1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-21 03:53:04 +02:00
llvm-mirror/test/CodeGen/WebAssembly/userstack.ll
Derek Schuff cd46ca19fb [WebAssembly] Stackify code emitted by eliminateFrameIndex and SP writeback
Summary:
MRI::eliminateFrameIndex can emit several instructions to do address
calculations; these can usually be stackified. Because instructions with
FI operands can have subsequent operands which may be expression trees,
find the top of the leftmost tree and insert the code before it, to keep
the LIFO property.

Also use stackified registers when writing back the SP value to memory
in the epilog; it's unnecessary because SP will not be used after the
epilog, and it results in better code.

Differential Revision: http://reviews.llvm.org/D18234

llvm-svn: 263725
2016-03-17 17:00:29 +00:00

256 lines
9.0 KiB
LLVM

; RUN: llc < %s -asm-verbose=false | FileCheck %s
; RUN: llc < %s -asm-verbose=false -fast-isel | FileCheck %s
target datalayout = "e-m:e-p:32:32-i64:64-n32:64-S128"
target triple = "wasm32-unknown-unknown"
declare void @ext_func(i64* %ptr)
declare void @ext_func_i32(i32* %ptr)
; CHECK-LABEL: alloca32:
; Check that there is an extra local for the stack pointer.
; CHECK: .local i32{{$}}
define void @alloca32() noredzone {
; CHECK: i32.const $push[[L1:.+]]=, __stack_pointer{{$}}
; CHECK-NEXT: i32.load $push[[L2:.+]]=, 0($pop[[L1]])
; CHECK-NEXT: i32.const $push[[L3:.+]]=, 16
; CHECK-NEXT: i32.sub [[SP:.+]]=, $pop[[L2]], $pop[[L3]]
; CHECK-NEXT: i32.const $push[[L4:.+]]=, __stack_pointer{{$}}
; CHECK-NEXT: i32.store $discard=, 0($pop[[L4]]), [[SP]]
%retval = alloca i32
; CHECK: i32.const $push[[L0:.+]]=, 0
; CHECK: i32.store {{.*}}=, 12([[SP]]), $pop[[L0]]
store i32 0, i32* %retval
; CHECK: i32.const $push[[L6:.+]]=, __stack_pointer
; CHECK-NEXT: i32.const $push[[L5:.+]]=, 16
; CHECK-NEXT: i32.add $push[[L7:.+]]=, [[SP]], $pop[[L5]]
; CHECK-NEXT: i32.store $discard=, 0($pop[[L6]]), $pop[[L7]]
ret void
}
; CHECK-LABEL: alloca3264:
; CHECK: .local i32{{$}}
define void @alloca3264() {
; CHECK: i32.const $push[[L1:.+]]=, __stack_pointer
; CHECK-NEXT: i32.load $push[[L2:.+]]=, 0($pop[[L1]])
; CHECK-NEXT: i32.const $push[[L3:.+]]=, 16
; CHECK-NEXT: i32.sub [[SP:.+]]=, $pop[[L2]], $pop[[L3]]
%r1 = alloca i32
%r2 = alloca double
; CHECK-NEXT: i32.const $push[[L3:.+]]=, 0
; CHECK-NEXT: i32.store {{.*}}=, 12([[SP]]), $pop[[L3]]
store i32 0, i32* %r1
; CHECK-NEXT: i64.const $push[[L0:.+]]=, 0
; CHECK-NEXT: i64.store {{.*}}=, 0([[SP]]), $pop[[L0]]
store double 0.0, double* %r2
; CHECK-NEXT: return
ret void
}
; CHECK-LABEL: allocarray:
; CHECK: .local i32{{$}}
define void @allocarray() {
; CHECK: i32.const $push[[L1:.+]]=, __stack_pointer
; CHECK-NEXT: i32.load $push[[L2:.+]]=, 0($pop[[L1]])
; CHECK-NEXT: i32.const $push[[L3:.+]]=, 144{{$}}
; CHECK-NEXT: i32.sub [[SP:.+]]=, $pop[[L2]], $pop[[L3]]
; CHECK-NEXT: i32.const $push[[L4:.+]]=, __stack_pointer{{$}}
; CHECK-NEXT: i32.store $discard=, 0($pop[[L4]]), [[SP]]
%r = alloca [33 x i32]
; CHECK-NEXT: i32.const $push[[L5:.+]]=, 12
; CHECK-NEXT: i32.add $push[[L7:.+]]=, [[SP]], $pop[[L5]]
; CHECK-NEXT: i32.const $push[[L4:.+]]=, 12
; CHECK-NEXT: i32.add $push[[L6:.+]]=, $pop[[L7]], $pop[[L4]]
; CHECK-NEXT: i32.const $push[[L9:.+]]=, 1{{$}}
; CHECK-NEXT: i32.store $push[[L10:.+]]=, 12([[SP]]), $pop[[L9]]{{$}}
; CHECK-NEXT: i32.store $discard=, 0($pop3), $pop[[L10]]{{$}}
%p = getelementptr [33 x i32], [33 x i32]* %r, i32 0, i32 0
store i32 1, i32* %p
%p2 = getelementptr [33 x i32], [33 x i32]* %r, i32 0, i32 3
store i32 1, i32* %p2
; CHECK: i32.const $push[[L12:.+]]=, __stack_pointer
; CHECK-NEXT: i32.const $push[[L11:.+]]=, 144
; CHECK-NEXT: i32.add $push[[L13:.+]]=, [[SP]], $pop[[L11]]
; CHECK-NEXT: i32.store $discard=, 0($pop[[L12]]), $pop[[L13]]
ret void
}
; CHECK-LABEL: non_mem_use
define void @non_mem_use(i8** %addr) {
; CHECK: i32.const $push[[L1:.+]]=, 48
; CHECK-NEXT: i32.sub [[SP:.+]]=, {{.+}}, $pop[[L1]]
%buf = alloca [27 x i8], align 16
%r = alloca i64
%r2 = alloca i64
; %r is at SP+8
; CHECK: i32.const $push[[OFF:.+]]=, 8
; CHECK-NEXT: i32.add $push[[ARG1:.+]]=, [[SP]], $pop[[OFF]]
; CHECK-NEXT: call ext_func@FUNCTION, $pop[[ARG1]]
call void @ext_func(i64* %r)
; %r2 is at SP+0, no add needed
; CHECK-NEXT: call ext_func@FUNCTION, [[SP]]
call void @ext_func(i64* %r2)
; Use as a value, but in a store
; %buf is at SP+16
; CHECK: i32.const $push[[OFF:.+]]=, 16
; CHECK-NEXT: i32.add $push[[VAL:.+]]=, [[SP]], $pop[[OFF]]
; CHECK-NEXT: i32.store {{.*}}=, 0($0), $pop[[VAL]]
%gep = getelementptr inbounds [27 x i8], [27 x i8]* %buf, i32 0, i32 0
store i8* %gep, i8** %addr
ret void
}
; CHECK-LABEL: allocarray_inbounds:
; CHECK: .local i32{{$}}
define void @allocarray_inbounds() {
; CHECK: i32.const $push[[L1:.+]]=, __stack_pointer
; CHECK-NEXT: i32.load $push[[L2:.+]]=, 0($pop[[L1]])
; CHECK-NEXT: i32.const $push[[L3:.+]]=, 32{{$}}
; CHECK-NEXT: i32.sub [[SP:.+]]=, $pop[[L2]], $pop[[L3]]
%r = alloca [5 x i32]
; CHECK: i32.const $push[[L3:.+]]=, 1
; CHECK: i32.store {{.*}}=, 12([[SP]]), $pop[[L3]]
%p = getelementptr inbounds [5 x i32], [5 x i32]* %r, i32 0, i32 0
store i32 1, i32* %p
; This store should have both the GEP and the FI folded into it.
; CHECK-NEXT: i32.store {{.*}}=, 24([[SP]]), $pop
%p2 = getelementptr inbounds [5 x i32], [5 x i32]* %r, i32 0, i32 3
store i32 1, i32* %p2
call void @ext_func(i64* null);
; CHECK: i32.const $push[[L6:.+]]=, __stack_pointer
; CHECK-NEXT: i32.const $push[[L5:.+]]=, 32
; CHECK-NEXT: i32.add $push[[L7:.+]]=, [[SP]], $pop[[L5]]
; CHECK-NEXT: i32.store $discard=, 0($pop[[L6]]), $pop[[L7]]
ret void
}
; CHECK-LABEL: dynamic_alloca:
define void @dynamic_alloca(i32 %alloc) {
; CHECK: i32.const $push[[L1:.+]]=, __stack_pointer
; CHECK-NEXT: i32.load [[SP:.+]]=, 0($pop[[L1]])
; CHECK-NEXT: copy_local [[FP:.+]]=, [[SP]]
; Target independent codegen bumps the stack pointer.
; CHECK: i32.sub
; CHECK-NEXT: copy_local [[SP]]=,
; Check that SP is written back to memory after decrement
; CHECK-NEXT: i32.const $push[[L4:.+]]=, __stack_pointer{{$}}
; CHECK-NEXT: i32.store $discard=, 0($pop[[L4]]), [[SP]]
%r = alloca i32, i32 %alloc
; Target-independent codegen also calculates the store addr
; CHECK: call ext_func_i32@FUNCTION
call void @ext_func_i32(i32* %r)
; CHECK: i32.const $push[[L3:.+]]=, __stack_pointer
; CHECK-NEXT: i32.store $discard=, 0($pop[[L3]]), [[FP]]
ret void
}
; CHECK-LABEL: dynamic_alloca_redzone:
define void @dynamic_alloca_redzone(i32 %alloc) {
; CHECK: i32.const $push[[L1:.+]]=, __stack_pointer
; CHECK-NEXT: i32.load [[SP:.+]]=, 0($pop[[L1]])
; CHECK-NEXT: copy_local [[FP:.+]]=, [[SP]]
; Target independent codegen bumps the stack pointer
; CHECK: i32.sub [[R:.+]]=,
; CHECK-NEXT: copy_local [[SP]]=, [[R]]
%r = alloca i32, i32 %alloc
; check-next here asserts that SP is not written back.
; CHECK-NEXT: i32.const $push[[ZERO:.+]]=, 0
; CHECK-NEXT: i32.store $discard=, 0([[R]]), $pop[[ZERO]]
store i32 0, i32* %r
; CHECK-NEXT: return
ret void
}
; CHECK-LABEL: dynamic_static_alloca:
define void @dynamic_static_alloca(i32 %alloc) noredzone {
; Decrement SP in the prolog by the static amount and writeback to memory.
; CHECK: i32.const $push[[L1:.+]]=, __stack_pointer
; CHECK-NEXT: i32.load $push[[L2:.+]]=, 0($pop[[L1]])
; CHECK-NEXT: i32.const $push[[L3:.+]]=, 16
; CHECK-NEXT: i32.sub [[SP:.+]]=, $pop[[L2]], $pop[[L3]]
; CHECK-NEXT: copy_local [[FP:.+]]=, [[SP]]
; CHECK-NEXT: i32.const $push[[L4:.+]]=, __stack_pointer
; CHECK-NEXT: i32.store {{.*}}=, 0($pop[[L4]]), [[SP]]
; Decrement SP in the body by the dynamic amount.
; CHECK: i32.sub
; CHECK: copy_local [[SP]]=,
; Writeback to memory.
; CHECK-NEXT: i32.const $push[[L4:.+]]=, __stack_pointer
; CHECK-NEXT: i32.store {{.*}}=, 0($pop[[L4]]), [[SP]]
%r1 = alloca i32
%r = alloca i32, i32 %alloc
store i32 0, i32* %r
; CHECK: i32.const $push[[L6:.+]]=, __stack_pointer
; CHECK-NEXT: i32.const $push[[L5:.+]]=, 16
; CHECK-NEXT: i32.add $push[[L7:.+]]=, [[FP]], $pop[[L5]]
; CHECK-NEXT: i32.store $discard=, 0($pop[[L6]]), $pop[[L7]]
ret void
}
; The use of the alloca in a phi causes a CopyToReg DAG node to be generated,
; which has to have special handling because CopyToReg can't have a FI operand
; CHECK-LABEL: copytoreg_fi:
define void @copytoreg_fi(i1 %cond, i32* %b) {
entry:
; CHECK: i32.const $push[[L1:.+]]=, 16
; CHECK-NEXT: i32.sub [[SP:.+]]=, {{.+}}, $pop[[L1]]
%addr = alloca i32
; CHECK: i32.const $push[[OFF:.+]]=, 12
; CHECK-NEXT: i32.add $push[[ADDR:.+]]=, [[SP]], $pop[[OFF]]
; CHECK-NEXT: copy_local [[COPY:.+]]=, $pop[[ADDR]]
br label %body
body:
%a = phi i32* [%addr, %entry], [%b, %body]
store i32 1, i32* %a
; CHECK: i32.store {{.*}}, 0([[COPY]]),
br i1 %cond, label %body, label %exit
exit:
ret void
}
declare void @use_i8_star(i8*)
declare i8* @llvm.frameaddress(i32)
; Test __builtin_frame_address(0).
; CHECK-LABEL: frameaddress_0:
; CHECK: i32.const $push[[L1:.+]]=, __stack_pointer
; CHECK-NEXT: i32.load [[SP:.+]]=, 0($pop[[L1]])
; CHECK-NEXT: copy_local [[FP:.+]]=, [[SP]]
; CHECK-NEXT: call use_i8_star@FUNCTION, [[FP]]
; CHEC K-NEXT: i32.const $push[[L6:.+]]=, __stack_pointer
; CHEC K-NEXT: i32.store [[SP]]=, 0($pop[[L6]]), [[FP]]
define void @frameaddress_0() {
%t = call i8* @llvm.frameaddress(i32 0)
call void @use_i8_star(i8* %t)
ret void
}
; Test __builtin_frame_address(1).
; CHECK-LABEL: frameaddress_1:
; CHECK-NEXT: i32.const $push0=, 0{{$}}
; CHECK-NEXT: call use_i8_star@FUNCTION, $pop0{{$}}
; CHECK-NEXT: return{{$}}
define void @frameaddress_1() {
%t = call i8* @llvm.frameaddress(i32 1)
call void @use_i8_star(i8* %t)
ret void
}
; Test a stack address passed to an inline asm.
; CHECK-LABEL: inline_asm:
; CHECK: __stack_pointer
; CHECK: #APP
; CHECK-NEXT: # %{{[0-9]+}}{{$}}
; CHECK-NEXT: #NO_APP
define void @inline_asm() {
%tmp = alloca i8
call void asm sideeffect "# %0", "r"(i8* %tmp)
ret void
}
; TODO: test over-aligned alloca