AAMemoryBehaviorFloating used a custom use tracking mechanism even
though checkForAllUses exists and is already more powerful. Further,
AAMemoryBehaviorFloating uses AANoCapture to guarantee that there are no
aliases and following the uses is sufficient. This is an OK assumption
if checkForAllUses is used but custom tracking is easily out of sync
with AANoCapture and problems follow.
The pattern we match is (sext_inreg (assertzexti32 (fp_to_uint)), i32). If
the assertzexti32 has an additional user we'll end up emitting
an fcvt.wu and an fcvt.lu.
This can happen if the original fp_to_uint before type legalization
has one user that causes a sext_inreg to be emitted and one that
doesn't.
This does ensure `InformationCache::getPotentiallyReachable` will not
crash/assert on instructions from different functions but simply return
that one is reachable, which is conservatively correct.
As with other patches before, the simplification callback interface
requires us to go through the Attributor::getAssumedSimplified API first
before we recurs.
It is unclear if the problem can be explicitly tested with our current
infrastructure.
We first simplify the operands of a compare and then reason on the
simplified versions, e.g., with AANonNull.
This does improve the simplification capabilities but also fixes a
potential problem that has not yet been observed by simplifying the
operands first.
A byval argument is a different value in the caller and callee, we
cannot propagate the information as part of AAValueSimplify. Users that
want to deal with byval arguments need to specifically perform the
argument -> call site step. We do not do this for now.
This patch introduces AAPointerInfo which tracks the uses of a pointer
and places them in "bins" based on their offset from the base and access
size.
As with other AAs, any pointer can be tracked but it is up to the user
to make sense of the results. The user in this patch is AAValueSimplify
and AAPotentialValues which both utilize AAPointerInfo to determine the
value of a load. For now, this is restricted to loads of allocas and
internal globals. Through the use of AAPointerInfo and the "bins" we can
track struct members separately. The users also know that storing only
zeros (at unknown indices) will result in loading only 0 (from unknown
indices). Other than that, the users are flow and context insensitive
(for now).
To deal with the "bins" more easily, AAPointerInfo provides a
forallInterfearingAccesses that applies a callback on all accesses
that might interfere with a given load or store.
Differential Revision: https://reviews.llvm.org/D104432
As a first step to simplify loads we only handle `null` and `undef`
underlying objects, as well as objects that have the load as a single user.
Loads of those values can be replaced by the initializer, if any.
Proper reasoning is introduced in a follow up patch
Differential Revision: https://reviews.llvm.org/D103862
We did not properly use SPMDCompatibilityTracker in various places.
This patch makes sure we look at the validity properly and also fix
the state if we can.
Differential Revision: https://reviews.llvm.org/D106085
This reverts commit 4ae575b9997e0903d1c2ec01a43e3f3f2db5df16 and 9b965b37c75d626c01951184088314590e38d299.
There is an use-of-uninitialized-value bug in the `else` branch in ImportSection::addImport.
Allow arbitrary strides, and make sure we return the correct result when
the backedge-taken count is zero.
Differential Revision: https://reviews.llvm.org/D106197
Wrap semantics are subtle when combined with multiple exits. This has caused several rounds of confusion during recent reviews, so try to document the subtly distinction between when wrap flags provide <u and <=u facts.
The specific case that triggered this was when inlining a recursive
internal function into itself caused the recursion to go away, allowing
the inliner to mark the function as dead. The inliner marks the SCC as
invalidated but does not provide a new SCC to continue with.
This matches the implementations of ModuleToPostOrderCGSCCPassAdaptor
and CGSCCPassManager.
Fixes PR50363.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D106306
Debug info sections need R_WASM_FUNCTION_OFFSET_I32 relocs (with FK_Data_4 fixup
kinds) to refer to functions (instead of R_WASM_TABLE_INDEX as is used in data
sections). Usually this is done in a convoluted way, with unnamed temp data
symbols which target the start of the function, in which case
WasmObjectWriter::recordRelocation converts it to use the section symbol
instead. However in some cases the function can actually be undefined; in this
case the dwarf generator uses the function symbol (a named undefined function
symbol) instead. In that case the section-symbol transform doesn't work and we
need to generate the correct reloc type a different way. In this change
WebAssemblyWasmObjectWriter::getRelocType takes the fixup section type into
account to choose the correct reloc type.
Fixes PR50408
Differential Revision: https://reviews.llvm.org/D103557
It turns out that during training, the time required to parse the
textual protobuf of a training log is about the same as the time it
takes to compile the module generating that log. Using binary protobufs
instead elides that cost almost completely.
Differential Revision: https://reviews.llvm.org/D106157
As discussed on D105251, currently the compiler does not support
multiple metadata attachments on instructions having the same
identifier, whereas it does for global objects. Note this in the
Language Reference manual for clarity.
See D105251 for discussions of history behind this divergence, and the
complexities and possible approaches of adding this support to
instructions in the future.
Differential Revision: https://reviews.llvm.org/D106304
We need the compiler generated variable to override the weak symbol of
the same name inside the profile runtime, but using LinkOnceODRLinkage
results in weak symbol being emitted in which case the symbol selected
by the linker is going to depend on the order of inputs which can be
fragile.
This change replaces the use of weak definition inside the runtime with
a weak alias. We place the compiler generated symbol inside a COMDAT
group so dead definition can be garbage collected by the linker.
We also disable the use of runtime counter relocation on Darwin since
Mach-O doesn't support weak external references, but Darwin already uses
a different continous mode that relies on overmapping so runtime counter
relocation isn't needed there.
Differential Revision: https://reviews.llvm.org/D105176
The patch does not depend on the availability of the library functions for
memcpy/memset as it operates on LLVM intrinsics. The optimizations are useful
on the targets that have these functions disabled (e.g. NVPTX & AMDGPU).
Differential Revision: https://reviews.llvm.org/D104801
This diff changes llvm-ifs to use unified IFS file format
and perform other renaming changes in preparation for the
merging between elfabi/ifs.
Differential Revision: https://reviews.llvm.org/D99810
This change implements unified text stub format and command line
interface proposed in the elfabi/ifs merge plan.
Differential Revision: https://reviews.llvm.org/D99399
Although this combine checks that there's no load folding barriers between
the loads that it's trying to merge, it was inserting the load at the
MIRBuilder's default insertion point, which is the G_OR use inst.
This was causing a miscompile in the test suite's
SingleSource/Regression/C/gcc-c-torture/execute/GCC-C-execute-bswap-2
Differential Revision: https://reviews.llvm.org/D106251