This adds a ScalarEvolution-powered transformation that updates load, store and
memory intrinsic pointer alignments based on invariant((a+q) & b == 0)
expressions. Many of the simple cases we can get with ValueTracking, but we
still need something like this for the more complicated cases (such as those
with an offset) that require some algebra. Note that gcc's
__builtin_assume_aligned's optional third argument provides exactly for this
kind of 'misalignment' offset for which this kind of logic is necessary.
The primary motivation is to fixup alignments for vector loads/stores after
vectorization (and unrolling). This pass is added to the optimization pipeline
just after the SLP vectorizer runs (which, admittedly, does not preserve SE,
although I imagine it could). Regardless, I actually don't think that the
preservation matters too much in this case: SE computes lazily, and this pass
won't issue any SE queries unless there are any assume intrinsics, so there
should be no real additional cost in the common case (SLP does preserve DT and
LoopInfo).
llvm-svn: 217344
Add header guards to files that were missing guards. Remove #endif comments
as they don't seem common in LLVM (we can easily add them back if we decide
they're useful)
Changes made by clang-tidy with minor tweaks.
llvm-svn: 215558
be deleted. This will be reapplied as soon as possible and before
the 3.6 branch date at any rate.
Approved by Jim Grosbach, Lang Hames, Rafael Espindola.
This reverts commits r215111, 215115, 215116, 215117, 215136.
llvm-svn: 215154
This commit adds scoped noalias metadata. The primary motivations for this
feature are:
1. To preserve noalias function attribute information when inlining
2. To provide the ability to model block-scope C99 restrict pointers
Neither of these two abilities are added here, only the necessary
infrastructure. In fact, there should be no change to existing functionality,
only the addition of new features. The logic that converts noalias function
parameters into this metadata during inlining will come in a follow-up commit.
What is added here is the ability to generally specify noalias memory-access
sets. Regarding the metadata, alias-analysis scopes are defined similar to TBAA
nodes:
!scope0 = metadata !{ metadata !"scope of foo()" }
!scope1 = metadata !{ metadata !"scope 1", metadata !scope0 }
!scope2 = metadata !{ metadata !"scope 2", metadata !scope0 }
!scope3 = metadata !{ metadata !"scope 2.1", metadata !scope2 }
!scope4 = metadata !{ metadata !"scope 2.2", metadata !scope2 }
Loads and stores can be tagged with an alias-analysis scope, and also, with a
noalias tag for a specific scope:
... = load %ptr1, !alias.scope !{ !scope1 }
... = load %ptr2, !alias.scope !{ !scope1, !scope2 }, !noalias !{ !scope1 }
When evaluating an aliasing query, if one of the instructions is associated
with an alias.scope id that is identical to the noalias scope associated with
the other instruction, or is a descendant (in the scope hierarchy) of the
noalias scope associated with the other instruction, then the two memory
accesses are assumed not to alias.
Note that is the first element of the scope metadata is a string, then it can
be combined accross functions and translation units. The string can be replaced
by a self-reference to create globally unqiue scope identifiers.
[Note: This overview is slightly stylized, since the metadata nodes really need
to just be numbers (!0 instead of !scope0), and the scope lists are also global
unnamed metadata.]
Existing noalias metadata in a callee is "cloned" for use by the inlined code.
This is necessary because the aliasing scopes are unique to each call site
(because of possible control dependencies on the aliasing properties). For
example, consider a function: foo(noalias a, noalias b) { *a = *b; } that gets
inlined into bar() { ... if (...) foo(a1, b1); ... if (...) foo(a2, b2); } --
now just because we know that a1 does not alias with b1 at the first call site,
and a2 does not alias with b2 at the second call site, we cannot let inlining
these functons have the metadata imply that a1 does not alias with b2.
llvm-svn: 213864
Merges equivalent loads on both sides of a hammock/diamond
and hoists into into the header.
Merges equivalent stores on both sides of a hammock/diamond
and sinks it to the footer.
Can enable if conversion and tolerate better load misses
and store operand latencies.
llvm-svn: 213396
This attribute indicates that the parameter or return pointer is
dereferenceable. Practically speaking, loads from such a pointer within the
associated byte range are safe to speculatively execute. Such pointer
parameters are common in source languages (C++ references, for example).
llvm-svn: 213385
After a number of previous small iterations, the functions
llvm_start_multithreaded() and llvm_stop_multithreaded() have
been reduced essentially to no-ops. This change removes them
entirely.
Reviewed by: rnk, dblaikie
Differential Revision: http://reviews.llvm.org/D4216
llvm-svn: 211287
This patch removes the functions llvm_start_multithreaded() and
llvm_stop_multithreaded(), and changes llvm_is_multithreaded()
to return a constant value based on the value of the compile-time
definition LLVM_ENABLE_THREADS.
Previously, it was possible to have compile-time support for
threads on, and runtime support for threads off, in which case
certain mutexes were not allocated or ever acquired. Now, if the
build is created with threads enabled, mutexes are always acquired.
A test before/after patch of compiling a very large TU showed no
noticeable performance impact of this change.
Reviewers: rnk
Differential Revision: http://reviews.llvm.org/D4076
llvm-svn: 210600
It includes a pass that rewrites all indirect calls to jumptable functions to pass through these tables.
This also adds backend support for generating the jump-instruction tables on ARM and X86.
Note that since the jumptable attribute creates a second function pointer for a
function, any function marked with jumptable must also be marked with unnamed_addr.
llvm-svn: 210280
Sometimes a LLVM compilation may take more time then a client would like to
wait for. The problem is that it is not possible to safely suspend the LLVM
thread from the outside. When the timing is bad it might be possible that the
LLVM thread holds a global mutex and this would block any progress in any other
thread.
This commit adds a new yield callback function that can be registered with a
context. LLVM will try to yield by calling this callback function, but there is
no guaranteed frequency. LLVM will only do so if it can guarantee that
suspending the thread won't block any forward progress in other LLVM contexts
in the same process.
Once the client receives the call back it can suspend the thread safely and
resume it at another time.
Related to <rdar://problem/16728690>
llvm-svn: 208945
This allows code to statically accept a Function or a GlobalVariable, but
not an alias. This is already a cleanup by itself IMHO, but the main
reason for it is that it gives a lot more confidence that the refactoring to fix
the design of GlobalAlias is correct. That will be a followup patch.
llvm-svn: 208716
This commit provides the necessary C/C++ APIs and infastructure to enable fine-
grain progress report and safe suspension points after each pass in the pass
manager.
Clients can provide a callback function to the pass manager to call after each
pass. This can be used in a variety of ways (progress report, dumping of IR
between passes, safe suspension of threads, etc).
The run listener list is maintained in the LLVMContext, which allows a multi-
threaded client to be only informed for it's own thread. This of course assumes
that the client created a LLVMContext for each thread.
This fixes <rdar://problem/16728690>
llvm-svn: 207430
This adds support for an -mattr option to the gold plugin and to llvm-lto. This
allows the caller to specify details of the subtarget architecture, like +aes,
or +ssse3 on x86. Note that this requires a change to the include/llvm-c/lto.h
interface: it adds a function lto_codegen_set_attr and it increments the
version of the interface.
llvm-svn: 207279
We normally don't drop functions from the C API's, but in this case I think we
can:
* The old implementation of getFileOffset was fairly broken
* The introduction of LLVMGetSymbolFileOffset was itself a C api breaking
change as it removed LLVMGetSymbolOffset.
* It is an incredibly specialized use case. The only reason MCJIT needs it is
because of its odd position of being a dynamic linker of .o files.
llvm-svn: 206750
This adds a second implementation of the AArch64 architecture to LLVM,
accessible in parallel via the "arm64" triple. The plan over the
coming weeks & months is to merge the two into a single backend,
during which time thorough code review should naturally occur.
Everything will be easier with the target in-tree though, hence this
commit.
llvm-svn: 205090
selfhost.
The 'Core.h' C-API header is part of the IR LLVM library. (One might
even argue it should be called IR.h, but that's a separate point.) We
can't include it into a Support header without violating the layering,
and in a way that breaks modules. MemoryBuffer's opaque C type was being
defined in the Core.h C-API header despite being in the Support library,
and thus we ended up with this weird issue.
It turns out that there were other constructs from the Support library
in the Core.h header. This patch lifts all of them into Support.h and
then includes that into Core.h.
The only possible fallout is if someone was including Support.h and
relying on Core.h to be visible for their own uses. Considering the
narrow interface actually provided by the C-API for the Support library,
this seems a very, very unlikely mistake.
llvm-svn: 203071
A 'remark' is information that is not an error or a warning, but rather some
additional information provided to the user. In contrast to a 'note' a 'remark'
is an independent diagnostic, whereas a 'note' always depends on another
diagnostic.
A typical use case for remark nodes is information provided to the user, e.g.
information provided by the vectorizer about loops that have been vectorized.
llvm-svn: 202474
This function adds an extra path argument to lto_module_create_from_memory.
The path argument will be passed to makeBuffer to make sure the MemoryBuffer
has a name and the created module has a module identifier.
This is mainly for emitting warning messages from the linker. When we emit
warning message on a module, we can use the module identifier.
rdar://15985737
llvm-svn: 201114
This patch adds the target analysis passes (usually TargetTransformInfo) to the
codgen pipeline. We also expose now the AddAnalysisPasses method through the C
API, because the optimizer passes would also benefit from better target-specific
cost models.
Reviewed by Andrew Kaylor
llvm-svn: 199926
Adding a doxygen comment for each bit of API to indicate at which
LTO_API_VERSION each was available, manually gleaned from successive
git-blames. A few notes:
- LTO_API_VERSION was set to 3 at its introduction.
- I've indicated all the API introduced before LTO_API_VERSION was
around as available "prior to LTO_API_VERSION=3".
- A number of API changes neglected to bump LTO_API_VERSION. These I've
indicated as available at the *next* bump of LTO_API_VERSION.
llvm-svn: 199429
Add a hook in the C API of LTO so that clients of the code generator can set
their own handler for the LLVM diagnostics.
The handler is defined like this:
typedef void (*lto_diagnostic_handler_t)(lto_codegen_diagnostic_severity_t
severity, const char *diag, void *ctxt)
- severity says how bad this is.
- diag is a string that contains the diagnostic message.
- ctxt is the registered context for this handler.
This hook is more general than the lto_get_error_message, since this function
keeps only the latest message and can only be queried when something went wrong
(no warning for instance).
<rdar://problem/15517596>
llvm-svn: 199338
Reapply r199191, reverted in r199197 because it carelessly broke
Other/link-opts.ll. The problem was that calling
createInternalizePass("main") would select
createInternalizePass(bool("main")) instead of
createInternalizePass(ArrayRef<const char *>("main")). This commit
fixes the bug.
The original commit message follows.
Add API to LTOCodeGenerator to specify a strategy for the -internalize
pass.
This is a new attempt at Bill's change in r185882, which he reverted in
r188029 due to problems with the gold linker. This puts the onus on the
linker to decide whether (and what) to internalize.
In particular, running internalize before outputting an object file may
change a 'weak' symbol into an internal one, even though that symbol
could be needed by an external object file --- e.g., with arclite.
This patch enables three strategies:
- LTO_INTERNALIZE_FULL: the default (and the old behaviour).
- LTO_INTERNALIZE_NONE: skip -internalize.
- LTO_INTERNALIZE_HIDDEN: only -internalize symbols with hidden
visibility.
LTO_INTERNALIZE_FULL should be used when linking an executable.
Outputting an object file (e.g., via ld -r) is more complicated, and
depends on whether hidden symbols should be internalized. E.g., for
ld -r, LTO_INTERNALIZE_NONE can be used when -keep_private_externs, and
LTO_INTERNALIZE_HIDDEN can be used otherwise. However,
LTO_INTERNALIZE_FULL is inappropriate, since the output object file will
eventually need to link with others.
lto_codegen_set_internalize_strategy() sets the strategy for subsequent
calls to lto_codegen_write_merged_modules() and lto_codegen_compile*().
<rdar://problem/14334895>
llvm-svn: 199244
Representing dllexport/dllimport as distinct linkage types prevents using
these attributes on templates and inline functions.
Instead of introducing further mixed linkage types to include linkonce and
weak ODR, the old import/export linkage types are replaced with a new
separate visibility-like specifier:
define available_externally dllimport void @f() {}
@Var = dllexport global i32 1, align 4
Linkage for dllexported globals and functions is now equal to their linkage
without dllexport. Imported globals and functions must be either
declarations with external linkage, or definitions with
AvailableExternallyLinkage.
llvm-svn: 199218
Representing dllexport/dllimport as distinct linkage types prevents using
these attributes on templates and inline functions.
Instead of introducing further mixed linkage types to include linkonce and
weak ODR, the old import/export linkage types are replaced with a new
separate visibility-like specifier:
define available_externally dllimport void @f() {}
@Var = dllexport global i32 1, align 4
Linkage for dllexported globals and functions is now equal to their linkage
without dllexport. Imported globals and functions must be either
declarations with external linkage, or definitions with
AvailableExternallyLinkage.
llvm-svn: 199204
Add API to LTOCodeGenerator to specify a strategy for the -internalize
pass.
This is a new attempt at Bill's change in r185882, which he reverted in
r188029 due to problems with the gold linker. This puts the onus on the
linker to decide whether (and what) to internalize.
In particular, running internalize before outputting an object file may
change a 'weak' symbol into an internal one, even though that symbol
could be needed by an external object file --- e.g., with arclite.
This patch enables three strategies:
- LTO_INTERNALIZE_FULL: the default (and the old behaviour).
- LTO_INTERNALIZE_NONE: skip -internalize.
- LTO_INTERNALIZE_HIDDEN: only -internalize symbols with hidden
visibility.
LTO_INTERNALIZE_FULL should be used when linking an executable.
Outputting an object file (e.g., via ld -r) is more complicated, and
depends on whether hidden symbols should be internalized. E.g., for
ld -r, LTO_INTERNALIZE_NONE can be used when -keep_private_externs, and
LTO_INTERNALIZE_HIDDEN can be used otherwise. However,
LTO_INTERNALIZE_FULL is inappropriate, since the output object file will
eventually need to link with others.
lto_codegen_set_internalize_strategy() sets the strategy for subsequent
calls to lto_codegen_write_merged_modules() and lto_codegen_compile*().
<rdar://problem/14334895>
llvm-svn: 199191
SymbolLookUp() call back to return a demangled C++ name to
be used as a comment.
For example darwin's otool(1) program the uses the llvm
disassembler now can produce disassembly like:
callq __ZNK4llvm6Target20createMCDisassemblerERKNS_15MCSubtargetInfoE ## llvm::Target::createMCDisassembler(llvm::MCSubtargetInfo const&) const
Also fix a bug in LLVMDisasmInstruction() that was not flushing
the raw_svector_ostream for the disassembled instruction string
before copying it to the output buffer that was causing truncation
of the output.
rdar://10173828
llvm-svn: 198637
The inalloca attribute is designed to support passing C++ objects by
value in the Microsoft C++ ABI. It behaves the same as byval, except
that it always implies that the argument is in memory and that the bytes
are never copied. This attribute allows the caller to take the address
of an outgoing argument's memory and execute arbitrary code to store
into it.
This patch adds basic IR support, docs, and verification. It does not
attempt to implement any lowering or fix any possibly broken transforms.
When this patch lands, a complete description of this feature should
appear at http://llvm.org/docs/InAlloca.html .
Differential Revision: http://llvm-reviews.chandlerc.com/D2173
llvm-svn: 197645
This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The
transformation aims to take loops like this:
for (int i = 0; i < 3200; i += 5) {
a[i] += alpha * b[i];
a[i + 1] += alpha * b[i + 1];
a[i + 2] += alpha * b[i + 2];
a[i + 3] += alpha * b[i + 3];
a[i + 4] += alpha * b[i + 4];
}
and turn them into this:
for (int i = 0; i < 3200; ++i) {
a[i] += alpha * b[i];
}
and loops like this:
for (int i = 0; i < 500; ++i) {
x[3*i] = foo(0);
x[3*i+1] = foo(0);
x[3*i+2] = foo(0);
}
and turn them into this:
for (int i = 0; i < 1500; ++i) {
x[i] = foo(0);
}
There are two motivations for this transformation:
1. Code-size reduction (especially relevant, obviously, when compiling for
code size).
2. Providing greater choice to the loop vectorizer (and generic unroller) to
choose the unrolling factor (and a better ability to vectorize). The loop
vectorizer can take vector lengths and register pressure into account when
choosing an unrolling factor, for example, and a pre-unrolled loop limits that
choice. This is especially problematic if the manual unrolling was optimized
for a machine different from the current target.
The current implementation is limited to single basic-block loops only. The
rerolling recognition should work regardless of how the loop iterations are
intermixed within the loop body (subject to dependency and side-effect
constraints), but the significant restriction is that the order of the
instructions in each iteration must be identical. This seems sufficient to
capture all current use cases.
This pass is not currently enabled by default at any optimization level.
llvm-svn: 194939
stack traces by default if you use PrettyStackTraceProgram, so that existing LLVM-based
tools will continue to get it without any changes.
llvm-svn: 193971
linkonce_odr_auto_hide was in incomplete attempt to implement a way
for the linker to hide symbols that are known to be available in every
TU and whose addresses are not relevant for a particular DSO.
It was redundant in that it all its uses are equivalent to
linkonce_odr+unnamed_addr. Unlike those, it has never been connected
to clang or llvm's optimizers, so it was effectively dead.
Given that nothing produces it, this patch just nukes it
(other than the llvm-c enum value).
llvm-svn: 193865
Objective-C data structures.
This is allows tools such as darwin's otool(1) that uses the
LLVM disassembler take a pointer value being loaded by
an instruction and add a comment to what it is being referenced
to make following disassembly of Objective-C programs
more readable.
For example disassembling the Mac OS X TextEdit app one
will see comments like the following:
movq 0x20684(%rip), %rsi ## Objc selector ref: standardUserDefaults
movq 0x21985(%rip), %rdi ## Objc class ref: _OBJC_CLASS_$_NSUserDefaults
movq 0x1d156(%rip), %r14 ## Objc message: +[NSUserDefaults standardUserDefaults]
leaq 0x23615(%rip), %rdx ## Objc cfstring ref: @"SelectLinePanel"
callq 0x10001386c ## Objc message: -[[%rdi super] initWithWindowNibName:]
These diffs also include putting quotes around C strings
in literal pools and uses "symbol address" in the comment
when adding a symbol name to the comment to tell these
types of references apart:
leaq 0x4f(%rip), %rax ## literal pool for: "Hello world"
movq 0x1c3ea(%rip), %rax ## literal pool symbol address: ___stack_chk_guard
Of course the easy changes are in the LLVM disassembler and
the hard work is up to the implementer of the SymbolLookUp()
call back.
rdar://10602439
llvm-svn: 193833
There are two ways one could implement hiding of linkonce_odr symbols in LTO:
* LLVM tells the linker which symbols can be hidden if not used from native
files.
* The linker tells LLVM which symbols are not used from other object files,
but will be put in the dso symbol table if present.
GOLD's API is the second option. It was implemented almost 1:1 in llvm by
passing the list down to internalize.
LLVM already had partial support for the first option. It is also very similar
to how ld64 handles hiding these symbols when *not* doing LTO.
This patch then
* removes the APIs for the DSO list.
* marks LTO_SYMBOL_SCOPE_DEFAULT_CAN_BE_HIDDEN all linkonce_odr unnamed_addr
global values and other linkonce_odr whose address is not used.
* makes the gold plugin responsible for handling the API mismatch.
llvm-svn: 193800
This reverts commit r193255 and instead creates an lto_bool_t typedef
that points to bool, _Bool, or unsigned char depending on what is
available. Only recent versions of MSVC provide a stdbool.h header.
Reviewers: rafael.espindola
Differential Revision: http://llvm-reviews.chandlerc.com/D2019
llvm-svn: 193377
All of the Core API functions have versions which accept explicit context, in
addition to ones which work on global context. This commit adds functions
which accept explicit context to the Target API for consistency.
Patch by Peter Zotov
Differential Revision: http://llvm-reviews.chandlerc.com/D1912
llvm-svn: 192913
I expose the API with some caveats:
- The C++ API involves a traditional void* opaque pointer for the fatal
error callback. The C API doesn’t do this. I don’t think that the void*
opaque pointer makes any sense since this is a global callback - there will
only be one of them. So if you need to pass some data to your callback,
just put it in a global variable.
- The bindings will ignore the gen_crash_diag boolean. I ignore it because
(1) I don’t know what it does, (2) it’s not documented AFAIK, and (3) I
couldn’t imagine any use for it. I made the gut call that it probably
wasn’t important enough to expose through the C API.
llvm-svn: 192864
The C API currently allows to dump values (LLVMDumpValue), but a similar method for types was not exported.
Patch by Peter Zotov
Differential Revision: http://llvm-reviews.chandlerc.com/D1911
llvm-svn: 192852
Like LLVMDumpModule but returns the string (that needs to be freed
with LLVMDisposeMessage) instead of printing it to stderr.
Differential Revision: http://llvm-reviews.chandlerc.com/D1941
llvm-svn: 192821
This new library will be linked in when using the "all-targets"
component and contains the LLVMInitializeAll* functions.
This means that those functions will exist as real symbols in
the shared library, and can therefore can be called from
bindings that are using ffi the shared library.
llvm-svn: 192690
This reverts commit r192316. The original change introduced circular
dependencies between libTarget and backends. That would broke a build unless
link everything into one big binary.
llvm-svn: 192329
Making them proper functions defined in the (shared)lib instead of
static inlines defined in the header files makes it possible to
actually distribute a binary compiled against the shared library
without having to worry about getting undefined symbol errors when
calling e.g LLVMInitializeAllTargetInfos because the shared library on
the other system was compiled with different targets.
Differential Revision: http://llvm-reviews.chandlerc.com/D1714
llvm-svn: 192316
Generalize the API so we can distinguish symbols that are needed just for a DSO
symbol table from those that are used from some native .o.
The symbols that are only wanted for the dso symbol table can be dropped if
llvm can prove every other dso has a copy (linkonce_odr) and the address is not
important (unnamed_addr).
llvm-svn: 191922
disassembled output alongside the instructions.
E.g., on a vector shuffle operation with a memory operand, disassembled
outputs are:
* Without the option:
vpshufd $-0x79, (%rsp), %xmm0
* With the option:
vpshufd $-0x79, (%rsp), %xmm0 ## Latency: 5
The printed latency is extracted from the schedule model available in the
disassembler context. Thus, this option has no effect if there is not a
scheduling model for the target.
This boils down to one may need to specify the CPU string, so that this
option could have an effect.
Note: Latency < 2 are not printed.
This part of <rdar://problem/14687488>.
llvm-svn: 191859
It's useful for the memory managers that are allocating a section to know what the name of the section is.
At a minimum, this is useful for low-level debugging - it's customary for JITs to be able to tell you what
memory they allocated, and as part of any such dump, they should be able to tell you some meta-data about
what each allocation is for. This allows clients that supply their own memory managers to do this.
Additionally, we also envision the SectionName being useful for passing meta-data from within LLVM to an LLVM
client.
This changes both the C and C++ APIs, and all of the clients of those APIs within LLVM. I'm assuming that
it's safe to change the C++ API because that API is allowed to change. I'm assuming that it's safe to change
the C API because we haven't shipped the API in a release yet (LLVM 3.3 doesn't include the MCJIT memory
management C API).
llvm-svn: 191804
comments issued with verbose assembly.
E.g., on a vector shuffle operation, disassembled output are:
* Without the option:
vpshufd $-0x79, (%rsp), %xmm0
* With the option:
vpshufd $-0x79, (%rsp), %xmm0 ## xmm0 = mem[3,1,0,2]
This part of <rdar://problem/14687488>.
llvm-svn: 191799
This avoids warnings when included in a application that
uses -Wstrict-prototypes.
Differential Revision: http://llvm-reviews.chandlerc.com/D1713
llvm-svn: 191029
----
Add new API lto_codegen_compile_parallel().
This API is proposed by Nick Kledzik. The semantic is:
--------------------------------------------------------------------------
Generate code for merged module into an array of native object files. On
success returns a pointer to an array of NativeObjectFile. The count
parameter returns the number of elements in the array. Each element is
a pointer/length for a generated mach-o/ELF buffer. The buffer is owned
by the lto_code_gen_t and will be freed when lto_codegen_dispose() is called,
or lto_codegen_compile() is called again. On failure, returns NULL
(check lto_get_error_message() for details).
extern const struct NativeObjectFile*
lto_codegen_compile_parallel(lto_code_gen_t cg, size_t *count);
---------------------------------------------------------------------------
This API is currently only called on OSX platform. Linux or other Unixes
using GNU gold are not supposed to call this function, because on these systems,
object files are fed back to linker via disk file instead of memory buffer.
In this commit, lto_codegen_compile_parallel() simply calls
lto_codegen_compile() to return a single object file. In the near future,
this function is the entry point for compilation with partition. Linker can
blindly call this function even if partition is turned off; in this case,
compiler will return only one object file.
llvm-svn: 189386
This API is proposed by Nick Kledzik. The semantic is:
--------------------------------------------------------------------------
Generate code for merged module into an array of native object files. On
success returns a pointer to an array of NativeObjectFile. The count
parameter returns the number of elements in the array. Each element is
a pointer/length for a generated mach-o/ELF buffer. The buffer is owned
by the lto_code_gen_t and will be freed when lto_codegen_dispose() is called,
or lto_codegen_compile() is called again. On failure, returns NULL
(check lto_get_error_message() for details).
extern const struct NativeObjectFile*
lto_codegen_compile_parallel(lto_code_gen_t cg, size_t *count);
---------------------------------------------------------------------------
This API is currently only called on OSX platform. Linux or other Unixes
using GNU gold are not supposed to call this function, because on these systems,
object files are fed back to linker via disk file instead of memory buffer.
In this commit, lto_codegen_compile_parallel() simply calls
lto_codegen_compile() to return a single object file. In the near future,
this function is the entry point for compilation with partition. Linker can
blindly call this function even if partition is turned off; in this case,
compiler will return only one object file.
llvm-svn: 189297
This function attribute indicates that the function is not optimized
by any optimization or code generator passes with the
exception of interprocedural optimization passes.
llvm-svn: 189101
...so that it can be used for z too. Most of the code is the same.
The only real change is to use TargetTransformInfo to test when a sqrt
instruction is available.
The pass is opt-in because at the moment it only handles sqrt.
llvm-svn: 189097
In order to appease people (in Apple) who accuse me for committing "huge change" (?) without proper review.
Thank Eric for fixing a compile-warning.
llvm-svn: 188204
1. Add some helper classes for partitions. They are designed in a
way such that the top-level LTO driver will not see much difference
with or without partitioning.
2. Introduce work-dir. Now all intermediate files generated during
LTO phases will be saved under work-dir. User can specify the workdir
via -lto-workdir=/path/to/dir. By default the work-dir will be
erased before linker exit. To keep the workdir, do -lto-keep, or -lto-keep=1.
TODO: Erase the workdir, if the linker exit prematurely.
We are currently not able to remove directory on signal. The support
routines simply ignore directory.
3. Add one new API lto_codegen_get_files_need_remove().
Linker and LTO plugin will communicate via this API about which files
(including directories) need to removed before linker exit.
llvm-svn: 188188
Other than recognizing the attribute, the patch does little else.
It changes the branch probability analyzer so that edges into
blocks postdominated by a cold function are given low weight.
Added analysis and code generation tests. Added documentation for the
new attribute.
llvm-svn: 182638
the C API to provide their own way of allocating JIT memory (both code
and data) and finalizing memory permissions (page protections, cache
flush).
llvm-svn: 182448
the C API to provide their own way of allocating JIT memory (both code
and data) and finalizing memory permissions (page protections, cache
flush).
llvm-svn: 182408
CodeModel: It's now possible to create an MCJIT instance with any CodeModel you like. Previously it was only possible to
create an MCJIT that used CodeModel::JITDefault.
EnableFastISel: It's now possible to turn on the fast instruction selector.
The CodeModel option required some trickery. The problem is that previously, we were ensuring future binary compatibility in
the MCJITCompilerOptions by mandating that the user bzero's the options struct and passes the sizeof() that he saw; the
bindings then bzero the remaining bits. This works great but assumes that the bitwise zero equivalent of any field is a
sensible default value.
But this is not the case for LLVMCodeModel, or its internal equivalent, llvm::CodeModel::Model. In both of those, the default
for a JIT is CodeModel::JITDefault (or LLVMCodeModelJITDefault), which is not bitwise zero.
Hence this change introduces LLVMInitializeMCJITCompilerOptions(), which will initialize the user's options struct with
defaults. The user will use this in the same way that they would have previously used memset() or bzero(). MCJITCAPITest.cpp
illustrates the change, as does the comment in ExecutionEngine.h.
llvm-svn: 180893
Re-submitting with fix for OCaml dependency problems (removing dependency on SectionMemoryManager when it isn't used).
Patch by Fili Pizlo
llvm-svn: 180720
SSPStrong applies a heuristic to insert stack protectors in these situations:
* A Protector is required for functions which contain an array, regardless of
type or length.
* A Protector is required for functions which contain a structure/union which
contains an array, regardless of type or length. Note, there is no limit to
the depth of nesting.
* A protector is required when the address of a local variable (i.e., stack
based variable) is exposed. (E.g., such as through a local whose address is
taken as part of the RHS of an assignment or a local whose address is taken as
part of a function argument.)
This patch implements the SSPString attribute to be equivalent to
SSPRequired. This will change in a subsequent patch.
llvm-svn: 173230
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
llvm-svn: 171366
instructions in the assembly code variant if one exists.
The intended use for this is so tools like lldb and darwin's otool(1)
can be switched to print Intel-flavored disassembly.
I discussed extensively this API with Jim Grosbach and we feel
while it may not be fully general, in reality there is only one syntax
for each assembly with the exception of X86 which has exactly
two for historical reasons.
rdar://10989182
llvm-svn: 170477
The linker will call `lto_codegen_add_must_preserve_symbol' on all globals that
should be kept around. The linker will pretend that a dylib is being created.
<rdar://problem/12528059>
llvm-svn: 169770
This function sets the `_exportDynamic' ivar. When that's set, we export all
symbols (e.g. we don't run the internalize pass). This is equivalent to the
`--export-dynamic' linker flag in GNU land:
--export-dynamic
When creating a dynamically linked executable, add all symbols to the dynamic
symbol table. The dynamic symbol table is the set of symbols which are visible
from dynamic objects at run time. If you do not use this option, the dynamic
symbol table will normally contain only those symbols which are referenced by
some dynamic object mentioned in the link. If you use dlopen to load a dynamic
object which needs to refer back to the symbols defined by the program, rather
than some other dynamic object, then you will probably need to use this option
when linking the program itself.
The Darwin linker will support this via the `-export_dynamic' flag. We should
modify clang to support this via the `-rdynamic' flag.
llvm-svn: 169656
This is for the lldb team so most of but not all of the values are
to be printed as hex with this option. Some small values like the
scale in an X86 address were requested to printed in decimal
without the leading 0x.
There may be some tweaks need to places that may still be in
decimal that they want in hex. Specially for arm. I made my best
guess. Any tweaks from here should be simple.
I also did the best I know now with help from the C++ gurus
creating the cleanest formatImm() utility function and containing
the changes. But if someone has a better idea to make something
cleaner I'm all ears and game for changing the implementation.
rdar://8109283
llvm-svn: 169393
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
llvm-svn: 169131
Necessary to give disassembler users (like darwin's otool) a possibility to
dlopen libLTO and still initialize the required LLVM bits. This used to go
through libMCDisassembler but that's a gross layering violation, the MC layer
can't pull in functions from the targets. Adding a function to libLTO is a bit
of a hack but not worse than exposing other disassembler bits from libLTO.
Fixes PR14362.
llvm-svn: 168545
Per the October 12, 2012 Proposal for annotated disassembly output sent out by
Jim Grosbach this set of changes implements this for X86 and arm. The llvm-mc
tool now has a -mdis option to produced the marked up disassembly and a couple
of small example test cases have been added.
rdar://11764962
llvm-svn: 166445
Rationale: For each preprocessor macro, either the definedness is what's
meaningful, or the value is what's meaningful, or both. If definedness is
meaningful, we should use #ifdef. If the value is meaningful, we should use
and #ifdef interchangeably for the same macro, seems ugly to me, even if
undefined macros are zero if used.
This also has the benefit that including an LLVM header doesn't prevent
you from compiling with -Wundef -Werror.
Patch by John Garvin!
<rdar://problem/12189979>
llvm-svn: 163148
make it more consistent with its intended semantics.
The `linker_private_weak_def_auto' linkage type was meant to automatically hide
globals which never had their addresses taken. It has nothing to do with the
`linker_private' linkage type, which outputs the symbols with a `l' (ell) prefix
among other things.
The intended semantic is more like the `linkonce_odr' linkage type.
Change the name of the linkage type to `linkonce_odr_auto_hide'. And therefore
changing the semantics so that it produces the correct output for the linker.
Note: The old linkage name `linker_private_weak_def_auto' will still parse but
is not a synonym for `linkonce_odr_auto_hide'. This should be removed in 4.0.
<rdar://problem/11754934>
llvm-svn: 162114
This was always part of the VMCore library out of necessity -- it deals
entirely in the IR. The .cpp file in fact was already part of the VMCore
library. This is just a mechanical move.
I've tried to go through and re-apply the coding standard's preferred
header sort, but at 40-ish files, I may have gotten some wrong. Please
let me know if so.
I'll be committing the corresponding updates to Clang and Polly, and
Duncan has DragonEgg.
Thanks to Bill and Eric for giving the green light for this bit of cleanup.
llvm-svn: 159421
This lets you save the textual representation of the LLVM IR to a file.
Before this patch it could only be printed to STDERR from llvm-c.
Patch by Carlo Kok!
llvm-svn: 156479
This avoids warnings when included in a application that
uses -Wstrict-prototypes.
e.g: AsmPrinters.def:27:1: warning: function declaration isn't a prototype [-Wstrict-prototypes]
llvm-svn: 155997
so we don't want it to show up in the stable 3.1 interface.
While at it, add a comment about why LTOCodeGenerator manually creates the
internalize pass.
llvm-svn: 154807
Remaining "uncategorized" functions have been organized into their
proper place in the hierarchy. Some functions were moved around so
groups are defined together.
No code changes were made.
llvm-svn: 153169
This gives a lot of love to the docs for the C API. Like Clang's
documentation, the C API is now organized into a Doxygen "module"
(LLVMC). Each C header file is a child of the main module. Some modules
(like Core) have a hierarchy of there own. The produced documentation is
thus better organized (before everything was in one monolithic list).
This patch also includes a lot of new documentation for APIs in Core.h.
It doesn't document them all, but is better than none. Function docs are
missing @param and @return annotation, but the documentation body now
commonly provides help details (like the expected llvm::Value sub-type
to expect).
llvm-svn: 153157
This is the initial checkin of the basic-block autovectorization pass along with some supporting vectorization infrastructure.
Special thanks to everyone who helped review this code over the last several months (especially Tobias Grosser).
llvm-svn: 149468
to 64-bits, and added a new attribute in bit #32. Specifically, remove
this new attribute from the enum used in the C API. It's not yet clear
what the best approach is for exposing these new attributes in the
C API, and several different proposals are on the table. Until then, we
can simply not expose this bit in the API at all.
Also, I've reverted a somewhat unrelated change in the same revision
which switched from "1 << 31" to "1U << 31" for the top enum. While "1
<< 31" is technically undefined behavior, implementations DTRT here.
However, MS and -pedantic mode warn about non-'int' type enumerator
values. If folks feel strongly about this I can put the 'U' back in, but
it seemed best to wait for the proper solution.
llvm-svn: 148937
Problem: LLVM needs more function attributes than currently available (32 bits).
One such proposed attribute is "address_safety", which shows that a function is being checked for address safety (by AddressSanitizer, SAFECode, etc).
Solution:
- extend the Attributes from 32 bits to 64-bits
- wrap the object into a class so that unsigned is never erroneously used instead
- change "unsigned" to "Attributes" throughout the code, including one place in clang.
- the class has no "operator uint64 ()", but it has "uint64_t Raw() " to support packing/unpacking.
- the class has "safe operator bool()" to support the common idiom: if (Attributes attr = getAttrs()) useAttrs(attr);
- The CTOR from uint64_t is marked explicit, so I had to add a few explicit CTOR calls
- Add the new attribute "address_safety". Doing it in the same commit to check that attributes beyond first 32 bits actually work.
- Some of the functions from the Attribute namespace are worth moving inside the class, but I'd prefer to have it as a separate commit.
Tested:
"make check" on Linux (32-bit and 64-bit) and Mac (10.6)
built/run spec CPU 2006 on Linux with clang -O2.
This change will break clang build in lib/CodeGen/CGCall.cpp.
The following patch will fix it.
llvm-svn: 148553
--- Reverse-merging r141377 into '.':
U tools/llvm-objdump/MachODump.cpp
--- Reverse-merging r141376 into '.':
U include/llvm/Object/COFF.h
U include/llvm/Object/ObjectFile.h
U include/llvm-c/Object.h
U tools/llvm-objdump/llvm-objdump.cpp
U lib/Object/MachOObjectFile.cpp
U lib/Object/COFFObjectFile.cpp
U lib/Object/Object.cpp
U lib/Object/ELFObjectFile.cpp
llvm-svn: 141379
They are not in sync now, for example Bitcast would show up as LLVMCall.
So instead introduce 2 functions that map to and from the opcodes in the C
bindings.
llvm-svn: 141290
using llvm's public 'C' disassembler API now including annotations.
Hooked this up to Darwin's otool(1) so it can again print things like branch
targets for example this:
blx _puts
instead of this:
blx #-36
and includes support for annotations for branches to symbol stubs like:
bl 0x40 @ symbol stub for: _puts
and annotations for pc relative loads like this:
ldr r3, #8 @ literal pool for: Hello, world!
Also again can print the expression encoded in the Mach-O relocation entries for
things like this:
movt r0, :upper16:((_foo-_bar)+1234)
llvm-svn: 141129
This implements the 'landingpad' instruction. It's used to indicate that a basic
block is a landing pad. There are several restrictions on its use (see
LangRef.html for more detail). These restrictions allow the exception handling
code to gather the information it needs in a much more sane way.
This patch has the definition, implementation, C interface, parsing, and bitcode
support in it.
llvm-svn: 137501
This adds the 'resume' instruction class, IR parsing, and bitcode reading and
writing. The 'resume' instruction resumes propagation of an existing (in-flight)
exception whose unwinding was interrupted with a 'landingpad' instruction (to be
added later).
llvm-svn: 136589
'atomicrmw' instructions, which allow representing all the current atomic
rmw intrinsics.
The allowed operands for these instructions are heavily restricted at the
moment; we can probably loosen it a bit, but supporting general
first-class types (where it makes sense) might get a bit complicated,
given how SelectionDAG works.
As an initial cut, these operations do not support specifying an alignment,
but it would be possible to add if we think it's useful. Specifying an
alignment lower than the natural alignment would be essentially
impossible to support on anything other than x86, but specifying a greater
alignment would be possible. I can't think of any useful optimizations which
would use that information, but maybe someone else has ideas.
Optimizer/codegen support coming soon.
llvm-svn: 136404
(including compilation, assembly). Move relocation model Reloc::Model from
TargetMachine to MCCodeGenInfo so it's accessible even without TargetMachine.
llvm-svn: 135468
patch brings numerous advantages to LLVM. One way to look at it
is through diffstat:
109 files changed, 3005 insertions(+), 5906 deletions(-)
Removing almost 3K lines of code is a good thing. Other advantages
include:
1. Value::getType() is a simple load that can be CSE'd, not a mutating
union-find operation.
2. Types a uniqued and never move once created, defining away PATypeHolder.
3. Structs can be "named" now, and their name is part of the identity that
uniques them. This means that the compiler doesn't merge them structurally
which makes the IR much less confusing.
4. Now that there is no way to get a cycle in a type graph without a named
struct type, "upreferences" go away.
5. Type refinement is completely gone, which should make LTO much MUCH faster
in some common cases with C++ code.
6. Types are now generally immutable, so we can use "Type *" instead
"const Type *" everywhere.
Downsides of this patch are that it removes some functions from the C API,
so people using those will have to upgrade to (not yet added) new API.
"LLVM 3.0" is the right time to do this.
There are still some cleanups pending after this, this patch is large enough
as-is.
llvm-svn: 134829