1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-11-22 10:42:39 +01:00
llvm-mirror/lib/Target/AArch64/SMEInstrFormats.td
Cullen Rhodes 1ae2c0fb16 [AArch64][SME] Add zero instruction
This patch adds the zero instruction for zeroing a list of 64-bit
element ZA tiles. The instruction takes a list of up to eight tiles
ZA0.D-ZA7.D, which must be in order, e.g.

  zero {za0.d,za1.d,za2.d,za3.d,za4.d,za5.d,za6.d,za7.d}
  zero {za1.d,za3.d,za5.d,za7.d}

The assembler also accepts 32-bit, 16-bit and 8-bit element tiles which
are mapped to corresponding 64-bit element tiles in accordance with the
architecturally defined mapping between different element size tiles,
e.g.

  * Zeroing ZA0.B, or the entire array name ZA, is equivalent to zeroing
    all eight 64-bit element tiles ZA0.D to ZA7.D.
  * Zeroing ZA0.S is equivalent to zeroing ZA0.D and ZA4.D.

The preferred disassembly of this instruction uses the shortest list of
tile names that represent the encoded immediate mask, e.g.

  * An immediate which encodes 64-bit element tiles ZA0.D, ZA1.D, ZA4.D and
    ZA5.D is disassembled as {ZA0.S, ZA1.S}.
  * An immediate which encodes 64-bit element tiles ZA0.D, ZA2.D, ZA4.D and
    ZA6.D is disassembled as {ZA0.H}.
  * An all-ones immediate is disassembled as {ZA}.
  * An all-zeros immediate is disassembled as an empty list {}.

This patch adds the MatrixTileList asm operand and related parsing to support
this.

Depends on D105570.

The reference can be found here:
https://developer.arm.com/documentation/ddi0602/2021-06

Reviewed By: david-arm

Differential Revision: https://reviews.llvm.org/D105575
2021-07-27 08:35:45 +00:00

793 lines
30 KiB
TableGen

//=-- SMEInstrFormats.td - AArch64 SME Instruction classes -*- tablegen -*--=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// AArch64 Scalable Matrix Extension (SME) Instruction Class Definitions.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// SME Outer Products
//===----------------------------------------------------------------------===//
class sme_fp_outer_product_inst<bit S, bit sz, MatrixTileOperand za_ty,
ZPRRegOp zpr_ty, string mnemonic>
: I<(outs za_ty:$ZAda),
(ins PPR3bAny:$Pn, PPR3bAny:$Pm, zpr_ty:$Zn, zpr_ty:$Zm),
mnemonic, "\t$ZAda, $Pn/m, $Pm/m, $Zn, $Zm",
"", []>,
Sched<[]> {
bits<5> Zm;
bits<3> Pm;
bits<3> Pn;
bits<5> Zn;
let Inst{31-23} = 0b100000001;
let Inst{22} = sz;
let Inst{21} = 0b0;
let Inst{20-16} = Zm;
let Inst{15-13} = Pm;
let Inst{12-10} = Pn;
let Inst{9-5} = Zn;
let Inst{4} = S;
let Inst{3} = 0b0;
}
class sme_outer_product_fp32<bit S, string mnemonic>
: sme_fp_outer_product_inst<S, 0b0, TileOp32, ZPR32, mnemonic> {
bits<2> ZAda;
let Inst{1-0} = ZAda;
let Inst{2} = 0b0;
}
class sme_outer_product_fp64<bit S, string mnemonic>
: sme_fp_outer_product_inst<S, 0b1, TileOp64, ZPR64, mnemonic> {
bits<3> ZAda;
let Inst{2-0} = ZAda;
}
class sme_int_outer_product_inst<bit u0, bit u1, bit S, bit sz,
MatrixTileOperand za_ty, ZPRRegOp zpr_ty,
string mnemonic>
: I<(outs za_ty:$ZAda),
(ins PPR3bAny:$Pn, PPR3bAny:$Pm, zpr_ty:$Zn, zpr_ty:$Zm),
mnemonic, "\t$ZAda, $Pn/m, $Pm/m, $Zn, $Zm",
"", []>,
Sched<[]> {
bits<5> Zm;
bits<3> Pm;
bits<3> Pn;
bits<5> Zn;
let Inst{31-25} = 0b1010000;
let Inst{24} = u0;
let Inst{23} = 0b1;
let Inst{22} = sz;
let Inst{21} = u1;
let Inst{20-16} = Zm;
let Inst{15-13} = Pm;
let Inst{12-10} = Pn;
let Inst{9-5} = Zn;
let Inst{4} = S;
let Inst{3} = 0b0;
}
class sme_int_outer_product_i32<bits<3> opc, string mnemonic>
: sme_int_outer_product_inst<opc{2}, opc{1}, opc{0}, 0b0, TileOp32, ZPR8,
mnemonic> {
bits<2> ZAda;
let Inst{1-0} = ZAda;
let Inst{2} = 0b0;
}
class sme_int_outer_product_i64<bits<3> opc, string mnemonic>
: sme_int_outer_product_inst<opc{2}, opc{1}, opc{0}, 0b1, TileOp64, ZPR16,
mnemonic> {
bits<3> ZAda;
let Inst{2-0} = ZAda;
}
class sme_outer_product_widening_inst<bit op, bit S, string mnemonic>
: I<(outs TileOp32:$ZAda),
(ins PPR3bAny:$Pn, PPR3bAny:$Pm, ZPR16:$Zn, ZPR16:$Zm),
mnemonic, "\t$ZAda, $Pn/m, $Pm/m, $Zn, $Zm",
"", []>,
Sched<[]> {
bits<5> Zm;
bits<3> Pm;
bits<3> Pn;
bits<5> Zn;
bits<2> ZAda;
let Inst{31-22} = 0b1000000110;
let Inst{21} = op;
let Inst{20-16} = Zm;
let Inst{15-13} = Pm;
let Inst{12-10} = Pn;
let Inst{9-5} = Zn;
let Inst{4} = S;
let Inst{3-2} = 0b00;
let Inst{1-0} = ZAda;
}
multiclass sme_bf16_outer_product<bit S, string mnemonic> {
def : sme_outer_product_widening_inst<0b0, S, mnemonic>;
}
multiclass sme_f16_outer_product<bit S, string mnemonic> {
def : sme_outer_product_widening_inst<0b1, S, mnemonic>;
}
//===----------------------------------------------------------------------===//
// SME Add Vector to Tile
//===----------------------------------------------------------------------===//
class sme_add_vector_to_tile_inst<bit op, bit V, MatrixTileOperand tile_ty,
ZPRRegOp zpr_ty, string mnemonic>
: I<(outs tile_ty:$ZAda),
(ins PPR3bAny:$Pn, PPR3bAny:$Pm, zpr_ty:$Zn),
mnemonic, "\t$ZAda, $Pn/m, $Pm/m, $Zn",
"", []>, Sched<[]> {
bits<3> Pm;
bits<3> Pn;
bits<5> Zn;
let Inst{31-23} = 0b110000001;
let Inst{22} = op;
let Inst{21-17} = 0b01000;
let Inst{16} = V;
let Inst{15-13} = Pm;
let Inst{12-10} = Pn;
let Inst{9-5} = Zn;
let Inst{4-3} = 0b00;
}
class sme_add_vector_to_tile_u32<bit V, string mnemonic>
: sme_add_vector_to_tile_inst<0b0, V, TileOp32, ZPR32, mnemonic> {
bits<2> ZAda;
let Inst{2} = 0b0;
let Inst{1-0} = ZAda;
}
class sme_add_vector_to_tile_u64<bit V, string mnemonic>
: sme_add_vector_to_tile_inst<0b1, V, TileOp64, ZPR64, mnemonic> {
bits<3> ZAda;
let Inst{2-0} = ZAda;
}
//===----------------------------------------------------------------------===//
// SME Contiguous Loads
//===----------------------------------------------------------------------===//
class sme_mem_ld_ss_base<bit Q, bit V, bits<2> msz, dag outs, dag ins,
string mnemonic, string argstr>
: I<outs, ins, mnemonic, argstr, "", []>, Sched<[]> {
bits<5> Rm;
bits<2> Rv;
bits<3> Pg;
bits<5> Rn;
let Inst{31-25} = 0b1110000;
let Inst{24} = Q;
let Inst{23-22} = msz;
let Inst{21} = 0b0;
let Inst{20-16} = Rm;
let Inst{15} = V;
let Inst{14-13} = Rv;
let Inst{12-10} = Pg;
let Inst{9-5} = Rn;
let Inst{4} = 0b0;
let mayLoad = 1;
}
class sme_mem_ld_ss_inst_BHSD<bits<2> msz, string mnemonic,
MatrixTileVectorOperand tile_ty, bit is_col,
Operand imm_ty, RegisterOperand gpr_ty>
: sme_mem_ld_ss_base<
0b0, is_col, msz, (outs tile_ty:$ZAt),
(ins MatrixIndexGPR32Op12_15:$Rv, imm_ty:$imm, PPR3bAny:$Pg, GPR64sp:$Rn,
gpr_ty:$Rm),
mnemonic, "\t\\{$ZAt[$Rv, $imm]\\}, $Pg/z, [$Rn, $Rm]">;
class sme_mem_ld_ss_inst_Q<string mnemonic, MatrixTileVectorOperand tile_ty,
bit is_col>
: sme_mem_ld_ss_base<
0b1, is_col, 0b11, (outs tile_ty:$ZAt),
(ins MatrixIndexGPR32Op12_15:$Rv, PPR3bAny:$Pg, GPR64sp:$Rn,
GPR64shifted128:$Rm),
mnemonic, "\t\\{$ZAt[$Rv]\\}, $Pg/z, [$Rn, $Rm]">;
multiclass sme_mem_ss_aliases_BHSD<string mnemonic, Instruction inst,
MatrixTileVectorOperand tile_ty, Operand imm_ty,
RegisterOperand gpr_ty,
string pg_suffix=""> {
def : InstAlias<mnemonic # "\t$ZAt[$Rv, $imm], $Pg" # pg_suffix # ", [$Rn, $Rm]",
(inst tile_ty:$ZAt, MatrixIndexGPR32Op12_15:$Rv, imm_ty:$imm, PPR3bAny:$Pg, GPR64sp:$Rn, gpr_ty:$Rm), 0>;
// Default XZR offset aliases
def : InstAlias<mnemonic # "\t\\{$ZAt[$Rv, $imm]\\}, $Pg" # pg_suffix # ", [$Rn]",
(inst tile_ty:$ZAt, MatrixIndexGPR32Op12_15:$Rv, imm_ty:$imm, PPR3bAny:$Pg, GPR64sp:$Rn, XZR), 1>;
def : InstAlias<mnemonic # "\t$ZAt[$Rv, $imm], $Pg" # pg_suffix # ", [$Rn]",
(inst tile_ty:$ZAt, MatrixIndexGPR32Op12_15:$Rv, imm_ty:$imm, PPR3bAny:$Pg, GPR64sp:$Rn, XZR), 0>;
}
multiclass sme_mem_ss_aliases_Q<string mnemonic, Instruction inst,
MatrixTileVectorOperand tile_ty,
string pg_suffix=""> {
def : InstAlias<mnemonic # "\t$ZAt[$Rv], $Pg" # pg_suffix # ", [$Rn, $Rm]",
(inst tile_ty:$ZAt, MatrixIndexGPR32Op12_15:$Rv, PPR3bAny:$Pg, GPR64sp:$Rn, GPR64shifted128:$Rm), 0>;
// Default XZR offset aliases
def : InstAlias<mnemonic # "\t\\{$ZAt[$Rv]\\}, $Pg" # pg_suffix # ", [$Rn]",
(inst tile_ty:$ZAt, MatrixIndexGPR32Op12_15:$Rv, PPR3bAny:$Pg, GPR64sp:$Rn, XZR), 2>;
def : InstAlias<mnemonic # "\t$ZAt[$Rv], $Pg" # pg_suffix # ", [$Rn]",
(inst tile_ty:$ZAt, MatrixIndexGPR32Op12_15:$Rv, PPR3bAny:$Pg, GPR64sp:$Rn, XZR), 0>;
}
multiclass sme_mem_ss_aliases<string mnemonic, string inst, bit is_col,
string pg_suffix=""> {
defm : sme_mem_ss_aliases_BHSD<mnemonic # "b", !cast<Instruction>(inst # _B),
!if(is_col, TileVectorOpV8, TileVectorOpH8),
imm0_15, GPR64shifted8, pg_suffix>;
defm : sme_mem_ss_aliases_BHSD<mnemonic # "h", !cast<Instruction>(inst # _H),
!if(is_col, TileVectorOpV16, TileVectorOpH16),
imm0_7, GPR64shifted16, pg_suffix>;
defm : sme_mem_ss_aliases_BHSD<mnemonic # "w", !cast<Instruction>(inst # _S),
!if(is_col, TileVectorOpV32, TileVectorOpH32),
imm0_3, GPR64shifted32, pg_suffix>;
defm : sme_mem_ss_aliases_BHSD<mnemonic # "d", !cast<Instruction>(inst # _D),
!if(is_col, TileVectorOpV64, TileVectorOpH64),
imm0_1, GPR64shifted64, pg_suffix>;
defm : sme_mem_ss_aliases_Q <mnemonic # "q", !cast<Instruction>(inst # _Q),
!if(is_col, TileVectorOpV128, TileVectorOpH128),
pg_suffix>;
}
multiclass sme_mem_ld_ss_aliases<string inst, bit is_col> {
defm NAME : sme_mem_ss_aliases<"ld1", inst, is_col, "/z">;
}
multiclass sme_mem_ld_v_ss<string mnemonic, bit is_col> {
def _B : sme_mem_ld_ss_inst_BHSD<0b00, mnemonic # "b",
!if(is_col, TileVectorOpV8,
TileVectorOpH8),
is_col, imm0_15, GPR64shifted8> {
bits<4> imm;
let Inst{3-0} = imm;
}
def _H : sme_mem_ld_ss_inst_BHSD<0b01, mnemonic # "h",
!if(is_col, TileVectorOpV16,
TileVectorOpH16),
is_col, imm0_7, GPR64shifted16> {
bits<1> ZAt;
bits<3> imm;
let Inst{3} = ZAt;
let Inst{2-0} = imm;
}
def _S : sme_mem_ld_ss_inst_BHSD<0b10, mnemonic # "w",
!if(is_col, TileVectorOpV32,
TileVectorOpH32),
is_col, imm0_3, GPR64shifted32> {
bits<2> ZAt;
bits<2> imm;
let Inst{3-2} = ZAt;
let Inst{1-0} = imm;
}
def _D : sme_mem_ld_ss_inst_BHSD<0b11, mnemonic # "d",
!if(is_col, TileVectorOpV64,
TileVectorOpH64),
is_col, imm0_1, GPR64shifted64> {
bits<3> ZAt;
bits<1> imm;
let Inst{3-1} = ZAt;
let Inst{0} = imm;
}
def _Q : sme_mem_ld_ss_inst_Q<mnemonic # "q",
!if(is_col, TileVectorOpV128,
TileVectorOpH128),
is_col> {
bits<4> ZAt;
let Inst{3-0} = ZAt;
}
defm : sme_mem_ld_ss_aliases<NAME, is_col>;
}
multiclass sme_mem_ld_ss<string mnemonic> {
defm _H : sme_mem_ld_v_ss<mnemonic, /*is_col=*/0b0>;
defm _V : sme_mem_ld_v_ss<mnemonic, /*is_col=*/0b1>;
}
//===----------------------------------------------------------------------===//
// SME Contiguous Stores
//===----------------------------------------------------------------------===//
class sme_mem_st_ss_base<bit Q, bit V, bits<2> msz, dag ins,
string mnemonic, string argstr>
: I<(outs), ins, mnemonic, argstr, "", []>, Sched<[]> {
bits<5> Rm;
bits<2> Rv;
bits<3> Pg;
bits<5> Rn;
let Inst{31-25} = 0b1110000;
let Inst{24} = Q;
let Inst{23-22} = msz;
let Inst{21} = 0b1;
let Inst{20-16} = Rm;
let Inst{15} = V;
let Inst{14-13} = Rv;
let Inst{12-10} = Pg;
let Inst{9-5} = Rn;
let Inst{4} = 0b0;
let mayStore = 1;
let hasSideEffects = 1;
}
class sme_mem_st_ss_inst_BHSD<bits<2> msz, string mnemonic,
MatrixTileVectorOperand tile_ty, bit is_col,
Operand imm_ty, RegisterOperand gpr_ty>
: sme_mem_st_ss_base<
0b0, is_col, msz,
(ins tile_ty:$ZAt, MatrixIndexGPR32Op12_15:$Rv, imm_ty:$imm, PPR3bAny:$Pg,
GPR64sp:$Rn, gpr_ty:$Rm),
mnemonic, "\t\\{$ZAt[$Rv, $imm]\\}, $Pg, [$Rn, $Rm]">;
class sme_mem_st_ss_inst_Q<string mnemonic, MatrixTileVectorOperand tile_ty,
bit is_col>
: sme_mem_st_ss_base<
0b1, is_col, 0b11,
(ins tile_ty:$ZAt, MatrixIndexGPR32Op12_15:$Rv, PPR3bAny:$Pg,
GPR64sp:$Rn, GPR64shifted128:$Rm),
mnemonic, "\t\\{$ZAt[$Rv]\\}, $Pg, [$Rn, $Rm]">;
multiclass sme_mem_st_ss_aliases<string inst, bit is_col> {
defm NAME : sme_mem_ss_aliases<"st1", inst, is_col>;
}
multiclass sme_mem_st_v_ss<string mnemonic, bit is_col> {
def _B : sme_mem_st_ss_inst_BHSD<0b00, mnemonic # "b",
!if(is_col, TileVectorOpV8,
TileVectorOpH8),
is_col, imm0_15, GPR64shifted8> {
bits<4> imm;
let Inst{3-0} = imm;
}
def _H : sme_mem_st_ss_inst_BHSD<0b01, mnemonic # "h",
!if(is_col, TileVectorOpV16,
TileVectorOpH16),
is_col, imm0_7, GPR64shifted16> {
bits<1> ZAt;
bits<3> imm;
let Inst{3} = ZAt;
let Inst{2-0} = imm;
}
def _S : sme_mem_st_ss_inst_BHSD<0b10, mnemonic # "w",
!if(is_col, TileVectorOpV32,
TileVectorOpH32),
is_col, imm0_3, GPR64shifted32> {
bits<2> ZAt;
bits<2> imm;
let Inst{3-2} = ZAt;
let Inst{1-0} = imm;
}
def _D : sme_mem_st_ss_inst_BHSD<0b11, mnemonic # "d",
!if(is_col, TileVectorOpV64,
TileVectorOpH64),
is_col, imm0_1, GPR64shifted64> {
bits<3> ZAt;
bits<1> imm;
let Inst{3-1} = ZAt;
let Inst{0} = imm;
}
def _Q : sme_mem_st_ss_inst_Q<mnemonic # "q",
!if(is_col, TileVectorOpV128,
TileVectorOpH128),
is_col> {
bits<4> ZAt;
let Inst{3-0} = ZAt;
}
defm : sme_mem_st_ss_aliases<NAME, is_col>;
}
multiclass sme_mem_st_ss<string mnemonic> {
defm _H : sme_mem_st_v_ss<mnemonic, /*is_col=*/0b0>;
defm _V : sme_mem_st_v_ss<mnemonic, /*is_col=*/0b1>;
}
//===----------------------------------------------------------------------===//
// SME Save and Restore Array
//===----------------------------------------------------------------------===//
class sme_spill_fill_inst<bit isStore, dag outs, dag ins, string opcodestr>
: I<outs, ins, opcodestr, "\t$ZAt[$Rv, $imm4], [$Rn, $offset, mul vl]", "",
[]>,
Sched<[]> {
bits<2> Rv;
bits<5> Rn;
bits<4> imm4;
let Inst{31-22} = 0b1110000100;
let Inst{21} = isStore;
let Inst{20-15} = 0b000000;
let Inst{14-13} = Rv;
let Inst{12-10} = 0b000;
let Inst{9-5} = Rn;
let Inst{4} = 0b0;
let Inst{3-0} = imm4;
let mayLoad = !not(isStore);
let mayStore = isStore;
}
multiclass sme_spill_fill<bit isStore, dag outs, dag ins, string opcodestr> {
def NAME : sme_spill_fill_inst<isStore, outs, ins, opcodestr>;
def : InstAlias<opcodestr # "\t$ZAt[$Rv, $imm4], [$Rn]",
(!cast<Instruction>(NAME) MatrixOp:$ZAt,
MatrixIndexGPR32Op12_15:$Rv, imm0_15:$imm4, GPR64sp:$Rn, 0), 1>;
}
multiclass sme_spill<string opcodestr> {
defm NAME : sme_spill_fill<0b1, (outs),
(ins MatrixOp:$ZAt, MatrixIndexGPR32Op12_15:$Rv,
imm0_15:$imm4, GPR64sp:$Rn,
imm0_15:$offset),
opcodestr>;
}
multiclass sme_fill<string opcodestr> {
defm NAME : sme_spill_fill<0b0, (outs MatrixOp:$ZAt),
(ins MatrixIndexGPR32Op12_15:$Rv,
imm0_15:$imm4, GPR64sp:$Rn,
imm0_15:$offset),
opcodestr>;
}
//===----------------------------------------------------------------------===//
// Move instructions
//===----------------------------------------------------------------------===//
class sme_vector_to_tile_base<bit Q, bit V, bits<2> sz, dag outs, dag ins,
string mnemonic, string argstr>
: I<outs, ins, mnemonic, argstr, "", []>, Sched<[]> {
bits<2> Rv;
bits<3> Pg;
bits<5> Zn;
let Inst{31-24} = 0b11000000;
let Inst{23-22} = sz;
let Inst{21-17} = 0b00000;
let Inst{16} = Q;
let Inst{15} = V;
let Inst{14-13} = Rv;
let Inst{12-10} = Pg;
let Inst{9-5} = Zn;
let Inst{4} = 0b0;
}
class sme_vector_to_tile_inst<bits<2> sz, MatrixTileVectorOperand tile_ty,
bit is_col, Operand imm_ty, ZPRRegOp zpr_ty,
string mnemonic>
: sme_vector_to_tile_base<0b0, is_col, sz, (outs tile_ty:$ZAd),
(ins MatrixIndexGPR32Op12_15:$Rv, imm_ty:$imm, PPR3bAny:$Pg, zpr_ty:$Zn),
mnemonic, "\t$ZAd[$Rv, $imm], $Pg/m, $Zn">;
class sme_vector_to_tile_inst_Q<MatrixTileVectorOperand tile_ty,
bit is_col, string mnemonic>
: sme_vector_to_tile_base<0b1, is_col, 0b11, (outs tile_ty:$ZAd),
(ins MatrixIndexGPR32Op12_15:$Rv, PPR3bAny:$Pg, ZPR128:$Zn),
mnemonic, "\t$ZAd[$Rv], $Pg/m, $Zn">;
multiclass sme_vector_to_tile_aliases<Instruction inst,
MatrixTileVectorOperand tile_ty,
ZPRRegOp zpr_ty, Operand imm_ty> {
def : InstAlias<"mov\t$ZAd[$Rv, $imm], $Pg/m, $Zn",
(inst tile_ty:$ZAd, MatrixIndexGPR32Op12_15:$Rv, imm0_15:$imm, PPR3bAny:$Pg, zpr_ty:$Zn), 1>;
}
multiclass sme_vector_v_to_tile<string mnemonic, bit is_col> {
def _B : sme_vector_to_tile_inst<0b00, !if(is_col, TileVectorOpV8,
TileVectorOpH8),
is_col, imm0_15, ZPR8, mnemonic> {
bits<4> imm;
let Inst{3-0} = imm;
}
def _H : sme_vector_to_tile_inst<0b01, !if(is_col, TileVectorOpV16,
TileVectorOpH16),
is_col, imm0_7, ZPR16, mnemonic> {
bits<1> ZAd;
bits<3> imm;
let Inst{3} = ZAd;
let Inst{2-0} = imm;
}
def _S : sme_vector_to_tile_inst<0b10, !if(is_col, TileVectorOpV32,
TileVectorOpH32),
is_col, imm0_3, ZPR32, mnemonic> {
bits<2> ZAd;
bits<2> imm;
let Inst{3-2} = ZAd;
let Inst{1-0} = imm;
}
def _D : sme_vector_to_tile_inst<0b11, !if(is_col, TileVectorOpV64,
TileVectorOpH64),
is_col, imm0_1, ZPR64, mnemonic> {
bits<3> ZAd;
bits<1> imm;
let Inst{3-1} = ZAd;
let Inst{0} = imm;
}
def _Q : sme_vector_to_tile_inst_Q<!if(is_col, TileVectorOpV128,
TileVectorOpH128),
is_col, mnemonic> {
bits<4> ZAd;
bits<1> imm;
let Inst{3-0} = ZAd;
}
defm : sme_vector_to_tile_aliases<!cast<Instruction>(NAME # _B),
!if(is_col, TileVectorOpV8,
TileVectorOpH8),
ZPR8, imm0_15>;
defm : sme_vector_to_tile_aliases<!cast<Instruction>(NAME # _H),
!if(is_col, TileVectorOpV16,
TileVectorOpH16),
ZPR16, imm0_7>;
defm : sme_vector_to_tile_aliases<!cast<Instruction>(NAME # _S),
!if(is_col, TileVectorOpV32,
TileVectorOpH32),
ZPR32, imm0_3>;
defm : sme_vector_to_tile_aliases<!cast<Instruction>(NAME # _D),
!if(is_col, TileVectorOpV64,
TileVectorOpH64),
ZPR64, imm0_1>;
def : InstAlias<"mov\t$ZAd[$Rv], $Pg/m, $Zn",
(!cast<Instruction>(NAME # _Q) !if(is_col,
TileVectorOpV128,
TileVectorOpH128):$ZAd,
MatrixIndexGPR32Op12_15:$Rv,
PPR3bAny:$Pg, ZPR128:$Zn), 1>;
}
multiclass sme_vector_to_tile<string mnemonic> {
defm _H : sme_vector_v_to_tile<mnemonic, /*is_col=*/0b0>;
defm _V : sme_vector_v_to_tile<mnemonic, /*is_col=*/0b1>;
}
class sme_tile_to_vector_base<bit Q, bit V, bits<2> sz, dag outs, dag ins,
string mnemonic, string argstr>
: I<outs, ins, mnemonic, argstr, "", []>, Sched<[]> {
bits<2> Rv;
bits<3> Pg;
bits<5> Zd;
let Inst{31-24} = 0b11000000;
let Inst{23-22} = sz;
let Inst{21-17} = 0b00001;
let Inst{16} = Q;
let Inst{15} = V;
let Inst{14-13} = Rv;
let Inst{12-10} = Pg;
let Inst{9} = 0b0;
let Inst{4-0} = Zd;
}
class sme_tile_to_vector_inst<bits<2> sz, ZPRRegOp zpr_ty,
MatrixTileVectorOperand tile_ty,
bit is_col, Operand imm_ty, string mnemonic>
: sme_tile_to_vector_base<0b0, is_col, sz, (outs zpr_ty:$Zd),
(ins PPR3bAny:$Pg, tile_ty:$ZAn, MatrixIndexGPR32Op12_15:$Rv, imm_ty:$imm),
mnemonic, "\t$Zd, $Pg/m, $ZAn[$Rv, $imm]">;
class sme_tile_to_vector_inst_Q<MatrixTileVectorOperand tile_ty,
bit is_col, string mnemonic>
: sme_tile_to_vector_base<0b1, is_col, 0b11, (outs ZPR128:$Zd),
(ins PPR3bAny:$Pg, tile_ty:$ZAn, MatrixIndexGPR32Op12_15:$Rv),
mnemonic, "\t$Zd, $Pg/m, $ZAn[$Rv]">;
multiclass sme_tile_to_vector_aliases<Instruction inst, ZPRRegOp zpr_ty,
MatrixTileVectorOperand tile_ty,
Operand imm_ty > {
def : InstAlias<"mov\t$Zd, $Pg/m, $ZAn[$Rv, $imm]",
(inst zpr_ty:$Zd, PPR3bAny:$Pg, tile_ty:$ZAn, MatrixIndexGPR32Op12_15:$Rv, imm_ty:$imm), 1>;
}
multiclass sme_tile_to_vector_v<string mnemonic, bit is_col> {
def _B : sme_tile_to_vector_inst<0b00, ZPR8, !if(is_col, TileVectorOpV8,
TileVectorOpH8),
is_col, imm0_15, mnemonic> {
bits<4> imm;
let Inst{8-5} = imm;
}
def _H : sme_tile_to_vector_inst<0b01, ZPR16, !if(is_col, TileVectorOpV16,
TileVectorOpH16),
is_col, imm0_7, mnemonic> {
bits<1> ZAn;
bits<3> imm;
let Inst{8} = ZAn;
let Inst{7-5} = imm;
}
def _S : sme_tile_to_vector_inst<0b10, ZPR32, !if(is_col, TileVectorOpV32,
TileVectorOpH32),
is_col, imm0_3, mnemonic> {
bits<2> ZAn;
bits<2> imm;
let Inst{8-7} = ZAn;
let Inst{6-5} = imm;
}
def _D : sme_tile_to_vector_inst<0b11, ZPR64, !if(is_col, TileVectorOpV64,
TileVectorOpH64),
is_col, imm0_1, mnemonic> {
bits<3> ZAn;
bits<1> imm;
let Inst{8-6} = ZAn;
let Inst{5} = imm;
}
def _Q : sme_tile_to_vector_inst_Q<!if(is_col, TileVectorOpV128,
TileVectorOpH128),
is_col, mnemonic> {
bits<4> ZAn;
let Inst{8-5} = ZAn;
}
defm : sme_tile_to_vector_aliases<!cast<Instruction>(NAME # _B), ZPR8,
!if(is_col, TileVectorOpV8,
TileVectorOpH8), imm0_15>;
defm : sme_tile_to_vector_aliases<!cast<Instruction>(NAME # _H), ZPR16,
!if(is_col, TileVectorOpV16,
TileVectorOpH16), imm0_7>;
defm : sme_tile_to_vector_aliases<!cast<Instruction>(NAME # _S), ZPR32,
!if(is_col, TileVectorOpV32,
TileVectorOpH32), imm0_3>;
defm : sme_tile_to_vector_aliases<!cast<Instruction>(NAME # _D), ZPR64,
!if(is_col, TileVectorOpV64,
TileVectorOpH64), imm0_1>;
def : InstAlias<"mov\t$Zd, $Pg/m, $ZAn[$Rv]",
(!cast<Instruction>(NAME # _Q) ZPR128:$Zd, PPR3bAny:$Pg,
!if(is_col,
TileVectorOpV128,
TileVectorOpH128):$ZAn,
MatrixIndexGPR32Op12_15:$Rv), 1>;
}
multiclass sme_tile_to_vector<string mnemonic> {
defm _H : sme_tile_to_vector_v<mnemonic, /*is_col=*/0b0>;
defm _V : sme_tile_to_vector_v<mnemonic, /*is_col=*/0b1>;
}
//===----------------------------------------------------------------------===//
// SME Zero
//===----------------------------------------------------------------------===//
class sme_zero_inst<string mnemonic>
: I<(outs MatrixTileList:$imm), (ins),
mnemonic, "\t$imm", "", []>, Sched<[]> {
bits<8> imm;
let Inst{31-8} = 0b110000000000100000000000;
let Inst{7-0} = imm;
}
multiclass sme_zero<string mnemonic> {
def NAME : sme_zero_inst<mnemonic>;
def : InstAlias<"zero\t\\{za\\}", (!cast<Instruction>(NAME) 0b11111111), 1>;
def : InstAlias<"zero\t\\{za0.h\\}", (!cast<Instruction>(NAME) 0b01010101), 1>;
def : InstAlias<"zero\t\\{za1.h\\}", (!cast<Instruction>(NAME) 0b10101010), 1>;
def : InstAlias<"zero\t\\{za0.s\\}", (!cast<Instruction>(NAME) 0b00010001), 1>;
def : InstAlias<"zero\t\\{za1.s\\}", (!cast<Instruction>(NAME) 0b00100010), 1>;
def : InstAlias<"zero\t\\{za2.s\\}", (!cast<Instruction>(NAME) 0b01000100), 1>;
def : InstAlias<"zero\t\\{za3.s\\}", (!cast<Instruction>(NAME) 0b10001000), 1>;
def : InstAlias<"zero\t\\{za0.s,za1.s\\}", (!cast<Instruction>(NAME) 0b00110011), 1>;
def : InstAlias<"zero\t\\{za0.s,za3.s\\}", (!cast<Instruction>(NAME) 0b10011001), 1>;
def : InstAlias<"zero\t\\{za1.s,za2.s\\}", (!cast<Instruction>(NAME) 0b01100110), 1>;
def : InstAlias<"zero\t\\{za2.s,za3.s\\}", (!cast<Instruction>(NAME) 0b11001100), 1>;
def : InstAlias<"zero\t\\{za0.s,za1.s,za2.s\\}", (!cast<Instruction>(NAME) 0b01110111), 1>;
def : InstAlias<"zero\t\\{za0.s,za1.s,za3.s\\}", (!cast<Instruction>(NAME) 0b10111011), 1>;
def : InstAlias<"zero\t\\{za0.s,za2.s,za3.s\\}", (!cast<Instruction>(NAME) 0b11011101), 1>;
def : InstAlias<"zero\t\\{za1.s,za2.s,za3.s\\}", (!cast<Instruction>(NAME) 0b11101110), 1>;
}
//===----------------------------------------------------------------------===//
// SVE2 Instructions
//===----------------------------------------------------------------------===//
class sve2_int_perm_revd<string asm>
: I<(outs ZPR128:$Zd), (ins ZPR128:$_Zd, PPR3bAny:$Pg, ZPR128:$Zn),
asm, "\t$Zd, $Pg/m, $Zn", "", []>,
Sched<[]> {
bits<5> Zd;
bits<3> Pg;
bits<5> Zn;
let Inst{31-24} = 0b00000101;
let Inst{23-22} = 0b00; // size
let Inst{21-13} = 0b101110100;
let Inst{12-10} = Pg;
let Inst{9-5} = Zn;
let Inst{4-0} = Zd;
let Constraints = "$Zd = $_Zd";
let DestructiveInstType = DestructiveUnary;
let ElementSize = ZPR128.ElementSize;
}
class sve2_clamp<string asm, bits<2> sz, bit U, ZPRRegOp zpr_ty>
: I<(outs zpr_ty:$Zd), (ins zpr_ty:$Zn, zpr_ty:$Zm, zpr_ty:$_Zd),
asm, "\t$Zd, $Zn, $Zm", "", []>,
Sched<[]> {
bits<5> Zm;
bits<5> Zn;
bits<5> Zd;
let Inst{31-24} = 0b01000100;
let Inst{23-22} = sz;
let Inst{21} = 0b0;
let Inst{20-16} = Zm;
let Inst{15-11} = 0b11000;
let Inst{10} = U;
let Inst{9-5} = Zn;
let Inst{4-0} = Zd;
let Constraints = "$Zd = $_Zd";
let DestructiveInstType = DestructiveOther;
let ElementSize = zpr_ty.ElementSize;
}
multiclass sve2_clamp<string asm, bit U> {
def _B : sve2_clamp<asm, 0b00, U, ZPR8>;
def _H : sve2_clamp<asm, 0b01, U, ZPR16>;
def _S : sve2_clamp<asm, 0b10, U, ZPR32>;
def _D : sve2_clamp<asm, 0b11, U, ZPR64>;
}
class sve2_int_perm_dup_p<string asm, PPRRegOp ppr_ty, Operand imm_ty>
: I<(outs ppr_ty:$Pd), (ins PPRAny:$Pg, ppr_ty:$Pn,
MatrixIndexGPR32Op12_15:$Rm, imm_ty:$imm),
asm, "\t$Pd, $Pg/z, $Pn[$Rm, $imm]", "", []>,
Sched<[]> {
bits<2> Rm;
bits<4> Pg;
bits<4> Pn;
bits<4> Pd;
let Inst{31-24} = 0b00100101;
let Inst{21} = 0b1;
let Inst{17-16} = Rm;
let Inst{15-14} = 0b01;
let Inst{13-10} = Pg;
let Inst{9} = 0b0;
let Inst{8-5} = Pn;
let Inst{4} = 0b0;
let Inst{3-0} = Pd;
}
multiclass sve2_int_perm_dup_p<string asm> {
def _B : sve2_int_perm_dup_p<asm, PPR8, imm0_15> {
bits<4> imm;
let Inst{23-22} = imm{3-2};
let Inst{20-19} = imm{1-0};
let Inst{18} = 0b1;
}
def _H : sve2_int_perm_dup_p<asm, PPR16, imm0_7> {
bits<3> imm;
let Inst{23-22} = imm{2-1};
let Inst{20} = imm{0};
let Inst{19-18} = 0b10;
}
def _S : sve2_int_perm_dup_p<asm, PPR32, imm0_3> {
bits<2> imm;
let Inst{23-22} = imm{1-0};
let Inst{20-18} = 0b100;
}
def _D : sve2_int_perm_dup_p<asm, PPR64, imm0_1> {
bits<1> imm;
let Inst{23} = imm;
let Inst{22} = 0b1;
let Inst{20-18} = 0b000;
}
def : InstAlias<"dup\t$Pd, $Pg/z, $Pn[$Rm]",
(!cast<Instruction>(NAME # _B) PPR8:$Pd, PPRAny:$Pg, PPR8:$Pn, MatrixIndexGPR32Op12_15:$Rm, 0), 1>;
def : InstAlias<"dup\t$Pd, $Pg/z, $Pn[$Rm]",
(!cast<Instruction>(NAME # _H) PPR16:$Pd, PPRAny:$Pg, PPR16:$Pn, MatrixIndexGPR32Op12_15:$Rm, 0), 1>;
def : InstAlias<"dup\t$Pd, $Pg/z, $Pn[$Rm]",
(!cast<Instruction>(NAME # _S) PPR32:$Pd, PPRAny:$Pg, PPR32:$Pn, MatrixIndexGPR32Op12_15:$Rm, 0), 1>;
def : InstAlias<"dup\t$Pd, $Pg/z, $Pn[$Rm]",
(!cast<Instruction>(NAME # _D) PPR64:$Pd, PPRAny:$Pg, PPR64:$Pn, MatrixIndexGPR32Op12_15:$Rm, 0), 1>;
}