1
0
mirror of https://github.com/RPCS3/llvm-mirror.git synced 2024-10-21 12:02:58 +02:00
Commit Graph

19 Commits

Author SHA1 Message Date
Michael Kuperstein
83ab484af5 [MIScheduler] Slightly better handling of constrainLocalCopy when both source and dest are local
This fixes PR21792.

Differential Revision: http://reviews.llvm.org/D6823

llvm-svn: 226433
2015-01-19 07:30:47 +00:00
Chandler Carruth
5063f25595 [x86] Enable the new vector shuffle lowering by default.
Update the entire regression test suite for the new shuffles. Remove
most of the old testing which was devoted to the old shuffle lowering
path and is no longer relevant really. Also remove a few other random
tests that only really exercised shuffles and only incidently or without
any interesting aspects to them.

Benchmarking that I have done shows a few small regressions with this on
LNT, zero measurable regressions on real, large applications, and for
several benchmarks where the loop vectorizer fires in the hot path it
shows 5% to 40% improvements for SSE2 and SSE3 code running on Sandy
Bridge machines. Running on AMD machines shows even more dramatic
improvements.

When using newer ISA vector extensions the gains are much more modest,
but the code is still better on the whole. There are a few regressions
being tracked (PR21137, PR21138, PR21139) but by and large this is
expected to be a win for x86 generated code performance.

It is also more correct than the code it replaces. I have fuzz tested
this extensively with ISA extensions up through AVX2 and found no
crashes or miscompiles (yet...). The old lowering had a few miscompiles
and crashers after a somewhat smaller amount of fuzz testing.

There is one significant area where the new code path lags behind and
that is in AVX-512 support. However, there was *extremely little*
support for that already and so this isn't a significant step backwards
and the new framework will probably make it easier to implement lowering
that uses the full power of AVX-512's table-based shuffle+blend (IMO).

Many thanks to Quentin, Andrea, Robert, and others for benchmarking
assistance. Thanks to Adam and others for help with AVX-512. Thanks to
Hal, Eric, and *many* others for answering my incessant questions about
how the backend actually works. =]

I will leave the old code path in the tree until the 3 PRs above are at
least resolved to folks' satisfaction. Then I will rip it (and 1000s of
lines of code) out. =] I don't expect this flag to stay around for very
long. It may not survive next week.

llvm-svn: 219046
2014-10-04 03:52:55 +00:00
Chandler Carruth
a97f6b4575 [x86] Add two more triples to stabilize the precise assembly syntax
across platforms.

llvm-svn: 218973
2014-10-03 09:43:23 +00:00
Chandler Carruth
09ea120201 [x86] Regenerate precise FileCheck lines for the lats batch of test
cases.

llvm-svn: 218954
2014-10-03 01:57:38 +00:00
Joey Gouly
42f0c0e115 Fix the failing test 'vector-idiv.ll'.
On Darwin the comment character is ##.

llvm-svn: 214028
2014-07-26 10:58:14 +00:00
NAKAMURA Takumi
6a6766ef12 llvm/test/CodeGen/X86/vector-idiv.ll: Fix for -Asserts.
llvm-svn: 214015
2014-07-26 04:47:01 +00:00
Chandler Carruth
2fc342e80e [x86] Fix PR20355 (for real). There are many layers to this bug.
The tale starts with r212808 which attempted to fix inversion of the low
and high bits when lowering MUL_LOHI. Sadly, that commit did not include
any positive test cases, and just removed some operations from a test
case where the actual logic being changed isn't fully visible from the
test.

What this commit did was two things. First, it reversed the low and high
results in the formation of the MERGE_VALUES node for the multiple
results. This is entirely correct.

Second it changed the shuffles for extracting the low and high
components from the i64 results of the multiplies to extract them
assuming a big-endian-style encoding of the multiply results. This
second change is wrong. There is no big-endian encoding in x86, the
results of the multiplies are normal v2i64s: when cast to v4i32, the low
i32s are at offsets 0 and 2, and the high i32s are at offsets 1 and 3.

However, the first change wasn't enough to actually fix the bug, which
is (I assume) why the second change was also made. There was another bug
in the MERGE_VALUES formation: we weren't using a VTList, and so were
getting a single result node! When grabbing the *second* result from the
node, we got... well.. colud be anything. I think this *appeared* to
invert things, but had to be causing other problems as well.

Fortunately, I fixed the MERGE_VALUES issue in r213931, so we should
have been fine, right? NOOOPE! Because the core bug was never addressed,
the test in vector-idiv failed when I fixed the MERGE_VALUES node.
Because there are essentially no docs for this node, I had to guess at
how to fix it and tried swapping the operands, restoring the order of
the original code before r212808. While this "fixed" the test case (in
that we produced the write instructions) we were still extracting the
wrong elements of the i64s, and thus PR20355 was still broken.

This commit essentially reverts the big-endian-style extraction part of
r212808 and goes back to the original masks which were correct. Now that
the MERGE_VALUES node formation is also correct, everything works. I've
also included a more detailed test from PR20355 to make sure this stays
fixed.

llvm-svn: 214011
2014-07-26 03:46:57 +00:00
Chandler Carruth
f3c6b4647a [x86] Revert r214007: Fix PR20355 ...
The clever way to implement signed multiplication with unsigned *is
already implemented* and tested and working correctly. The bug is
somewhere else. Re-investigating.

This will teach me to not scroll far enough to read the code that did
what I thought needed to be done.

llvm-svn: 214009
2014-07-26 02:14:54 +00:00
Chandler Carruth
ebd26ebcfa [x86] Fix PR20355 (and dups) by not using unsigned multiplication when
signed multiplication is requested. While there is not a difference in
the *low* half of the result, the *high* half (used specifically to
implement the signed division by these constants) certainly is used. The
test case I've nuked was actively asserting wrong code.

There is a delightful solution to doing signed multiplication even when
we don't have it that Richard Smith has crafted, but I'll add the
machinery back and implement that in a follow-up patch. This at least
restores correctness.

llvm-svn: 214007
2014-07-26 01:52:13 +00:00
Chandler Carruth
8182e043d9 [SDAG] Introduce a combined set to the DAG combiner which tracks nodes
which have successfully round-tripped through the combine phase, and use
this to ensure all operands to DAG nodes are visited by the combiner,
even if they are only added during the combine phase.

This is critical to have the combiner reach nodes that are *introduced*
during combining. Previously these would sometimes be visited and
sometimes not be visited based on whether they happened to end up on the
worklist or not. Now we always run them through the combiner.

This fixes quite a few bad codegen test cases lurking in the suite while
also being more principled. Among these, the TLS codegeneration is
particularly exciting for programs that have this in the critical path
like TSan-instrumented binaries (although I think they engineer to use
a different TLS that is faster anyways).

I've tried to check for compile-time regressions here by running llc
over a merged (but not LTO-ed) clang bitcode file and observed at most
a 3% slowdown in llc. Given that this is essentially a worst case (none
of opt or clang are running at this phase) I think this is tolerable.
The actual LTO case should be even less costly, and the cost in normal
compilation should be negligible.

With this combining logic, it is possible to re-legalize as we combine
which is necessary to implement PSHUFB formation on x86 as
a post-legalize DAG combine (my ultimate goal).

Differential Revision: http://reviews.llvm.org/D4638

llvm-svn: 213898
2014-07-24 22:15:28 +00:00
Quentin Colombet
854e94b5f3 [X86] Fix the inversion of low and high bits for the lowering of MUL_LOHI.
Also add a few comments.

<rdar://problem/17581756>

llvm-svn: 212808
2014-07-11 12:08:23 +00:00
Benjamin Kramer
ba4b6af99b X86: When lowering v8i32 himuls use the correct shuffle masks for AVX2.
Turns out my trick of using the same masks for SSE4.1 and AVX2 didn't work out
as we have to blend two vectors. While there remove unecessary cross-lane moves
from the shuffles so the backend can lower it to palignr instead of vperm.

Fixes PR20118, a miscompilation of vector sdiv by constant on AVX2.

llvm-svn: 212611
2014-07-09 11:12:39 +00:00
Benjamin Kramer
96dab04f0f Allow SelectionDAG::FoldConstantArithmetic to work when it's called with a vector VT but scalar values.
llvm-svn: 207835
2014-05-02 12:35:22 +00:00
Benjamin Kramer
cc45aefeb0 X86: If SSE4.1 is missing lower SMUL_LOHI of v4i32 to pmuludq and fix up the high parts.
This is more expensive than pmuldq but still cheaper than scalarizing the whole thing.

llvm-svn: 207370
2014-04-27 18:47:41 +00:00
Benjamin Kramer
f9669b910d SelectionDAG: Aggressively fold shuffles of constant splats.
llvm-svn: 207352
2014-04-27 11:41:06 +00:00
Benjamin Kramer
e6a357c0fc DAGCombiner: Simplify code a bit, make more transforms work with vectors.
llvm-svn: 207338
2014-04-26 23:09:49 +00:00
Benjamin Kramer
6ac674546f X86: Lower SMUL_LOHI of v4i32 to pmuldq when SSE4.1 is available.
llvm-svn: 207318
2014-04-26 14:12:19 +00:00
Benjamin Kramer
aad9317559 X86: Add patterns for MULHU/MULHS of v8i16 and v16i16.
This gets us pretty code for divs of i16 vectors. Turn the existing
intrinsics into the corresponding nodes.

llvm-svn: 207317
2014-04-26 13:01:03 +00:00
Benjamin Kramer
163df6bc62 DAGCombiner: Turn divs of vector splats into vectorized multiplications.
Otherwise the legalizer would just scalarize everything. Support for
mulhi in the targets isn't that great yet so on most targets we get
exactly the same scalarized output. Add a test for x86 vector udiv.

I had to disable the mulhi nodes on ARM because there aren't any patterns
for it. As far as I know ARM has instructions for getting the high part of
a multiply so this should be fixed.

llvm-svn: 207315
2014-04-26 12:06:28 +00:00