These should end up (in ELF) as R_X86_64_32S relocs, not R_X86_64_32.
Kill the horrid and incomplete special case and FIXME in
EncodeInstruction() and set things up so it can infer the signedness
from the ImmType just like it can the size and whether it's PC-relative.
llvm-svn: 200495
This fixes the bulk of 16-bit output, and the corresponding test case
x86-16.s now looks mostly like the x86-32.s test case that it was
originally based on. A few irrelevant instructions have been dropped,
and there are still some corner cases to be fixed in subsequent patches.
llvm-svn: 198752
That's what it actually means, and with 16-bit support it's going to be
a little more relevant since in a few corner cases we may actually want
to distinguish between 16-bit and 32-bit mode (for example the bare 'push'
aliases to pushw/pushl etc.)
Patch by David Woodhouse
llvm-svn: 197768
Implements Instruction scheduler latencies for Silvermont,
using latencies from the Intel Silvermont Optimization Guide.
Auto detects SLM.
Turns on post RA scheduler when generating code for SLM.
llvm-svn: 190717
This corrects a problem where x86 instructions that implicitly define/use both
an A-register (RAX, EAX, ..) and EFLAGS were declared as only defining/using
EFLAGS, because the outer "let Defs/Uses = [EFLAGS]" in the various multiclasses
overrides the "let Defs/Uses = [areg]" in BinOpAI.
The instructions deriving from BinOpAI were moved out of the "let Defs", and a
BinOpAI_FF class was created, for instructions that implicitly define and use
EFLAGS and the A-register (SBC, ADC).
llvm-svn: 182883
Now all x86 instructions that have itinerary classes also have SchedRW
lists. This is required before the new scheduling models can be used.
There are still unannotated instructions remaining, but they don't have
itinerary classes either.
llvm-svn: 178051
This new-style scheduling information is going to replace the
instruction iteneraries.
This also serves as a test case for Andy's fix in r177317.
llvm-svn: 177323
1) allows the use of RIP-relative addressing in 32-bit LEA instructions under
x86-64 (ILP32 and LP64)
2) separates the size of address registers in 64-bit LEA instructions from
control by ILP32/LP64.
llvm-svn: 174208
We perform the following:
1> Use SUB instead of CMP for i8,i16,i32 and i64 in ISel lowering.
2> Modify MachineCSE to correctly handle implicit defs.
3> Convert SUB back to CMP if possible at peephole.
Removed pattern matching of (a>b) ? (a-b):0 and like, since they are handled
by peephole now.
rdar://11873276
llvm-svn: 161462
Updated OptimizeCompare in peephole to remove redundant cmp against zero.
We only remove Compare if CF and OF are not used.
rdar://11855129
llvm-svn: 160454
For each Cmp, we check whether there is an earlier Sub which make Cmp
redundant. We handle the case where SUB operates on the same source operands as
Cmp, including the case where the two source operands are swapped.
llvm-svn: 159838
This patch will optimize the following:
sub r1, r3
cmp r3, r1 or cmp r1, r3
bge L1
TO
sub r1, r3
bge L1 or ble L1
If the branch instruction can use flag from "sub", then we can eliminate
the "cmp" instruction.
llvm-svn: 157831
Adds an instruction itinerary to all x86 instructions, giving each a default latency of 1, using the InstrItinClass IIC_DEFAULT.
Sets specific latencies for Atom for the instructions in files X86InstrCMovSetCC.td, X86InstrArithmetic.td, X86InstrControl.td, and X86InstrShiftRotate.td. The Atom latencies for the remainder of the x86 instructions will be set in subsequent patches.
Adds a test to verify that the scheduler is working.
Also changes the scheduling preference to "Hybrid" for i386 Atom, while leaving x86_64 as ILP.
Patch by Preston Gurd!
llvm-svn: 149558
In 64-bit mode, sub_8bit_hi sub-registers can only be used by NOREX
instructions. The COPY created from the EXTRACT_SUBREG DAG node cannot
target all GR8 registers, only those in GR8_NOREX.
TO enforce this, we ensure that all instructions using the
EXTRACT_SUBREG are GR8_NOREX constrained.
This fixes PR11088.
llvm-svn: 141499
their carry depenedencies with MVT::Flag operands) and use clean and beautiful
EFLAGS dependences instead.
We do this by changing the modelling of SBB/ADC to have EFLAGS input and outputs
(which is what requires the previous scheduler change) and change X86 ISelLowering
to custom lower ADDC and friends down to X86ISD::ADD/ADC/SUB/SBB nodes.
With the previous series of changes, this causes no changes in the testsuite, woo.
llvm-svn: 122213
backend that they were all implemented except umul. This one fell back
to the default implementation that did a hi/lo multiply and compared the
top. Fix this to check the overflow flag that the 'mul' instruction
sets, so we can avoid an explicit test. Now we compile:
void *func(long count) {
return new int[count];
}
into:
__Z4funcl: ## @_Z4funcl
movl $4, %ecx ## encoding: [0xb9,0x04,0x00,0x00,0x00]
movq %rdi, %rax ## encoding: [0x48,0x89,0xf8]
mulq %rcx ## encoding: [0x48,0xf7,0xe1]
seto %cl ## encoding: [0x0f,0x90,0xc1]
testb %cl, %cl ## encoding: [0x84,0xc9]
movq $-1, %rdi ## encoding: [0x48,0xc7,0xc7,0xff,0xff,0xff,0xff]
cmoveq %rax, %rdi ## encoding: [0x48,0x0f,0x44,0xf8]
jmp __Znam ## TAILCALL
instead of:
__Z4funcl: ## @_Z4funcl
movl $4, %ecx ## encoding: [0xb9,0x04,0x00,0x00,0x00]
movq %rdi, %rax ## encoding: [0x48,0x89,0xf8]
mulq %rcx ## encoding: [0x48,0xf7,0xe1]
testq %rdx, %rdx ## encoding: [0x48,0x85,0xd2]
movq $-1, %rdi ## encoding: [0x48,0xc7,0xc7,0xff,0xff,0xff,0xff]
cmoveq %rax, %rdi ## encoding: [0x48,0x0f,0x44,0xf8]
jmp __Znam ## TAILCALL
Other than the silly seto+test, this is using the o bit directly, so it's going in the right
direction.
llvm-svn: 120935
use. Since TEST is completely different than all other binops,
don't define a multipattern for it.
This completes factorization of binops.
llvm-svn: 115982