Add lower for G_FPTOUI. Algorithm is similar to the SDAG version
in TargetLowering::expandFP_TO_UINT.
Lower G_FPTOUI for MIPS32.
Differential Revision: https://reviews.llvm.org/D66929
llvm-svn: 370431
Add the core registers and NEON registers mapping to the CodeView
register ID. This is sufficient to compile a basic C program with debug
info using CodeView debug info.
llvm-svn: 370423
Add an WASM_SYMBOL_NO_STRIP flag, so that __attribute__((used)) doesn't
need to imply exporting. When targeting Emscripten, have
WASM_SYMBOL_NO_STRIP imply exporting.
Differential Revision: https://reviews.llvm.org/D62542
llvm-svn: 370415
AMDGPU uses this for some addressing mode selection patterns. The
analysis run itself doesn't do anything so it seems easier to just
always require this than adding a way to opt in.
llvm-svn: 370388
Summary:
While examining this class for possible use in lldb, I noticed two
things:
- it spits out parsing errors directly to stderr
- the loclists parser can incorrectly return valid location lists when
parsing malformed (truncated) data
I improve the stderr situation by making the parseOneLocationList
functions return Expected<T>s. The errors are still dumped to stderr by
their callers, so this is only a partial fix, but it is enough for my
use case, as I intend to parse the locations lists one by one.
I fix the behavior in the truncated scenario by using the newly
introduced DataExtractor Cursor API.
I also add tests for handling the error cases, as they currently have no
coverage.
Reviewers: dblaikie, JDevlieghere, probinson
Subscribers: lldb-commits, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63591
llvm-svn: 370363
When we have a dynamic relocation with a broken symbol's st_name,
tools report a useless error: "Invalid data was encountered while parsing the file".
After this change we report a warning + "<corrupt>" as a symbol name.
Differential revision: https://reviews.llvm.org/D66734
llvm-svn: 370330
Instead of blindly incrementing pointers in llvm-readobj, use this
helper, which does bounds checking against the available section
data.
Differential Revision: https://reviews.llvm.org/D66818
llvm-svn: 370310
This is a special case because one node maps to two different G_
instructions, and the operand order is changed.
This mostly enables G_FCMP for AMDPGPU. G_ICMP is still manually
selected for now since it has the SALU and VALU complication to deal
with.
llvm-svn: 370280
The patch fixed the issue that RV64 didn't clear the upper bits
when return complex floating value with lp64 ABI.
float _Complex
complex_add(float _Complex a, float _Complex b)
{
return a + b;
}
RealResult = zero_extend(RealA + RealB)
ImageResult = ImageA + ImageB
Return (RealResult | (ImageResult << 32))
The patch introduces shouldExtendTypeInLibCall target hook to suppress
the AssertZext generation when lowering floating LibCall.
Thanks to Eli's comments from the Bugzilla
https://bugs.llvm.org/show_bug.cgi?id=42820
Differential Revision: https://reviews.llvm.org/D65497
llvm-svn: 370275
Before this change, if multiple binary files were presented, all of them must have been instrumented or the load would fail with coverage_map_error::no_data_found.
Patch by Dean Sturtevant.
Differential Revision: https://reviews.llvm.org/D66763
llvm-svn: 370257
Summary:
This functionality was added when Mapper::mapMetadata was recursive. It
is no longer needed after r265456, which switched it to be iterative.
Reviewers: dexonsmith, srhines
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66860
llvm-svn: 370236
As dependences between abstract attributes can become stale, e.g., if
one was sufficient to imply another one at some point but it has since
been wakened to the point it is not usable for the formerly implied one.
To weed out spurious dependences, and thereby eliminate unneeded
updates, we introduce an option to determine how often the dependence
cache is cleared and recomputed during the fixpoint iteration.
Note that the initial value was determined such that we see a positive
result on our tests.
Differential Revision: https://reviews.llvm.org/D63315
llvm-svn: 370230
This implements constrained floating point intrinsics for FP to signed and
unsigned integers.
Quoting from D32319:
The purpose of the constrained intrinsics is to force the optimizer to
respect the restrictions that will be necessary to support things like the
STDC FENV_ACCESS ON pragma without interfering with optimizations when
these restrictions are not needed.
Reviewed by: Andrew Kaylor, Craig Topper, Hal Finkel, Cameron McInally, Roman Lebedev, Kit Barton
Approved by: Craig Topper
Differential Revision: http://reviews.llvm.org/D63782
llvm-svn: 370228
These are currently translated as normal functions calls in AArch64.
Until we have proper tail call lowering, we shouldn't translate these.
Differential Revision: https://reviews.llvm.org/D66842
llvm-svn: 370225
This relands this commit, I mistakenly reverted the original change
thinking it was the cause of the observed MSan failures but it was not.
llvm-svn: 370206
Summary: There are at least 2 ways to express the same shuffle. Various pieces of code explicit check for both option, but other places do not when they would benefit from doing it. This patches refactor the codebase to use buildLegalVectorShuffle in order to make that behavior more consistent.
Reviewers: craig.topper, efriedma, RKSimon, lebedev.ri
Subscribers: javed.absar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66804
llvm-svn: 370190
This change moves the actual stack pointer manipulation into the legalizer,
available to targets via lower(). The codegen is slightly different because
we're using explicit masks instead of G_PTRMASK, and using G_SUB rather than
adding a negative amount via G_GEP.
Differential Revision: https://reviews.llvm.org/D66678
llvm-svn: 370104
Summary:
This patch implements main entry and auxiliary entries of symbol table generation for llvm-readobj on AIX.
The source code of aix_xcoff_xlc_test8.o (compile with xlc) is:
-bash-4.2$ cat test8.c
extern int i;
extern int TestforXcoff;
extern int fun(int i);
static int static_i;
char* p="abcd";
int fun1(int j) {
static_i++;
j++;
j=j+*p;
return j;
}
int main() {
i++;
fun(i);
return fun1(i);
}
Patch provided by DiggerLin
Differential Revision: https://reviews.llvm.org/D65240
llvm-svn: 370097
Summary:
This patch introduces, SequenceBBQuery - new heuristic to find likely next callable functions it tries to find the blocks with calls in order of execution sequence of Blocks.
It still uses BlockFrequencyAnalysis to find high frequency blocks. For a handful of hottest blocks (plan to customize), the algorithm traverse and discovered the caller blocks along the way to Entry Basic Block and Exit Basic Block. It uses Block Hint, to stop traversing the already visited blocks in both direction. It implicitly assumes that once the block is visited during discovering entry or exit nodes, revisiting them again does not add much. It also branch probability info (cached result) to traverse only hot edges (planned to customize) from hot blocks. Without BPI, the algorithm mostly return's all the blocks in the CFG with calls.
It also changes the heuristic queries, so they don't maintain states. Hence it is safe to call from multiple threads.
It also implements, new instrumentation to avoid jumping into JIT on every call to the function with the help _orc_speculate.decision.block and _orc_speculate.block.
"Speculator Registration Mechanism is also changed" - kudos to @lhames
Open to review, mostly looking to change implementation of SequeceBBQuery heuristics with good data structure choices.
Reviewers: lhames, dblaikie
Reviewed By: lhames
Subscribers: mgorny, hiraditya, mgrang, llvm-commits, lhames
Tags: #speculative_compilation_in_orc, #llvm
Differential Revision: https://reviews.llvm.org/D66399
llvm-svn: 370092
Before this patch, users were not allowed to optionally mark processor resource
groups as load/store queues. That is because tablegen class MemoryQueue was
originally declared as expecting a ProcResource template argument (instead of a
more generic ProcResourceKind).
That was an oversight, since the original intention from D54957 was to let user
mark any processor resource as either load/store queue. This patch adds the
ability to use processor resource groups in MemoryQueue definitions. This is not
a user visible change.
Differential Revision: https://reviews.llvm.org/D66810
llvm-svn: 370091
On MachO, processing of the eh-frame section should stop if the end of the
__eh_frame section is reached, regardless of whether or not there is a null CFI
length field at the end of the section. This patch tracks the eh-frame section
size and threads it through the appropriate APIs so that processing can be
terminated correctly.
No testcase yet: This patch is all API plumbing (rather than modification of
linked memory) which the existing infrastructure does not provide a way of
testing. Committing without a testcase until I have an idea of how to write
one.
llvm-svn: 370074
Summary:
This patch adds support for scalable vectors in intrinsics, enabling
intrinsics such as the following to be defined:
declare <vscale x 4 x i32> @llvm.something.nxv4i32(<vscale x 4 x i32>)
Support for this is implemented by defining a new type descriptor for
scalable vectors and adding mangling support for scalable vector types
in the name mangling scheme used by 'any' types in intrinsic signatures.
Tests have been added for IRBuilder to test scalable vectors work as
expected when using intrinsics through this interface. This required
implementing an intrinsic that is explicitly defined with scalable
vectors, e.g. LLVMType<nxv4i32>, an SVE floating-point convert
intrinsic was used for this. The behaviour of the overloaded type
LLVMScalarOrSameVectorWidth with scalable vectors is tested using the
existing masked load intrinsic. Also added an .ll test to test the
Verifier catches a bad intrinsic argument when passing a fixed-width
predicate (mask) to the masked.load intrinsic where a scalable is
expected.
Patch by Paul Walker
Reviewed By: sdesmalen
Differential Revision: https://reviews.llvm.org/D65930
llvm-svn: 370053
Summary:
This is motivated by D63591, where we realized that there isn't a really
good way of telling whether a DataExtractor is reading actual data, or
is it just returning default values because it reached the end of the
buffer.
This patch resolves that by providing a new "Cursor" class. A Cursor
object encapsulates two things:
- the current position/offset in the DataExtractor
- an error object
Storing the error object inside the Cursor enables one to use the same
pattern as the std::{io}stream API, where one can blindly perform a
sequence of reads and only check for errors once at the end of the
operation. Similarly to the stream API, as soon as we encounter one
error, all of the subsequent operations are skipped (return default
values) too, even if the would suceed with clear error state. Unlike the
std::stream API (but in line with other llvm APIs), we force the error
state to be checked through usage of llvm::Error.
Reviewers: probinson, dblaikie, JDevlieghere, aprantl, echristo
Subscribers: kristina, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63713
llvm-svn: 370042
This is a follow up discussed in the comments of D66583.
Currently, if for example, we have both StOther and Other set in YAML document for a symbol,
then yaml2obj reports an "unknown key 'Other'" error.
It happens because 'mapOptional()' is never called for 'Other/Visibility' in this case,
leaving those unhandled.
This message does not describe the reason of the error well. This patch fixes it.
Differential revision: https://reviews.llvm.org/D66642
llvm-svn: 370032
Summary:
Similar to `^=` operator for IntegerState, this patch introduces a `+=` operator to "clamp" known information.
Reviewers: jdoerfert, sstefan1
Reviewed By: jdoerfert
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66635
llvm-svn: 370015
Summary:
During the fixpoint iteration, including the manifest stage, we should
not delete stuff as other abstract attributes might have a reference to
the value. Through the API this can now be done safely at the very end.
Reviewers: uenoku, sstefan1
Subscribers: hiraditya, bollu, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66779
llvm-svn: 370014
We previously called getSplatValue if the index had a vector type,
but getSplatValue returns null for non-splats. This would cause
a nullptr dereference if it wasn't a splat.
Using getUniqueInteger gives us an assert if its a vector type,
but the value isn't a splat. This is what is used in
SelectionDAGBuilder's code that expands GEPs as well.
llvm-svn: 370001
In r369808 the failure scheme for ORC symbols was changed to make
MaterializationResponsibility objects responsible for failing the symbols
they represented. This simplifies error logic in the case where symbols are
still covered by a MaterializationResponsibility, but left a gap in error
handling: Symbols that have been emitted but are not yet ready (due to a
dependence on some unemitted symbol) are not covered by a
MaterializationResponsibility object. Under the scheme introduced in r369808
such symbols would be moved to the error state, but queries on those symbols
were never notified. This led to deadlocks when such symbols were failed.
This commit updates error logic to immediately fail queries on any symbol that
has already been emitted if one of its dependencies fails.
llvm-svn: 369976
This should let us get rid of StringLiteral in the long term and avoid
chasing accidental StringRef globals once and for all.
This requires C++14, I godbolted it on every compiler I know we support
so I hope there won't be much fallout.
llvm-svn: 369961
`FileManager::getFileRef` is a modern API which we expect to convert to
over time. We should modernize the error handling as well, using
`llvm::Expected` instead of `llvm::ErrorOr`, to help clients that care
about errors to ensure nothing is missed.
However, not all clients care. I've also added another path for those
that don't:
- `FileEntryRef` is now copy- and move-assignable (using a pointer
instead of a reference).
- `FileManager::getOptionalFileRef` returns an `llvm::Optional` instead
of `llvm::Expected`.
- Added an `llvm::expectedToOptional` utility in case this is useful
elsewhere.
https://reviews.llvm.org/D66705
llvm-svn: 369943
By default, the Attributor tracks potential dependences between abstract
attributes based on the issued Attributor::getAAFor queries. This
simplifies the development of new abstract attributes but it can also
lead to spurious dependences that might increase compile time and make
internalization harder (D63312). With this patch, abstract attributes
can opt-out of implicit dependence tracking and instead register
dependences explicitly. It is up to the implementation to make sure all
existing dependences are registered.
Differential Revision: https://reviews.llvm.org/D63314
llvm-svn: 369935
This is a followup of https://reviews.llvm.org/D66513. The code calling each
section reader should be put into a separate function (readOneSection), so
SampleProfileExtBinaryReader can override it. Otherwise, the base class
SampleProfileExtBinaryBaseReader will need to be aware of all different kinds
of section readers. That is not right.
Differential Revision: https://reviews.llvm.org/D66693
llvm-svn: 369919
Summary:
Adds support for generating the .data section in assembly files for global variables with a non-zero initialization. The support for writing the .data section in XCOFF object files will be added in a follow-on patch. Any relocations are not included in this patch.
Reviewers: hubert.reinterpretcast, sfertile, jasonliu, daltenty, Xiangling_L
Reviewed by: hubert.reinterpretcast
Subscribers: nemanjai, hiraditya, kbarton, MaskRay, jsji, wuzish, shchenz, DiggerLin, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66154
llvm-svn: 369869
lib/Target/X86/AsmParser/X86AsmParser.cpp: In member function ‘void {anonymous}::X86AsmParser::SwitchMode(unsigned int)’:
lib/Target/X86/AsmParser/X86AsmParser.cpp:927:76: in constexpr expansion of ‘AllModes.llvm::FeatureBitset::FeatureBitset(std::initializer_list<unsigned int>{((const unsigned int*)(& ._157)), 3u})’
include/llvm/MC/SubtargetFeature.h:56:12: in constexpr expansion of ‘llvm::FeatureBitset::set(I)’
lib/Target/X86/AsmParser/X86AsmParser.cpp:927:76: internal compiler error: in fold_binary_loc, at fold-const.c:9921
FeatureBitset AllModes({X86::Mode64Bit, X86::Mode32Bit, X86::Mode16Bit});
^
llvm-svn: 369852
AArch64BaseInfo.h(316): error C3615: constexpr function 'llvm::SysAlias::SysAlias' cannot result in a constant expression
AArch64BaseInfo.h(316): note: failure was caused by call of undefined function or one not declared 'constexpr'
AArch64BaseInfo.h(316): note: see usage of 'llvm::FeatureBitset::FeatureBitset'
llvm-svn: 369851
This requires std::intializer_list to be a literal type, which it is
starting with C++14. The downside is that std::bitset is still not
constexpr-friendly so this change contains a re-implementation of most
of it.
Shrinks clang by ~60k.
llvm-svn: 369847
Promoting it from InstCombine's tryToReuseConstantFromSelectInComparison().
Return true if this constant and a constant 'Y' are element-wise equal.
This is identical to just comparing the pointers, with the exception that
for vectors, if only one of the constants has an `undef` element in some
lane, the constants still match.
llvm-svn: 369842