Summary:
`llvm-bcanalyzer` prints out the stream type of the file it is
analyzing. If the file begins with the LLVM IR magic number, it reports
a stream type of "LLVM IR". However, any other bitstream format is
reported as "unknown".
Add some checks for two other common bitstream formats: Clang AST
files, which begin with 'CPCH', and Clang serialized diagnostics, which
begin with 'DIAG'.
Test Plan: `check-llvm`
Reviewers: pcc, aprantl, mehdi_amini, davide, george.karpenkov, JDevlieghere
Reviewed By: JDevlieghere
Subscribers: JDevlieghere, bruno, davide, llvm-commits
Differential Revision: https://reviews.llvm.org/D41979
llvm-svn: 330529
Several tools prefix the error/warning/note output with the name of the
tool. One such tool is LLD for example. This commit adds as an optional
'Prefix' argument to the convenience helpers.
llvm-svn: 330526
The required the default skylake schedules to be updated - these were being completely overriden by the InstRW and the existing values not used at all.
llvm-svn: 330510
Vectorized loops with abs() returns incorrect results on POWER9. This patch fixes it.
For example the following code returns negative result if input values are negative though it sums up the absolute value of the inputs.
int vpx_satd_c(const int16_t *coeff, int length) {
int satd = 0;
for (int i = 0; i < length; ++i) satd += abs(coeff[i]);
return satd;
}
This problem causes test failures for libvpx.
For vector absolute and vector absolute difference on POWER9, LLVM generates VABSDUW (Vector Absolute Difference Unsigned Word) instruction or variants.
Since these instructions are for unsigned integers, we need adjustment for signed integers.
For abs(sub(a, b)), we generate VABSDUW(a+0x80000000, b+0x80000000). Otherwise, abs(sub(-1, 0)) returns 0xFFFFFFFF(=-1) instead of 1. For abs(a), we generate VABSDUW(a+0x80000000, 0x80000000).
Differential Revision: https://reviews.llvm.org/D45522
llvm-svn: 330497
In certain cases, the compiler might try to merge __stack_chk_guard with
another global variable. (Or someone could theoretically define
__stack_chk_guard as an alias.) In that case, make sure we don't crash.
Differential Revision: https://reviews.llvm.org/D45746
llvm-svn: 330495
When creating a call to storeStrong in ObjCARCContract, ensure the call
gets the correct funclet token, otherwise WinEHPrepare will turn the
call (and all subsequent instructions) into unreachable.
We already have logic to do this for the ARC autorelease elision marker;
factor that out into a common function that's used for both. These are
the only two places in this transform that create call instructions.
Differential Revision: https://reviews.llvm.org/D45857
llvm-svn: 330487
Split the fp and integer vector logical instruction scheduler classes - older CPUs especially often handled these on different pipes.
This unearthed a couple of things that are also handled in this patch:
(1) We were tagging avx512 fp logic ops as WriteFAdd, probably because of the lack of WriteFLogic
(2) SandyBridge had integer logic ops only using Port5, when afaict they can use Ports015.
(3) Cleaned up x86 FCHS/FABS scheduling as they are typically treated as fp logic ops.
Differential Revision: https://reviews.llvm.org/D45629
llvm-svn: 330480
This diff fixes sh_link for various types of sections
(i.e. for SHT_ARM_EXIDX, SHT_HASH). In particular, this change enables us
to use llvm-objcopy with clang -gsplit-dwarf for the target android-arm.
Test plan: make check-all
Differential revision: https://reviews.llvm.org/D45851
llvm-svn: 330478
Summary:
Support the dynamic shadow memory offset (the default case for user
space now) and static non-zero shadow memory offset
(-hwasan-mapping-offset option). Keeping the the latter case around
for functionality and performance comparison tests (and mostly for
-hwasan-mapping-offset=0 case).
The implementation is stripped down ASan one, picking only the relevant
parts in the following assumptions: shadow scale is fixed, the shadow
memory is dynamic, it is accessed via ifunc global, shadow memory address
rematerialization is suppressed.
Keep zero-based shadow memory for kernel (-hwasan-kernel option) and
calls instreumented case (-hwasan-instrument-with-calls option), which
essentially means that the generated code is not changed in these cases.
Reviewers: eugenis
Subscribers: srhines, llvm-commits
Differential Revision: https://reviews.llvm.org/D45840
llvm-svn: 330475
The callback used to create an ORE for the legacy PI pass caches the allocated
object in a unique_ptr in the runOnModule function, and returns a reference to
that object. Under certian circumstances we can end up holding onto that
reference after the OREs destruction. Rather then allowing the new and legacy
passes to create ORE object in diffrent ways, create the ORE at the point of
use.
Differential Revision: https://reviews.llvm.org/D43219
llvm-svn: 330473
There was some unfortunate interaction between VSPLAT and BITCAST
related to the selection of constant vectors (coming from selecting
shuffles). Introduce VSPLATW that always splats a 32-bit word, and
can have arbitrary result type (to avoid BITCASTs of VSPLAT).
Clean up the previous selection of BITCAST/VSPLAT.
llvm-svn: 330471
Three new instructions:
umonitor - Sets up a linear address range to be
monitored by hardware and activates the monitor.
The address range should be a writeback memory
caching type.
umwait - A hint that allows the processor to
stop instruction execution and enter an
implementation-dependent optimized state
until occurrence of a class of events.
tpause - Directs the processor to enter an
implementation-dependent optimized state
until the TSC reaches the value in EDX:EAX.
Also modifying the description of the mfence
instruction, as the rep prefix (0xF3) was allowed
before, which would conflict with umonitor during
disassembly.
Before:
$ echo 0xf3,0x0f,0xae,0xf0 | llvm-mc -disassemble
.text
mfence
After:
$ echo 0xf3,0x0f,0xae,0xf0 | llvm-mc -disassemble
.text
umonitor %rax
Reviewers: craig.topper, zvi
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D45253
llvm-svn: 330462
First off, this is more correct than having the B. Second off, this was making
a bot upset. This fixes that.
Update the test to include -verify-machineinstrs as well to prevent stuff like
this slipping by non debug/assert builds in the future.
llvm-svn: 330459
Part of the DBI stream is a list of variable length structures
describing each module that contributes to the final executable.
One member of this structure is a section contribution entry that
describes the first section contribution in the output file for
the given module.
We have been leaving this structure unpopulated until now, so with
this patch it is now filled out correctly.
Differential Revision: https://reviews.llvm.org/D45832
llvm-svn: 330457