Commit 0464586ac515e8cfebe4c7615387fd625c8869f5 added a combine
for a 64-bit load feeding a bswap but the implementation is only
correct for little endian systems.
This fixes it for big endian systems.
Remove the old name for the methods. These were only left behind to
ease the transition for downstreams.
Differential Revision: https://reviews.llvm.org/D104820
This is a mechanical change. This actually also renames the
similarly named methods in the SmallString class, however these
methods don't seem to be used outside of the llvm subproject, so
this doesn't break building of the rest of the monorepo.
Rename functions with the `xx_lower()` names to `xx_insensitive()`.
This was requested during the review of D104218.
Test names and variables in llvm/unittests/ADT/StringRefTest.cpp
that refer to "lower" are renamed to "insensitive" correspondingly.
Unused function aliases with the former method names are left
in place (without any deprecation attributes) for transition purposes.
All references within the monorepo will be changed (with essentially
mechanical changes), and then the old names will be removed in a
later commit.
Also remove the superfluous method names at the start of doxygen
comments, for the methods that are touched here. (There are more
occurrances of this left in other methods though.) Also remove
duplicate doxygen comments from the implementation file.
Differential Revision: https://reviews.llvm.org/D104819
Adds some more text to the documentation for the noimplicitfloat
function attribute. Hopefully, this makes it clearer what
qualifies an implicit vs. explicit float, without becoming overly
long or going into target-specific details.
Reviewed By: rnk, craig.topper
Differential Revision: https://reviews.llvm.org/D104061
Rather than relying on pointer type equality (which, for a change,
is silently incorrect with opaque pointers) check that the GEP
source element types match.
We don't want to start updating tests to use opaque pointers until we're
close to the opaque pointer transition. However, before the transition
we want to run tests as if pointers are opaque pointers to see if there
are any crashes.
At some point when we have a flag to only create opaque pointers in the
bitcode and textual IR readers, and when we have fixed all places that
try to read a pointee type, this flag will be useless. However, until
then, this can help us find issues more easily.
Since the cl::opt is read into LLVMContext, we need to make sure
LLVMContext is created after cl::ParseCommandLineOptions().
Previously ValueEnumerator would visit the value types of global values
via the pointer type, but with opaque pointers we have to manually visit
the value type.
Reviewed By: nikic, dexonsmith
Differential Revision: https://reviews.llvm.org/D103503
WPD currently assumes that there is a one to one correspondence between
type test assume sequences and virtual calls. However, with
-fstrict-vtable-pointers this may not be true. This ends up causing
crashes when we try to optimize a virtual call more than once (
applyUniformRetValOpt()/applyUniqueRetValOpt()/applyVirtualConstProp()/applySingleImplDevirt()).
applySingleImplDevirt() actually didn't previous crash because it would
replace the devirtualized call with the same direct call. Adding an
assert that the call is indirect causes the corresponding test to crash
with the rest of the patch.
This makes Chrome successfully build with -fstrict-vtable-pointers + WPD.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D104798
When targeting CPUs that don't have LDBRX, we end up producing code that is
very inefficient and large for this common idiom. This patch just
optimizes it two 32-bit LWBRX instructions along with a merge.
This fixes https://bugs.llvm.org/show_bug.cgi?id=49610
Differential revision: https://reviews.llvm.org/D104836
The whole transform can be dropped once we have fully transitioned
to opaque pointers (as it's purpose is to remove no-op pointer
casts). For now, make sure that it handles opaque pointers correctly.
- When emitting libcalls, do not only pass the calling convention from the
function prototype but also the attributes.
- Do not pass attributes from e.g. libc memcpy to llvm.memcpy.
Review: Reid Kleckner, Eli Friedman, Arthur Eubanks
Differential Revision: https://reviews.llvm.org/D103992
Similar to what we already do for `ret` terminators.
As noted by @rnk, clang seems to already generate a single `ret`/`resume`,
so this isn't likely to cause widespread changes.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D104849
PACI*SP have the advantage that they are in HINT space, meaning
they can be run successfully in hardware without PAuth support -
they will just behave as a NOP. However, PACI*SP are also implicit
landing pads (think of an extra BTI jc). Therefore, they allow
indirect jumps of all kinds into them, potentially inserting new
gadgets. This patch replaces PACI*SP by PACI* LR, SP when
compiling explicitly for hardware with full PAuth support. PACI*
is not in the HINT space, therefore it will fault when run in
hardware without PAuth support, but it is also not a landing pad,
making programs safer in newer HW.
Differential Revision: https://reviews.llvm.org/D101920
We don't constant fold based on demanded bits elsewhere in
SimplifyDemandedBits, so I don't think we should shrink them either.
The affected ARM test changes because a constant become non-opaque
and eventually enabled some constant folding. This no longer happens.
I checked and InstCombine is able to simplify this test. I'm not sure exactly
what it was trying to test.
Reviewed By: lebedev.ri, dmgreen
Differential Revision: https://reviews.llvm.org/D104832
- Currently, the emitting of labels in the parsePrimaryExpr function is case independent. It just takes the identifier and emits it.
- However, for HLASM the emitting of labels is case independent. We are emitting them in the upper case only, to enforce case independency. So we need to ensure that at the time of parsing the label we are emitting the upper case (in `parseAsHLASMLabel`), but also, when we are processing a PC-relative relocatable expression, we need to ensure we emit it in upper case (in `parsePrimaryExpr`)
- To achieve this a new MCAsmInfo attribute has been introduced which corresponding targets can override if needed.
Reviewed By: abhina.sreeskantharajan, uweigand
Differential Revision: https://reviews.llvm.org/D104715
Currently when .llvm.call-graph-profile is created by llvm it explicitly encodes the symbol indices. This section is basically a black box for post processing tools. For example, if we run strip -s on the object files the symbol table changes, but indices in that section do not. In non-visible behavior indices point to wrong symbols. The visible behavior indices point outside of Symbol table: "invalid symbol index".
This patch changes the format by using R_*_NONE relocations to indicate the from/to symbols. The Frequency (Weight) will still be in the .llvm.call-graph-profile, but symbol information will be in relocation section. In LLD information from both sections is used to reconstruct call graph profile. Relocations themselves will never be applied.
With this approach post processing tools that handle relocations correctly work for this section also. Tools can add/remove symbols and as long as they handle relocation sections with this approach information stays correct.
Doing a quick experiment with clang-13.
The size went up from 107KB to 322KB, aggregate of all the input sections. Size of clang-13 binary is ~118MB. For users of -fprofile-use/-fprofile-sample-use the size of object files will go up slightly, it will not impact final binary size.
Reviewed By: jhenderson, MaskRay
Differential Revision: https://reviews.llvm.org/D104080
Everything includes clang/Config/config.h by qualified "clang/Config/config.h"
path, so there's no need for `-Igen/clang/include/clang/Config/clang/include`.
No behavior change.
This patch handles sinking a replicate region after another replicate
region. In that case, we can connect the sink region after the target
region. This properly handles the case for which an assertion has been
added in 337d7652823f.
Fixes https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=34842.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D103514
This patch enables the salvaging of debug values that may be calculated
from more than one SSA value, such as with binary operators that do not
use a constant argument. The actual functionality for this behaviour is
added in a previous commit (c7270567), but with the ability to actually
emit the resulting debug values switched off.
The reason for this is that the prior patch has been reverted several
times due to issues discovered downstream, some time after the actual
landing of the patch. The patch in question is rather large and touches
several widely used header files, and all issues discovered are more
related to the handling of variadic debug values as a whole rather than
the details of the patch itself. Therefore, to minimize the build time
impact and risk of conflicts involved in any potential future
revert/reapply of that patch, this significantly smaller patch (that
touches no header files) will instead be used as the capstone to enable
variadic debug value salvaging.
The review linked to this patch is mostly implemented by the previous
commit, c7270567, but also contains the changes in this patch.
Differential Revision: https://reviews.llvm.org/D91722
As a minor adjustment to the existing lowering of offset scatters, this
extends any smaller-than-legal vectors into full vectors using a zext,
so that the truncating scatters can be used. Due to the way MVE
legalizes the vectors this should be cheap in most situations, and will
prevent the vector from being scalarized.
Differential Revision: https://reviews.llvm.org/D103704
Change --max-timeline-cycles=0 to mean no limit on the number of cycles.
Use this in AMDGPU tests to show all instructions in the timeline view
instead of having it arbitrarily truncated.
Differential Revision: https://reviews.llvm.org/D104846
It looks like the fold introduced in 63f3383ece25efa can cause crashes
if the type of the bitcasted value is not a valid vector element type,
like x86_mmx.
To resolve the crash, reject invalid vector element types. The way it is
done in the patch is a bit clunky. Perhaps there's a better way to
check?
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D104792
This patch generalizes MatchBinaryAddToConst to support matching
(A + C1), (A + C2), instead of just matching (A + C1), A.
The existing cases can be handled by treating non-add expressions A as
A + 0.
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D104634
OR, XOR and AND entries are added to the cost table. An extra cost
is added when vector splitting occurs.
This is done to address the issue of a missed SLP vectorization
opportunity due to unreasonably high costs being attributed to the vector
Or reduction (see: https://bugs.llvm.org/show_bug.cgi?id=44593).
Differential Revision: https://reviews.llvm.org/D104538
select (cmpeq Cond0, Cond1), LHS, (select (cmpugt Cond0, Cond1), LHS, Y) --> (select (cmpuge Cond0, Cond1), LHS, Y)
etc,
We already perform this fold in DAGCombiner for MVT::i1 comparison results, but these can still appear after legalization (in x86 case with MVT::i8 results), where we need to be more careful about generating new comparison codes.
Pulled out of D101074 to help address the remaining regressions.
Differential Revision: https://reviews.llvm.org/D104707
This also adds new interfaces for the fixed- and scalable case:
* LLT::fixed_vector
* LLT::scalable_vector
The strategy for migrating to the new interfaces was as follows:
* If the new LLT is a (modified) clone of another LLT, taking the
same number of elements, then use LLT::vector(OtherTy.getElementCount())
or if the number of elements is halfed/doubled, it uses .divideCoefficientBy(2)
or operator*. That is because there is no reason to specifically restrict
the types to 'fixed_vector'.
* If the algorithm works on the number of elements (as unsigned), then
just use fixed_vector. This will need to be fixed up in the future when
modifying the algorithm to also work for scalable vectors, and will need
then need additional tests to confirm the behaviour works the same for
scalable vectors.
* If the test used the '/*Scalable=*/true` flag of LLT::vector, then
this is replaced by LLT::scalable_vector.
Reviewed By: aemerson
Differential Revision: https://reviews.llvm.org/D104451
Based ontop of D104598, which is a NFCI-ish refactoring.
Here, a restriction, that only empty blocks can be merged, is lifted.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D104597
This patch optimizes the code generation of vector-type SELECTs (LLVM
select instructions with scalar conditions) by custom-lowering to
VSELECTs (LLVM select instructions with vector conditions) by splatting
the condition to a vector. This avoids the default expansion path which
would either introduce control flow or fully scalarize.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D104772
This is a partial reapply of the original commit and the followup commit
that were previously reverted; this reapply also includes a small fix
for a potential source of non-determinism, but also has a small change
to turn off variadic debug value salvaging, to ensure that any future
revert/reapply steps to disable and renable this feature do not risk
causing conflicts.
Differential Revision: https://reviews.llvm.org/D91722
This reverts commit 386b66b2fc297cda121a3cc8a36887a6ecbcfc68.