Don't try to fold away shuffles which can't be folded. Fix creation of
shufflevector constant expressions.
Differential Revision: https://reviews.llvm.org/D71147
Summary:
Switch to FileCheck where possible.
Adjust tests so they can be easily regenerated by update scripts.
Reviewers: craig.topper, spatel, RKSimon
Reviewed By: spatel
Subscribers: MatzeB, qcolombet, arphaman, jfb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71211
The generated sequence with whilelo is unintuitive, but it's the best
I could come up with given the limited number of SVE instructions that
interact with scalar registers. The other sequence I was considering
was something like dup+cmpne, but an extra scalar instruction seems
better than an extra vector instruction.
Differential Revision: https://reviews.llvm.org/D71160
Implement LWG#1203 (https://cplusplus.github.io/LWG/issue1203) for raw_ostream
like libc++ does for std::basic_ostream<...>.
Add a operator<< overload that takes an rvalue reference of a typed derived from
raw_ostream, streams the value to it and returns the stream of the same type as
the argument.
This allows free operator<< to work with rvalue reference raw_ostreams:
raw_ostream& operator<<(raw_ostream&, const SomeType& Value);
raw_os_ostream(std::cout) << SomeType();
It also allows using the derived type like:
auto Foo = (raw_string_ostream(buffer) << "foo").str();
Author: Christian Sigg <csigg@google.com>
Differential Revision: https://reviews.llvm.org/D70686
Summary:
Following on from rG884351547da2, this patch cleans up the logic for `xxpermdi`
peephole optimizations by converting two layers of nested `if`s to early breaks
and simplifying the logic.
Reviewers: hfinkel, nemanjai, jsji, lkail, #powerpc, steven.zhang
Reviewed By: #powerpc, steven.zhang
Subscribers: wuzish, steven.zhang, hiraditya, kbarton, shchenz, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71170
Patch by vddvss (Colin Samples).
Summary:
This change is in preparation to reuse these test for the Attributor.
It mainly is to remove UB, make it clear what is tested, and use
"modern" run lines.
Reviewers: fhahn, efriedma, mssimpso, davide
Subscribers: bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69747
Summary:
Same as D60846 and D69571 but with a fix for the problem encountered
after them. Both times it was a missing context adjustment in the
handling of PHI nodes.
The reproducers created from the bugs that caused the old commits to be
reverted are included.
Reviewers: nikic, nlopes, mkazantsev, spatel, dlrobertson, uabelho, hakzsam, hans
Subscribers: hiraditya, bollu, asbirlea, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71181
Summary:
Split off of D67120.
Add the profile guided size optimization instrumentation / queries in the code
gen or target passes. This doesn't enable the size optimizations in those passes
yet as they are currently disabled in shouldOptimizeForSize (for non-IR pass
queries).
A second try after reverted D71072.
Reviewers: davidxl
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71149
Summary:
This is found during https://reviews.llvm.org/D70758
All the other record forms are having suffix o at the end.
ANDIo8 and ANDISo8 are the only two that put o before 8.
This patch rename them to be consistent with others.
Reviewers: #powerpc, hfinkel, nemanjai, lei, steven.zhang, echristo, jhibbits, joerg
Reviewed By: jhibbits
Subscribers: wuzish, hiraditya, kbarton, shchenz, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70928
Refactor FinishCall to be more easily understandable as a precursor to
implementing indirect calls for AIX. The refactor tries to group similar
code together at the cost of some code duplication. The high level
overview of the refactor:
- Adds a number of helper functions for things like:
* Determining if a call is indirect.
* What the Opcode for a call is.
* Transforming the callee for a direct function call.
* Extracting the Chain operand from a CallSeqStart node.
* Building the operands of the call.
- Adds helpers for building the indirect call DAG nodes
(excluding the call instruction itself which is created in
`FinishCall`).
- Removes PrepareCall, which has been subsumed by the
helpers.
- Rename 'InFlag' to 'Glue'.
- FinishCall has been refactored to:
1) Set TOC pointer usage on the DAG for the TOC based
subtargets.
2) Calculate if a call is indirect.
3) Determine the Opcode to use for the call
instruction.
4) Transform the Callee for direct calls, or build
the DAG nodes for indirect calls.
5) Buildup the call operands.
6) Emit the call instruction.
7) If needed, emit the callSeqEnd Node and
finish lowering by calling `LowerCallResult`
Differential Revision: https://reviews.llvm.org/D70126
I rewrote the isel tablegen for MVE immediate shifts, and accidentally
removed the `let Predicates=[HasMVEInt]` that was wrapping the old
version, which seems to have allowed those rules to cause trouble on
non-MVE targets. That's what I get for only re-running the MVE tests.
Summary:
This adds the family of `vshlq_n` and `vshrq_n` ACLE intrinsics, which
shift every lane of a vector left or right by a compile-time
immediate. They mostly work by expanding to the IR `shl`, `lshr` and
`ashr` operations, with their second operand being a vector splat of
the immediate.
There's a fiddly special case, though. ACLE specifies that the
immediate in `vshrq_n` can take values up to //and including// the bit
size of the vector lane. But LLVM IR thinks that shifting right by the
full size of the lane is UB, and feels free to replace the `lshr` with
an `undef` half way through the optimization pipeline. Hence, to keep
this legal in source code, I have to detect it at codegen time.
Logical (unsigned) right shifts by the element size are handled by
simply emitting the zero vector; arithmetic ones are converted into a
shift of one bit less, which will always give the same output.
In order to do that check, I also had to enhance the tablegen
MveEmitter so that it can cope with converting a builtin function's
operand into a bare integer to pass to a code-generating subfunction.
Previously the only bare integers it knew how to handle were flags
generated from within `arm_mve.td`.
Reviewers: dmgreen, miyuki, MarkMurrayARM, ostannard
Reviewed By: MarkMurrayARM
Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D71065
The cycle values in modulo scheduling results can be negative.
The result of ModuloSchedule::getCycle() must be received as an int type.
Patch by Masaki Arai!
Differential Revision: https://reviews.llvm.org/D71122
When committing dba420bc05ae, I missed that a darwin-specific change had
been recently introduced into llvm-cxxfilt, which my change ignored and
consequently broke the darwin build bot. This change fixes this issue as
well as improving naming/commenting of things related to this point so
that people are less likely to run into the same issue as I did.
CodeGenPrepare::placeDebugValues moves variable location intrinsics to be
immediately after the Value they refer to. This makes tracking of locations
very easy; but it changes the order in which assignments appear to the
debugger, from the source programs order to the order in which the
optimised program computes values. This then leads to PR43986 and PR38754,
where variable locations that were in a conditional block are made
unconditional, which is highly misleading.
This patch adjusts placeDbgValues to only re-order variable location
intrinsics if they use a Value before it is defined, significantly reducing
the damage that it does. This is still not 100% safe, but the rest of
CodeGenPrepare needs polishing to correctly update debug info when
optimisations are performed to fully fix this.
This will probably break downstream debuginfo tests -- if the
instruction-stream position of variable location changes isn't the focus of
the test, an easy fix should be to manually apply placeDbgValues' behaviour
to the failing tests, moving dbg.value intrinsics next to SSA variable
definitions thus:
%foo = inst1
%bar = ...
%baz = ...
void call @llvm.dbg.value(metadata i32 %foo, ...
to
%foo = inst1
void call @llvm.dbg.value(metadata i32 %foo, ...
%bar = ...
%baz = ...
This should return your test to exercising whatever it was testing before.
Differential Revision: https://reviews.llvm.org/D58453
Mostly this adds testing for certain aliases in more explicit ways.
There are also a few tidy-ups, and additions of missing testing, where
the feature was either not tested at all, or not tested explicitly and
sufficiently.
Reviewed by: MaskRay, rupprecht, grimar
Differential Revision: https://reviews.llvm.org/D71116
Summary:
This patch adds intrinsics for the following MVE instructions:
* VCADD, VHCADD
* VCMUL
* VCMLA
Each of the above 3 groups has a corresponding new LLVM IR intrinsic.
Reviewers: simon_tatham, MarkMurrayARM, ostannard, dmgreen
Reviewed By: MarkMurrayARM
Subscribers: merge_guards_bot, kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D71190
It appears that the cl::bits options are not used anywhere in-tree. In
the recent addition to add Callback's to the options, the Callback was
missing from this one. This fixes it by adding the same code from the
other classes.
It also adds a simple test, of sorts, just to make sure these continue
compiling.
With the extra optimisations we have done, these should now be fine to
enable by default. Which is what this patch does.
Differential Revision: https://reviews.llvm.org/D70968
This attempts to teach the cost model in Arm that code such as:
%s = shl i32 %a, 3
%a = and i32 %s, %b
Can under Arm or Thumb2 become:
and r0, r1, r2, lsl #3
So the cost of the shift can essentially be free. To do this without
trying to artificially adjust the cost of the "and" instruction, it
needs to get the users of the shl and check if they are a type of
instruction that the shift can be folded into. And so it needs to have
access to the actual instruction in getArithmeticInstrCost, which if
available is added as an extra parameter much like getCastInstrCost.
We otherwise limit it to shifts with a single user, which should
hopefully handle most of the cases. The list of instruction that the
shift can be folded into include ADC, ADD, AND, BIC, CMP, EOR, MVN, ORR,
ORN, RSB, SBC and SUB. This translates to Add, Sub, And, Or, Xor and
ICmp.
Differential Revision: https://reviews.llvm.org/D70966
This adds some extra cost model tests for shifts, and does some minor
adjustments to some Neon code to make it clear as to what it applies to.
Both NFC.
Summary:
This new warning (enabled by -Wextra) fires when a std::move is
redundant, as the default compiler behavior would be to select a move
operation anyway (e.g., when returning a local variable). Unlike
-Wpessimizing-move, it has no performance impact -- it just adds noise.
Currently llvm has about 1500 of these warnings. Unfortunately, the
suggested fix -- removing std::move -- does not work because of some
older compilers we still support. Specifically clang<=3.8 will not use a
move operation if an implicit conversion is needed (Core issue 1579). In
code like "A f(ConvertibleToA a) { return a; }" it will prefer a copy,
or fail to compile if a copy is not possible.
This patch disables that warning to get a meaningful signal out of a GCC
9 build.
Reviewers: rnk, aaron.ballman, xbolva00
Subscribers: mgorny, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70963
Summary:
Currently the describeLoadedValue() hook is assumed to describe the
value of the instruction's first explicit define. The hook will not be
called for instructions with more than one explicit define.
This commit adds a register parameter to the describeLoadedValue() hook,
and invokes the hook for all registers in the worklist.
This will allow us to for example describe instructions which produce
more than two parameters' values; e.g. Hexagon's various combine
instructions.
This also fixes situations in our downstream target where we may pass
smaller parameters in the high part of a register. If such a parameter's
value is produced by a larger copy instruction, we can't describe the
call site value using the super-register, and we instead need to know
which sub-register that should be used.
This also allows us to handle cases like this:
$ebx = [...]
$rdi = MOVSX64rr32 $ebx
$esi = MOV32rr $edi
CALL64pcrel32 @call
The hook will first be invoked for the MOV32rr instruction, which will
say that @call's second parameter (passed in $esi) is described by $edi.
As $edi is not preserved it will be added to the worklist. When we get
to the MOVSX64rr32 instruction, we need to describe two values; the
sign-extended value of $ebx -> $rdi for the first parameter, and $ebx ->
$edi for the second parameter, which is now possible.
This commit modifies the dbgcall-site-lea-interpretation.mir test case.
In the test case, the values of some 32-bit parameters were produced
with LEA64r. Perhaps we can in general cases handle such by emitting
expressions that AND out the lower 32-bits, but I have not been able to
land in a case where a LEA64r is used for a 32-bit parameter instead of
LEA64_32 from C code.
I have not found a case where it would be useful to describe parameters
using implicit defines, so in this patch the hook is still only invoked
for explicit defines of forwarding registers.
Reviewers: djtodoro, NikolaPrica, aprantl, vsk
Reviewed By: djtodoro, vsk
Subscribers: ormris, hiraditya, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D70431
Currently the describeLoadedValue() hook is assumed to describe the
value of the instruction's first explicit define. The hook will not be
called for instructions with more than one explicit define.
This commit adds a register parameter to the describeLoadedValue() hook,
and invokes the hook for all registers in the worklist.
This will allow us to for example describe instructions which produce
more than two parameters' values; e.g. Hexagon's various combine
instructions.
This also fixes a case in our downstream target where we may pass
smaller parameters in the high part of a register. If such a parameter's
value is produced by a larger copy instruction, we can't describe the
call site value using the super-register, and we instead need to know
which sub-register that should be used.
This also allows us to handle cases like this:
$ebx = [...]
$rdi = MOVSX64rr32 $ebx
$esi = MOV32rr $edi
CALL64pcrel32 @call
The hook will first be invoked for the MOV32rr instruction, which will
say that @call's second parameter (passed in $esi) is described by $edi.
As $edi is not preserved it will be added to the worklist. When we get
to the MOVSX64rr32 instruction, we need to describe two values; the
sign-extended value of $ebx -> $rdi for the first parameter, and $ebx ->
$edi for the second parameter, which is now possible.
This commit modifies the dbgcall-site-lea-interpretation.mir test case.
In the test case, the values of some 32-bit parameters were produced
with LEA64r. Perhaps we can in general cases handle such by emitting
expressions that AND out the lower 32-bits, but I have not been able to
land in a case where a LEA64r is used for a 32-bit parameter instead of
LEA64_32 from C code.
I have not found a case where it would be useful to describe parameters
using implicit defines, so in this patch the hook is still only invoked
for explicit defines of forwarding registers.
This caused "Too many bits for uint64_t" asserts when building Chromium. See
https://crbug.com/1031978#c2 for a reproducer. I'll follow up on the
llvm-commits thread with a creduced version.
> ARMCodeGenPrepare has already been generalized and renamed to
> TypePromotion. We've had it enabled and tested downstream for a
> while, so enable it by default.
>
> Differential Revision: https://reviews.llvm.org/D70998
This is another transform suggested in PR44153:
https://bugs.llvm.org/show_bug.cgi?id=44153
The backend for some targets already manages to get
this if it converts copysign to bitwise logic.
Summary:
The patch removes OffsetToFirstDefinition in the 'scope bytes total'
statistic computation. Thus it unifies the way the scope and the coverage
buckets are computed. The rationals behind that are the following:
1. OffsetToFirstDefinition was used to calculate the variable's life range.
However, there is no simple way to do it accurately, so the scope calculated
this way might be misleading. See D69027 for more details on the subject.
2. Both 'scope bytes total' and coverage buckets seem to be intended
to represent the same data in different ways. Otherwise, the statistics
might be controversial and confusing.
Note that the approach gives up a thorough evaluation of debug information
completeness (i.e. coverage buckets by themselves doesn't tell how good
the debug information is). Only changes in coverage over time make
a 'physical' sense.
Reviewers: djtodoro, aprantl, vsk, dblaikie, avl
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70548
MVE doesn't have the range of shuffle instructions available in Neon. We
also cannot use the trick of cutting a difficult vector shuffle in half
to simplify things. Instead we need to be more careful about how we
lower shuffles.
This patch adds an extra combine that attempts to find "whole lane"
vmovs when lowering shuffles of smaller types. This helps us make some
shuffles a lot simpler, generating single lane movs for the parts that
can make use of it, falling back to the original shuffle for the rest.
Differential Revision: https://reviews.llvm.org/D69509
Alas, using half the available vector registers in a single instruction
is just too much for the register allocator to handle. The mve-vldst4.ll
test here fails when these instructions are enabled at present. This
patch disables the generation of VLD4 and VST4 by adding a
mve-max-interleave-factor option, which we currently default to 2.
Differential Revision: https://reviews.llvm.org/D71109
Currently we fail to pick the right insertion point when
PreviousLastPart of a first-order-recurrence is a PHI node not in the
LoopVectorBody. This can happen when PreviousLastPart is produce in a
predicated block. In that case, we should pick the insertion point in
the BB the PHI is in.
Fixes PR44020.
Reviewers: hsaito, fhahn, Ayal, dorit
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D71071
My patch 9db13b5a7d43096a9ab5f7cef6e1b7e2dc9c9c63 seems to have
caused some build bots to fail due to warnings that appear only
when using -Wcovered-switch-default.
This patch is an attempt to fix this by trying to avoid both the warning
"default label in switch which covers all enumeration values"
for the inner switch statements and at the same time the warning
"this statement may fall through"
for the outer switch statement in getVectorComparison
(SystemZISelLowering.cpp).
Generate types for global variables with "weak" attribute.
Keep allocation scope the same for both weak and non-weak
globals as ELF symbol table can determine whether a global
symbol is weak or not.
Differential Revision: https://reviews.llvm.org/D71162
AssumptionCache can be null in SimplifyCFGOptions. However, FoldCondBranchOnPHI() was not properly handling that when passing a null AssumptionCache to simplifyCFG.
Patch by Rodrigo Caetano Rocha <rcor.cs@gmail.com>
Reviewers: fhahn, lebedev.ri, spatel
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D69963