pointers-to-strong-pointers may be in play. These can lead to retains and
releases happening in unstructured ways, foiling the optimizer. This fixes
rdar://12150909.
llvm-svn: 163180
This doesn't seem ideal, perhaps we could just keep the llvm_site_cfg and have
other config (clang and clang-tools-extra) derive their site_cfg from that.
Suggestions/complaints/ideas welcome.
llvm-svn: 163171
The MachineOperand::TiedTo field was maintained, but not used.
This patch enables it in isRegTiedToDefOperand() and
isRegTiedToUseOperand() which are the actual functions use by the
register allocator.
llvm-svn: 163153
After much agonizing, use a full 4 bits of precious MachineOperand space
to encode this. This uses existing padding, and doesn't grow
MachineOperand beyond its current 32 bytes.
This allows tied defs among the first 15 operands on a normal
instruction, just like the current MCInstrDesc constraint encoding.
Inline assembly needs to be able to tie more than the first 15 operands,
and gets special treatment.
Tied uses can appear beyond 15 operands, as long as they are tied to a
def that's in range.
llvm-svn: 163151
- CodeGenPrepare pass for identifying div/rem ops
- Backend specifies the type mapping using addBypassSlowDivType
- Enabled only for Intel Atom with O2 32-bit -> 8-bit
- Replace IDIV with instructions which test its value and use DIVB if the value
is positive and less than 256.
- In the case when the quotient and remainder of a divide are used a DIV
and a REM instruction will be present in the IR. In the non-Atom case
they are both lowered to IDIVs and CSE removes the redundant IDIV instruction,
using the quotient and remainder from the first IDIV. However,
due to this optimization CSE is not able to eliminate redundant
IDIV instructions because they are located in different basic blocks.
This is overcome by calculating both the quotient (DIV) and remainder (REM)
in each basic block that is inserted by the optimization and reusing the result
values when a subsequent DIV or REM instruction uses the same operands.
- Test cases check for the presents of the optimization when calculating
either the quotient, remainder, or both.
Patch by Tyler Nowicki!
llvm-svn: 163150
Rationale: For each preprocessor macro, either the definedness is what's
meaningful, or the value is what's meaningful, or both. If definedness is
meaningful, we should use #ifdef. If the value is meaningful, we should use
and #ifdef interchangeably for the same macro, seems ugly to me, even if
undefined macros are zero if used.
This also has the benefit that including an LLVM header doesn't prevent
you from compiling with -Wundef -Werror.
Patch by John Garvin!
<rdar://problem/12189979>
llvm-svn: 163148
This patch corrects the definition of umlal/smlal instructions and adds support
for matching them to the ARM dag combiner.
Bug 12213
Patch by Yin Ma!
llvm-svn: 163136
Scan the body of the loop and find instructions that may trap.
Use this information when deciding if it is safe to hoist or sink instructions.
Notice that we can optimize the search of instructions that may throw in the case of nested loops.
rdar://11518836
llvm-svn: 163132
by instruction address from DWARF.
Add --inlining flag to llvm-dwarfdump to demonstrate and test this functionality,
so that "llvm-dwarfdump --inlining --address=0x..." now works much like
"addr2line -i 0x...", provided that the binary has debug info
(Clang's -gline-tables-only *is* enough).
llvm-svn: 163128
If an allocation has a must-alias relation to the access pointer, we treat it
as a Def. Otherwise, without this check, the code here was just skipping over
the allocation call and ignoring it. I noticed this by inspection and don't
have a specific testcase that it breaks, but it seems like we need to treat
a may-alias allocation as a Clobber.
llvm-svn: 163127
This code used to only handle malloc-like calls, which do not read memory.
r158919 changed it to check isNoAliasFn(), which includes strdup-like and
realloc-like calls, but it was not checking for dependencies on the memory
read by those calls.
llvm-svn: 163106