1
0
mirror of https://github.com/RPCS3/rpcs3.git synced 2024-11-25 20:22:30 +01:00

Move to a assembler wrapper for injected asm to better handle dependencies

This commit is contained in:
kd-11 2024-08-16 15:13:33 +03:00 committed by kd-11
parent 2faa61ac31
commit fc415cf32a
5 changed files with 5 additions and 736 deletions

View File

@ -391,7 +391,8 @@ target_sources(rpcs3_emu PRIVATE
if(CMAKE_SYSTEM_PROCESSOR MATCHES "arm64|aarch64") if(CMAKE_SYSTEM_PROCESSOR MATCHES "arm64|aarch64")
target_sources(rpcs3_emu PRIVATE target_sources(rpcs3_emu PRIVATE
CPU/Backends/AArch64JIT.cpp CPU/Backends/AArch64/AArch64ASM.cpp
CPU/Backends/AArch64/AArch64JIT.cpp
) )
endif() endif()

View File

@ -1,621 +0,0 @@
#include "stdafx.h"
#include "AArch64JIT.h"
#include "../Hypervisor.h"
LOG_CHANNEL(jit_log, "JIT");
#define STDOUT_DEBUG 0
#define DPRINT1(...)\
do {\
printf(__VA_ARGS__);\
printf("\n");\
fflush(stdout);\
} while (0)
#if STDOUT_DEBUG
#define DPRINT DPRINT1
#else
#define DPRINT jit_log.trace
#endif
namespace aarch64
{
using instruction_info_t = GHC_frame_preservation_pass::instruction_info_t;
using function_info_t = GHC_frame_preservation_pass::function_info_t;
GHC_frame_preservation_pass::GHC_frame_preservation_pass(const config_t& configuration)
: m_config(configuration)
{}
void GHC_frame_preservation_pass::reset()
{
m_visited_functions.clear();
}
void GHC_frame_preservation_pass::force_tail_call_terminators(llvm::Function& f)
{
// GHC functions are not call-stack preserving and can therefore never return if they make any external calls at all.
// Replace every terminator clause with a tail call explicitly. This is already done for X64 to work, but better safe than sorry.
for (auto& bb : f)
{
auto bit = bb.begin(), prev = bb.end();
for (; bit != bb.end(); prev = bit, ++bit)
{
if (prev == bb.end())
{
continue;
}
if (llvm::isa<llvm::ReturnInst>(&*bit))
{
if (auto ci = llvm::dyn_cast<llvm::CallInst>(&*prev))
{
// This is a "ret" that is coming after a "call" to another funciton.
// Enforce that it must be a tail call.
if (!ci->isTailCall())
{
ci->setTailCall();
}
}
}
}
}
}
function_info_t GHC_frame_preservation_pass::preprocess_function(const llvm::Function& f)
{
function_info_t result{};
result.instruction_count = f.getInstructionCount();
// Blanket exclusions. Stubs or dispatchers that do not compute anything themselves.
if (f.getName() == "__spu-null")
{
// Don't waste the effort processing this stub. It has no points of concern
result.num_external_calls = 1;
return result;
}
if (m_config.use_stack_frames)
{
// Stack frame estimation. SPU code can be very long and consumes several KB of stack.
u32 stack_frame_size = 128u;
// Actual ratio is usually around 1:4
const u32 expected_compiled_instr_count = f.getInstructionCount() * 4;
// Because GHC doesn't preserve stack (all stack is scratch), we know we'll start to spill once we go over the number of actual regs.
// We use a naive allocator that just assumes each instruction consumes a register slot. We "spill" every 32 instructions.
// FIXME: Aggressive spill is only really a thing with vector operations. We can detect those instead.
// A proper fix is to port this to a MF pass, but I have PTSD from working at MF level.
const u32 spill_pages = (expected_compiled_instr_count + 127u) / 128u;
stack_frame_size *= std::min(spill_pages, 32u); // 128 to 4k dynamic. It is unlikely that any frame consumes more than 4096 bytes
result.stack_frame_size = stack_frame_size;
}
result.instruction_count = f.getInstructionCount();
result.num_external_calls = 0;
// The LR is not spared by LLVM in cases where there is a lot of spilling.
// This is much easier to manage with a custom LLVM branch as we can just mark X30 as off-limits as a GPR.
// This is another thing to be moved to a MachineFunction pass. Ideally we should check the instruction stream for writes to LR and reload it on exit.
// For now, assume it is dirtied if the function is of any reasonable length.
result.clobbers_x30 = result.instruction_count > 32;
result.is_leaf = true;
for (auto& bb : f)
{
for (auto& inst : bb)
{
if (auto ci = llvm::dyn_cast<llvm::CallInst>(&inst))
{
if (llvm::isa<llvm::InlineAsm>(ci->getCalledOperand()))
{
// Inline ASM blocks are ignored
continue;
}
result.num_external_calls++;
if (ci->isTailCall())
{
// This is not a leaf if it has at least one exit point / terminator that is not a return instruction.
result.is_leaf = false;
}
else
{
// Returning calls always clobber x30
result.clobbers_x30 = true;
}
}
}
}
return result;
}
instruction_info_t GHC_frame_preservation_pass::decode_instruction(const llvm::Function& f, const llvm::Instruction* i)
{
instruction_info_t result{};
if (auto ci = llvm::dyn_cast<llvm::CallInst>(i))
{
// Watch out for injected ASM blocks...
if (llvm::isa<llvm::InlineAsm>(ci->getCalledOperand()))
{
// Not a real call. This is just an insert of inline asm
return result;
}
result.is_call_inst = true;
result.is_returning = true;
result.preserve_stack = !ci->isTailCall();
result.callee = ci->getCalledFunction();
result.is_tail_call = ci->isTailCall();
if (!result.callee)
{
// Indirect call (call from raw value).
result.is_indirect = true;
result.callee_is_GHC = ci->getCallingConv() == llvm::CallingConv::GHC;
result.callee_name = "__indirect_call";
}
else
{
result.callee_is_GHC = result.callee->getCallingConv() == llvm::CallingConv::GHC;
result.callee_name = result.callee->getName().str();
}
return result;
}
if (auto bi = llvm::dyn_cast<llvm::BranchInst>(i))
{
// More likely to jump out via an unconditional...
if (!bi->isConditional())
{
ensure(bi->getNumSuccessors() == 1);
auto targetbb = bi->getSuccessor(0);
result.callee = targetbb->getParent();
result.callee_name = result.callee->getName().str();
result.is_call_inst = result.callee_name != f.getName();
}
return result;
}
if (auto bi = llvm::dyn_cast<llvm::IndirectBrInst>(i))
{
// Very unlikely to be the same function. Can be considered a function exit.
ensure(bi->getNumDestinations() == 1);
auto targetbb = ensure(bi->getSuccessor(0)); // This is guaranteed to fail but I've yet to encounter this
result.callee = targetbb->getParent();
result.callee_name = result.callee->getName().str();
result.is_call_inst = result.callee_name != f.getName();
return result;
}
if (auto bi = llvm::dyn_cast<llvm::CallBrInst>(i))
{
ensure(bi->getNumSuccessors() == 1);
auto targetbb = bi->getSuccessor(0);
result.callee = targetbb->getParent();
result.callee_name = result.callee->getName().str();
result.is_call_inst = result.callee_name != f.getName();
return result;
}
if (auto bi = llvm::dyn_cast<llvm::InvokeInst>(i))
{
ensure(bi->getNumSuccessors() == 2);
auto targetbb = bi->getSuccessor(0);
result.callee = targetbb->getParent();
result.callee_name = result.callee->getName().str();
result.is_call_inst = result.callee_name != f.getName();
return result;
}
return result;
}
gpr GHC_frame_preservation_pass::get_base_register_for_call(const std::string& callee_name, gpr default_reg)
{
// We go over the base_register_lookup table and find the first matching pattern
for (const auto& pattern : m_config.base_register_lookup)
{
if (callee_name.starts_with(pattern.first))
{
return pattern.second;
}
}
return default_reg;
}
void GHC_frame_preservation_pass::run(llvm::IRBuilder<>* irb, llvm::Function& f)
{
if (f.getCallingConv() != llvm::CallingConv::GHC)
{
// If we're not doing GHC, the calling conv will have stack fixup on its own via prologue/epilogue
return;
}
if (f.getInstructionCount() == 0)
{
// Nothing to do. Happens with placeholder functions such as branch patchpoints
return;
}
const auto this_name = f.getName().str();
if (m_visited_functions.find(this_name) != m_visited_functions.end())
{
// Already processed. Only useful when recursing which is currently not used.
DPRINT("Function %s was already processed. Skipping.\n", this_name.c_str());
return;
}
if (this_name != "__spu-null") // This name is meaningless and doesn't uniquely identify a function
{
m_visited_functions.insert(this_name);
}
if (m_config.exclusion_callback && m_config.exclusion_callback(this_name))
{
// Function is explicitly excluded
return;
}
// Preprocessing.
auto function_info = preprocess_function(f);
if (function_info.num_external_calls == 0 && function_info.stack_frame_size == 0)
{
// No stack frame injection and no external calls to patch up. This is a leaf function, nothing to do.
DPRINT("Ignoring function %s", this_name.c_str());
return;
}
// Force tail calls on all terminators
force_tail_call_terminators(f);
// Check for leaves
if (function_info.is_leaf && !m_config.use_stack_frames)
{
// Sanity check. If this function had no returning calls, it should have been omitted from processing.
ensure(function_info.clobbers_x30, "Function has no terminator and no non-tail calls but was allowed for frame processing!");
DPRINT("Function %s is a leaf.", this_name.c_str());
process_leaf_function(irb, f);
return;
}
// Asm snippets for patching stack frame
std::string frame_prologue, frame_epilogue;
if (function_info.stack_frame_size > 0)
{
// NOTE: The stack frame here is purely optional, we can pre-allocate scratch on the gateway.
// However, that is an optimization for another time, this helps make debugging easier.
frame_prologue = fmt::format("sub sp, sp, #%u;", function_info.stack_frame_size);
frame_epilogue = fmt::format("add sp, sp, #%u;", function_info.stack_frame_size);
// Emit the frame prologue. We use a BB here for extra safety as it solves the problem of backwards jumps re-executing the prologue.
auto functionStart = &f.front();
auto prologueBB = llvm::BasicBlock::Create(f.getContext(), "", &f, functionStart);
irb->SetInsertPoint(prologueBB, prologueBB->begin());
LLVM_ASM_VOID(frame_prologue, irb, f.getContext());
irb->CreateBr(functionStart);
}
// Now we start processing
bool terminator_found = false;
for (auto& bb : f)
{
for (auto bit = bb.begin(); bit != bb.end();)
{
const auto instruction_info = decode_instruction(f, &(*bit));
if (!instruction_info.is_call_inst)
{
++bit;
continue;
}
std::string callee_name = "__unknown";
if (const auto cf = instruction_info.callee)
{
callee_name = cf->getName().str();
if (cf->hasFnAttribute(llvm::Attribute::AlwaysInline) || callee_name.starts_with("llvm."))
{
// Always inlined call. Likely inline Asm. Skip
++bit;
continue;
}
// Technically We should also ignore any host functions linked in, usually starting with ppu_ or spu_ prefix.
// However, there is not much guarantee that those are safe with only rare exceptions, and it doesn't hurt to patch the frame around them that much anyway.
}
if (instruction_info.preserve_stack)
{
// Non-tail call. If we have a stack allocated, we preserve it across the call
++bit;
continue;
}
ensure(instruction_info.is_tail_call);
terminator_found = true;
// Now we patch the call if required. For normal calls that 'return' (i.e calls to C/C++ ABI), we do not patch them as they will manage the stack themselves (callee-managed)
auto ci = llvm::dyn_cast<llvm::CallInst>(bit);
if (patch_tail_call(irb, f, ci, instruction_info, function_info, frame_epilogue))
{
// Delete original call instruction
bit = ci->eraseFromParent();
}
// Next
if (bit != bb.end())
{
++bit;
}
}
}
if (!terminator_found)
{
// If we got here, we must be using stack frames.
ensure(function_info.is_leaf && function_info.stack_frame_size > 0, "Leaf function was processed without using stack frames!");
// We want to insert a frame cleanup at the tail at every return instruction we find.
for (auto& bb : f)
{
for (auto& i : bb)
{
if (is_ret_instruction(&i))
{
irb->SetInsertPoint(&i);
LLVM_ASM_VOID(frame_epilogue, irb, f.getContext());
}
}
}
}
}
bool GHC_frame_preservation_pass::patch_tail_call(
llvm::IRBuilder<>* irb,
llvm::Function& f,
llvm::CallInst* ci,
const instruction_info_t& instruction_info,
const function_info_t& function_info,
const std::string& frame_epilogue)
{
ensure(ci);
const auto this_name = f.getName().str();
irb->SetInsertPoint(ci);
// We're about to make a tail call. This means after this call, we're supposed to return immediately. In that case, don't link, lower to branch only.
// Note that branches have some undesirable side-effects. For one, we lose the argument inputs, which the callee is expecting.
// This means we burn some cycles on every exit, but in return we do not require one instruction on the prologue + the ret chain is eliminated.
// No ret-chain also means two BBs can call each other indefinitely without running out of stack without relying on llvm to optimize that away.
std::string exit_fn;
auto operand_count = ci->getNumOperands() - 1; // The last operand is the callee, not a real operand
std::vector<std::string> arg_constraints;
std::vector<llvm::Value*> unused_args; // To ref/touch
std::vector<llvm::Value*> args;
// We now load the callee args in reverse order to avoid self-clobbering of dependencies.
// FIXME: This is often times redundant and wastes cycles, we'll clean this up in a MachineFunction pass later.
int args_base_reg = instruction_info.callee_is_GHC ? aarch64::x19 : aarch64::x0; // GHC args are always x19..x25
for (auto i = static_cast<int>(operand_count) - 1; i >= 0; --i)
{
llvm::Value* arg = ci->getOperand(i);
args.push_back(arg);
exit_fn += fmt::format("mov %s, $%u;\n", gpr_names[args_base_reg + i], ::size32(args) - 1);
arg_constraints.push_back("r");
}
// Restore LR to the exit gate if we think it may have been trampled.
if (function_info.clobbers_x30)
{
// Load the context "base" thread register to restore the link register from
auto context_base_reg = get_base_register_for_call(instruction_info.callee_name);
if (!instruction_info.callee_is_GHC)
{
// For non-GHC calls, we have to remap the arguments to x0...
context_base_reg = static_cast<gpr>(context_base_reg - 19);
}
// We want to do this after loading the arguments in case there was any spilling involved.
DPRINT("Patching call from %s to %s on register %d...",
this_name.c_str(),
instruction_info.callee_name.c_str(),
static_cast<int>(context_base_reg));
const auto x30_tail_restore = fmt::format(
"ldr x30, [%s, #%u];\n", // Load x30 from thread context
gpr_names[context_base_reg],
m_config.hypervisor_context_offset);
exit_fn += x30_tail_restore;
}
// Stack cleanup. We need to do this last to allow the spiller to find it's own spilled variables.
if (function_info.stack_frame_size > 0)
{
exit_fn += frame_epilogue;
}
if (m_config.debug_info)
{
// Store x27 as our current address taking the place of LR (for debugging since bt is now useless)
// x28 and x29 are used as breadcrumb registers in this mode to form a pseudo-backtrace.
exit_fn +=
"mov x29, x28;\n"
"mov x28, x27;\n"
"adr x27, .;\n";
}
const auto callee_arg = ::size32(args);
auto target = ensure(ci->getCalledOperand());
args.push_back(target);
if (instruction_info.is_indirect)
{
// NOTE: For indirect calls, we read the callee register before we load the operands
// If we don't do that the operands will overwrite our callee address if it lies in the x19-x25 range
// There is no safe temp register to stuff the call address to either, you just have to stuff it below sp and load it after operands are all assigned.
arg_constraints.push_back("r");
exit_fn = fmt::format(
"str $%u, [sp, #-8];\n",
callee_arg) + exit_fn;
exit_fn +=
"ldr x15, [sp, #-8];\n"
"br x15;\n";
}
else
{
arg_constraints.push_back("i");
exit_fn += fmt::format("b $%u;\n", callee_arg);
}
// Touch the unused args by adding them to the instruction. This actually stops LLVM from clobbering the register during lowering.
for (auto& arg : unused_args)
{
args.push_back(arg); // Consume arg to tell LLVM about the reference
arg_constraints.push_back("r"); // Always a register in this case
}
// Emit the branch
llvm_asm(irb, exit_fn, args, fmt::merge(arg_constraints, ","), f.getContext());
// Successful patch
return true;
}
bool GHC_frame_preservation_pass::is_ret_instruction(const llvm::Instruction* i)
{
if (llvm::isa<llvm::ReturnInst>(i))
{
return true;
}
// Check for inline asm invoking "ret". This really shouldn't be a thing, but it is present in SPULLVMRecompiler for some reason.
if (auto ci = llvm::dyn_cast<llvm::CallInst>(i))
{
if (auto asm_ = llvm::dyn_cast<llvm::InlineAsm>(ci->getCalledOperand()))
{
if (asm_->getAsmString() == "ret")
{
return true;
}
}
}
return false;
}
bool GHC_frame_preservation_pass::is_inlined_call(const llvm::CallInst* ci)
{
const auto callee = ci->getCalledFunction();
if (!callee)
{
// Indirect BLR
return false;
}
const std::string callee_name = callee->getName().str();
if (callee_name.starts_with("llvm."))
{
// Intrinsic
return true;
}
if (callee->hasFnAttribute(llvm::Attribute::AlwaysInline))
{
// Assume LLVM always obeys this
return true;
}
return false;
}
void GHC_frame_preservation_pass::process_leaf_function(llvm::IRBuilder<>* irb, llvm::Function& f)
{
// Leaf functions have no true external calls.
// After every external call, restore LR from the thread context register.
bool restore_LR = false;
gpr thread_context_reg = aarch64::x19;
const auto restore_x30 = [&](llvm::Instruction* where)
{
const auto x30_tail_restore = fmt::format(
"ldr x30, [%s, #%u];\n", // Load x30 from thread context
gpr_names[thread_context_reg],
m_config.hypervisor_context_offset);
ensure(where);
irb->SetInsertPoint(where);
LLVM_ASM_VOID(x30_tail_restore, irb, f.getContext());
};
for (auto &bb : f)
{
for (auto bit = bb.begin(); bit != bb.end();)
{
if (restore_LR)
{
restore_x30(llvm::dyn_cast<llvm::Instruction>(bit));
restore_LR = false;
}
if (auto ci = llvm::dyn_cast<llvm::CallInst>(bit))
{
// Returning call?
if (is_inlined_call(ci))
{
++bit;
continue;
}
const auto callee = ci->getCalledFunction();
const std::string callee_name = callee ? callee->getName().str() : "__indirect";
auto base_reg = get_base_register_for_call(callee_name, m_config.base_register_lookup.empty() ? gpr::x19 : gpr::x30);
// Check if the call is unexpected. We cannot guarantee that the reload is well-formed in such scenarios
if (base_reg == gpr::x30)
{
if (callee)
{
// We don't know what we're dealing with here
DPRINT("Unexpected call to %s. We cannot guarantee sane codegen!", callee_name.c_str());
}
// Assume x19
base_reg = gpr::x19;
}
restore_LR = true;
thread_context_reg = base_reg;
}
if (m_config.debug_info && is_ret_instruction(llvm::dyn_cast<llvm::Instruction>(bit)))
{
// We need to save the chain return point.
LLVM_ASM_VOID(
"mov x29, x28;\n"
"mov x28, x27;\n"
"adr x27, .;\n",
irb, f.getContext());
}
if (bit != bb.end())
{
++bit;
}
}
}
ensure(!restore_LR, "Dangling function call found");
}
}

View File

@ -1,111 +0,0 @@
#pragma once
#ifndef ARCH_ARM64
#error "You have included an arm-only header"
#endif
#include <util/types.hpp>
#include "../CPUTranslator.h"
#include <unordered_set>
namespace aarch64
{
enum gpr : s32
{
x0 = 0,
x1, x2, x3, x4, x5, x6, x7, x8, x9,
x10, x11, x12, x13, x14, x15, x16, x17, x18, x19,
x20, x21, x22, x23, x24, x25, x26, x27, x28, x29, x30
};
enum spr : s32
{
xzr = 0,
pc,
sp
};
static const char* gpr_names[] =
{
"x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9",
"x10", "x11", "x12", "x13", "x14", "x15", "x16", "x17", "x18", "x19",
"x20", "x21", "x22", "x23", "x24", "x25", "x26", "x27", "x28", "x29", "x30"
};
static const char* spr_names[] =
{
"xzr", "pc", "sp"
};
// On non-x86 architectures GHC runs stackless. SP is treated as a pointer to scratchpad memory.
// This pass keeps this behavior intact while preserving the expectations of the host's C++ ABI.
class GHC_frame_preservation_pass : public translator_pass
{
public:
struct function_info_t
{
u32 instruction_count;
u32 num_external_calls;
u32 stack_frame_size; // Guessing this properly is critical for vector-heavy functions where spilling is a lot more common
bool clobbers_x30;
bool is_leaf;
};
struct instruction_info_t
{
bool is_call_inst; // Is a function call. This includes a branch to external code.
bool preserve_stack; // Preserve the stack around this call.
bool is_returning; // This instruction "returns" to the next instruction (typically just llvm::CallInst*)
bool callee_is_GHC; // The other function is GHC
bool is_tail_call; // Tail call. Assume it is an exit/terminator.
bool is_indirect; // Indirect call. Target is the first operand.
llvm::Function* callee; // Callee if any
std::string callee_name; // Name of the callee.
};
struct config_t
{
bool debug_info = false; // Record debug information
bool use_stack_frames = true; // Allocate a stack frame for each function. The gateway can alternatively manage a global stack to use as scratch.
bool optimize = true; // Optimize instructions when possible. Set to false when debugging.
u32 hypervisor_context_offset = 0; // Offset within the "thread" object where we can find the hypervisor context (registers configured at gateway).
std::function<bool(const std::string&)> exclusion_callback; // [Optional] Callback run on each function before transform. Return "true" to exclude from frame processing.
std::vector<std::pair<std::string, gpr>> base_register_lookup; // [Optional] Function lookup table to determine the location of the "thread" context.
};
protected:
std::unordered_set<std::string> m_visited_functions;
config_t m_config;
void force_tail_call_terminators(llvm::Function& f);
function_info_t preprocess_function(const llvm::Function& f);
instruction_info_t decode_instruction(const llvm::Function& f, const llvm::Instruction* i);
bool is_ret_instruction(const llvm::Instruction* i);
bool is_inlined_call(const llvm::CallInst* ci);
gpr get_base_register_for_call(const std::string& callee_name, gpr default_reg = gpr::x19);
void process_leaf_function(llvm::IRBuilder<>* irb, llvm::Function& f);
bool patch_tail_call(
llvm::IRBuilder<>* irb,
llvm::Function& f,
llvm::CallInst* where,
const instruction_info_t& instruction_info,
const function_info_t& function_info,
const std::string& frame_epilogue);
public:
GHC_frame_preservation_pass(const config_t& configuration);
~GHC_frame_preservation_pass() = default;
void run(llvm::IRBuilder<>* irb, llvm::Function& f) override;
void reset() override;
};
}

View File

@ -17,7 +17,7 @@
#include <span> #include <span>
#ifdef ARCH_ARM64 #ifdef ARCH_ARM64
#include "Emu/CPU/Backends/AArch64JIT.h" #include "Emu/CPU/Backends/AArch64/AArch64JIT.h"
#endif #endif
using namespace llvm; using namespace llvm;
@ -48,7 +48,7 @@ PPUTranslator::PPUTranslator(LLVMContext& context, Module* _module, const ppu_mo
aarch64::GHC_frame_preservation_pass::config_t config = aarch64::GHC_frame_preservation_pass::config_t config =
{ {
.debug_info = false, // Set to "true" to insert debug frames on x27 .debug_info = true, // Set to "true" to insert debug frames on x27
.use_stack_frames = false, // We don't need this since the PPU GW allocates global scratch on the stack .use_stack_frames = false, // We don't need this since the PPU GW allocates global scratch on the stack
.hypervisor_context_offset = ::offset32(&ppu_thread::hv_ctx), .hypervisor_context_offset = ::offset32(&ppu_thread::hv_ctx),
.exclusion_callback = {}, // Unused, we don't have special exclusion functions on PPU .exclusion_callback = {}, // Unused, we don't have special exclusion functions on PPU

View File

@ -68,7 +68,7 @@ const extern spu_decoder<spu_iflag> g_spu_iflag;
#endif #endif
#ifdef ARCH_ARM64 #ifdef ARCH_ARM64
#include "Emu/CPU/Backends/AArch64JIT.h" #include "Emu/CPU/Backends/AArch64/AArch64JIT.h"
#endif #endif
class spu_llvm_recompiler : public spu_recompiler_base, public cpu_translator class spu_llvm_recompiler : public spu_recompiler_base, public cpu_translator