1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-22 20:43:44 +02:00
llvm-mirror/test/CodeGen/AArch64/arm64-ccmp.ll

660 lines
18 KiB
LLVM
Raw Normal View History

; RUN: llc < %s -mcpu=cyclone -verify-machineinstrs -aarch64-enable-ccmp -aarch64-stress-ccmp | FileCheck %s
target triple = "arm64-apple-ios"
; CHECK: single_same
; CHECK: cmp w0, #5
; CHECK-NEXT: ccmp w1, #17, #4, ne
; CHECK-NEXT: b.ne
; CHECK: %if.then
; CHECK: bl _foo
; CHECK: %if.end
define i32 @single_same(i32 %a, i32 %b) nounwind ssp {
entry:
%cmp = icmp eq i32 %a, 5
%cmp1 = icmp eq i32 %b, 17
%or.cond = or i1 %cmp, %cmp1
br i1 %or.cond, label %if.then, label %if.end
if.then:
%call = tail call i32 @foo() nounwind
br label %if.end
if.end:
ret i32 7
}
; Different condition codes for the two compares.
; CHECK: single_different
; CHECK: cmp w0, #6
; CHECK-NEXT: ccmp w1, #17, #0, ge
; CHECK-NEXT: b.eq
; CHECK: %if.then
; CHECK: bl _foo
; CHECK: %if.end
define i32 @single_different(i32 %a, i32 %b) nounwind ssp {
entry:
%cmp = icmp sle i32 %a, 5
%cmp1 = icmp ne i32 %b, 17
%or.cond = or i1 %cmp, %cmp1
br i1 %or.cond, label %if.then, label %if.end
if.then:
%call = tail call i32 @foo() nounwind
br label %if.end
if.end:
ret i32 7
}
; Second block clobbers the flags, can't convert (easily).
; CHECK: single_flagclobber
; CHECK: cmp
; CHECK: b.eq
; CHECK: cmp
; CHECK: b.gt
define i32 @single_flagclobber(i32 %a, i32 %b) nounwind ssp {
entry:
%cmp = icmp eq i32 %a, 5
br i1 %cmp, label %if.then, label %lor.lhs.false
lor.lhs.false: ; preds = %entry
%cmp1 = icmp slt i32 %b, 7
%mul = shl nsw i32 %b, 1
%add = add nsw i32 %b, 1
%cond = select i1 %cmp1, i32 %mul, i32 %add
%cmp2 = icmp slt i32 %cond, 17
br i1 %cmp2, label %if.then, label %if.end
if.then: ; preds = %lor.lhs.false, %entry
%call = tail call i32 @foo() nounwind
br label %if.end
if.end: ; preds = %if.then, %lor.lhs.false
ret i32 7
}
; Second block clobbers the flags and ends with a tbz terminator.
; CHECK: single_flagclobber_tbz
; CHECK: cmp
; CHECK: b.eq
; CHECK: cmp
; CHECK: tbz
define i32 @single_flagclobber_tbz(i32 %a, i32 %b) nounwind ssp {
entry:
%cmp = icmp eq i32 %a, 5
br i1 %cmp, label %if.then, label %lor.lhs.false
lor.lhs.false: ; preds = %entry
%cmp1 = icmp slt i32 %b, 7
%mul = shl nsw i32 %b, 1
%add = add nsw i32 %b, 1
%cond = select i1 %cmp1, i32 %mul, i32 %add
%and = and i32 %cond, 8
%cmp2 = icmp ne i32 %and, 0
br i1 %cmp2, label %if.then, label %if.end
if.then: ; preds = %lor.lhs.false, %entry
%call = tail call i32 @foo() nounwind
br label %if.end
if.end: ; preds = %if.then, %lor.lhs.false
ret i32 7
}
; Speculatively execute division by zero.
; The sdiv/udiv instructions do not trap when the divisor is zero, so they are
; safe to speculate.
; CHECK-LABEL: speculate_division:
; CHECK: cmp w0, #1
; CHECK: sdiv [[DIVRES:w[0-9]+]], w1, w0
; CHECK: ccmp [[DIVRES]], #16, #0, ge
; CHECK: b.le [[BLOCK:LBB[0-9_]+]]
; CHECK: [[BLOCK]]:
; CHECK: bl _foo
; CHECK: orr w0, wzr, #0x7
define i32 @speculate_division(i32 %a, i32 %b) nounwind ssp {
entry:
%cmp = icmp sgt i32 %a, 0
br i1 %cmp, label %land.lhs.true, label %if.end
land.lhs.true:
%div = sdiv i32 %b, %a
%cmp1 = icmp slt i32 %div, 17
br i1 %cmp1, label %if.then, label %if.end
if.then:
%call = tail call i32 @foo() nounwind
br label %if.end
if.end:
ret i32 7
}
; Floating point compare.
; CHECK: single_fcmp
; CHECK: ; %bb.
; CHECK: cmp
; CHECK-NOT: b.
; CHECK: fccmp {{.*}}, #8, ge
; CHECK: b.ge
define i32 @single_fcmp(i32 %a, float %b) nounwind ssp {
entry:
%cmp = icmp sgt i32 %a, 0
br i1 %cmp, label %land.lhs.true, label %if.end
land.lhs.true:
%conv = sitofp i32 %a to float
%div = fdiv float %b, %conv
%cmp1 = fcmp oge float %div, 1.700000e+01
br i1 %cmp1, label %if.then, label %if.end
if.then:
%call = tail call i32 @foo() nounwind
br label %if.end
if.end:
ret i32 7
}
; Chain multiple compares.
; CHECK: multi_different
; CHECK: cmp
; CHECK: ccmp
; CHECK: ccmp
; CHECK: b.
define void @multi_different(i32 %a, i32 %b, i32 %c) nounwind ssp {
entry:
%cmp = icmp sgt i32 %a, %b
br i1 %cmp, label %land.lhs.true, label %if.end
land.lhs.true:
%div = sdiv i32 %b, %a
%cmp1 = icmp eq i32 %div, 5
%cmp4 = icmp sgt i32 %div, %c
%or.cond = and i1 %cmp1, %cmp4
br i1 %or.cond, label %if.then, label %if.end
if.then:
%call = tail call i32 @foo() nounwind
br label %if.end
if.end:
ret void
}
; Convert a cbz in the head block.
; CHECK: cbz_head
; CHECK: cmp w0, #0
; CHECK: ccmp
define i32 @cbz_head(i32 %a, i32 %b) nounwind ssp {
entry:
%cmp = icmp eq i32 %a, 0
%cmp1 = icmp ne i32 %b, 17
%or.cond = or i1 %cmp, %cmp1
br i1 %or.cond, label %if.then, label %if.end
if.then:
%call = tail call i32 @foo() nounwind
br label %if.end
if.end:
ret i32 7
}
; Check that the immediate operand is in range. The ccmp instruction encodes a
; smaller range of immediates than subs/adds.
; The ccmp immediates must be in the range 0-31.
; CHECK: immediate_range
; CHECK-NOT: ccmp
define i32 @immediate_range(i32 %a, i32 %b) nounwind ssp {
entry:
%cmp = icmp eq i32 %a, 5
%cmp1 = icmp eq i32 %b, 32
%or.cond = or i1 %cmp, %cmp1
br i1 %or.cond, label %if.then, label %if.end
if.then:
%call = tail call i32 @foo() nounwind
br label %if.end
if.end:
ret i32 7
}
; Convert a cbz in the second block.
; CHECK: cbz_second
; CHECK: cmp w0, #0
; CHECK: ccmp w1, #0, #0, ne
; CHECK: b.eq
define i32 @cbz_second(i32 %a, i32 %b) nounwind ssp {
entry:
%cmp = icmp eq i32 %a, 0
%cmp1 = icmp ne i32 %b, 0
%or.cond = or i1 %cmp, %cmp1
br i1 %or.cond, label %if.then, label %if.end
if.then:
%call = tail call i32 @foo() nounwind
br label %if.end
if.end:
ret i32 7
}
; Convert a cbnz in the second block.
; CHECK: cbnz_second
; CHECK: cmp w0, #0
; CHECK: ccmp w1, #0, #4, ne
; CHECK: b.ne
define i32 @cbnz_second(i32 %a, i32 %b) nounwind ssp {
entry:
%cmp = icmp eq i32 %a, 0
%cmp1 = icmp eq i32 %b, 0
%or.cond = or i1 %cmp, %cmp1
br i1 %or.cond, label %if.then, label %if.end
if.then:
%call = tail call i32 @foo() nounwind
br label %if.end
if.end:
ret i32 7
}
declare i32 @foo()
%str1 = type { %str2 }
%str2 = type { [24 x i8], i8*, i32, %str1*, i32, [4 x i8], %str1*, %str1*, %str1*, %str1*, %str1*, %str1*, %str1*, %str1*, %str1*, i8*, i8, i8*, %str1*, i8* }
; Test case distilled from 126.gcc.
; The phi in sw.bb.i.i gets multiple operands for the %entry predecessor.
; CHECK: build_modify_expr
define void @build_modify_expr() nounwind ssp {
entry:
switch i32 undef, label %sw.bb.i.i [
i32 69, label %if.end85
i32 70, label %if.end85
i32 71, label %if.end85
i32 72, label %if.end85
i32 73, label %if.end85
i32 105, label %if.end85
i32 106, label %if.end85
]
if.end85:
ret void
sw.bb.i.i:
%ref.tr.i.i = phi %str1* [ %0, %sw.bb.i.i ], [ undef, %entry ]
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-27 20:29:02 +01:00
%operands.i.i = getelementptr inbounds %str1, %str1* %ref.tr.i.i, i64 0, i32 0, i32 2
%arrayidx.i.i = bitcast i32* %operands.i.i to %str1**
%0 = load %str1*, %str1** %arrayidx.i.i, align 8
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786
2015-02-27 20:29:02 +01:00
%code1.i.i.phi.trans.insert = getelementptr inbounds %str1, %str1* %0, i64 0, i32 0, i32 0, i64 16
br label %sw.bb.i.i
}
; CHECK-LABEL: select_and
define i64 @select_and(i32 %w0, i32 %w1, i64 %x2, i64 %x3) {
; CHECK: cmp w1, #5
; CHECK-NEXT: ccmp w0, w1, #0, ne
; CHECK-NEXT: csel x0, x2, x3, lt
; CHECK-NEXT: ret
%1 = icmp slt i32 %w0, %w1
%2 = icmp ne i32 5, %w1
%3 = and i1 %1, %2
%sel = select i1 %3, i64 %x2, i64 %x3
ret i64 %sel
}
; CHECK-LABEL: select_or
define i64 @select_or(i32 %w0, i32 %w1, i64 %x2, i64 %x3) {
; CHECK: cmp w1, #5
; CHECK-NEXT: ccmp w0, w1, #8, eq
; CHECK-NEXT: csel x0, x2, x3, lt
; CHECK-NEXT: ret
%1 = icmp slt i32 %w0, %w1
%2 = icmp ne i32 5, %w1
%3 = or i1 %1, %2
%sel = select i1 %3, i64 %x2, i64 %x3
ret i64 %sel
}
; CHECK-LABEL: gccbug
define i64 @gccbug(i64 %x0, i64 %x1) {
; CHECK: cmp x0, #2
; CHECK-NEXT: ccmp x0, #4, #4, ne
; CHECK-NEXT: ccmp x1, #0, #0, eq
; CHECK-NEXT: orr w[[REGNUM:[0-9]+]], wzr, #0x1
; CHECK-NEXT: cinc x0, x[[REGNUM]], eq
; CHECK-NEXT: ret
%cmp0 = icmp eq i64 %x1, 0
%cmp1 = icmp eq i64 %x0, 2
%cmp2 = icmp eq i64 %x0, 4
%or = or i1 %cmp2, %cmp1
%and = and i1 %or, %cmp0
%sel = select i1 %and, i64 2, i64 1
ret i64 %sel
}
; CHECK-LABEL: select_ororand
define i32 @select_ororand(i32 %w0, i32 %w1, i32 %w2, i32 %w3) {
; CHECK: cmp w3, #4
; CHECK-NEXT: ccmp w2, #2, #0, gt
; CHECK-NEXT: ccmp w1, #13, #2, ge
; CHECK-NEXT: ccmp w0, #0, #4, ls
; CHECK-NEXT: csel w0, w3, wzr, eq
; CHECK-NEXT: ret
%c0 = icmp eq i32 %w0, 0
%c1 = icmp ugt i32 %w1, 13
%c2 = icmp slt i32 %w2, 2
%c4 = icmp sgt i32 %w3, 4
%or = or i1 %c0, %c1
%and = and i1 %c2, %c4
%or1 = or i1 %or, %and
%sel = select i1 %or1, i32 %w3, i32 0
ret i32 %sel
}
; CHECK-LABEL: select_andor
define i32 @select_andor(i32 %v1, i32 %v2, i32 %v3) {
; CHECK: cmp w1, w2
; CHECK-NEXT: ccmp w0, #0, #4, lt
; CHECK-NEXT: ccmp w0, w1, #0, eq
; CHECK-NEXT: csel w0, w0, w1, eq
; CHECK-NEXT: ret
%c0 = icmp eq i32 %v1, %v2
%c1 = icmp sge i32 %v2, %v3
%c2 = icmp eq i32 %v1, 0
%or = or i1 %c2, %c1
%and = and i1 %or, %c0
%sel = select i1 %and, i32 %v1, i32 %v2
ret i32 %sel
}
; CHECK-LABEL: select_noccmp1
define i64 @select_noccmp1(i64 %v1, i64 %v2, i64 %v3, i64 %r) {
; CHECK: cmp x0, #0
; CHECK-NEXT: cset [[REG0:w[0-9]+]], lt
; CHECK-NEXT: cmp x0, #13
; CHECK-NOT: ccmp
; CHECK-NEXT: cset [[REG1:w[0-9]+]], gt
; CHECK-NEXT: cmp x2, #2
; CHECK-NEXT: cset [[REG2:w[0-9]+]], lt
; CHECK-NEXT: cmp x2, #4
; CHECK-NEXT: cset [[REG3:w[0-9]+]], gt
; CHECK-NEXT: and [[REG4:w[0-9]+]], [[REG0]], [[REG1]]
; CHECK-NEXT: and [[REG5:w[0-9]+]], [[REG2]], [[REG3]]
; CHECK-NEXT: orr [[REG6:w[0-9]+]], [[REG4]], [[REG5]]
; CHECK-NEXT: cmp [[REG6]], #0
; CHECK-NEXT: csel x0, xzr, x3, ne
; CHECK-NEXT: ret
%c0 = icmp slt i64 %v1, 0
%c1 = icmp sgt i64 %v1, 13
%c2 = icmp slt i64 %v3, 2
%c4 = icmp sgt i64 %v3, 4
%and0 = and i1 %c0, %c1
%and1 = and i1 %c2, %c4
%or = or i1 %and0, %and1
%sel = select i1 %or, i64 0, i64 %r
ret i64 %sel
}
@g = global i32 0
; Should not use ccmp if we have to compute the or expression in an integer
; register anyway because of other users.
; CHECK-LABEL: select_noccmp2
define i64 @select_noccmp2(i64 %v1, i64 %v2, i64 %v3, i64 %r) {
; CHECK: cmp x0, #0
; CHECK-NEXT: cset [[REG0:w[0-9]+]], lt
; CHECK-NOT: ccmp
; CHECK-NEXT: cmp x0, #13
; CHECK-NEXT: cset [[REG1:w[0-9]+]], gt
; CHECK-NEXT: orr [[REG2:w[0-9]+]], [[REG0]], [[REG1]]
; CHECK-NEXT: cmp [[REG2]], #0
; CHECK-NEXT: csel x0, xzr, x3, ne
; CHECK-NEXT: sbfx [[REG3:w[0-9]+]], [[REG2]], #0, #1
; CHECK-NEXT: adrp x[[REGN4:[0-9]+]], _g@PAGE
; CHECK-NEXT: str [[REG3]], [x[[REGN4]], _g@PAGEOFF]
; CHECK-NEXT: ret
%c0 = icmp slt i64 %v1, 0
%c1 = icmp sgt i64 %v1, 13
%or = or i1 %c0, %c1
%sel = select i1 %or, i64 0, i64 %r
%ext = sext i1 %or to i32
store volatile i32 %ext, i32* @g
ret i64 %sel
}
[AArch64] Lower 2-CC FCCMPs (one/ueq) using AND'ed CCs. The current behavior is incorrect, as the two CCs returned by changeFPCCToAArch64CC, intended to be OR'ed, are instead used in an AND ccmp chain. Consider: define i32 @t(float %a, float %b, float %c, float %d, i32 %e, i32 %f) { %cc1 = fcmp one float %a, %b %cc2 = fcmp olt float %c, %d %and = and i1 %cc1, %cc2 %r = select i1 %and, i32 %e, i32 %f ret i32 %r } Assuming (%a < %b) and (%c < %d); we used to do: fcmp s0, s1 # nzcv <- 1000 orr w8, wzr, #0x1 # w8 <- 1 csel w9, w8, wzr, mi # w9 <- 1 csel w8, w8, w9, gt # w8 <- 1 fcmp s2, s3 # nzcv <- 1000 cset w9, mi # w9 <- 1 tst w8, w9 # (w8 & w9) == 1, so: nzcv <- 0000 csel w0, w0, w1, ne # w0 <- w0 We now do: fcmp s2, s3 # nzcv <- 1000 fccmp s0, s1, #0, mi # mi, so: nzcv <- 1000 fccmp s0, s1, #8, le # !le, so: nzcv <- 1000 csel w0, w0, w1, pl # !pl, so: w0 <- w1 In other words, we transformed: (c < d) && ((a < b) || (a > b)) into: (c < d) && (a u>= b) && (a u<= b) whereas, per De Morgan's, we wanted: (c < d) && !((a u>= b) && (a u<= b)) Note that this problem doesn't occur in the test-suite. changeFPCCToAArch64CC produces disjunct CCs; here, one -> mi/gt. We can't represent that in the fccmp chain; it can't express arbitrary OR sequences, as one comment explains: In general we can create code for arbitrary "... (and (and A B) C)" sequences. We can also implement some "or" expressions, because "(or A B)" is equivalent to "not (and (not A) (not B))" and we can implement some negation operations. [...] However there is no way to negate the result of a partial sequence. Instead, introduce changeFPCCToANDAArch64CC, which produces the conjunct cond codes: - (a one b) == ((a olt b) || (a ogt b)) == ((a ord b) && (a une b)) - (a ueq b) == ((a uno b) || (a oeq b)) == ((a ule b) && (a uge b)) Note that, at first, one might think that, when PushNegate is true, we should use the disjunct CCs, in effect doing: (a || b) = !(!a && !(b)) = !(!a && !(b1 || b2)) <- changeFPCCToAArch64CC(b, b1, b2) = !(!a && !b1 && !b2) However, we can take advantage of the fact that the CC is already negated, which lets us avoid special-casing PushNegate and doing the simpler to reason about: (a || b) = !(!a && (!b)) = !(!a && (b1 && b2)) <- changeFPCCToANDAArch64CC(!b, b1, b2) = !(!a && b1 && b2) This makes both emitConditionalCompare cases behave identically, and produces correct ccmp sequences for the 2-CC fcmps. llvm-svn: 258533
2016-01-22 20:43:54 +01:00
; The following is not possible to implement with a single cmp;ccmp;csel
; sequence.
; CHECK-LABEL: select_noccmp3
define i32 @select_noccmp3(i32 %v0, i32 %v1, i32 %v2) {
%c0 = icmp slt i32 %v0, 0
%c1 = icmp sgt i32 %v0, 13
%c2 = icmp slt i32 %v0, 22
%c3 = icmp sgt i32 %v0, 44
%c4 = icmp eq i32 %v0, 99
%c5 = icmp eq i32 %v0, 77
%or0 = or i1 %c0, %c1
%or1 = or i1 %c2, %c3
%and0 = and i1 %or0, %or1
%or2 = or i1 %c4, %c5
%and1 = and i1 %and0, %or2
%sel = select i1 %and1, i32 %v1, i32 %v2
ret i32 %sel
}
[AArch64] Lower 2-CC FCCMPs (one/ueq) using AND'ed CCs. The current behavior is incorrect, as the two CCs returned by changeFPCCToAArch64CC, intended to be OR'ed, are instead used in an AND ccmp chain. Consider: define i32 @t(float %a, float %b, float %c, float %d, i32 %e, i32 %f) { %cc1 = fcmp one float %a, %b %cc2 = fcmp olt float %c, %d %and = and i1 %cc1, %cc2 %r = select i1 %and, i32 %e, i32 %f ret i32 %r } Assuming (%a < %b) and (%c < %d); we used to do: fcmp s0, s1 # nzcv <- 1000 orr w8, wzr, #0x1 # w8 <- 1 csel w9, w8, wzr, mi # w9 <- 1 csel w8, w8, w9, gt # w8 <- 1 fcmp s2, s3 # nzcv <- 1000 cset w9, mi # w9 <- 1 tst w8, w9 # (w8 & w9) == 1, so: nzcv <- 0000 csel w0, w0, w1, ne # w0 <- w0 We now do: fcmp s2, s3 # nzcv <- 1000 fccmp s0, s1, #0, mi # mi, so: nzcv <- 1000 fccmp s0, s1, #8, le # !le, so: nzcv <- 1000 csel w0, w0, w1, pl # !pl, so: w0 <- w1 In other words, we transformed: (c < d) && ((a < b) || (a > b)) into: (c < d) && (a u>= b) && (a u<= b) whereas, per De Morgan's, we wanted: (c < d) && !((a u>= b) && (a u<= b)) Note that this problem doesn't occur in the test-suite. changeFPCCToAArch64CC produces disjunct CCs; here, one -> mi/gt. We can't represent that in the fccmp chain; it can't express arbitrary OR sequences, as one comment explains: In general we can create code for arbitrary "... (and (and A B) C)" sequences. We can also implement some "or" expressions, because "(or A B)" is equivalent to "not (and (not A) (not B))" and we can implement some negation operations. [...] However there is no way to negate the result of a partial sequence. Instead, introduce changeFPCCToANDAArch64CC, which produces the conjunct cond codes: - (a one b) == ((a olt b) || (a ogt b)) == ((a ord b) && (a une b)) - (a ueq b) == ((a uno b) || (a oeq b)) == ((a ule b) && (a uge b)) Note that, at first, one might think that, when PushNegate is true, we should use the disjunct CCs, in effect doing: (a || b) = !(!a && !(b)) = !(!a && !(b1 || b2)) <- changeFPCCToAArch64CC(b, b1, b2) = !(!a && !b1 && !b2) However, we can take advantage of the fact that the CC is already negated, which lets us avoid special-casing PushNegate and doing the simpler to reason about: (a || b) = !(!a && (!b)) = !(!a && (b1 && b2)) <- changeFPCCToANDAArch64CC(!b, b1, b2) = !(!a && b1 && b2) This makes both emitConditionalCompare cases behave identically, and produces correct ccmp sequences for the 2-CC fcmps. llvm-svn: 258533
2016-01-22 20:43:54 +01:00
; Test the IR CCs that expand to two cond codes.
; CHECK-LABEL: select_and_olt_one:
; CHECK-LABEL: ; %bb.0:
[AArch64] Lower 2-CC FCCMPs (one/ueq) using AND'ed CCs. The current behavior is incorrect, as the two CCs returned by changeFPCCToAArch64CC, intended to be OR'ed, are instead used in an AND ccmp chain. Consider: define i32 @t(float %a, float %b, float %c, float %d, i32 %e, i32 %f) { %cc1 = fcmp one float %a, %b %cc2 = fcmp olt float %c, %d %and = and i1 %cc1, %cc2 %r = select i1 %and, i32 %e, i32 %f ret i32 %r } Assuming (%a < %b) and (%c < %d); we used to do: fcmp s0, s1 # nzcv <- 1000 orr w8, wzr, #0x1 # w8 <- 1 csel w9, w8, wzr, mi # w9 <- 1 csel w8, w8, w9, gt # w8 <- 1 fcmp s2, s3 # nzcv <- 1000 cset w9, mi # w9 <- 1 tst w8, w9 # (w8 & w9) == 1, so: nzcv <- 0000 csel w0, w0, w1, ne # w0 <- w0 We now do: fcmp s2, s3 # nzcv <- 1000 fccmp s0, s1, #0, mi # mi, so: nzcv <- 1000 fccmp s0, s1, #8, le # !le, so: nzcv <- 1000 csel w0, w0, w1, pl # !pl, so: w0 <- w1 In other words, we transformed: (c < d) && ((a < b) || (a > b)) into: (c < d) && (a u>= b) && (a u<= b) whereas, per De Morgan's, we wanted: (c < d) && !((a u>= b) && (a u<= b)) Note that this problem doesn't occur in the test-suite. changeFPCCToAArch64CC produces disjunct CCs; here, one -> mi/gt. We can't represent that in the fccmp chain; it can't express arbitrary OR sequences, as one comment explains: In general we can create code for arbitrary "... (and (and A B) C)" sequences. We can also implement some "or" expressions, because "(or A B)" is equivalent to "not (and (not A) (not B))" and we can implement some negation operations. [...] However there is no way to negate the result of a partial sequence. Instead, introduce changeFPCCToANDAArch64CC, which produces the conjunct cond codes: - (a one b) == ((a olt b) || (a ogt b)) == ((a ord b) && (a une b)) - (a ueq b) == ((a uno b) || (a oeq b)) == ((a ule b) && (a uge b)) Note that, at first, one might think that, when PushNegate is true, we should use the disjunct CCs, in effect doing: (a || b) = !(!a && !(b)) = !(!a && !(b1 || b2)) <- changeFPCCToAArch64CC(b, b1, b2) = !(!a && !b1 && !b2) However, we can take advantage of the fact that the CC is already negated, which lets us avoid special-casing PushNegate and doing the simpler to reason about: (a || b) = !(!a && (!b)) = !(!a && (b1 && b2)) <- changeFPCCToANDAArch64CC(!b, b1, b2) = !(!a && b1 && b2) This makes both emitConditionalCompare cases behave identically, and produces correct ccmp sequences for the 2-CC fcmps. llvm-svn: 258533
2016-01-22 20:43:54 +01:00
; CHECK-NEXT: fcmp d0, d1
; CHECK-NEXT: fccmp d2, d3, #4, mi
; CHECK-NEXT: fccmp d2, d3, #1, ne
; CHECK-NEXT: csel w0, w0, w1, vc
; CHECK-NEXT: ret
define i32 @select_and_olt_one(double %v0, double %v1, double %v2, double %v3, i32 %a, i32 %b) #0 {
%c0 = fcmp olt double %v0, %v1
%c1 = fcmp one double %v2, %v3
%cr = and i1 %c1, %c0
%sel = select i1 %cr, i32 %a, i32 %b
ret i32 %sel
}
; CHECK-LABEL: select_and_one_olt:
; CHECK-LABEL: ; %bb.0:
[AArch64] Lower 2-CC FCCMPs (one/ueq) using AND'ed CCs. The current behavior is incorrect, as the two CCs returned by changeFPCCToAArch64CC, intended to be OR'ed, are instead used in an AND ccmp chain. Consider: define i32 @t(float %a, float %b, float %c, float %d, i32 %e, i32 %f) { %cc1 = fcmp one float %a, %b %cc2 = fcmp olt float %c, %d %and = and i1 %cc1, %cc2 %r = select i1 %and, i32 %e, i32 %f ret i32 %r } Assuming (%a < %b) and (%c < %d); we used to do: fcmp s0, s1 # nzcv <- 1000 orr w8, wzr, #0x1 # w8 <- 1 csel w9, w8, wzr, mi # w9 <- 1 csel w8, w8, w9, gt # w8 <- 1 fcmp s2, s3 # nzcv <- 1000 cset w9, mi # w9 <- 1 tst w8, w9 # (w8 & w9) == 1, so: nzcv <- 0000 csel w0, w0, w1, ne # w0 <- w0 We now do: fcmp s2, s3 # nzcv <- 1000 fccmp s0, s1, #0, mi # mi, so: nzcv <- 1000 fccmp s0, s1, #8, le # !le, so: nzcv <- 1000 csel w0, w0, w1, pl # !pl, so: w0 <- w1 In other words, we transformed: (c < d) && ((a < b) || (a > b)) into: (c < d) && (a u>= b) && (a u<= b) whereas, per De Morgan's, we wanted: (c < d) && !((a u>= b) && (a u<= b)) Note that this problem doesn't occur in the test-suite. changeFPCCToAArch64CC produces disjunct CCs; here, one -> mi/gt. We can't represent that in the fccmp chain; it can't express arbitrary OR sequences, as one comment explains: In general we can create code for arbitrary "... (and (and A B) C)" sequences. We can also implement some "or" expressions, because "(or A B)" is equivalent to "not (and (not A) (not B))" and we can implement some negation operations. [...] However there is no way to negate the result of a partial sequence. Instead, introduce changeFPCCToANDAArch64CC, which produces the conjunct cond codes: - (a one b) == ((a olt b) || (a ogt b)) == ((a ord b) && (a une b)) - (a ueq b) == ((a uno b) || (a oeq b)) == ((a ule b) && (a uge b)) Note that, at first, one might think that, when PushNegate is true, we should use the disjunct CCs, in effect doing: (a || b) = !(!a && !(b)) = !(!a && !(b1 || b2)) <- changeFPCCToAArch64CC(b, b1, b2) = !(!a && !b1 && !b2) However, we can take advantage of the fact that the CC is already negated, which lets us avoid special-casing PushNegate and doing the simpler to reason about: (a || b) = !(!a && (!b)) = !(!a && (b1 && b2)) <- changeFPCCToANDAArch64CC(!b, b1, b2) = !(!a && b1 && b2) This makes both emitConditionalCompare cases behave identically, and produces correct ccmp sequences for the 2-CC fcmps. llvm-svn: 258533
2016-01-22 20:43:54 +01:00
; CHECK-NEXT: fcmp d0, d1
; CHECK-NEXT: fccmp d0, d1, #1, ne
; CHECK-NEXT: fccmp d2, d3, #0, vc
; CHECK-NEXT: csel w0, w0, w1, mi
; CHECK-NEXT: ret
define i32 @select_and_one_olt(double %v0, double %v1, double %v2, double %v3, i32 %a, i32 %b) #0 {
%c0 = fcmp one double %v0, %v1
%c1 = fcmp olt double %v2, %v3
%cr = and i1 %c1, %c0
%sel = select i1 %cr, i32 %a, i32 %b
ret i32 %sel
}
; CHECK-LABEL: select_and_olt_ueq:
; CHECK-LABEL: ; %bb.0:
[AArch64] Lower 2-CC FCCMPs (one/ueq) using AND'ed CCs. The current behavior is incorrect, as the two CCs returned by changeFPCCToAArch64CC, intended to be OR'ed, are instead used in an AND ccmp chain. Consider: define i32 @t(float %a, float %b, float %c, float %d, i32 %e, i32 %f) { %cc1 = fcmp one float %a, %b %cc2 = fcmp olt float %c, %d %and = and i1 %cc1, %cc2 %r = select i1 %and, i32 %e, i32 %f ret i32 %r } Assuming (%a < %b) and (%c < %d); we used to do: fcmp s0, s1 # nzcv <- 1000 orr w8, wzr, #0x1 # w8 <- 1 csel w9, w8, wzr, mi # w9 <- 1 csel w8, w8, w9, gt # w8 <- 1 fcmp s2, s3 # nzcv <- 1000 cset w9, mi # w9 <- 1 tst w8, w9 # (w8 & w9) == 1, so: nzcv <- 0000 csel w0, w0, w1, ne # w0 <- w0 We now do: fcmp s2, s3 # nzcv <- 1000 fccmp s0, s1, #0, mi # mi, so: nzcv <- 1000 fccmp s0, s1, #8, le # !le, so: nzcv <- 1000 csel w0, w0, w1, pl # !pl, so: w0 <- w1 In other words, we transformed: (c < d) && ((a < b) || (a > b)) into: (c < d) && (a u>= b) && (a u<= b) whereas, per De Morgan's, we wanted: (c < d) && !((a u>= b) && (a u<= b)) Note that this problem doesn't occur in the test-suite. changeFPCCToAArch64CC produces disjunct CCs; here, one -> mi/gt. We can't represent that in the fccmp chain; it can't express arbitrary OR sequences, as one comment explains: In general we can create code for arbitrary "... (and (and A B) C)" sequences. We can also implement some "or" expressions, because "(or A B)" is equivalent to "not (and (not A) (not B))" and we can implement some negation operations. [...] However there is no way to negate the result of a partial sequence. Instead, introduce changeFPCCToANDAArch64CC, which produces the conjunct cond codes: - (a one b) == ((a olt b) || (a ogt b)) == ((a ord b) && (a une b)) - (a ueq b) == ((a uno b) || (a oeq b)) == ((a ule b) && (a uge b)) Note that, at first, one might think that, when PushNegate is true, we should use the disjunct CCs, in effect doing: (a || b) = !(!a && !(b)) = !(!a && !(b1 || b2)) <- changeFPCCToAArch64CC(b, b1, b2) = !(!a && !b1 && !b2) However, we can take advantage of the fact that the CC is already negated, which lets us avoid special-casing PushNegate and doing the simpler to reason about: (a || b) = !(!a && (!b)) = !(!a && (b1 && b2)) <- changeFPCCToANDAArch64CC(!b, b1, b2) = !(!a && b1 && b2) This makes both emitConditionalCompare cases behave identically, and produces correct ccmp sequences for the 2-CC fcmps. llvm-svn: 258533
2016-01-22 20:43:54 +01:00
; CHECK-NEXT: fcmp d0, d1
; CHECK-NEXT: fccmp d2, d3, #0, mi
; CHECK-NEXT: fccmp d2, d3, #8, le
; CHECK-NEXT: csel w0, w0, w1, pl
; CHECK-NEXT: ret
define i32 @select_and_olt_ueq(double %v0, double %v1, double %v2, double %v3, i32 %a, i32 %b) #0 {
%c0 = fcmp olt double %v0, %v1
%c1 = fcmp ueq double %v2, %v3
%cr = and i1 %c1, %c0
%sel = select i1 %cr, i32 %a, i32 %b
ret i32 %sel
}
; CHECK-LABEL: select_and_ueq_olt:
; CHECK-LABEL: ; %bb.0:
[AArch64] Lower 2-CC FCCMPs (one/ueq) using AND'ed CCs. The current behavior is incorrect, as the two CCs returned by changeFPCCToAArch64CC, intended to be OR'ed, are instead used in an AND ccmp chain. Consider: define i32 @t(float %a, float %b, float %c, float %d, i32 %e, i32 %f) { %cc1 = fcmp one float %a, %b %cc2 = fcmp olt float %c, %d %and = and i1 %cc1, %cc2 %r = select i1 %and, i32 %e, i32 %f ret i32 %r } Assuming (%a < %b) and (%c < %d); we used to do: fcmp s0, s1 # nzcv <- 1000 orr w8, wzr, #0x1 # w8 <- 1 csel w9, w8, wzr, mi # w9 <- 1 csel w8, w8, w9, gt # w8 <- 1 fcmp s2, s3 # nzcv <- 1000 cset w9, mi # w9 <- 1 tst w8, w9 # (w8 & w9) == 1, so: nzcv <- 0000 csel w0, w0, w1, ne # w0 <- w0 We now do: fcmp s2, s3 # nzcv <- 1000 fccmp s0, s1, #0, mi # mi, so: nzcv <- 1000 fccmp s0, s1, #8, le # !le, so: nzcv <- 1000 csel w0, w0, w1, pl # !pl, so: w0 <- w1 In other words, we transformed: (c < d) && ((a < b) || (a > b)) into: (c < d) && (a u>= b) && (a u<= b) whereas, per De Morgan's, we wanted: (c < d) && !((a u>= b) && (a u<= b)) Note that this problem doesn't occur in the test-suite. changeFPCCToAArch64CC produces disjunct CCs; here, one -> mi/gt. We can't represent that in the fccmp chain; it can't express arbitrary OR sequences, as one comment explains: In general we can create code for arbitrary "... (and (and A B) C)" sequences. We can also implement some "or" expressions, because "(or A B)" is equivalent to "not (and (not A) (not B))" and we can implement some negation operations. [...] However there is no way to negate the result of a partial sequence. Instead, introduce changeFPCCToANDAArch64CC, which produces the conjunct cond codes: - (a one b) == ((a olt b) || (a ogt b)) == ((a ord b) && (a une b)) - (a ueq b) == ((a uno b) || (a oeq b)) == ((a ule b) && (a uge b)) Note that, at first, one might think that, when PushNegate is true, we should use the disjunct CCs, in effect doing: (a || b) = !(!a && !(b)) = !(!a && !(b1 || b2)) <- changeFPCCToAArch64CC(b, b1, b2) = !(!a && !b1 && !b2) However, we can take advantage of the fact that the CC is already negated, which lets us avoid special-casing PushNegate and doing the simpler to reason about: (a || b) = !(!a && (!b)) = !(!a && (b1 && b2)) <- changeFPCCToANDAArch64CC(!b, b1, b2) = !(!a && b1 && b2) This makes both emitConditionalCompare cases behave identically, and produces correct ccmp sequences for the 2-CC fcmps. llvm-svn: 258533
2016-01-22 20:43:54 +01:00
; CHECK-NEXT: fcmp d0, d1
; CHECK-NEXT: fccmp d0, d1, #8, le
; CHECK-NEXT: fccmp d2, d3, #0, pl
; CHECK-NEXT: csel w0, w0, w1, mi
; CHECK-NEXT: ret
define i32 @select_and_ueq_olt(double %v0, double %v1, double %v2, double %v3, i32 %a, i32 %b) #0 {
%c0 = fcmp ueq double %v0, %v1
%c1 = fcmp olt double %v2, %v3
%cr = and i1 %c1, %c0
%sel = select i1 %cr, i32 %a, i32 %b
ret i32 %sel
}
; CHECK-LABEL: select_or_olt_one:
; CHECK-LABEL: ; %bb.0:
[AArch64] Lower 2-CC FCCMPs (one/ueq) using AND'ed CCs. The current behavior is incorrect, as the two CCs returned by changeFPCCToAArch64CC, intended to be OR'ed, are instead used in an AND ccmp chain. Consider: define i32 @t(float %a, float %b, float %c, float %d, i32 %e, i32 %f) { %cc1 = fcmp one float %a, %b %cc2 = fcmp olt float %c, %d %and = and i1 %cc1, %cc2 %r = select i1 %and, i32 %e, i32 %f ret i32 %r } Assuming (%a < %b) and (%c < %d); we used to do: fcmp s0, s1 # nzcv <- 1000 orr w8, wzr, #0x1 # w8 <- 1 csel w9, w8, wzr, mi # w9 <- 1 csel w8, w8, w9, gt # w8 <- 1 fcmp s2, s3 # nzcv <- 1000 cset w9, mi # w9 <- 1 tst w8, w9 # (w8 & w9) == 1, so: nzcv <- 0000 csel w0, w0, w1, ne # w0 <- w0 We now do: fcmp s2, s3 # nzcv <- 1000 fccmp s0, s1, #0, mi # mi, so: nzcv <- 1000 fccmp s0, s1, #8, le # !le, so: nzcv <- 1000 csel w0, w0, w1, pl # !pl, so: w0 <- w1 In other words, we transformed: (c < d) && ((a < b) || (a > b)) into: (c < d) && (a u>= b) && (a u<= b) whereas, per De Morgan's, we wanted: (c < d) && !((a u>= b) && (a u<= b)) Note that this problem doesn't occur in the test-suite. changeFPCCToAArch64CC produces disjunct CCs; here, one -> mi/gt. We can't represent that in the fccmp chain; it can't express arbitrary OR sequences, as one comment explains: In general we can create code for arbitrary "... (and (and A B) C)" sequences. We can also implement some "or" expressions, because "(or A B)" is equivalent to "not (and (not A) (not B))" and we can implement some negation operations. [...] However there is no way to negate the result of a partial sequence. Instead, introduce changeFPCCToANDAArch64CC, which produces the conjunct cond codes: - (a one b) == ((a olt b) || (a ogt b)) == ((a ord b) && (a une b)) - (a ueq b) == ((a uno b) || (a oeq b)) == ((a ule b) && (a uge b)) Note that, at first, one might think that, when PushNegate is true, we should use the disjunct CCs, in effect doing: (a || b) = !(!a && !(b)) = !(!a && !(b1 || b2)) <- changeFPCCToAArch64CC(b, b1, b2) = !(!a && !b1 && !b2) However, we can take advantage of the fact that the CC is already negated, which lets us avoid special-casing PushNegate and doing the simpler to reason about: (a || b) = !(!a && (!b)) = !(!a && (b1 && b2)) <- changeFPCCToANDAArch64CC(!b, b1, b2) = !(!a && b1 && b2) This makes both emitConditionalCompare cases behave identically, and produces correct ccmp sequences for the 2-CC fcmps. llvm-svn: 258533
2016-01-22 20:43:54 +01:00
; CHECK-NEXT: fcmp d0, d1
; CHECK-NEXT: fccmp d2, d3, #0, pl
; CHECK-NEXT: fccmp d2, d3, #8, le
; CHECK-NEXT: csel w0, w0, w1, mi
; CHECK-NEXT: ret
define i32 @select_or_olt_one(double %v0, double %v1, double %v2, double %v3, i32 %a, i32 %b) #0 {
%c0 = fcmp olt double %v0, %v1
%c1 = fcmp one double %v2, %v3
%cr = or i1 %c1, %c0
%sel = select i1 %cr, i32 %a, i32 %b
ret i32 %sel
}
; CHECK-LABEL: select_or_one_olt:
; CHECK-LABEL: ; %bb.0:
[AArch64] Lower 2-CC FCCMPs (one/ueq) using AND'ed CCs. The current behavior is incorrect, as the two CCs returned by changeFPCCToAArch64CC, intended to be OR'ed, are instead used in an AND ccmp chain. Consider: define i32 @t(float %a, float %b, float %c, float %d, i32 %e, i32 %f) { %cc1 = fcmp one float %a, %b %cc2 = fcmp olt float %c, %d %and = and i1 %cc1, %cc2 %r = select i1 %and, i32 %e, i32 %f ret i32 %r } Assuming (%a < %b) and (%c < %d); we used to do: fcmp s0, s1 # nzcv <- 1000 orr w8, wzr, #0x1 # w8 <- 1 csel w9, w8, wzr, mi # w9 <- 1 csel w8, w8, w9, gt # w8 <- 1 fcmp s2, s3 # nzcv <- 1000 cset w9, mi # w9 <- 1 tst w8, w9 # (w8 & w9) == 1, so: nzcv <- 0000 csel w0, w0, w1, ne # w0 <- w0 We now do: fcmp s2, s3 # nzcv <- 1000 fccmp s0, s1, #0, mi # mi, so: nzcv <- 1000 fccmp s0, s1, #8, le # !le, so: nzcv <- 1000 csel w0, w0, w1, pl # !pl, so: w0 <- w1 In other words, we transformed: (c < d) && ((a < b) || (a > b)) into: (c < d) && (a u>= b) && (a u<= b) whereas, per De Morgan's, we wanted: (c < d) && !((a u>= b) && (a u<= b)) Note that this problem doesn't occur in the test-suite. changeFPCCToAArch64CC produces disjunct CCs; here, one -> mi/gt. We can't represent that in the fccmp chain; it can't express arbitrary OR sequences, as one comment explains: In general we can create code for arbitrary "... (and (and A B) C)" sequences. We can also implement some "or" expressions, because "(or A B)" is equivalent to "not (and (not A) (not B))" and we can implement some negation operations. [...] However there is no way to negate the result of a partial sequence. Instead, introduce changeFPCCToANDAArch64CC, which produces the conjunct cond codes: - (a one b) == ((a olt b) || (a ogt b)) == ((a ord b) && (a une b)) - (a ueq b) == ((a uno b) || (a oeq b)) == ((a ule b) && (a uge b)) Note that, at first, one might think that, when PushNegate is true, we should use the disjunct CCs, in effect doing: (a || b) = !(!a && !(b)) = !(!a && !(b1 || b2)) <- changeFPCCToAArch64CC(b, b1, b2) = !(!a && !b1 && !b2) However, we can take advantage of the fact that the CC is already negated, which lets us avoid special-casing PushNegate and doing the simpler to reason about: (a || b) = !(!a && (!b)) = !(!a && (b1 && b2)) <- changeFPCCToANDAArch64CC(!b, b1, b2) = !(!a && b1 && b2) This makes both emitConditionalCompare cases behave identically, and produces correct ccmp sequences for the 2-CC fcmps. llvm-svn: 258533
2016-01-22 20:43:54 +01:00
; CHECK-NEXT: fcmp d0, d1
; CHECK-NEXT: fccmp d0, d1, #1, ne
; CHECK-NEXT: fccmp d2, d3, #8, vs
; CHECK-NEXT: csel w0, w0, w1, mi
; CHECK-NEXT: ret
define i32 @select_or_one_olt(double %v0, double %v1, double %v2, double %v3, i32 %a, i32 %b) #0 {
%c0 = fcmp one double %v0, %v1
%c1 = fcmp olt double %v2, %v3
%cr = or i1 %c1, %c0
%sel = select i1 %cr, i32 %a, i32 %b
ret i32 %sel
}
; CHECK-LABEL: select_or_olt_ueq:
; CHECK-LABEL: ; %bb.0:
[AArch64] Lower 2-CC FCCMPs (one/ueq) using AND'ed CCs. The current behavior is incorrect, as the two CCs returned by changeFPCCToAArch64CC, intended to be OR'ed, are instead used in an AND ccmp chain. Consider: define i32 @t(float %a, float %b, float %c, float %d, i32 %e, i32 %f) { %cc1 = fcmp one float %a, %b %cc2 = fcmp olt float %c, %d %and = and i1 %cc1, %cc2 %r = select i1 %and, i32 %e, i32 %f ret i32 %r } Assuming (%a < %b) and (%c < %d); we used to do: fcmp s0, s1 # nzcv <- 1000 orr w8, wzr, #0x1 # w8 <- 1 csel w9, w8, wzr, mi # w9 <- 1 csel w8, w8, w9, gt # w8 <- 1 fcmp s2, s3 # nzcv <- 1000 cset w9, mi # w9 <- 1 tst w8, w9 # (w8 & w9) == 1, so: nzcv <- 0000 csel w0, w0, w1, ne # w0 <- w0 We now do: fcmp s2, s3 # nzcv <- 1000 fccmp s0, s1, #0, mi # mi, so: nzcv <- 1000 fccmp s0, s1, #8, le # !le, so: nzcv <- 1000 csel w0, w0, w1, pl # !pl, so: w0 <- w1 In other words, we transformed: (c < d) && ((a < b) || (a > b)) into: (c < d) && (a u>= b) && (a u<= b) whereas, per De Morgan's, we wanted: (c < d) && !((a u>= b) && (a u<= b)) Note that this problem doesn't occur in the test-suite. changeFPCCToAArch64CC produces disjunct CCs; here, one -> mi/gt. We can't represent that in the fccmp chain; it can't express arbitrary OR sequences, as one comment explains: In general we can create code for arbitrary "... (and (and A B) C)" sequences. We can also implement some "or" expressions, because "(or A B)" is equivalent to "not (and (not A) (not B))" and we can implement some negation operations. [...] However there is no way to negate the result of a partial sequence. Instead, introduce changeFPCCToANDAArch64CC, which produces the conjunct cond codes: - (a one b) == ((a olt b) || (a ogt b)) == ((a ord b) && (a une b)) - (a ueq b) == ((a uno b) || (a oeq b)) == ((a ule b) && (a uge b)) Note that, at first, one might think that, when PushNegate is true, we should use the disjunct CCs, in effect doing: (a || b) = !(!a && !(b)) = !(!a && !(b1 || b2)) <- changeFPCCToAArch64CC(b, b1, b2) = !(!a && !b1 && !b2) However, we can take advantage of the fact that the CC is already negated, which lets us avoid special-casing PushNegate and doing the simpler to reason about: (a || b) = !(!a && (!b)) = !(!a && (b1 && b2)) <- changeFPCCToANDAArch64CC(!b, b1, b2) = !(!a && b1 && b2) This makes both emitConditionalCompare cases behave identically, and produces correct ccmp sequences for the 2-CC fcmps. llvm-svn: 258533
2016-01-22 20:43:54 +01:00
; CHECK-NEXT: fcmp d0, d1
; CHECK-NEXT: fccmp d2, d3, #4, pl
; CHECK-NEXT: fccmp d2, d3, #1, ne
; CHECK-NEXT: csel w0, w0, w1, vs
; CHECK-NEXT: ret
define i32 @select_or_olt_ueq(double %v0, double %v1, double %v2, double %v3, i32 %a, i32 %b) #0 {
%c0 = fcmp olt double %v0, %v1
%c1 = fcmp ueq double %v2, %v3
%cr = or i1 %c1, %c0
%sel = select i1 %cr, i32 %a, i32 %b
ret i32 %sel
}
; CHECK-LABEL: select_or_ueq_olt:
; CHECK-LABEL: ; %bb.0:
[AArch64] Lower 2-CC FCCMPs (one/ueq) using AND'ed CCs. The current behavior is incorrect, as the two CCs returned by changeFPCCToAArch64CC, intended to be OR'ed, are instead used in an AND ccmp chain. Consider: define i32 @t(float %a, float %b, float %c, float %d, i32 %e, i32 %f) { %cc1 = fcmp one float %a, %b %cc2 = fcmp olt float %c, %d %and = and i1 %cc1, %cc2 %r = select i1 %and, i32 %e, i32 %f ret i32 %r } Assuming (%a < %b) and (%c < %d); we used to do: fcmp s0, s1 # nzcv <- 1000 orr w8, wzr, #0x1 # w8 <- 1 csel w9, w8, wzr, mi # w9 <- 1 csel w8, w8, w9, gt # w8 <- 1 fcmp s2, s3 # nzcv <- 1000 cset w9, mi # w9 <- 1 tst w8, w9 # (w8 & w9) == 1, so: nzcv <- 0000 csel w0, w0, w1, ne # w0 <- w0 We now do: fcmp s2, s3 # nzcv <- 1000 fccmp s0, s1, #0, mi # mi, so: nzcv <- 1000 fccmp s0, s1, #8, le # !le, so: nzcv <- 1000 csel w0, w0, w1, pl # !pl, so: w0 <- w1 In other words, we transformed: (c < d) && ((a < b) || (a > b)) into: (c < d) && (a u>= b) && (a u<= b) whereas, per De Morgan's, we wanted: (c < d) && !((a u>= b) && (a u<= b)) Note that this problem doesn't occur in the test-suite. changeFPCCToAArch64CC produces disjunct CCs; here, one -> mi/gt. We can't represent that in the fccmp chain; it can't express arbitrary OR sequences, as one comment explains: In general we can create code for arbitrary "... (and (and A B) C)" sequences. We can also implement some "or" expressions, because "(or A B)" is equivalent to "not (and (not A) (not B))" and we can implement some negation operations. [...] However there is no way to negate the result of a partial sequence. Instead, introduce changeFPCCToANDAArch64CC, which produces the conjunct cond codes: - (a one b) == ((a olt b) || (a ogt b)) == ((a ord b) && (a une b)) - (a ueq b) == ((a uno b) || (a oeq b)) == ((a ule b) && (a uge b)) Note that, at first, one might think that, when PushNegate is true, we should use the disjunct CCs, in effect doing: (a || b) = !(!a && !(b)) = !(!a && !(b1 || b2)) <- changeFPCCToAArch64CC(b, b1, b2) = !(!a && !b1 && !b2) However, we can take advantage of the fact that the CC is already negated, which lets us avoid special-casing PushNegate and doing the simpler to reason about: (a || b) = !(!a && (!b)) = !(!a && (b1 && b2)) <- changeFPCCToANDAArch64CC(!b, b1, b2) = !(!a && b1 && b2) This makes both emitConditionalCompare cases behave identically, and produces correct ccmp sequences for the 2-CC fcmps. llvm-svn: 258533
2016-01-22 20:43:54 +01:00
; CHECK-NEXT: fcmp d0, d1
; CHECK-NEXT: fccmp d0, d1, #8, le
; CHECK-NEXT: fccmp d2, d3, #8, mi
; CHECK-NEXT: csel w0, w0, w1, mi
; CHECK-NEXT: ret
define i32 @select_or_ueq_olt(double %v0, double %v1, double %v2, double %v3, i32 %a, i32 %b) #0 {
%c0 = fcmp ueq double %v0, %v1
%c1 = fcmp olt double %v2, %v3
%cr = or i1 %c1, %c0
%sel = select i1 %cr, i32 %a, i32 %b
ret i32 %sel
}
; CHECK-LABEL: select_or_olt_ogt_ueq:
; CHECK-LABEL: ; %bb.0:
[AArch64] Lower 2-CC FCCMPs (one/ueq) using AND'ed CCs. The current behavior is incorrect, as the two CCs returned by changeFPCCToAArch64CC, intended to be OR'ed, are instead used in an AND ccmp chain. Consider: define i32 @t(float %a, float %b, float %c, float %d, i32 %e, i32 %f) { %cc1 = fcmp one float %a, %b %cc2 = fcmp olt float %c, %d %and = and i1 %cc1, %cc2 %r = select i1 %and, i32 %e, i32 %f ret i32 %r } Assuming (%a < %b) and (%c < %d); we used to do: fcmp s0, s1 # nzcv <- 1000 orr w8, wzr, #0x1 # w8 <- 1 csel w9, w8, wzr, mi # w9 <- 1 csel w8, w8, w9, gt # w8 <- 1 fcmp s2, s3 # nzcv <- 1000 cset w9, mi # w9 <- 1 tst w8, w9 # (w8 & w9) == 1, so: nzcv <- 0000 csel w0, w0, w1, ne # w0 <- w0 We now do: fcmp s2, s3 # nzcv <- 1000 fccmp s0, s1, #0, mi # mi, so: nzcv <- 1000 fccmp s0, s1, #8, le # !le, so: nzcv <- 1000 csel w0, w0, w1, pl # !pl, so: w0 <- w1 In other words, we transformed: (c < d) && ((a < b) || (a > b)) into: (c < d) && (a u>= b) && (a u<= b) whereas, per De Morgan's, we wanted: (c < d) && !((a u>= b) && (a u<= b)) Note that this problem doesn't occur in the test-suite. changeFPCCToAArch64CC produces disjunct CCs; here, one -> mi/gt. We can't represent that in the fccmp chain; it can't express arbitrary OR sequences, as one comment explains: In general we can create code for arbitrary "... (and (and A B) C)" sequences. We can also implement some "or" expressions, because "(or A B)" is equivalent to "not (and (not A) (not B))" and we can implement some negation operations. [...] However there is no way to negate the result of a partial sequence. Instead, introduce changeFPCCToANDAArch64CC, which produces the conjunct cond codes: - (a one b) == ((a olt b) || (a ogt b)) == ((a ord b) && (a une b)) - (a ueq b) == ((a uno b) || (a oeq b)) == ((a ule b) && (a uge b)) Note that, at first, one might think that, when PushNegate is true, we should use the disjunct CCs, in effect doing: (a || b) = !(!a && !(b)) = !(!a && !(b1 || b2)) <- changeFPCCToAArch64CC(b, b1, b2) = !(!a && !b1 && !b2) However, we can take advantage of the fact that the CC is already negated, which lets us avoid special-casing PushNegate and doing the simpler to reason about: (a || b) = !(!a && (!b)) = !(!a && (b1 && b2)) <- changeFPCCToANDAArch64CC(!b, b1, b2) = !(!a && b1 && b2) This makes both emitConditionalCompare cases behave identically, and produces correct ccmp sequences for the 2-CC fcmps. llvm-svn: 258533
2016-01-22 20:43:54 +01:00
; CHECK-NEXT: fcmp d0, d1
; CHECK-NEXT: fccmp d2, d3, #0, pl
; CHECK-NEXT: fccmp d4, d5, #4, le
; CHECK-NEXT: fccmp d4, d5, #1, ne
; CHECK-NEXT: csel w0, w0, w1, vs
; CHECK-NEXT: ret
define i32 @select_or_olt_ogt_ueq(double %v0, double %v1, double %v2, double %v3, double %v4, double %v5, i32 %a, i32 %b) #0 {
%c0 = fcmp olt double %v0, %v1
%c1 = fcmp ogt double %v2, %v3
%c2 = fcmp ueq double %v4, %v5
%c3 = or i1 %c1, %c0
%cr = or i1 %c2, %c3
%sel = select i1 %cr, i32 %a, i32 %b
ret i32 %sel
}
; CHECK-LABEL: select_or_olt_ueq_ogt:
; CHECK-LABEL: ; %bb.0:
[AArch64] Lower 2-CC FCCMPs (one/ueq) using AND'ed CCs. The current behavior is incorrect, as the two CCs returned by changeFPCCToAArch64CC, intended to be OR'ed, are instead used in an AND ccmp chain. Consider: define i32 @t(float %a, float %b, float %c, float %d, i32 %e, i32 %f) { %cc1 = fcmp one float %a, %b %cc2 = fcmp olt float %c, %d %and = and i1 %cc1, %cc2 %r = select i1 %and, i32 %e, i32 %f ret i32 %r } Assuming (%a < %b) and (%c < %d); we used to do: fcmp s0, s1 # nzcv <- 1000 orr w8, wzr, #0x1 # w8 <- 1 csel w9, w8, wzr, mi # w9 <- 1 csel w8, w8, w9, gt # w8 <- 1 fcmp s2, s3 # nzcv <- 1000 cset w9, mi # w9 <- 1 tst w8, w9 # (w8 & w9) == 1, so: nzcv <- 0000 csel w0, w0, w1, ne # w0 <- w0 We now do: fcmp s2, s3 # nzcv <- 1000 fccmp s0, s1, #0, mi # mi, so: nzcv <- 1000 fccmp s0, s1, #8, le # !le, so: nzcv <- 1000 csel w0, w0, w1, pl # !pl, so: w0 <- w1 In other words, we transformed: (c < d) && ((a < b) || (a > b)) into: (c < d) && (a u>= b) && (a u<= b) whereas, per De Morgan's, we wanted: (c < d) && !((a u>= b) && (a u<= b)) Note that this problem doesn't occur in the test-suite. changeFPCCToAArch64CC produces disjunct CCs; here, one -> mi/gt. We can't represent that in the fccmp chain; it can't express arbitrary OR sequences, as one comment explains: In general we can create code for arbitrary "... (and (and A B) C)" sequences. We can also implement some "or" expressions, because "(or A B)" is equivalent to "not (and (not A) (not B))" and we can implement some negation operations. [...] However there is no way to negate the result of a partial sequence. Instead, introduce changeFPCCToANDAArch64CC, which produces the conjunct cond codes: - (a one b) == ((a olt b) || (a ogt b)) == ((a ord b) && (a une b)) - (a ueq b) == ((a uno b) || (a oeq b)) == ((a ule b) && (a uge b)) Note that, at first, one might think that, when PushNegate is true, we should use the disjunct CCs, in effect doing: (a || b) = !(!a && !(b)) = !(!a && !(b1 || b2)) <- changeFPCCToAArch64CC(b, b1, b2) = !(!a && !b1 && !b2) However, we can take advantage of the fact that the CC is already negated, which lets us avoid special-casing PushNegate and doing the simpler to reason about: (a || b) = !(!a && (!b)) = !(!a && (b1 && b2)) <- changeFPCCToANDAArch64CC(!b, b1, b2) = !(!a && b1 && b2) This makes both emitConditionalCompare cases behave identically, and produces correct ccmp sequences for the 2-CC fcmps. llvm-svn: 258533
2016-01-22 20:43:54 +01:00
; CHECK-NEXT: fcmp d0, d1
; CHECK-NEXT: fccmp d2, d3, #4, pl
; CHECK-NEXT: fccmp d2, d3, #1, ne
; CHECK-NEXT: fccmp d4, d5, #0, vc
; CHECK-NEXT: csel w0, w0, w1, gt
; CHECK-NEXT: ret
define i32 @select_or_olt_ueq_ogt(double %v0, double %v1, double %v2, double %v3, double %v4, double %v5, i32 %a, i32 %b) #0 {
%c0 = fcmp olt double %v0, %v1
%c1 = fcmp ueq double %v2, %v3
%c2 = fcmp ogt double %v4, %v5
%c3 = or i1 %c1, %c0
%cr = or i1 %c2, %c3
%sel = select i1 %cr, i32 %a, i32 %b
ret i32 %sel
}
; Verify that we correctly promote f16.
; CHECK-LABEL: half_select_and_olt_oge:
; CHECK-LABEL: ; %bb.0:
; CHECK-DAG: fcvt [[S0:s[0-9]+]], h0
; CHECK-DAG: fcvt [[S1:s[0-9]+]], h1
; CHECK-NEXT: fcmp [[S0]], [[S1]]
; CHECK-DAG: fcvt [[S2:s[0-9]+]], h2
; CHECK-DAG: fcvt [[S3:s[0-9]+]], h3
; CHECK-NEXT: fccmp [[S2]], [[S3]], #8, mi
; CHECK-NEXT: csel w0, w0, w1, ge
; CHECK-NEXT: ret
define i32 @half_select_and_olt_oge(half %v0, half %v1, half %v2, half %v3, i32 %a, i32 %b) #0 {
%c0 = fcmp olt half %v0, %v1
%c1 = fcmp oge half %v2, %v3
%cr = and i1 %c1, %c0
%sel = select i1 %cr, i32 %a, i32 %b
ret i32 %sel
}
; CHECK-LABEL: half_select_and_olt_one:
; CHECK-LABEL: ; %bb.0:
; CHECK-DAG: fcvt [[S0:s[0-9]+]], h0
; CHECK-DAG: fcvt [[S1:s[0-9]+]], h1
; CHECK-NEXT: fcmp [[S0]], [[S1]]
; CHECK-DAG: fcvt [[S2:s[0-9]+]], h2
; CHECK-DAG: fcvt [[S3:s[0-9]+]], h3
; CHECK-NEXT: fccmp [[S2]], [[S3]], #4, mi
; CHECK-NEXT: fccmp [[S2]], [[S3]], #1, ne
; CHECK-NEXT: csel w0, w0, w1, vc
; CHECK-NEXT: ret
define i32 @half_select_and_olt_one(half %v0, half %v1, half %v2, half %v3, i32 %a, i32 %b) #0 {
%c0 = fcmp olt half %v0, %v1
%c1 = fcmp one half %v2, %v3
%cr = and i1 %c1, %c0
%sel = select i1 %cr, i32 %a, i32 %b
ret i32 %sel
}
; Also verify that we don't try to generate f128 FCCMPs, using RT calls instead.
; CHECK-LABEL: f128_select_and_olt_oge:
; CHECK: bl ___lttf2
; CHECK: bl ___getf2
define i32 @f128_select_and_olt_oge(fp128 %v0, fp128 %v1, fp128 %v2, fp128 %v3, i32 %a, i32 %b) #0 {
%c0 = fcmp olt fp128 %v0, %v1
%c1 = fcmp oge fp128 %v2, %v3
%cr = and i1 %c1, %c0
%sel = select i1 %cr, i32 %a, i32 %b
ret i32 %sel
}
[AArch64] Lower 2-CC FCCMPs (one/ueq) using AND'ed CCs. The current behavior is incorrect, as the two CCs returned by changeFPCCToAArch64CC, intended to be OR'ed, are instead used in an AND ccmp chain. Consider: define i32 @t(float %a, float %b, float %c, float %d, i32 %e, i32 %f) { %cc1 = fcmp one float %a, %b %cc2 = fcmp olt float %c, %d %and = and i1 %cc1, %cc2 %r = select i1 %and, i32 %e, i32 %f ret i32 %r } Assuming (%a < %b) and (%c < %d); we used to do: fcmp s0, s1 # nzcv <- 1000 orr w8, wzr, #0x1 # w8 <- 1 csel w9, w8, wzr, mi # w9 <- 1 csel w8, w8, w9, gt # w8 <- 1 fcmp s2, s3 # nzcv <- 1000 cset w9, mi # w9 <- 1 tst w8, w9 # (w8 & w9) == 1, so: nzcv <- 0000 csel w0, w0, w1, ne # w0 <- w0 We now do: fcmp s2, s3 # nzcv <- 1000 fccmp s0, s1, #0, mi # mi, so: nzcv <- 1000 fccmp s0, s1, #8, le # !le, so: nzcv <- 1000 csel w0, w0, w1, pl # !pl, so: w0 <- w1 In other words, we transformed: (c < d) && ((a < b) || (a > b)) into: (c < d) && (a u>= b) && (a u<= b) whereas, per De Morgan's, we wanted: (c < d) && !((a u>= b) && (a u<= b)) Note that this problem doesn't occur in the test-suite. changeFPCCToAArch64CC produces disjunct CCs; here, one -> mi/gt. We can't represent that in the fccmp chain; it can't express arbitrary OR sequences, as one comment explains: In general we can create code for arbitrary "... (and (and A B) C)" sequences. We can also implement some "or" expressions, because "(or A B)" is equivalent to "not (and (not A) (not B))" and we can implement some negation operations. [...] However there is no way to negate the result of a partial sequence. Instead, introduce changeFPCCToANDAArch64CC, which produces the conjunct cond codes: - (a one b) == ((a olt b) || (a ogt b)) == ((a ord b) && (a une b)) - (a ueq b) == ((a uno b) || (a oeq b)) == ((a ule b) && (a uge b)) Note that, at first, one might think that, when PushNegate is true, we should use the disjunct CCs, in effect doing: (a || b) = !(!a && !(b)) = !(!a && !(b1 || b2)) <- changeFPCCToAArch64CC(b, b1, b2) = !(!a && !b1 && !b2) However, we can take advantage of the fact that the CC is already negated, which lets us avoid special-casing PushNegate and doing the simpler to reason about: (a || b) = !(!a && (!b)) = !(!a && (b1 && b2)) <- changeFPCCToANDAArch64CC(!b, b1, b2) = !(!a && b1 && b2) This makes both emitConditionalCompare cases behave identically, and produces correct ccmp sequences for the 2-CC fcmps. llvm-svn: 258533
2016-01-22 20:43:54 +01:00
attributes #0 = { nounwind }