While I was adding a new intrinsic instruction (not overloaded), I accidentally used CreateUnaryIntrinsic to create the intrinsics, which turns out to be passing the type list to getName, and ended up naming the intrinsics function with type suffix, which leads to wierd bugs latter on. It took me a long time to debug.
It seems a good idea to add an assertion in getName so that it fails if types are passed but it's not a overloaded function.
Also, the overloade version of getName is less efficient because it creates an std::string. We should avoid calling it if we know that there are no types provided.
Differential Revision: https://reviews.llvm.org/D92523
llvm-link should not rely on the '.a' file extension when deciding if input file
should be loaded as archive. Archives may have other extensions (f.e. .lib) or no
extensions at all. This patch changes llvm-link to use llvm::file_magic to check
if input file is an archive.
Reviewed By: RaviNarayanaswamy
Differential Revision: https://reviews.llvm.org/D92376
Instead of computing the alignment and size of the `char` buffer in
`AlignedCharArrayUnion`, rely on the math in `std::aligned_union_t`.
Because some users of this rely on the `buffer` field existing with a
type convertible to `char *`, we can't change the field type, but we can
still avoid duplicating the logic.
A potential follow up would be to delete `AlignedCharArrayUnion` after
updating its users to use `std::aligned_union_t` directly; or if we like
our template parameters better, could update users to stop peeking
inside and then replace the definition with:
```
template <class T, class... Ts>
using AlignedCharArrayUnion = std::aligned_union_t<1, T, Ts...>;
```
Differential Revision: https://reviews.llvm.org/D92500
`AlignedArrayCharUnion` is now using `alignas`, which is properly
supported now by all the host toolchains we support. As a result, the
extra `alignas` on `IntervalMap` isn't needed anymore.
This is effectively a revert of 379daa29744cd96b0a87ed0d4a010fa4bc47ce73.
Differential Revision: https://reviews.llvm.org/D92509
Revert "Delete llvm::is_trivially_copyable and CMake variable HAVE_STD_IS_TRIVIALLY_COPYABLE"
This reverts commit 4d4bd40b578d77b8c5bc349ded405fb58c333c78.
This reverts commit 557b00e0afb2dc1776f50948094ca8cc62d97be4.
LLVM has TLS_(base_)addr32 for 32-bit TLS addresses in 32-bit mode, and
TLS_(base_)addr64 for 64-bit TLS addresses in 64-bit mode. x32 mode wants 32-bit
TLS addresses in 64-bit mode, which were not yet handled. This adds
TLS_(base_)addrX32 as copies of TLS_(base_)addr64, except that they use
tls32(base)addr rather than tls64(base)addr, and then restricts
TLS_(base_)addr64 to 64-bit LP64 mode, TLS_(base_)addrX32 to 64-bit ILP32 mode.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D92346
Since x32 supports PC-relative address, it shouldn't use EBX for TLS
address. Instead of checking N.getValueType(), we should check
Subtarget->is32Bit(). This fixes PR 22676.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D16474
An indirect call site needs to be probed for its potential call targets. With CSSPGO a direct call also needs a probe so that a calling context can be represented by a stack of callsite probes. Unlike pseudo probes for basic blocks that are in form of standalone intrinsic call instructions, pseudo probes for callsites have to be attached to the call instruction, thus a separate instruction would not work.
One possible way of attaching a probe to a call instruction is to use a special metadata that carries information about the probe. The special metadata will have to make its way through the optimization pipeline down to object emission. This requires additional efforts to maintain the metadata in various places. Given that the `!dbg` metadata is a first-class metadata and has all essential support in place , leveraging the `!dbg` metadata as a channel to encode pseudo probe information is probably the easiest solution.
With the requirement of not inflating `!dbg` metadata that is allocated for almost every instruction, we found that the 32-bit DWARF discriminator field which mainly serves AutoFDO can be reused for pseudo probes. DWARF discriminators distinguish identical source locations between instructions and with pseudo probes such support is not required. In this change we are using the discriminator field to encode the ID and type of a callsite probe and the encoded value will be unpacked and consumed right before object emission. When a callsite is inlined, the callsite discriminator field will go with the inlined instructions. The `!dbg` metadata of an inlined instruction is in form of a scope stack. The top of the stack is the instruction's original `!dbg` metadata and the bottom of the stack is for the original callsite of the top-level inliner. Except for the top of the stack, all other elements of the stack actually refer to the nested inlined callsites whose discriminator field (which actually represents a calliste probe) can be used together to represent the inline context of an inlined PseudoProbeInst or CallInst.
To avoid collision with the baseline AutoFDO in various places that handles dwarf discriminators where a check against the `-pseudo-probe-for-profiling` switch is not available, a special encoding scheme is used to tell apart a pseudo probe discriminator from a regular discriminator. For the regular discriminator, if all lowest 3 bits are non-zero, it means the discriminator is basically empty and all higher 29 bits can be reversed for pseudo probe use.
Callsite pseudo probes are inserted in `SampleProfileProbePass` and a target-independent MIR pass `PseudoProbeInserter` is added to unpack the probe ID/type from `!dbg`.
Note that with this work the switch -debug-info-for-profiling will not work with -pseudo-probe-for-profiling anymore. They cannot be used at the same time.
Reviewed By: wmi
Differential Revision: https://reviews.llvm.org/D91756
At D92261, this type will be used to cache both combined shadow and
converted shadow values.
Reviewed-by: morehouse
Differential Revision: https://reviews.llvm.org/D92458
Summary:
Not all system assembler supports `.uleb128 label2 - label1` form.
When the target do not support this form, we have to take
alternative manual calculation to get the offsets from them.
Reviewed By: hubert.reinterpretcast
Diffierential Revision: https://reviews.llvm.org/D92058
It's common for code that manipulates the stack via inline assembly or
that has to set up its own stack canary (such as the Linux kernel) would
like to avoid stack protectors in certain functions. In this case, we've
been bitten by numerous bugs where a callee with a stack protector is
inlined into an attribute((no_stack_protector)) caller, which
generally breaks the caller's assumptions about not having a stack
protector. LTO exacerbates the issue.
While developers can avoid this by putting all no_stack_protector
functions in one translation unit together and compiling those with
-fno-stack-protector, it's generally not very ergonomic or as
ergonomic as a function attribute, and still doesn't work for LTO. See also:
https://lore.kernel.org/linux-pm/20200915172658.1432732-1-rkir@google.com/https://lore.kernel.org/lkml/20200918201436.2932360-30-samitolvanen@google.com/T/#u
SSP attributes can be ordered by strength. Weakest to strongest, they
are: ssp, sspstrong, sspreq. Callees with differing SSP attributes may be
inlined into each other, and the strongest attribute will be applied to the
caller. (No change)
After this change:
* A callee with no SSP attributes will no longer be inlined into a
caller with SSP attributes.
* The reverse is also true: a callee with an SSP attribute will not be
inlined into a caller with no SSP attributes.
* The alwaysinline attribute overrides these rules.
Functions that get synthesized by the compiler may not get inlined as a
result if they are not created with the same stack protector function
attribute as their callers.
Alternative approach to https://reviews.llvm.org/D87956.
Fixes pr/47479.
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed By: rnk, MaskRay
Differential Revision: https://reviews.llvm.org/D91816
Summary:
AIX uses the existing EH infrastructure in clang and llvm.
The major differences would be
1. AIX do not have CFI instructions.
2. AIX uses a new personality routine, named __xlcxx_personality_v1.
It doesn't use the GCC personality rountine, because the
interoperability is not there yet on AIX.
3. AIX do not use eh_frame sections. Instead, it would use a eh_info
section (compat unwind section) to store the information about
personality routine and LSDA data address.
Reviewed By: daltenty, hubert.reinterpretcast
Differential Revision: https://reviews.llvm.org/D91455
https://llvm.org/PR48362
It's possible that we could stub this out sooner somewhere
within JumpThreading, but I'm not sure how to do that, and
then we would still have potential danger in other callers.
I can't find a way to trigger this using 'instsimplify',
however, because that already has a bailout on unreachable
blocks.
GCC<5 did not support std::is_trivially_copyable. Now LLVM builds
require 5.1 we can delete llvm::is_trivially_copyable after the users
have been migrated to std::is_trivially_copyable.
Its unlikely an undef element in a zero vector will be any use, and SimplifyDemandedVectorElts now calls combineX86ShufflesRecursively so its unlikely we actually have a dependency on these specific elements.
This is yet another attempt at providing support for epilogue
vectorization following discussions raised in RFC http://llvm.1065342.n5.nabble.com/llvm-dev-Proposal-RFC-Epilog-loop-vectorization-tt106322.html#none
and reviews D30247 and D88819.
Similar to D88819, this patch achieve epilogue vectorization by
executing a single vplan twice: once on the main loop and a second
time on the epilogue loop (using a different VF). However it's able
to handle more loops, and generates more optimal control flow for
cases where the trip count is too small to execute any code in vector
form.
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D89566
This might be a small improvement in readability, but the
real motivation is to make it easier to adapt the code to
deal with intrinsics like 'maxnum' and/or integer min/max.
There is potentially help in doing that with D92086, but
we might also just add specialized wrappers here to deal
with the expected patterns.
OpenMPIRBuilder::createParallel outlines the body region of the parallel
construct into a new function that accepts any value previously defined outside
the region as a function argument. This function is called back by OpenMP
runtime function __kmpc_fork_call, which expects trailing arguments to be
pointers. If the region uses a value that is not of a pointer type, e.g. a
struct, the produced code would be invalid. In such cases, make createParallel
emit IR that stores the value on stack and pass the pointer to the outlined
function instead. The outlined function then loads the value back and uses as
normal.
Reviewed By: jdoerfert, llitchev
Differential Revision: https://reviews.llvm.org/D92189
This also removes the empty extra "module asm" that would be created,
and updates the test to reflect that while making it more explicit.
Broken out from https://reviews.llvm.org/D92335
This patch consists of the addition of some common additional
extended mnemonics to the SystemZ target.
- These are jnop, jct, jctg, jas, jasl, jxh, jxhg, jxle,
jxleg, bru, brul, br*, br*l.
- These mnemonics and the instructions they map to are
defined here, Chapter 4 - Branching with extended
mnemonic codes.
- Except for jnop (which is a variant of brc 0, label), every
other mnemonic is marked as a MnemonicAlias since there is
already a "defined" instruction with the same encoding
and/or condition mask values.
- brc 0, label doesn't have a defined extended mnemonic, thus
jnop is defined using as an InstAlias. Furthermore, the
applyMnemonicAliases function is called in the overridden
parseInstruction function in SystemZAsmParser.cpp to ensure
any mnemonic aliases are applied before any further
processing on the instruction is done.
Reviewed By: uweigand
Differential Revision: https://reviews.llvm.org/D92185
In this patch I have added support for a new loop hint called
vectorize.scalable.enable that says whether we should enable scalable
vectorization or not. If a user wants to instruct the compiler to
vectorize a loop with scalable vectors they can now do this as
follows:
br i1 %exitcond, label %for.end, label %for.body, !llvm.loop !2
...
!2 = !{!2, !3, !4}
!3 = !{!"llvm.loop.vectorize.width", i32 8}
!4 = !{!"llvm.loop.vectorize.scalable.enable", i1 true}
Setting the hint to false simply reverts the behaviour back to the
default, using fixed width vectors.
Differential Revision: https://reviews.llvm.org/D88962
This implementation of `ELFDumper<ELFT>::printAttributes()` in llvm-readobj has issues:
1) It crashes when the content of the attribute section is empty.
2) It uses `unwrapOrError` and `reportWarning` calls, though
ideally we want to use `reportUniqueWarning`.
3) It contains a TODO about redundant format version check.
`lib/Support/ELFAttributeParser.cpp` uses a hardcoded constant instead of the named constant.
This patch fixes all these issues.
Differential revision: https://reviews.llvm.org/D92318
These were re-added by fbfb1c790982277eaa5134c2b6aa001e97fe828d but
should not have been. This removes the old experimental versions of the
reduction intrinsics again, leaving the new non experimental ones.
Differential Revision: https://reviews.llvm.org/D92411
In lowering of FLT_ROUNDS_, FPSCR content will be moved into FP register
and then GPR, and then truncated into word.
For subtargets without direct move support, it will store and then load.
The load address needs adjustment (+4) only on big-endian targets. This
patch fixes it on using generic opcodes on little-endian and subtargets
with direct-move.
Reviewed By: steven.zhang
Differential Revision: https://reviews.llvm.org/D91845
This:
1) Changes `reportWarning` to `reportUniqueWarning` (no-op here).
2) Adds more context to the message.
3) Merges `broken-dynsym-link.test` into `dyn-symbols.test`, adds more testing.
Differential revision: https://reviews.llvm.org/D92380