (MangledName.consumeFront('F'))
Quals = Qualifiers(Quals | Q_Unaligned);
return Quals;
}
ArrayTypeNode *Demangler::demangleArrayType(StringView &MangledName) {
assert(MangledName.front() == 'Y');
MangledName.popFront();
uint64_t Rank = 0;
bool IsNegative = false;
std::tie(Rank, IsNegative) = demangleNumber(MangledName);
if (IsNegative || Rank == 0) {
Error = true;
return nullptr;
}
ArrayTypeNode *ATy = Arena.alloc<ArrayTypeNode>();
NodeList *Head = Arena.alloc<NodeList>();
NodeList *Tail = Head;
for (uint64_t I = 0; I < Rank; ++I) {
uint64_t D = 0;
std::tie(D, IsNegative) = demangleNumber(MangledName);
if (Error || IsNegative) {
Error = true;
return nullptr;
}
Tail->N = Arena.alloc<IntegerLiteralNode>(D, IsNegative);
if (I + 1 < Rank) {
Tail->Next = Arena.alloc<NodeList>();
Tail = Tail->Next;
}
}
ATy->Dimensions = nodeListToNodeArray(Arena, Head, Rank);
if (MangledName.consumeFront("$$C")) {
bool IsMember = false;
std::tie(ATy->Quals, IsMember) = demangleQualifiers(MangledName);
if (IsMember) {
Error = true;
return nullptr;
}
}
ATy->ElementType = demangleType(MangledName, QualifierMangleMode::Drop);
return ATy;
}
// Reads a function's parameters.
NodeArrayNode *Demangler::demangleFunctionParameterList(StringView &MangledName,
bool &IsVariadic) {
// Empty parameter list.
if (MangledName.consumeFront('X'))
return nullptr;
NodeList *Head = Arena.alloc<NodeList>();
NodeList **Current = &Head;
size_t Count = 0;
while (!Error && !MangledName.startsWith('@') &&
!MangledName.startsWith('Z')) {
++Count;
if (startsWithDigit(MangledName)) {
size_t N = MangledName[0] - '0';
if (N >= Backrefs.FunctionParamCount) {
Error = true;
return nullptr;
}
MangledName = MangledName.dropFront();
*Current = Arena.alloc<NodeList>();
(*Current)->N = Backrefs.FunctionParams[N];
Current = &(*Current)->Next;
continue;
}
size_t OldSize = MangledName.size();
*Current = Arena.alloc<NodeList>();
TypeNode *TN = demangleType(MangledName, QualifierMangleMode::Drop);
if (!TN || Error)
return nullptr;
(*Current)->N = TN;
size_t CharsConsumed = OldSize - MangledName.size();
assert(CharsConsumed != 0);
// Single-letter types are ignored for backreferences because memorizing
// them doesn't save anything.
if (Backrefs.FunctionParamCount <= 9 && CharsConsumed > 1)
Backrefs.FunctionParams[Backrefs.FunctionParamCount++] = TN;
Current = &(*Current)->Next;
}
if (Error)
return nullptr;
NodeArrayNode *NA = nodeListToNodeArray(Arena, Head, Count);
// A non-empty parameter list is terminated by either 'Z' (variadic) parameter
// list or '@' (non variadic). Careful not to consume "@Z", as in that case
// the following Z could be a throw specifier.
if (MangledName.consumeFront('@'))
return NA;
if (MangledName.consumeFront('Z')) {
IsVariadic = true;
return NA;
}
DEMANGLE_UNREACHABLE;
}
NodeArrayNode *
Demangler::demangleTemplateParameterList(StringView &MangledName) {
NodeList *Head = nullptr;
NodeList **Current = &Head;
size_t Count = 0;
while (!MangledName.startsWith('@')) {
if (MangledName.consumeFront("$S") || MangledName.consumeFront("$$V") ||
MangledName.consumeFront("$$$V") || MangledName.consumeFront("$$Z")) {
// parameter pack separator
continue;
}
++Count;
// Template parameter lists don't participate in back-referencing.
*Current = Arena.alloc<NodeList>();
NodeList &TP = **Current;
TemplateParameterReferenceNode *TPRN = nullptr;
if (MangledName.consumeFront("$$Y")) {
// Template alias
TP.N = demangleFullyQualifiedTypeName(MangledName);
} else if (MangledName.consumeFront("$$B")) {
// Array
TP.N = demangleType(MangledName, QualifierMangleMode::Drop);
} else if (MangledName.consumeFront("$$C")) {
// Type has qualifiers.
TP.N = demangleType(MangledName, QualifierMangleMode::Mangle);
} else if (MangledName.startsWith("$1") || MangledName.startsWith("$H") ||
MangledName.startsWith("$I") || MangledName.startsWith("$J")) {
// Pointer to member
TP.N = TPRN = Arena.alloc<TemplateParameterReferenceNode>();
TPRN->IsMemberPointer = true;
MangledName = MangledName.dropFront();
// 1 - single inheritance <name>
// H - multiple inheritance <name> <number>
// I - virtual inheritance <name> <number> <number>
// J - unspecified inheritance <name> <number> <number> <number>
char InheritanceSpecifier = MangledName.popFront();
SymbolNode *S = nullptr;
if (MangledName.startsWith('?')) {
S = parse(MangledName);
if (Error || !S->Name) {
Error = true;
return nullptr;
}
memorizeIdentifier(S->Name->getUnqualifiedIdentifier());
}
switch (InheritanceSpecifier) {
case 'J':
TPRN->ThunkOffsets[TPRN->ThunkOffsetCount++] =
demangleSigned(MangledName);
DEMANGLE_FALLTHROUGH;
case 'I':
TPRN->ThunkOffsets[TPRN->ThunkOffsetCount++] =
demangleSigned(MangledName);
DEMANGLE_FALLTHROUGH;
case 'H':
TPRN->ThunkOffsets[TPRN->ThunkOffsetCount++] =
demangleSigned(MangledName);
DEMANGLE_FALLTHROUGH;
case '1':
break;
default:
DEMANGLE_UNREACHABLE;
}
TPRN->Affinity = PointerAffinity::Pointer;
TPRN->Symbol = S;
} else if (MangledName.startsWith("$E?")) {
MangledName.consumeFront("$E");
// Reference to symbol
TP.N = TPRN = Arena.alloc<TemplateParameterReferenceNode>();
TPRN->Symbol = parse(MangledName);
TPRN->Affinity = PointerAffinity::Reference;
} else if (MangledName.startsWith("$F") || MangledName.startsWith("$G")) {
TP.N = TPRN = Arena.alloc<TemplateParameterReferenceNode>();
// Data member pointer.
MangledName = MangledName.dropFront();
char InheritanceSpecifier = MangledName.popFront();
switch (InheritanceSpecifier) {
case 'G':
TPRN->ThunkOffsets[TPRN->ThunkOffsetCount++] =
demangleSigned(MangledName);
DEMANGLE_FALLTHROUGH;
case 'F':
TPRN->ThunkOffsets[TPRN->ThunkOffsetCount++] =
demangleSigned(MangledName);
TPRN->ThunkOffsets[TPRN->ThunkOffsetCount++] =
demangleSigned(MangledName);
break;
default:
DEMANGLE_UNREACHABLE;
}
TPRN->IsMemberPointer = true;
} else if (MangledName.consumeFront("$0")) {
// Integral non-type template parameter
bool IsNegative = false;
uint64_t Value = 0;
std::tie(Value, IsNegative) = demangleNumber(MangledName);
TP.N = Arena.alloc<IntegerLiteralNode>(Value, IsNegative);
} else {
TP.N = demangleType(MangledName, QualifierMangleMode::Drop);
}
if (Error)
return nullptr;
Current = &TP.Next;
}
// The loop above returns nullptr on Error.
assert(!Error);
// Template parameter lists cannot be variadic, so it can only be terminated
// by @ (as opposed to 'Z' in the function parameter case).
assert(MangledName.startsWith('@')); // The above loop exits only on '@'.
MangledName.consumeFront('@');
return nodeListToNodeArray(Arena, Head, Count);
}
void Demangler::dumpBackReferences() {
std::printf("%d function parameter backreferences\n",
(int)Backrefs.FunctionParamCount);
// Create an output stream so we can render each type.
OutputStream OS;
if (!initializeOutputStream(nullptr, nullptr, OS, 1024))
std::terminate();
for (size_t I = 0; I < Backrefs.FunctionParamCount; ++I) {
OS.setCurrentPosition(0);
TypeNode *T = Backrefs.FunctionParams[I];
T->output(OS, OF_Default);
std::printf(" [%d] - %.*s\n", (int)I, (int)OS.getCurrentPosition(),
OS.getBuffer());
}
std::free(OS.getBuffer());
if (Backrefs.FunctionParamCount > 0)
std::printf("\n");
std::printf("%d name backreferences\n", (int)Backrefs.NamesCount);
for (size_t I = 0; I < Backrefs.NamesCount; ++I) {
std::printf(" [%d] - %.*s\n", (int)I, (int)Backrefs.Names[I]->Name.size(),
Backrefs.Names[I]->Name.begin());
}
if (Backrefs.NamesCount > 0)
std::printf("\n");
}
char *llvm::microsoftDemangle(const char *MangledName, size_t *NMangled,
char *Buf, size_t *N,
int *Status, MSDemangleFlags Flags) {
Demangler D;
OutputStream S;
StringView Name{MangledName};
SymbolNode *AST = D.parse(Name);
if (!D.Error && NMangled)
*NMangled = Name.begin() - MangledName;
if (Flags & MSDF_DumpBackrefs)
D.dumpBackReferences();
OutputFlags OF = OF_Default;
if (Flags & MSDF_NoCallingConvention)
OF = OutputFlags(OF | OF_NoCallingConvention);
if (Flags & MSDF_NoAccessSpecifier)
OF = OutputFlags(OF | OF_NoAccessSpecifier);
if (Flags & MSDF_NoReturnType)
OF = OutputFlags(OF | OF_NoReturnType);
if (Flags & MSDF_NoMemberType)
OF = OutputFlags(OF | OF_NoMemberType);
int InternalStatus = demangle_success;
if (D.Error)
InternalStatus = demangle_invalid_mangled_name;
else if (!initializeOutputStream(Buf, N, S, 1024))
InternalStatus = demangle_memory_alloc_failure;
else {
AST->output(S, OF);
S += '\0';
if (N != nullptr)
*N = S.getCurrentPosition();
Buf = S.getBuffer();
}
if (Status)
*Status = InternalStatus;
return InternalStatus == demangle_success ? Buf : nullptr;
}