1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-30 23:42:52 +01:00
llvm-mirror/lib/ExecutionEngine/Interpreter/Execution.cpp

2147 lines
80 KiB
C++
Raw Normal View History

//===-- Execution.cpp - Implement code to simulate the program ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the actual instruction interpreter.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "interpreter"
#include "Interpreter.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/IntrinsicLowering.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <cmath>
using namespace llvm;
STATISTIC(NumDynamicInsts, "Number of dynamic instructions executed");
static cl::opt<bool> PrintVolatile("interpreter-print-volatile", cl::Hidden,
cl::desc("make the interpreter print every volatile load and store"));
//===----------------------------------------------------------------------===//
// Various Helper Functions
//===----------------------------------------------------------------------===//
static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) {
SF.Values[V] = Val;
}
//===----------------------------------------------------------------------===//
// Binary Instruction Implementations
//===----------------------------------------------------------------------===//
#define IMPLEMENT_BINARY_OPERATOR(OP, TY) \
case Type::TY##TyID: \
Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; \
break
static void executeFAddInst(GenericValue &Dest, GenericValue Src1,
GenericValue Src2, Type *Ty) {
switch (Ty->getTypeID()) {
IMPLEMENT_BINARY_OPERATOR(+, Float);
IMPLEMENT_BINARY_OPERATOR(+, Double);
default:
dbgs() << "Unhandled type for FAdd instruction: " << *Ty << "\n";
llvm_unreachable(0);
}
}
static void executeFSubInst(GenericValue &Dest, GenericValue Src1,
GenericValue Src2, Type *Ty) {
switch (Ty->getTypeID()) {
IMPLEMENT_BINARY_OPERATOR(-, Float);
IMPLEMENT_BINARY_OPERATOR(-, Double);
default:
dbgs() << "Unhandled type for FSub instruction: " << *Ty << "\n";
llvm_unreachable(0);
}
}
static void executeFMulInst(GenericValue &Dest, GenericValue Src1,
GenericValue Src2, Type *Ty) {
switch (Ty->getTypeID()) {
IMPLEMENT_BINARY_OPERATOR(*, Float);
IMPLEMENT_BINARY_OPERATOR(*, Double);
default:
dbgs() << "Unhandled type for FMul instruction: " << *Ty << "\n";
llvm_unreachable(0);
}
}
static void executeFDivInst(GenericValue &Dest, GenericValue Src1,
GenericValue Src2, Type *Ty) {
switch (Ty->getTypeID()) {
IMPLEMENT_BINARY_OPERATOR(/, Float);
IMPLEMENT_BINARY_OPERATOR(/, Double);
default:
dbgs() << "Unhandled type for FDiv instruction: " << *Ty << "\n";
llvm_unreachable(0);
}
}
static void executeFRemInst(GenericValue &Dest, GenericValue Src1,
GenericValue Src2, Type *Ty) {
switch (Ty->getTypeID()) {
case Type::FloatTyID:
Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal);
break;
case Type::DoubleTyID:
Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal);
break;
default:
dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n";
llvm_unreachable(0);
}
}
#define IMPLEMENT_INTEGER_ICMP(OP, TY) \
case Type::IntegerTyID: \
Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \
break;
#define IMPLEMENT_VECTOR_INTEGER_ICMP(OP, TY) \
case Type::VectorTyID: { \
assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \
Dest.AggregateVal.resize( Src1.AggregateVal.size() ); \
for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++) \
Dest.AggregateVal[_i].IntVal = APInt(1, \
Src1.AggregateVal[_i].IntVal.OP(Src2.AggregateVal[_i].IntVal));\
} break;
// Handle pointers specially because they must be compared with only as much
// width as the host has. We _do not_ want to be comparing 64 bit values when
// running on a 32-bit target, otherwise the upper 32 bits might mess up
// comparisons if they contain garbage.
#define IMPLEMENT_POINTER_ICMP(OP) \
case Type::PointerTyID: \
Dest.IntVal = APInt(1,(void*)(intptr_t)Src1.PointerVal OP \
(void*)(intptr_t)Src2.PointerVal); \
break;
static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(eq,Ty);
IMPLEMENT_VECTOR_INTEGER_ICMP(eq,Ty);
IMPLEMENT_POINTER_ICMP(==);
default:
dbgs() << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n";
llvm_unreachable(0);
}
return Dest;
}
static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(ne,Ty);
IMPLEMENT_VECTOR_INTEGER_ICMP(ne,Ty);
IMPLEMENT_POINTER_ICMP(!=);
default:
dbgs() << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n";
llvm_unreachable(0);
}
return Dest;
}
static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(ult,Ty);
IMPLEMENT_VECTOR_INTEGER_ICMP(ult,Ty);
IMPLEMENT_POINTER_ICMP(<);
default:
dbgs() << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n";
llvm_unreachable(0);
}
return Dest;
}
static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(slt,Ty);
IMPLEMENT_VECTOR_INTEGER_ICMP(slt,Ty);
IMPLEMENT_POINTER_ICMP(<);
default:
dbgs() << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n";
llvm_unreachable(0);
}
return Dest;
}
static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(ugt,Ty);
IMPLEMENT_VECTOR_INTEGER_ICMP(ugt,Ty);
IMPLEMENT_POINTER_ICMP(>);
default:
dbgs() << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n";
llvm_unreachable(0);
}
return Dest;
}
static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(sgt,Ty);
IMPLEMENT_VECTOR_INTEGER_ICMP(sgt,Ty);
IMPLEMENT_POINTER_ICMP(>);
default:
dbgs() << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n";
llvm_unreachable(0);
}
return Dest;
}
static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(ule,Ty);
IMPLEMENT_VECTOR_INTEGER_ICMP(ule,Ty);
IMPLEMENT_POINTER_ICMP(<=);
default:
dbgs() << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n";
llvm_unreachable(0);
}
return Dest;
}
static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(sle,Ty);
IMPLEMENT_VECTOR_INTEGER_ICMP(sle,Ty);
IMPLEMENT_POINTER_ICMP(<=);
default:
dbgs() << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n";
llvm_unreachable(0);
}
return Dest;
}
static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(uge,Ty);
IMPLEMENT_VECTOR_INTEGER_ICMP(uge,Ty);
IMPLEMENT_POINTER_ICMP(>=);
default:
dbgs() << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n";
llvm_unreachable(0);
}
return Dest;
}
static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_INTEGER_ICMP(sge,Ty);
IMPLEMENT_VECTOR_INTEGER_ICMP(sge,Ty);
IMPLEMENT_POINTER_ICMP(>=);
default:
dbgs() << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n";
llvm_unreachable(0);
}
return Dest;
}
void Interpreter::visitICmpInst(ICmpInst &I) {
ExecutionContext &SF = ECStack.back();
Type *Ty = I.getOperand(0)->getType();
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
GenericValue R; // Result
switch (I.getPredicate()) {
case ICmpInst::ICMP_EQ: R = executeICMP_EQ(Src1, Src2, Ty); break;
case ICmpInst::ICMP_NE: R = executeICMP_NE(Src1, Src2, Ty); break;
case ICmpInst::ICMP_ULT: R = executeICMP_ULT(Src1, Src2, Ty); break;
case ICmpInst::ICMP_SLT: R = executeICMP_SLT(Src1, Src2, Ty); break;
case ICmpInst::ICMP_UGT: R = executeICMP_UGT(Src1, Src2, Ty); break;
case ICmpInst::ICMP_SGT: R = executeICMP_SGT(Src1, Src2, Ty); break;
case ICmpInst::ICMP_ULE: R = executeICMP_ULE(Src1, Src2, Ty); break;
case ICmpInst::ICMP_SLE: R = executeICMP_SLE(Src1, Src2, Ty); break;
case ICmpInst::ICMP_UGE: R = executeICMP_UGE(Src1, Src2, Ty); break;
case ICmpInst::ICMP_SGE: R = executeICMP_SGE(Src1, Src2, Ty); break;
default:
dbgs() << "Don't know how to handle this ICmp predicate!\n-->" << I;
llvm_unreachable(0);
}
SetValue(&I, R, SF);
}
#define IMPLEMENT_FCMP(OP, TY) \
case Type::TY##TyID: \
Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \
break
#define IMPLEMENT_VECTOR_FCMP_T(OP, TY) \
assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \
Dest.AggregateVal.resize( Src1.AggregateVal.size() ); \
for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++) \
Dest.AggregateVal[_i].IntVal = APInt(1, \
Src1.AggregateVal[_i].TY##Val OP Src2.AggregateVal[_i].TY##Val);\
break;
#define IMPLEMENT_VECTOR_FCMP(OP) \
case Type::VectorTyID: \
if(dyn_cast<VectorType>(Ty)->getElementType()->isFloatTy()) { \
IMPLEMENT_VECTOR_FCMP_T(OP, Float); \
} else { \
IMPLEMENT_VECTOR_FCMP_T(OP, Double); \
}
static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_FCMP(==, Float);
IMPLEMENT_FCMP(==, Double);
IMPLEMENT_VECTOR_FCMP(==);
default:
dbgs() << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n";
llvm_unreachable(0);
}
return Dest;
}
#define IMPLEMENT_SCALAR_NANS(TY, X,Y) \
if (TY->isFloatTy()) { \
if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \
Dest.IntVal = APInt(1,false); \
return Dest; \
} \
} else { \
if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \
Dest.IntVal = APInt(1,false); \
return Dest; \
} \
}
#define MASK_VECTOR_NANS_T(X,Y, TZ, FLAG) \
assert(X.AggregateVal.size() == Y.AggregateVal.size()); \
Dest.AggregateVal.resize( X.AggregateVal.size() ); \
for( uint32_t _i=0;_i<X.AggregateVal.size();_i++) { \
if (X.AggregateVal[_i].TZ##Val != X.AggregateVal[_i].TZ##Val || \
Y.AggregateVal[_i].TZ##Val != Y.AggregateVal[_i].TZ##Val) \
Dest.AggregateVal[_i].IntVal = APInt(1,FLAG); \
else { \
Dest.AggregateVal[_i].IntVal = APInt(1,!FLAG); \
} \
}
#define MASK_VECTOR_NANS(TY, X,Y, FLAG) \
if (TY->isVectorTy()) { \
if (dyn_cast<VectorType>(TY)->getElementType()->isFloatTy()) { \
MASK_VECTOR_NANS_T(X, Y, Float, FLAG) \
} else { \
MASK_VECTOR_NANS_T(X, Y, Double, FLAG) \
} \
} \
static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2,
Type *Ty)
{
GenericValue Dest;
// if input is scalar value and Src1 or Src2 is NaN return false
IMPLEMENT_SCALAR_NANS(Ty, Src1, Src2)
// if vector input detect NaNs and fill mask
MASK_VECTOR_NANS(Ty, Src1, Src2, false)
GenericValue DestMask = Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_FCMP(!=, Float);
IMPLEMENT_FCMP(!=, Double);
IMPLEMENT_VECTOR_FCMP(!=);
default:
dbgs() << "Unhandled type for FCmp NE instruction: " << *Ty << "\n";
llvm_unreachable(0);
}
// in vector case mask out NaN elements
if (Ty->isVectorTy())
for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++)
if (DestMask.AggregateVal[_i].IntVal == false)
Dest.AggregateVal[_i].IntVal = APInt(1,false);
return Dest;
}
static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_FCMP(<=, Float);
IMPLEMENT_FCMP(<=, Double);
IMPLEMENT_VECTOR_FCMP(<=);
default:
dbgs() << "Unhandled type for FCmp LE instruction: " << *Ty << "\n";
llvm_unreachable(0);
}
return Dest;
}
static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_FCMP(>=, Float);
IMPLEMENT_FCMP(>=, Double);
IMPLEMENT_VECTOR_FCMP(>=);
default:
dbgs() << "Unhandled type for FCmp GE instruction: " << *Ty << "\n";
llvm_unreachable(0);
}
return Dest;
}
static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_FCMP(<, Float);
IMPLEMENT_FCMP(<, Double);
IMPLEMENT_VECTOR_FCMP(<);
default:
dbgs() << "Unhandled type for FCmp LT instruction: " << *Ty << "\n";
llvm_unreachable(0);
}
return Dest;
}
static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
switch (Ty->getTypeID()) {
IMPLEMENT_FCMP(>, Float);
IMPLEMENT_FCMP(>, Double);
IMPLEMENT_VECTOR_FCMP(>);
default:
dbgs() << "Unhandled type for FCmp GT instruction: " << *Ty << "\n";
llvm_unreachable(0);
}
return Dest;
}
#define IMPLEMENT_UNORDERED(TY, X,Y) \
if (TY->isFloatTy()) { \
if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \
Dest.IntVal = APInt(1,true); \
return Dest; \
} \
} else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \
Dest.IntVal = APInt(1,true); \
return Dest; \
}
#define IMPLEMENT_VECTOR_UNORDERED(TY, X,Y, _FUNC) \
if (TY->isVectorTy()) { \
GenericValue DestMask = Dest; \
Dest = _FUNC(Src1, Src2, Ty); \
for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++) \
if (DestMask.AggregateVal[_i].IntVal == true) \
Dest.AggregateVal[_i].IntVal = APInt(1,true); \
return Dest; \
}
static GenericValue executeFCMP_UEQ(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
IMPLEMENT_UNORDERED(Ty, Src1, Src2)
MASK_VECTOR_NANS(Ty, Src1, Src2, true)
IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OEQ)
return executeFCMP_OEQ(Src1, Src2, Ty);
}
static GenericValue executeFCMP_UNE(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
IMPLEMENT_UNORDERED(Ty, Src1, Src2)
MASK_VECTOR_NANS(Ty, Src1, Src2, true)
IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_ONE)
return executeFCMP_ONE(Src1, Src2, Ty);
}
static GenericValue executeFCMP_ULE(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
IMPLEMENT_UNORDERED(Ty, Src1, Src2)
MASK_VECTOR_NANS(Ty, Src1, Src2, true)
IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLE)
return executeFCMP_OLE(Src1, Src2, Ty);
}
static GenericValue executeFCMP_UGE(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
IMPLEMENT_UNORDERED(Ty, Src1, Src2)
MASK_VECTOR_NANS(Ty, Src1, Src2, true)
IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGE)
return executeFCMP_OGE(Src1, Src2, Ty);
}
static GenericValue executeFCMP_ULT(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
IMPLEMENT_UNORDERED(Ty, Src1, Src2)
MASK_VECTOR_NANS(Ty, Src1, Src2, true)
IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLT)
return executeFCMP_OLT(Src1, Src2, Ty);
}
static GenericValue executeFCMP_UGT(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
IMPLEMENT_UNORDERED(Ty, Src1, Src2)
MASK_VECTOR_NANS(Ty, Src1, Src2, true)
IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGT)
return executeFCMP_OGT(Src1, Src2, Ty);
}
static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
if(Ty->isVectorTy()) {
assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
Dest.AggregateVal.resize( Src1.AggregateVal.size() );
if(dyn_cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
Dest.AggregateVal[_i].IntVal = APInt(1,
( (Src1.AggregateVal[_i].FloatVal ==
Src1.AggregateVal[_i].FloatVal) &&
(Src2.AggregateVal[_i].FloatVal ==
Src2.AggregateVal[_i].FloatVal)));
} else {
for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
Dest.AggregateVal[_i].IntVal = APInt(1,
( (Src1.AggregateVal[_i].DoubleVal ==
Src1.AggregateVal[_i].DoubleVal) &&
(Src2.AggregateVal[_i].DoubleVal ==
Src2.AggregateVal[_i].DoubleVal)));
}
} else if (Ty->isFloatTy())
Dest.IntVal = APInt(1,(Src1.FloatVal == Src1.FloatVal &&
Src2.FloatVal == Src2.FloatVal));
else {
Dest.IntVal = APInt(1,(Src1.DoubleVal == Src1.DoubleVal &&
Src2.DoubleVal == Src2.DoubleVal));
}
return Dest;
}
static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2,
Type *Ty) {
GenericValue Dest;
if(Ty->isVectorTy()) {
assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
Dest.AggregateVal.resize( Src1.AggregateVal.size() );
if(dyn_cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
Dest.AggregateVal[_i].IntVal = APInt(1,
( (Src1.AggregateVal[_i].FloatVal !=
Src1.AggregateVal[_i].FloatVal) ||
(Src2.AggregateVal[_i].FloatVal !=
Src2.AggregateVal[_i].FloatVal)));
} else {
for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
Dest.AggregateVal[_i].IntVal = APInt(1,
( (Src1.AggregateVal[_i].DoubleVal !=
Src1.AggregateVal[_i].DoubleVal) ||
(Src2.AggregateVal[_i].DoubleVal !=
Src2.AggregateVal[_i].DoubleVal)));
}
} else if (Ty->isFloatTy())
Dest.IntVal = APInt(1,(Src1.FloatVal != Src1.FloatVal ||
Src2.FloatVal != Src2.FloatVal));
else {
Dest.IntVal = APInt(1,(Src1.DoubleVal != Src1.DoubleVal ||
Src2.DoubleVal != Src2.DoubleVal));
}
return Dest;
}
static GenericValue executeFCMP_BOOL(GenericValue Src1, GenericValue Src2,
const Type *Ty, const bool val) {
GenericValue Dest;
if(Ty->isVectorTy()) {
assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
Dest.AggregateVal.resize( Src1.AggregateVal.size() );
for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++)
Dest.AggregateVal[_i].IntVal = APInt(1,val);
} else {
Dest.IntVal = APInt(1, val);
}
return Dest;
}
void Interpreter::visitFCmpInst(FCmpInst &I) {
ExecutionContext &SF = ECStack.back();
Type *Ty = I.getOperand(0)->getType();
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
GenericValue R; // Result
switch (I.getPredicate()) {
default:
dbgs() << "Don't know how to handle this FCmp predicate!\n-->" << I;
llvm_unreachable(0);
break;
case FCmpInst::FCMP_FALSE: R = executeFCMP_BOOL(Src1, Src2, Ty, false);
break;
case FCmpInst::FCMP_TRUE: R = executeFCMP_BOOL(Src1, Src2, Ty, true);
break;
case FCmpInst::FCMP_ORD: R = executeFCMP_ORD(Src1, Src2, Ty); break;
case FCmpInst::FCMP_UNO: R = executeFCMP_UNO(Src1, Src2, Ty); break;
case FCmpInst::FCMP_UEQ: R = executeFCMP_UEQ(Src1, Src2, Ty); break;
case FCmpInst::FCMP_OEQ: R = executeFCMP_OEQ(Src1, Src2, Ty); break;
case FCmpInst::FCMP_UNE: R = executeFCMP_UNE(Src1, Src2, Ty); break;
case FCmpInst::FCMP_ONE: R = executeFCMP_ONE(Src1, Src2, Ty); break;
case FCmpInst::FCMP_ULT: R = executeFCMP_ULT(Src1, Src2, Ty); break;
case FCmpInst::FCMP_OLT: R = executeFCMP_OLT(Src1, Src2, Ty); break;
case FCmpInst::FCMP_UGT: R = executeFCMP_UGT(Src1, Src2, Ty); break;
case FCmpInst::FCMP_OGT: R = executeFCMP_OGT(Src1, Src2, Ty); break;
case FCmpInst::FCMP_ULE: R = executeFCMP_ULE(Src1, Src2, Ty); break;
case FCmpInst::FCMP_OLE: R = executeFCMP_OLE(Src1, Src2, Ty); break;
case FCmpInst::FCMP_UGE: R = executeFCMP_UGE(Src1, Src2, Ty); break;
case FCmpInst::FCMP_OGE: R = executeFCMP_OGE(Src1, Src2, Ty); break;
}
SetValue(&I, R, SF);
}
static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1,
GenericValue Src2, Type *Ty) {
GenericValue Result;
switch (predicate) {
case ICmpInst::ICMP_EQ: return executeICMP_EQ(Src1, Src2, Ty);
case ICmpInst::ICMP_NE: return executeICMP_NE(Src1, Src2, Ty);
case ICmpInst::ICMP_UGT: return executeICMP_UGT(Src1, Src2, Ty);
case ICmpInst::ICMP_SGT: return executeICMP_SGT(Src1, Src2, Ty);
case ICmpInst::ICMP_ULT: return executeICMP_ULT(Src1, Src2, Ty);
case ICmpInst::ICMP_SLT: return executeICMP_SLT(Src1, Src2, Ty);
case ICmpInst::ICMP_UGE: return executeICMP_UGE(Src1, Src2, Ty);
case ICmpInst::ICMP_SGE: return executeICMP_SGE(Src1, Src2, Ty);
case ICmpInst::ICMP_ULE: return executeICMP_ULE(Src1, Src2, Ty);
case ICmpInst::ICMP_SLE: return executeICMP_SLE(Src1, Src2, Ty);
case FCmpInst::FCMP_ORD: return executeFCMP_ORD(Src1, Src2, Ty);
case FCmpInst::FCMP_UNO: return executeFCMP_UNO(Src1, Src2, Ty);
case FCmpInst::FCMP_OEQ: return executeFCMP_OEQ(Src1, Src2, Ty);
case FCmpInst::FCMP_UEQ: return executeFCMP_UEQ(Src1, Src2, Ty);
case FCmpInst::FCMP_ONE: return executeFCMP_ONE(Src1, Src2, Ty);
case FCmpInst::FCMP_UNE: return executeFCMP_UNE(Src1, Src2, Ty);
case FCmpInst::FCMP_OLT: return executeFCMP_OLT(Src1, Src2, Ty);
case FCmpInst::FCMP_ULT: return executeFCMP_ULT(Src1, Src2, Ty);
case FCmpInst::FCMP_OGT: return executeFCMP_OGT(Src1, Src2, Ty);
case FCmpInst::FCMP_UGT: return executeFCMP_UGT(Src1, Src2, Ty);
case FCmpInst::FCMP_OLE: return executeFCMP_OLE(Src1, Src2, Ty);
case FCmpInst::FCMP_ULE: return executeFCMP_ULE(Src1, Src2, Ty);
case FCmpInst::FCMP_OGE: return executeFCMP_OGE(Src1, Src2, Ty);
case FCmpInst::FCMP_UGE: return executeFCMP_UGE(Src1, Src2, Ty);
case FCmpInst::FCMP_FALSE: return executeFCMP_BOOL(Src1, Src2, Ty, false);
case FCmpInst::FCMP_TRUE: return executeFCMP_BOOL(Src1, Src2, Ty, true);
default:
dbgs() << "Unhandled Cmp predicate\n";
llvm_unreachable(0);
}
}
void Interpreter::visitBinaryOperator(BinaryOperator &I) {
ExecutionContext &SF = ECStack.back();
Type *Ty = I.getOperand(0)->getType();
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
GenericValue R; // Result
// First process vector operation
if (Ty->isVectorTy()) {
assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
R.AggregateVal.resize(Src1.AggregateVal.size());
// Macros to execute binary operation 'OP' over integer vectors
#define INTEGER_VECTOR_OPERATION(OP) \
for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
R.AggregateVal[i].IntVal = \
Src1.AggregateVal[i].IntVal OP Src2.AggregateVal[i].IntVal;
// Additional macros to execute binary operations udiv/sdiv/urem/srem since
// they have different notation.
#define INTEGER_VECTOR_FUNCTION(OP) \
for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
R.AggregateVal[i].IntVal = \
Src1.AggregateVal[i].IntVal.OP(Src2.AggregateVal[i].IntVal);
// Macros to execute binary operation 'OP' over floating point type TY
// (float or double) vectors
#define FLOAT_VECTOR_FUNCTION(OP, TY) \
for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
R.AggregateVal[i].TY = \
Src1.AggregateVal[i].TY OP Src2.AggregateVal[i].TY;
// Macros to choose appropriate TY: float or double and run operation
// execution
#define FLOAT_VECTOR_OP(OP) { \
if (dyn_cast<VectorType>(Ty)->getElementType()->isFloatTy()) \
FLOAT_VECTOR_FUNCTION(OP, FloatVal) \
else { \
if (dyn_cast<VectorType>(Ty)->getElementType()->isDoubleTy()) \
FLOAT_VECTOR_FUNCTION(OP, DoubleVal) \
else { \
dbgs() << "Unhandled type for OP instruction: " << *Ty << "\n"; \
llvm_unreachable(0); \
} \
} \
}
switch(I.getOpcode()){
default:
dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
llvm_unreachable(0);
break;
case Instruction::Add: INTEGER_VECTOR_OPERATION(+) break;
case Instruction::Sub: INTEGER_VECTOR_OPERATION(-) break;
case Instruction::Mul: INTEGER_VECTOR_OPERATION(*) break;
case Instruction::UDiv: INTEGER_VECTOR_FUNCTION(udiv) break;
case Instruction::SDiv: INTEGER_VECTOR_FUNCTION(sdiv) break;
case Instruction::URem: INTEGER_VECTOR_FUNCTION(urem) break;
case Instruction::SRem: INTEGER_VECTOR_FUNCTION(srem) break;
case Instruction::And: INTEGER_VECTOR_OPERATION(&) break;
case Instruction::Or: INTEGER_VECTOR_OPERATION(|) break;
case Instruction::Xor: INTEGER_VECTOR_OPERATION(^) break;
case Instruction::FAdd: FLOAT_VECTOR_OP(+) break;
case Instruction::FSub: FLOAT_VECTOR_OP(-) break;
case Instruction::FMul: FLOAT_VECTOR_OP(*) break;
case Instruction::FDiv: FLOAT_VECTOR_OP(/) break;
case Instruction::FRem:
if (dyn_cast<VectorType>(Ty)->getElementType()->isFloatTy())
for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
R.AggregateVal[i].FloatVal =
fmod(Src1.AggregateVal[i].FloatVal, Src2.AggregateVal[i].FloatVal);
else {
if (dyn_cast<VectorType>(Ty)->getElementType()->isDoubleTy())
for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
R.AggregateVal[i].DoubleVal =
fmod(Src1.AggregateVal[i].DoubleVal, Src2.AggregateVal[i].DoubleVal);
else {
dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n";
llvm_unreachable(0);
}
}
break;
}
} else {
switch (I.getOpcode()) {
default:
dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
llvm_unreachable(0);
break;
case Instruction::Add: R.IntVal = Src1.IntVal + Src2.IntVal; break;
case Instruction::Sub: R.IntVal = Src1.IntVal - Src2.IntVal; break;
case Instruction::Mul: R.IntVal = Src1.IntVal * Src2.IntVal; break;
case Instruction::FAdd: executeFAddInst(R, Src1, Src2, Ty); break;
case Instruction::FSub: executeFSubInst(R, Src1, Src2, Ty); break;
case Instruction::FMul: executeFMulInst(R, Src1, Src2, Ty); break;
case Instruction::FDiv: executeFDivInst(R, Src1, Src2, Ty); break;
case Instruction::FRem: executeFRemInst(R, Src1, Src2, Ty); break;
case Instruction::UDiv: R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break;
case Instruction::SDiv: R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break;
case Instruction::URem: R.IntVal = Src1.IntVal.urem(Src2.IntVal); break;
case Instruction::SRem: R.IntVal = Src1.IntVal.srem(Src2.IntVal); break;
case Instruction::And: R.IntVal = Src1.IntVal & Src2.IntVal; break;
case Instruction::Or: R.IntVal = Src1.IntVal | Src2.IntVal; break;
case Instruction::Xor: R.IntVal = Src1.IntVal ^ Src2.IntVal; break;
}
}
SetValue(&I, R, SF);
}
static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2,
GenericValue Src3, const Type *Ty) {
GenericValue Dest;
if(Ty->isVectorTy()) {
assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
assert(Src2.AggregateVal.size() == Src3.AggregateVal.size());
Dest.AggregateVal.resize( Src1.AggregateVal.size() );
for (size_t i = 0; i < Src1.AggregateVal.size(); ++i)
Dest.AggregateVal[i] = (Src1.AggregateVal[i].IntVal == 0) ?
Src3.AggregateVal[i] : Src2.AggregateVal[i];
} else {
Dest = (Src1.IntVal == 0) ? Src3 : Src2;
}
return Dest;
}
void Interpreter::visitSelectInst(SelectInst &I) {
ExecutionContext &SF = ECStack.back();
const Type * Ty = I.getOperand(0)->getType();
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
GenericValue R = executeSelectInst(Src1, Src2, Src3, Ty);
SetValue(&I, R, SF);
}
//===----------------------------------------------------------------------===//
// Terminator Instruction Implementations
//===----------------------------------------------------------------------===//
void Interpreter::exitCalled(GenericValue GV) {
// runAtExitHandlers() assumes there are no stack frames, but
// if exit() was called, then it had a stack frame. Blow away
// the stack before interpreting atexit handlers.
ECStack.clear();
runAtExitHandlers();
exit(GV.IntVal.zextOrTrunc(32).getZExtValue());
}
/// Pop the last stack frame off of ECStack and then copy the result
/// back into the result variable if we are not returning void. The
/// result variable may be the ExitValue, or the Value of the calling
/// CallInst if there was a previous stack frame. This method may
/// invalidate any ECStack iterators you have. This method also takes
/// care of switching to the normal destination BB, if we are returning
/// from an invoke.
///
void Interpreter::popStackAndReturnValueToCaller(Type *RetTy,
GenericValue Result) {
// Pop the current stack frame.
ECStack.pop_back();
if (ECStack.empty()) { // Finished main. Put result into exit code...
if (RetTy && !RetTy->isVoidTy()) { // Nonvoid return type?
ExitValue = Result; // Capture the exit value of the program
} else {
memset(&ExitValue.Untyped, 0, sizeof(ExitValue.Untyped));
}
} else {
// If we have a previous stack frame, and we have a previous call,
// fill in the return value...
ExecutionContext &CallingSF = ECStack.back();
if (Instruction *I = CallingSF.Caller.getInstruction()) {
// Save result...
if (!CallingSF.Caller.getType()->isVoidTy())
SetValue(I, Result, CallingSF);
if (InvokeInst *II = dyn_cast<InvokeInst> (I))
SwitchToNewBasicBlock (II->getNormalDest (), CallingSF);
CallingSF.Caller = CallSite(); // We returned from the call...
}
}
}
void Interpreter::visitReturnInst(ReturnInst &I) {
ExecutionContext &SF = ECStack.back();
Type *RetTy = Type::getVoidTy(I.getContext());
GenericValue Result;
// Save away the return value... (if we are not 'ret void')
if (I.getNumOperands()) {
RetTy = I.getReturnValue()->getType();
Result = getOperandValue(I.getReturnValue(), SF);
}
popStackAndReturnValueToCaller(RetTy, Result);
}
void Interpreter::visitUnreachableInst(UnreachableInst &I) {
report_fatal_error("Program executed an 'unreachable' instruction!");
}
void Interpreter::visitBranchInst(BranchInst &I) {
ExecutionContext &SF = ECStack.back();
BasicBlock *Dest;
Dest = I.getSuccessor(0); // Uncond branches have a fixed dest...
if (!I.isUnconditional()) {
Value *Cond = I.getCondition();
if (getOperandValue(Cond, SF).IntVal == 0) // If false cond...
Dest = I.getSuccessor(1);
}
SwitchToNewBasicBlock(Dest, SF);
}
void Interpreter::visitSwitchInst(SwitchInst &I) {
ExecutionContext &SF = ECStack.back();
Value* Cond = I.getCondition();
Type *ElTy = Cond->getType();
GenericValue CondVal = getOperandValue(Cond, SF);
// Check to see if any of the cases match...
BasicBlock *Dest = 0;
for (SwitchInst::CaseIt i = I.case_begin(), e = I.case_end(); i != e; ++i) {
GenericValue CaseVal = getOperandValue(i.getCaseValue(), SF);
if (executeICMP_EQ(CondVal, CaseVal, ElTy).IntVal != 0) {
Dest = cast<BasicBlock>(i.getCaseSuccessor());
break;
}
}
if (!Dest) Dest = I.getDefaultDest(); // No cases matched: use default
SwitchToNewBasicBlock(Dest, SF);
}
void Interpreter::visitIndirectBrInst(IndirectBrInst &I) {
ExecutionContext &SF = ECStack.back();
void *Dest = GVTOP(getOperandValue(I.getAddress(), SF));
SwitchToNewBasicBlock((BasicBlock*)Dest, SF);
}
// SwitchToNewBasicBlock - This method is used to jump to a new basic block.
// This function handles the actual updating of block and instruction iterators
// as well as execution of all of the PHI nodes in the destination block.
//
// This method does this because all of the PHI nodes must be executed
// atomically, reading their inputs before any of the results are updated. Not
// doing this can cause problems if the PHI nodes depend on other PHI nodes for
// their inputs. If the input PHI node is updated before it is read, incorrect
// results can happen. Thus we use a two phase approach.
//
void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){
BasicBlock *PrevBB = SF.CurBB; // Remember where we came from...
SF.CurBB = Dest; // Update CurBB to branch destination
SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr...
if (!isa<PHINode>(SF.CurInst)) return; // Nothing fancy to do
// Loop over all of the PHI nodes in the current block, reading their inputs.
std::vector<GenericValue> ResultValues;
for (; PHINode *PN = dyn_cast<PHINode>(SF.CurInst); ++SF.CurInst) {
// Search for the value corresponding to this previous bb...
int i = PN->getBasicBlockIndex(PrevBB);
assert(i != -1 && "PHINode doesn't contain entry for predecessor??");
Value *IncomingValue = PN->getIncomingValue(i);
// Save the incoming value for this PHI node...
ResultValues.push_back(getOperandValue(IncomingValue, SF));
}
// Now loop over all of the PHI nodes setting their values...
SF.CurInst = SF.CurBB->begin();
for (unsigned i = 0; isa<PHINode>(SF.CurInst); ++SF.CurInst, ++i) {
PHINode *PN = cast<PHINode>(SF.CurInst);
SetValue(PN, ResultValues[i], SF);
}
}
//===----------------------------------------------------------------------===//
// Memory Instruction Implementations
//===----------------------------------------------------------------------===//
void Interpreter::visitAllocaInst(AllocaInst &I) {
ExecutionContext &SF = ECStack.back();
Type *Ty = I.getType()->getElementType(); // Type to be allocated
// Get the number of elements being allocated by the array...
unsigned NumElements =
getOperandValue(I.getOperand(0), SF).IntVal.getZExtValue();
unsigned TypeSize = (size_t)TD.getTypeAllocSize(Ty);
// Avoid malloc-ing zero bytes, use max()...
unsigned MemToAlloc = std::max(1U, NumElements * TypeSize);
// Allocate enough memory to hold the type...
void *Memory = malloc(MemToAlloc);
DEBUG(dbgs() << "Allocated Type: " << *Ty << " (" << TypeSize << " bytes) x "
<< NumElements << " (Total: " << MemToAlloc << ") at "
<< uintptr_t(Memory) << '\n');
GenericValue Result = PTOGV(Memory);
assert(Result.PointerVal != 0 && "Null pointer returned by malloc!");
SetValue(&I, Result, SF);
if (I.getOpcode() == Instruction::Alloca)
ECStack.back().Allocas.add(Memory);
}
// getElementOffset - The workhorse for getelementptr.
//
GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I,
gep_type_iterator E,
ExecutionContext &SF) {
assert(Ptr->getType()->isPointerTy() &&
"Cannot getElementOffset of a nonpointer type!");
uint64_t Total = 0;
for (; I != E; ++I) {
if (StructType *STy = dyn_cast<StructType>(*I)) {
const StructLayout *SLO = TD.getStructLayout(STy);
const ConstantInt *CPU = cast<ConstantInt>(I.getOperand());
unsigned Index = unsigned(CPU->getZExtValue());
Total += SLO->getElementOffset(Index);
} else {
SequentialType *ST = cast<SequentialType>(*I);
2003-02-25 22:14:59 +01:00
// Get the index number for the array... which must be long type...
GenericValue IdxGV = getOperandValue(I.getOperand(), SF);
int64_t Idx;
unsigned BitWidth =
cast<IntegerType>(I.getOperand()->getType())->getBitWidth();
if (BitWidth == 32)
Idx = (int64_t)(int32_t)IdxGV.IntVal.getZExtValue();
else {
assert(BitWidth == 64 && "Invalid index type for getelementptr");
Idx = (int64_t)IdxGV.IntVal.getZExtValue();
}
Total += TD.getTypeAllocSize(ST->getElementType())*Idx;
}
}
GenericValue Result;
Result.PointerVal = ((char*)getOperandValue(Ptr, SF).PointerVal) + Total;
DEBUG(dbgs() << "GEP Index " << Total << " bytes.\n");
return Result;
}
void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) {
ExecutionContext &SF = ECStack.back();
SetValue(&I, executeGEPOperation(I.getPointerOperand(),
gep_type_begin(I), gep_type_end(I), SF), SF);
}
void Interpreter::visitLoadInst(LoadInst &I) {
ExecutionContext &SF = ECStack.back();
GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
GenericValue *Ptr = (GenericValue*)GVTOP(SRC);
GenericValue Result;
LoadValueFromMemory(Result, Ptr, I.getType());
SetValue(&I, Result, SF);
if (I.isVolatile() && PrintVolatile)
dbgs() << "Volatile load " << I;
}
void Interpreter::visitStoreInst(StoreInst &I) {
ExecutionContext &SF = ECStack.back();
GenericValue Val = getOperandValue(I.getOperand(0), SF);
GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC),
2002-10-26 03:57:15 +02:00
I.getOperand(0)->getType());
if (I.isVolatile() && PrintVolatile)
dbgs() << "Volatile store: " << I;
}
//===----------------------------------------------------------------------===//
// Miscellaneous Instruction Implementations
//===----------------------------------------------------------------------===//
void Interpreter::visitCallSite(CallSite CS) {
ExecutionContext &SF = ECStack.back();
// Check to see if this is an intrinsic function call...
Function *F = CS.getCalledFunction();
if (F && F->isDeclaration())
switch (F->getIntrinsicID()) {
case Intrinsic::not_intrinsic:
break;
case Intrinsic::vastart: { // va_start
GenericValue ArgIndex;
ArgIndex.UIntPairVal.first = ECStack.size() - 1;
ArgIndex.UIntPairVal.second = 0;
SetValue(CS.getInstruction(), ArgIndex, SF);
return;
}
case Intrinsic::vaend: // va_end is a noop for the interpreter
return;
case Intrinsic::vacopy: // va_copy: dest = src
SetValue(CS.getInstruction(), getOperandValue(*CS.arg_begin(), SF), SF);
return;
default:
// If it is an unknown intrinsic function, use the intrinsic lowering
// class to transform it into hopefully tasty LLVM code.
//
BasicBlock::iterator me(CS.getInstruction());
BasicBlock *Parent = CS.getInstruction()->getParent();
bool atBegin(Parent->begin() == me);
if (!atBegin)
--me;
IL->LowerIntrinsicCall(cast<CallInst>(CS.getInstruction()));
// Restore the CurInst pointer to the first instruction newly inserted, if
// any.
if (atBegin) {
SF.CurInst = Parent->begin();
} else {
SF.CurInst = me;
++SF.CurInst;
}
return;
}
SF.Caller = CS;
std::vector<GenericValue> ArgVals;
const unsigned NumArgs = SF.Caller.arg_size();
ArgVals.reserve(NumArgs);
uint16_t pNum = 1;
for (CallSite::arg_iterator i = SF.Caller.arg_begin(),
e = SF.Caller.arg_end(); i != e; ++i, ++pNum) {
Value *V = *i;
ArgVals.push_back(getOperandValue(V, SF));
}
// To handle indirect calls, we must get the pointer value from the argument
// and treat it as a function pointer.
GenericValue SRC = getOperandValue(SF.Caller.getCalledValue(), SF);
callFunction((Function*)GVTOP(SRC), ArgVals);
}
// auxilary function for shift operations
static unsigned getShiftAmount(uint64_t orgShiftAmount,
llvm::APInt valueToShift) {
unsigned valueWidth = valueToShift.getBitWidth();
if (orgShiftAmount < (uint64_t)valueWidth)
return orgShiftAmount;
// according to the llvm documentation, if orgShiftAmount > valueWidth,
// the result is undfeined. but we do shift by this rule:
return (NextPowerOf2(valueWidth-1) - 1) & orgShiftAmount;
}
void Interpreter::visitShl(BinaryOperator &I) {
ExecutionContext &SF = ECStack.back();
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
GenericValue Dest;
const Type *Ty = I.getType();
if (Ty->isVectorTy()) {
uint32_t src1Size = uint32_t(Src1.AggregateVal.size());
assert(src1Size == Src2.AggregateVal.size());
for (unsigned i = 0; i < src1Size; i++) {
GenericValue Result;
uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
Result.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift));
Dest.AggregateVal.push_back(Result);
}
} else {
// scalar
uint64_t shiftAmount = Src2.IntVal.getZExtValue();
llvm::APInt valueToShift = Src1.IntVal;
Dest.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift));
}
SetValue(&I, Dest, SF);
}
void Interpreter::visitLShr(BinaryOperator &I) {
ExecutionContext &SF = ECStack.back();
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
GenericValue Dest;
const Type *Ty = I.getType();
if (Ty->isVectorTy()) {
uint32_t src1Size = uint32_t(Src1.AggregateVal.size());
assert(src1Size == Src2.AggregateVal.size());
for (unsigned i = 0; i < src1Size; i++) {
GenericValue Result;
uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
Result.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift));
Dest.AggregateVal.push_back(Result);
}
} else {
// scalar
uint64_t shiftAmount = Src2.IntVal.getZExtValue();
llvm::APInt valueToShift = Src1.IntVal;
Dest.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift));
}
SetValue(&I, Dest, SF);
}
void Interpreter::visitAShr(BinaryOperator &I) {
ExecutionContext &SF = ECStack.back();
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
GenericValue Dest;
const Type *Ty = I.getType();
if (Ty->isVectorTy()) {
size_t src1Size = Src1.AggregateVal.size();
assert(src1Size == Src2.AggregateVal.size());
for (unsigned i = 0; i < src1Size; i++) {
GenericValue Result;
uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
Result.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift));
Dest.AggregateVal.push_back(Result);
}
} else {
// scalar
uint64_t shiftAmount = Src2.IntVal.getZExtValue();
llvm::APInt valueToShift = Src1.IntVal;
Dest.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift));
}
SetValue(&I, Dest, SF);
}
GenericValue Interpreter::executeTruncInst(Value *SrcVal, Type *DstTy,
ExecutionContext &SF) {
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
Type *SrcTy = SrcVal->getType();
if (SrcTy->isVectorTy()) {
Type *DstVecTy = DstTy->getScalarType();
unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
unsigned NumElts = Src.AggregateVal.size();
// the sizes of src and dst vectors must be equal
Dest.AggregateVal.resize(NumElts);
for (unsigned i = 0; i < NumElts; i++)
Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.trunc(DBitWidth);
} else {
IntegerType *DITy = cast<IntegerType>(DstTy);
unsigned DBitWidth = DITy->getBitWidth();
Dest.IntVal = Src.IntVal.trunc(DBitWidth);
}
return Dest;
}
GenericValue Interpreter::executeSExtInst(Value *SrcVal, Type *DstTy,
ExecutionContext &SF) {
const Type *SrcTy = SrcVal->getType();
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
if (SrcTy->isVectorTy()) {
const Type *DstVecTy = DstTy->getScalarType();
unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
unsigned size = Src.AggregateVal.size();
// the sizes of src and dst vectors must be equal.
Dest.AggregateVal.resize(size);
for (unsigned i = 0; i < size; i++)
Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.sext(DBitWidth);
} else {
const IntegerType *DITy = cast<IntegerType>(DstTy);
unsigned DBitWidth = DITy->getBitWidth();
Dest.IntVal = Src.IntVal.sext(DBitWidth);
}
return Dest;
}
GenericValue Interpreter::executeZExtInst(Value *SrcVal, Type *DstTy,
ExecutionContext &SF) {
const Type *SrcTy = SrcVal->getType();
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
if (SrcTy->isVectorTy()) {
const Type *DstVecTy = DstTy->getScalarType();
unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
unsigned size = Src.AggregateVal.size();
// the sizes of src and dst vectors must be equal.
Dest.AggregateVal.resize(size);
for (unsigned i = 0; i < size; i++)
Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.zext(DBitWidth);
} else {
const IntegerType *DITy = cast<IntegerType>(DstTy);
unsigned DBitWidth = DITy->getBitWidth();
Dest.IntVal = Src.IntVal.zext(DBitWidth);
}
return Dest;
}
GenericValue Interpreter::executeFPTruncInst(Value *SrcVal, Type *DstTy,
ExecutionContext &SF) {
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
assert(SrcVal->getType()->getScalarType()->isDoubleTy() &&
DstTy->getScalarType()->isFloatTy() &&
"Invalid FPTrunc instruction");
unsigned size = Src.AggregateVal.size();
// the sizes of src and dst vectors must be equal.
Dest.AggregateVal.resize(size);
for (unsigned i = 0; i < size; i++)
Dest.AggregateVal[i].FloatVal = (float)Src.AggregateVal[i].DoubleVal;
} else {
assert(SrcVal->getType()->isDoubleTy() && DstTy->isFloatTy() &&
"Invalid FPTrunc instruction");
Dest.FloatVal = (float)Src.DoubleVal;
}
return Dest;
}
GenericValue Interpreter::executeFPExtInst(Value *SrcVal, Type *DstTy,
ExecutionContext &SF) {
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
assert(SrcVal->getType()->getScalarType()->isFloatTy() &&
DstTy->getScalarType()->isDoubleTy() && "Invalid FPExt instruction");
unsigned size = Src.AggregateVal.size();
// the sizes of src and dst vectors must be equal.
Dest.AggregateVal.resize(size);
for (unsigned i = 0; i < size; i++)
Dest.AggregateVal[i].DoubleVal = (double)Src.AggregateVal[i].FloatVal;
} else {
assert(SrcVal->getType()->isFloatTy() && DstTy->isDoubleTy() &&
"Invalid FPExt instruction");
Dest.DoubleVal = (double)Src.FloatVal;
}
return Dest;
}
GenericValue Interpreter::executeFPToUIInst(Value *SrcVal, Type *DstTy,
ExecutionContext &SF) {
Type *SrcTy = SrcVal->getType();
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
if (SrcTy->getTypeID() == Type::VectorTyID) {
const Type *DstVecTy = DstTy->getScalarType();
const Type *SrcVecTy = SrcTy->getScalarType();
uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
unsigned size = Src.AggregateVal.size();
// the sizes of src and dst vectors must be equal.
Dest.AggregateVal.resize(size);
if (SrcVecTy->getTypeID() == Type::FloatTyID) {
assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToUI instruction");
for (unsigned i = 0; i < size; i++)
Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt(
Src.AggregateVal[i].FloatVal, DBitWidth);
} else {
for (unsigned i = 0; i < size; i++)
Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt(
Src.AggregateVal[i].DoubleVal, DBitWidth);
}
} else {
// scalar
uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
assert(SrcTy->isFloatingPointTy() && "Invalid FPToUI instruction");
if (SrcTy->getTypeID() == Type::FloatTyID)
Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
else {
Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
}
}
return Dest;
}
GenericValue Interpreter::executeFPToSIInst(Value *SrcVal, Type *DstTy,
ExecutionContext &SF) {
Type *SrcTy = SrcVal->getType();
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
if (SrcTy->getTypeID() == Type::VectorTyID) {
const Type *DstVecTy = DstTy->getScalarType();
const Type *SrcVecTy = SrcTy->getScalarType();
uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
unsigned size = Src.AggregateVal.size();
// the sizes of src and dst vectors must be equal
Dest.AggregateVal.resize(size);
if (SrcVecTy->getTypeID() == Type::FloatTyID) {
assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToSI instruction");
for (unsigned i = 0; i < size; i++)
Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt(
Src.AggregateVal[i].FloatVal, DBitWidth);
} else {
for (unsigned i = 0; i < size; i++)
Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt(
Src.AggregateVal[i].DoubleVal, DBitWidth);
}
} else {
// scalar
unsigned DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
assert(SrcTy->isFloatingPointTy() && "Invalid FPToSI instruction");
if (SrcTy->getTypeID() == Type::FloatTyID)
Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
else {
Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
}
}
return Dest;
}
GenericValue Interpreter::executeUIToFPInst(Value *SrcVal, Type *DstTy,
ExecutionContext &SF) {
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
const Type *DstVecTy = DstTy->getScalarType();
unsigned size = Src.AggregateVal.size();
// the sizes of src and dst vectors must be equal
Dest.AggregateVal.resize(size);
if (DstVecTy->getTypeID() == Type::FloatTyID) {
assert(DstVecTy->isFloatingPointTy() && "Invalid UIToFP instruction");
for (unsigned i = 0; i < size; i++)
Dest.AggregateVal[i].FloatVal =
APIntOps::RoundAPIntToFloat(Src.AggregateVal[i].IntVal);
} else {
for (unsigned i = 0; i < size; i++)
Dest.AggregateVal[i].DoubleVal =
APIntOps::RoundAPIntToDouble(Src.AggregateVal[i].IntVal);
}
} else {
// scalar
assert(DstTy->isFloatingPointTy() && "Invalid UIToFP instruction");
if (DstTy->getTypeID() == Type::FloatTyID)
Dest.FloatVal = APIntOps::RoundAPIntToFloat(Src.IntVal);
else {
Dest.DoubleVal = APIntOps::RoundAPIntToDouble(Src.IntVal);
}
}
return Dest;
}
GenericValue Interpreter::executeSIToFPInst(Value *SrcVal, Type *DstTy,
ExecutionContext &SF) {
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
if (SrcVal->getType()->getTypeID() == Type::VectorTyID) {
const Type *DstVecTy = DstTy->getScalarType();
unsigned size = Src.AggregateVal.size();
// the sizes of src and dst vectors must be equal
Dest.AggregateVal.resize(size);
if (DstVecTy->getTypeID() == Type::FloatTyID) {
assert(DstVecTy->isFloatingPointTy() && "Invalid SIToFP instruction");
for (unsigned i = 0; i < size; i++)
Dest.AggregateVal[i].FloatVal =
APIntOps::RoundSignedAPIntToFloat(Src.AggregateVal[i].IntVal);
} else {
for (unsigned i = 0; i < size; i++)
Dest.AggregateVal[i].DoubleVal =
APIntOps::RoundSignedAPIntToDouble(Src.AggregateVal[i].IntVal);
}
} else {
// scalar
assert(DstTy->isFloatingPointTy() && "Invalid SIToFP instruction");
if (DstTy->getTypeID() == Type::FloatTyID)
Dest.FloatVal = APIntOps::RoundSignedAPIntToFloat(Src.IntVal);
else {
Dest.DoubleVal = APIntOps::RoundSignedAPIntToDouble(Src.IntVal);
}
}
return Dest;
}
GenericValue Interpreter::executePtrToIntInst(Value *SrcVal, Type *DstTy,
ExecutionContext &SF) {
uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
assert(SrcVal->getType()->isPointerTy() && "Invalid PtrToInt instruction");
Dest.IntVal = APInt(DBitWidth, (intptr_t) Src.PointerVal);
return Dest;
}
GenericValue Interpreter::executeIntToPtrInst(Value *SrcVal, Type *DstTy,
ExecutionContext &SF) {
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
assert(DstTy->isPointerTy() && "Invalid PtrToInt instruction");
Revert the majority of the next patch in the address space series: r165941: Resubmit the changes to llvm core to update the functions to support different pointer sizes on a per address space basis. Despite this commit log, this change primarily changed stuff outside of VMCore, and those changes do not carry any tests for correctness (or even plausibility), and we have consistently found questionable or flat out incorrect cases in these changes. Most of them are probably correct, but we need to devise a system that makes it more clear when we have handled the address space concerns correctly, and ideally each pass that gets updated would receive an accompanying test case that exercises that pass specificaly w.r.t. alternate address spaces. However, from this commit, I have retained the new C API entry points. Those were an orthogonal change that probably should have been split apart, but they seem entirely good. In several places the changes were very obvious cleanups with no actual multiple address space code added; these I have not reverted when I spotted them. In a few other places there were merge conflicts due to a cleaner solution being implemented later, often not using address spaces at all. In those cases, I've preserved the new code which isn't address space dependent. This is part of my ongoing effort to clean out the partial address space code which carries high risk and low test coverage, and not likely to be finished before the 3.2 release looms closer. Duncan and I would both like to see the above issues addressed before we return to these changes. llvm-svn: 167222
2012-11-01 10:14:31 +01:00
uint32_t PtrSize = TD.getPointerSizeInBits();
if (PtrSize != Src.IntVal.getBitWidth())
Src.IntVal = Src.IntVal.zextOrTrunc(PtrSize);
Dest.PointerVal = PointerTy(intptr_t(Src.IntVal.getZExtValue()));
return Dest;
}
GenericValue Interpreter::executeBitCastInst(Value *SrcVal, Type *DstTy,
ExecutionContext &SF) {
// This instruction supports bitwise conversion of vectors to integers and
// to vectors of other types (as long as they have the same size)
Type *SrcTy = SrcVal->getType();
GenericValue Dest, Src = getOperandValue(SrcVal, SF);
if ((SrcTy->getTypeID() == Type::VectorTyID) ||
(DstTy->getTypeID() == Type::VectorTyID)) {
// vector src bitcast to vector dst or vector src bitcast to scalar dst or
// scalar src bitcast to vector dst
bool isLittleEndian = TD.isLittleEndian();
GenericValue TempDst, TempSrc, SrcVec;
const Type *SrcElemTy;
const Type *DstElemTy;
unsigned SrcBitSize;
unsigned DstBitSize;
unsigned SrcNum;
unsigned DstNum;
if (SrcTy->getTypeID() == Type::VectorTyID) {
SrcElemTy = SrcTy->getScalarType();
SrcBitSize = SrcTy->getScalarSizeInBits();
SrcNum = Src.AggregateVal.size();
SrcVec = Src;
} else {
// if src is scalar value, make it vector <1 x type>
SrcElemTy = SrcTy;
SrcBitSize = SrcTy->getPrimitiveSizeInBits();
SrcNum = 1;
SrcVec.AggregateVal.push_back(Src);
}
if (DstTy->getTypeID() == Type::VectorTyID) {
DstElemTy = DstTy->getScalarType();
DstBitSize = DstTy->getScalarSizeInBits();
DstNum = (SrcNum * SrcBitSize) / DstBitSize;
} else {
DstElemTy = DstTy;
DstBitSize = DstTy->getPrimitiveSizeInBits();
DstNum = 1;
}
if (SrcNum * SrcBitSize != DstNum * DstBitSize)
llvm_unreachable("Invalid BitCast");
// If src is floating point, cast to integer first.
TempSrc.AggregateVal.resize(SrcNum);
if (SrcElemTy->isFloatTy()) {
for (unsigned i = 0; i < SrcNum; i++)
TempSrc.AggregateVal[i].IntVal =
APInt::floatToBits(SrcVec.AggregateVal[i].FloatVal);
} else if (SrcElemTy->isDoubleTy()) {
for (unsigned i = 0; i < SrcNum; i++)
TempSrc.AggregateVal[i].IntVal =
APInt::doubleToBits(SrcVec.AggregateVal[i].DoubleVal);
} else if (SrcElemTy->isIntegerTy()) {
for (unsigned i = 0; i < SrcNum; i++)
TempSrc.AggregateVal[i].IntVal = SrcVec.AggregateVal[i].IntVal;
} else {
// Pointers are not allowed as the element type of vector.
llvm_unreachable("Invalid Bitcast");
}
// now TempSrc is integer type vector
if (DstNum < SrcNum) {
// Example: bitcast <4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>
unsigned Ratio = SrcNum / DstNum;
unsigned SrcElt = 0;
for (unsigned i = 0; i < DstNum; i++) {
GenericValue Elt;
Elt.IntVal = 0;
Elt.IntVal = Elt.IntVal.zext(DstBitSize);
unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize * (Ratio - 1);
for (unsigned j = 0; j < Ratio; j++) {
APInt Tmp;
Tmp = Tmp.zext(SrcBitSize);
Tmp = TempSrc.AggregateVal[SrcElt++].IntVal;
Tmp = Tmp.zext(DstBitSize);
Tmp = Tmp.shl(ShiftAmt);
ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
Elt.IntVal |= Tmp;
}
TempDst.AggregateVal.push_back(Elt);
}
} else {
// Example: bitcast <2 x i64> <i64 0, i64 1> to <4 x i32>
unsigned Ratio = DstNum / SrcNum;
for (unsigned i = 0; i < SrcNum; i++) {
unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize * (Ratio - 1);
for (unsigned j = 0; j < Ratio; j++) {
GenericValue Elt;
Elt.IntVal = Elt.IntVal.zext(SrcBitSize);
Elt.IntVal = TempSrc.AggregateVal[i].IntVal;
Elt.IntVal = Elt.IntVal.lshr(ShiftAmt);
// it could be DstBitSize == SrcBitSize, so check it
if (DstBitSize < SrcBitSize)
Elt.IntVal = Elt.IntVal.trunc(DstBitSize);
ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
TempDst.AggregateVal.push_back(Elt);
}
}
}
// convert result from integer to specified type
if (DstTy->getTypeID() == Type::VectorTyID) {
if (DstElemTy->isDoubleTy()) {
Dest.AggregateVal.resize(DstNum);
for (unsigned i = 0; i < DstNum; i++)
Dest.AggregateVal[i].DoubleVal =
TempDst.AggregateVal[i].IntVal.bitsToDouble();
} else if (DstElemTy->isFloatTy()) {
Dest.AggregateVal.resize(DstNum);
for (unsigned i = 0; i < DstNum; i++)
Dest.AggregateVal[i].FloatVal =
TempDst.AggregateVal[i].IntVal.bitsToFloat();
} else {
Dest = TempDst;
}
} else {
if (DstElemTy->isDoubleTy())
Dest.DoubleVal = TempDst.AggregateVal[0].IntVal.bitsToDouble();
else if (DstElemTy->isFloatTy()) {
Dest.FloatVal = TempDst.AggregateVal[0].IntVal.bitsToFloat();
} else {
Dest.IntVal = TempDst.AggregateVal[0].IntVal;
}
}
} else { // if ((SrcTy->getTypeID() == Type::VectorTyID) ||
// (DstTy->getTypeID() == Type::VectorTyID))
// scalar src bitcast to scalar dst
if (DstTy->isPointerTy()) {
assert(SrcTy->isPointerTy() && "Invalid BitCast");
Dest.PointerVal = Src.PointerVal;
} else if (DstTy->isIntegerTy()) {
if (SrcTy->isFloatTy())
Dest.IntVal = APInt::floatToBits(Src.FloatVal);
else if (SrcTy->isDoubleTy()) {
Dest.IntVal = APInt::doubleToBits(Src.DoubleVal);
} else if (SrcTy->isIntegerTy()) {
Dest.IntVal = Src.IntVal;
} else {
llvm_unreachable("Invalid BitCast");
}
} else if (DstTy->isFloatTy()) {
if (SrcTy->isIntegerTy())
Dest.FloatVal = Src.IntVal.bitsToFloat();
else {
Dest.FloatVal = Src.FloatVal;
}
} else if (DstTy->isDoubleTy()) {
if (SrcTy->isIntegerTy())
Dest.DoubleVal = Src.IntVal.bitsToDouble();
else {
Dest.DoubleVal = Src.DoubleVal;
}
} else {
llvm_unreachable("Invalid Bitcast");
}
}
return Dest;
}
void Interpreter::visitTruncInst(TruncInst &I) {
ExecutionContext &SF = ECStack.back();
SetValue(&I, executeTruncInst(I.getOperand(0), I.getType(), SF), SF);
}
void Interpreter::visitSExtInst(SExtInst &I) {
ExecutionContext &SF = ECStack.back();
SetValue(&I, executeSExtInst(I.getOperand(0), I.getType(), SF), SF);
}
void Interpreter::visitZExtInst(ZExtInst &I) {
ExecutionContext &SF = ECStack.back();
SetValue(&I, executeZExtInst(I.getOperand(0), I.getType(), SF), SF);
}
void Interpreter::visitFPTruncInst(FPTruncInst &I) {
ExecutionContext &SF = ECStack.back();
SetValue(&I, executeFPTruncInst(I.getOperand(0), I.getType(), SF), SF);
}
void Interpreter::visitFPExtInst(FPExtInst &I) {
ExecutionContext &SF = ECStack.back();
SetValue(&I, executeFPExtInst(I.getOperand(0), I.getType(), SF), SF);
}
void Interpreter::visitUIToFPInst(UIToFPInst &I) {
ExecutionContext &SF = ECStack.back();
SetValue(&I, executeUIToFPInst(I.getOperand(0), I.getType(), SF), SF);
}
void Interpreter::visitSIToFPInst(SIToFPInst &I) {
ExecutionContext &SF = ECStack.back();
SetValue(&I, executeSIToFPInst(I.getOperand(0), I.getType(), SF), SF);
}
void Interpreter::visitFPToUIInst(FPToUIInst &I) {
ExecutionContext &SF = ECStack.back();
SetValue(&I, executeFPToUIInst(I.getOperand(0), I.getType(), SF), SF);
}
void Interpreter::visitFPToSIInst(FPToSIInst &I) {
ExecutionContext &SF = ECStack.back();
SetValue(&I, executeFPToSIInst(I.getOperand(0), I.getType(), SF), SF);
}
void Interpreter::visitPtrToIntInst(PtrToIntInst &I) {
ExecutionContext &SF = ECStack.back();
SetValue(&I, executePtrToIntInst(I.getOperand(0), I.getType(), SF), SF);
}
void Interpreter::visitIntToPtrInst(IntToPtrInst &I) {
ExecutionContext &SF = ECStack.back();
SetValue(&I, executeIntToPtrInst(I.getOperand(0), I.getType(), SF), SF);
}
void Interpreter::visitBitCastInst(BitCastInst &I) {
ExecutionContext &SF = ECStack.back();
SetValue(&I, executeBitCastInst(I.getOperand(0), I.getType(), SF), SF);
}
#define IMPLEMENT_VAARG(TY) \
case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break
void Interpreter::visitVAArgInst(VAArgInst &I) {
ExecutionContext &SF = ECStack.back();
// Get the incoming valist parameter. LLI treats the valist as a
// (ec-stack-depth var-arg-index) pair.
GenericValue VAList = getOperandValue(I.getOperand(0), SF);
GenericValue Dest;
GenericValue Src = ECStack[VAList.UIntPairVal.first]
.VarArgs[VAList.UIntPairVal.second];
Type *Ty = I.getType();
switch (Ty->getTypeID()) {
case Type::IntegerTyID:
Dest.IntVal = Src.IntVal;
break;
IMPLEMENT_VAARG(Pointer);
IMPLEMENT_VAARG(Float);
IMPLEMENT_VAARG(Double);
default:
dbgs() << "Unhandled dest type for vaarg instruction: " << *Ty << "\n";
llvm_unreachable(0);
}
// Set the Value of this Instruction.
SetValue(&I, Dest, SF);
// Move the pointer to the next vararg.
++VAList.UIntPairVal.second;
}
void Interpreter::visitExtractElementInst(ExtractElementInst &I) {
ExecutionContext &SF = ECStack.back();
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
GenericValue Dest;
Type *Ty = I.getType();
const unsigned indx = unsigned(Src2.IntVal.getZExtValue());
if(Src1.AggregateVal.size() > indx) {
switch (Ty->getTypeID()) {
default:
dbgs() << "Unhandled destination type for extractelement instruction: "
<< *Ty << "\n";
llvm_unreachable(0);
break;
case Type::IntegerTyID:
Dest.IntVal = Src1.AggregateVal[indx].IntVal;
break;
case Type::FloatTyID:
Dest.FloatVal = Src1.AggregateVal[indx].FloatVal;
break;
case Type::DoubleTyID:
Dest.DoubleVal = Src1.AggregateVal[indx].DoubleVal;
break;
}
} else {
dbgs() << "Invalid index in extractelement instruction\n";
}
SetValue(&I, Dest, SF);
}
void Interpreter::visitInsertElementInst(InsertElementInst &I) {
ExecutionContext &SF = ECStack.back();
Type *Ty = I.getType();
if(!(Ty->isVectorTy()) )
llvm_unreachable("Unhandled dest type for insertelement instruction");
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
GenericValue Dest;
Type *TyContained = Ty->getContainedType(0);
const unsigned indx = unsigned(Src3.IntVal.getZExtValue());
Dest.AggregateVal = Src1.AggregateVal;
if(Src1.AggregateVal.size() <= indx)
llvm_unreachable("Invalid index in insertelement instruction");
switch (TyContained->getTypeID()) {
default:
llvm_unreachable("Unhandled dest type for insertelement instruction");
case Type::IntegerTyID:
Dest.AggregateVal[indx].IntVal = Src2.IntVal;
break;
case Type::FloatTyID:
Dest.AggregateVal[indx].FloatVal = Src2.FloatVal;
break;
case Type::DoubleTyID:
Dest.AggregateVal[indx].DoubleVal = Src2.DoubleVal;
break;
}
SetValue(&I, Dest, SF);
}
void Interpreter::visitShuffleVectorInst(ShuffleVectorInst &I){
ExecutionContext &SF = ECStack.back();
Type *Ty = I.getType();
if(!(Ty->isVectorTy()))
llvm_unreachable("Unhandled dest type for shufflevector instruction");
GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
GenericValue Dest;
// There is no need to check types of src1 and src2, because the compiled
// bytecode can't contain different types for src1 and src2 for a
// shufflevector instruction.
Type *TyContained = Ty->getContainedType(0);
unsigned src1Size = (unsigned)Src1.AggregateVal.size();
unsigned src2Size = (unsigned)Src2.AggregateVal.size();
unsigned src3Size = (unsigned)Src3.AggregateVal.size();
Dest.AggregateVal.resize(src3Size);
switch (TyContained->getTypeID()) {
default:
llvm_unreachable("Unhandled dest type for insertelement instruction");
break;
case Type::IntegerTyID:
for( unsigned i=0; i<src3Size; i++) {
unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue();
if(j < src1Size)
Dest.AggregateVal[i].IntVal = Src1.AggregateVal[j].IntVal;
else if(j < src1Size + src2Size)
Dest.AggregateVal[i].IntVal = Src2.AggregateVal[j-src1Size].IntVal;
else
// The selector may not be greater than sum of lengths of first and
// second operands and llasm should not allow situation like
// %tmp = shufflevector <2 x i32> <i32 3, i32 4>, <2 x i32> undef,
// <2 x i32> < i32 0, i32 5 >,
// where i32 5 is invalid, but let it be additional check here:
llvm_unreachable("Invalid mask in shufflevector instruction");
}
break;
case Type::FloatTyID:
for( unsigned i=0; i<src3Size; i++) {
unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue();
if(j < src1Size)
Dest.AggregateVal[i].FloatVal = Src1.AggregateVal[j].FloatVal;
else if(j < src1Size + src2Size)
Dest.AggregateVal[i].FloatVal = Src2.AggregateVal[j-src1Size].FloatVal;
else
llvm_unreachable("Invalid mask in shufflevector instruction");
}
break;
case Type::DoubleTyID:
for( unsigned i=0; i<src3Size; i++) {
unsigned j = Src3.AggregateVal[i].IntVal.getZExtValue();
if(j < src1Size)
Dest.AggregateVal[i].DoubleVal = Src1.AggregateVal[j].DoubleVal;
else if(j < src1Size + src2Size)
Dest.AggregateVal[i].DoubleVal =
Src2.AggregateVal[j-src1Size].DoubleVal;
else
llvm_unreachable("Invalid mask in shufflevector instruction");
}
break;
}
SetValue(&I, Dest, SF);
}
void Interpreter::visitExtractValueInst(ExtractValueInst &I) {
ExecutionContext &SF = ECStack.back();
Value *Agg = I.getAggregateOperand();
GenericValue Dest;
GenericValue Src = getOperandValue(Agg, SF);
ExtractValueInst::idx_iterator IdxBegin = I.idx_begin();
unsigned Num = I.getNumIndices();
GenericValue *pSrc = &Src;
for (unsigned i = 0 ; i < Num; ++i) {
pSrc = &pSrc->AggregateVal[*IdxBegin];
++IdxBegin;
}
Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices());
switch (IndexedType->getTypeID()) {
default:
llvm_unreachable("Unhandled dest type for extractelement instruction");
break;
case Type::IntegerTyID:
Dest.IntVal = pSrc->IntVal;
break;
case Type::FloatTyID:
Dest.FloatVal = pSrc->FloatVal;
break;
case Type::DoubleTyID:
Dest.DoubleVal = pSrc->DoubleVal;
break;
case Type::ArrayTyID:
case Type::StructTyID:
case Type::VectorTyID:
Dest.AggregateVal = pSrc->AggregateVal;
break;
case Type::PointerTyID:
Dest.PointerVal = pSrc->PointerVal;
break;
}
SetValue(&I, Dest, SF);
}
void Interpreter::visitInsertValueInst(InsertValueInst &I) {
ExecutionContext &SF = ECStack.back();
Value *Agg = I.getAggregateOperand();
GenericValue Src1 = getOperandValue(Agg, SF);
GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
GenericValue Dest = Src1; // Dest is a slightly changed Src1
ExtractValueInst::idx_iterator IdxBegin = I.idx_begin();
unsigned Num = I.getNumIndices();
GenericValue *pDest = &Dest;
for (unsigned i = 0 ; i < Num; ++i) {
pDest = &pDest->AggregateVal[*IdxBegin];
++IdxBegin;
}
// pDest points to the target value in the Dest now
Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices());
switch (IndexedType->getTypeID()) {
default:
llvm_unreachable("Unhandled dest type for insertelement instruction");
break;
case Type::IntegerTyID:
pDest->IntVal = Src2.IntVal;
break;
case Type::FloatTyID:
pDest->FloatVal = Src2.FloatVal;
break;
case Type::DoubleTyID:
pDest->DoubleVal = Src2.DoubleVal;
break;
case Type::ArrayTyID:
case Type::StructTyID:
case Type::VectorTyID:
pDest->AggregateVal = Src2.AggregateVal;
break;
case Type::PointerTyID:
pDest->PointerVal = Src2.PointerVal;
break;
}
SetValue(&I, Dest, SF);
}
GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE,
ExecutionContext &SF) {
switch (CE->getOpcode()) {
case Instruction::Trunc:
return executeTruncInst(CE->getOperand(0), CE->getType(), SF);
case Instruction::ZExt:
return executeZExtInst(CE->getOperand(0), CE->getType(), SF);
case Instruction::SExt:
return executeSExtInst(CE->getOperand(0), CE->getType(), SF);
case Instruction::FPTrunc:
return executeFPTruncInst(CE->getOperand(0), CE->getType(), SF);
case Instruction::FPExt:
return executeFPExtInst(CE->getOperand(0), CE->getType(), SF);
case Instruction::UIToFP:
return executeUIToFPInst(CE->getOperand(0), CE->getType(), SF);
case Instruction::SIToFP:
return executeSIToFPInst(CE->getOperand(0), CE->getType(), SF);
case Instruction::FPToUI:
return executeFPToUIInst(CE->getOperand(0), CE->getType(), SF);
case Instruction::FPToSI:
return executeFPToSIInst(CE->getOperand(0), CE->getType(), SF);
case Instruction::PtrToInt:
return executePtrToIntInst(CE->getOperand(0), CE->getType(), SF);
case Instruction::IntToPtr:
return executeIntToPtrInst(CE->getOperand(0), CE->getType(), SF);
case Instruction::BitCast:
return executeBitCastInst(CE->getOperand(0), CE->getType(), SF);
case Instruction::GetElementPtr:
return executeGEPOperation(CE->getOperand(0), gep_type_begin(CE),
gep_type_end(CE), SF);
case Instruction::FCmp:
case Instruction::ICmp:
return executeCmpInst(CE->getPredicate(),
getOperandValue(CE->getOperand(0), SF),
getOperandValue(CE->getOperand(1), SF),
CE->getOperand(0)->getType());
case Instruction::Select:
return executeSelectInst(getOperandValue(CE->getOperand(0), SF),
getOperandValue(CE->getOperand(1), SF),
getOperandValue(CE->getOperand(2), SF),
CE->getOperand(0)->getType());
default :
break;
}
// The cases below here require a GenericValue parameter for the result
// so we initialize one, compute it and then return it.
GenericValue Op0 = getOperandValue(CE->getOperand(0), SF);
GenericValue Op1 = getOperandValue(CE->getOperand(1), SF);
GenericValue Dest;
Type * Ty = CE->getOperand(0)->getType();
switch (CE->getOpcode()) {
case Instruction::Add: Dest.IntVal = Op0.IntVal + Op1.IntVal; break;
case Instruction::Sub: Dest.IntVal = Op0.IntVal - Op1.IntVal; break;
case Instruction::Mul: Dest.IntVal = Op0.IntVal * Op1.IntVal; break;
case Instruction::FAdd: executeFAddInst(Dest, Op0, Op1, Ty); break;
case Instruction::FSub: executeFSubInst(Dest, Op0, Op1, Ty); break;
case Instruction::FMul: executeFMulInst(Dest, Op0, Op1, Ty); break;
case Instruction::FDiv: executeFDivInst(Dest, Op0, Op1, Ty); break;
case Instruction::FRem: executeFRemInst(Dest, Op0, Op1, Ty); break;
case Instruction::SDiv: Dest.IntVal = Op0.IntVal.sdiv(Op1.IntVal); break;
case Instruction::UDiv: Dest.IntVal = Op0.IntVal.udiv(Op1.IntVal); break;
case Instruction::URem: Dest.IntVal = Op0.IntVal.urem(Op1.IntVal); break;
case Instruction::SRem: Dest.IntVal = Op0.IntVal.srem(Op1.IntVal); break;
case Instruction::And: Dest.IntVal = Op0.IntVal & Op1.IntVal; break;
case Instruction::Or: Dest.IntVal = Op0.IntVal | Op1.IntVal; break;
case Instruction::Xor: Dest.IntVal = Op0.IntVal ^ Op1.IntVal; break;
case Instruction::Shl:
Dest.IntVal = Op0.IntVal.shl(Op1.IntVal.getZExtValue());
break;
case Instruction::LShr:
Dest.IntVal = Op0.IntVal.lshr(Op1.IntVal.getZExtValue());
break;
case Instruction::AShr:
Dest.IntVal = Op0.IntVal.ashr(Op1.IntVal.getZExtValue());
break;
default:
dbgs() << "Unhandled ConstantExpr: " << *CE << "\n";
llvm_unreachable("Unhandled ConstantExpr");
}
return Dest;
}
GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) {
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
return getConstantExprValue(CE, SF);
} else if (Constant *CPV = dyn_cast<Constant>(V)) {
return getConstantValue(CPV);
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
return PTOGV(getPointerToGlobal(GV));
} else {
return SF.Values[V];
}
}
//===----------------------------------------------------------------------===//
// Dispatch and Execution Code
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// callFunction - Execute the specified function...
//
void Interpreter::callFunction(Function *F,
const std::vector<GenericValue> &ArgVals) {
assert((ECStack.empty() || ECStack.back().Caller.getInstruction() == 0 ||
ECStack.back().Caller.arg_size() == ArgVals.size()) &&
"Incorrect number of arguments passed into function call!");
// Make a new stack frame... and fill it in.
ECStack.push_back(ExecutionContext());
ExecutionContext &StackFrame = ECStack.back();
StackFrame.CurFunction = F;
// Special handling for external functions.
if (F->isDeclaration()) {
GenericValue Result = callExternalFunction (F, ArgVals);
// Simulate a 'ret' instruction of the appropriate type.
popStackAndReturnValueToCaller (F->getReturnType (), Result);
return;
}
// Get pointers to first LLVM BB & Instruction in function.
StackFrame.CurBB = F->begin();
StackFrame.CurInst = StackFrame.CurBB->begin();
// Run through the function arguments and initialize their values...
assert((ArgVals.size() == F->arg_size() ||
(ArgVals.size() > F->arg_size() && F->getFunctionType()->isVarArg()))&&
"Invalid number of values passed to function invocation!");
// Handle non-varargs arguments...
unsigned i = 0;
for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
AI != E; ++AI, ++i)
SetValue(AI, ArgVals[i], StackFrame);
// Handle varargs arguments...
StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end());
}
void Interpreter::run() {
while (!ECStack.empty()) {
// Interpret a single instruction & increment the "PC".
ExecutionContext &SF = ECStack.back(); // Current stack frame
Instruction &I = *SF.CurInst++; // Increment before execute
// Track the number of dynamic instructions executed.
++NumDynamicInsts;
DEBUG(dbgs() << "About to interpret: " << I);
visit(I); // Dispatch to one of the visit* methods...
#if 0
// This is not safe, as visiting the instruction could lower it and free I.
DEBUG(
if (!isa<CallInst>(I) && !isa<InvokeInst>(I) &&
I.getType() != Type::VoidTy) {
dbgs() << " --> ";
const GenericValue &Val = SF.Values[&I];
switch (I.getType()->getTypeID()) {
default: llvm_unreachable("Invalid GenericValue Type");
case Type::VoidTyID: dbgs() << "void"; break;
case Type::FloatTyID: dbgs() << "float " << Val.FloatVal; break;
case Type::DoubleTyID: dbgs() << "double " << Val.DoubleVal; break;
case Type::PointerTyID: dbgs() << "void* " << intptr_t(Val.PointerVal);
break;
case Type::IntegerTyID:
dbgs() << "i" << Val.IntVal.getBitWidth() << " "
<< Val.IntVal.toStringUnsigned(10)
<< " (0x" << Val.IntVal.toStringUnsigned(16) << ")\n";
break;
}
});
#endif
}
}