The predicate used to be used with the C backend, which was removed on
Mar 23, 2012 in commit 64a232343aa649fdacf78698da3e4d5737dee56a. It
seems to be unused since then.
Now that passes have support for running nested pipelines, the inliner can now allow for users to provide proper nested pipelines to use for optimization during inlining. This revision also changes the behavior of optimization during inlining to optimize before attempting to inline, which should lead to a more accurate cost model and prevents the need for users to schedule additional duplicate cleanup passes before/after the inliner that would already be run during inlining.
Differential Revision: https://reviews.llvm.org/D91211
Add mir-check-debug pass to check MIR-level debug info.
For IR-level, currently, LLVM have debugify + check-debugify to generate
and check debug IR. Much like the IR-level pass debugify, mir-debugify
inserts sequentially increasing line locations to each MachineInstr in a
Module, But there is no equivalent MIR-level check-debugify pass, So now
we support it at "mir-check-debug".
Reviewed By: djtodoro
Differential Revision: https://reviews.llvm.org/D91595
Add mir-check-debug pass to check MIR-level debug info.
For IR-level, currently, LLVM have debugify + check-debugify to generate
and check debug IR. Much like the IR-level pass debugify, mir-debugify
inserts sequentially increasing line locations to each MachineInstr in a
Module, But there is no equivalent MIR-level check-debugify pass, So now
we support it at "mir-check-debug".
Reviewed By: djtodoro
Differential Revision: https://reviews.llvm.org/D95195
[amdgpu] Default to code object v3
v4 is not yet readily available, and doesn't appear
to be implemented in the back end
Reviewed By: t-tye
Differential Revision: https://reviews.llvm.org/D93258
We determined that the MSVC implementation of std::aligned* isn't suited
to our needs. It doesn't support 16 byte alignment or higher, and it
doesn't really guarantee 8 byte alignment. See
https://github.com/microsoft/STL/issues/1533
Also reverts "ADT: Change AlignedCharArrayUnion to an alias of std::aligned_union_t, NFC"
Also reverts "ADT: Remove AlignedCharArrayUnion, NFC" to bring back
AlignedCharArrayUnion.
This reverts commit 4d8bf870a82765eb0d4fe53c82f796b957c05954.
This reverts commit d10f9863a5ac1cb681af07719650c44b48f289ce.
This reverts commit 4b5dc150b9862271720b3d56a3e723a55dd81838.
Summary:
If a store defines (must alias) a load, it clobbers the load.
Fixes: SWDEV-258915
Reviewers:
arsenm
Differential Revision:
https://reviews.llvm.org/D92951
This patch adds the functionality to compare BFI counts with real
profile
counts right after reading the profile. It will print remarks under
-Rpass-analysis=pgo, or the internal option -pass-remarks-analysis=pgo.
Differential Revision: https://reviews.llvm.org/D91813
The X86-64 ABI defines va_list as
typedef struct {
unsigned int gp_offset;
unsigned int fp_offset;
void *overflow_arg_area;
void *reg_save_area;
} va_list[1];
This means the size, alignment, and reg_save_area offset will depend on
whether we are in LP64 or in ILP32 mode, so this commit adds the checks.
Additionally, the VAARG_64 pseudo-instruction assumed 64-bit pointers, so
this commit adds a VAARG_X32 pseudo-instruction that behaves just like
VAARG_64, except for assuming 32-bit pointers.
Some of these changes were originally done by
Michael Liao <michael.hliao@gmail.com>.
Fixes https://bugs.llvm.org/show_bug.cgi?id=48428.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D93160
As noted in D93229, the transform from scalar load to vector load
potentially leaks poison from the extra vector elements that are
being loaded.
We could use freeze here (and x86 codegen at least appears to be
the same either way), but we already have a shuffle in this logic
to optionally change the vector size, so let's allow that
instruction to serve both purposes.
Differential Revision: https://reviews.llvm.org/D93238
This adds support for loops like
unsigned clz(unsigned x) {
unsigned w = sizeof (x) * CHAR_BIT;
while (x) {
w--;
x >>= 1;
}
return w;
}
and
unsigned clz(unsigned x) {
unsigned w = sizeof (x) * CHAR_BIT - 1;
while (x >>= 1) {
w--;
}
return w;
}
To support these we look for add x, -1 as well as add x, 1 that
we already matched. If the value was -1 we need to subtract from
the initial counter value instead of adding to it.
Fixes PR48404.
Differential Revision: https://reviews.llvm.org/D92745
This patch implements a DDG printer pass that generates a graph in
the DOT description language, providing a more visually appealing
representation of the DDG. Similar to the CFG DOT printer, this
functionality is provided under an option called -dot-ddg and can
be generated in a less verbose mode under -dot-ddg-only option.
Differential Revision: https://reviews.llvm.org/D90159
Currently the backend special cases x86_intrcc and treats the first
parameter as byval. Make the IR require byval for this parameter to
remove this special case, and avoid the dependence on the pointee
element type.
Fixes bug 46672.
I'm not sure the IR is enforcing all the calling convention
constraints. clang seems to ignore the attribute for empty parameter
lists, but the IR tolerates it.
The entry block should always be the first BB in a function.
So we should not rotate a chain contains the entry block.
Differential Revision: https://reviews.llvm.org/D92882
his is a preparation patch for supporting multiple exits in the loop vectorizer, by itself it should be mostly NFC. This patch moves the loop structure checks from LAA to their respective consumers (where duplicates don't already exist). Moving the checks does end up changing some of the optimization warnings and debug output slightly, but nothing that appears to be a regression.
Why do this? Well, after auditing the code, I can't actually find anything in LAA itself which relies on having all instructions within a loop execute an equal number of times. This patch simply makes this explicit so that if one consumer - say LV in the near future (hopefully) - wants to handle a broader class of loops, it can do so.
Differential Revision: https://reviews.llvm.org/D92066
My bot runs VS 2019, but it could not compile this code.
Message:
[55/2465] Building CXX object lib\Target\Hexagon\CMakeFiles\LLVMHexagonCodeGen.dir\HexagonVectorCombine.cpp.obj
FAILED: lib/Target/Hexagon/CMakeFiles/LLVMHexagonCodeGen.dir/HexagonVectorCombine.cpp.obj
...
C:\Program Files (x86)\Microsoft Visual Studio\2019\Professional\VC\Tools\MSVC\14.23.28105\include\map(71): error C2976: 'std::map': too few template arguments
C:\Program Files (x86)\Microsoft Visual Studio\2019\Professional\VC\Tools\MSVC\14.23.28105\include\map(71): note: see declaration of 'std::map'
The version in the path, 14.23, corresponds to _MSC_VER 1923, so raise
the version floor to 1924.
I have not tested with versions between 1924 and 1928 (latest), but the
latest works with the variadic version.
This moves the vtype decoding and printing to RISCVBaseInfo. This keeps all of
the decoding code in the same area as the encoding code. This will make it
easier to change the decoding for the 1.0 spec in the future.
We're now sharing the printing with the debug output for operands in the
assembler. This also fixes that debug output to include the tail and mask
agnostic bits. Since the printing code works on the vtype immediate value, we
now encode the immediate during parsing and store just the immediate in the
operand.
- New function SDValue getBackchainAddress() used by
lowerDYNAMIC_STACKALLOC() and lowerSTACKRESTORE() to properly handle the
backchain offset also with packed-stack.
- Make a common function getBackchainOffset() for the computation of the
backchain offset and use in some places (NFC).
Review: Ulrich Weigand
Differential Revision: https://reviews.llvm.org/D93171
- Once an instruction is simplified, foldable candidates from it should
be invalidated or skipped as the operand index is no longer valid.
Differential Revision: https://reviews.llvm.org/D93174
When using the FixedLenDecoderEmitter, llvm-tblgen emits tables with (OPC_ExtractField, OPC_ExtractFilterValue) opcode sequences to match the contiguous fixed bits of a given instruction's encoding. This encoding is represented in a 64-bit integer. However, the filter values were represented in a 32-bit integer. As such, instructions with fixed 64-bit encodings resulted in a table with an OPC_ExtractField for all 64 bits, followed by an OPC_ExtractFilterValue containing just the low 32 bits of their encoding, causing the filter never to match.
The exact point at which the slicing occurred was during the map insertion at line 630.
Differential Revision: https://reviews.llvm.org/D92423
If a function happens to:
- call setjmp
- do a 16-byte stack allocation
- call a function that sets up a stack frame and longjmp's back
The stack pointer that is restores by setjmp will no longer point to a valid
back chain. According to the ABI, stack accesses in such a function are to be
frame pointer based - so it is an error (quite obviously) to restore the stack
from the back chain.
We already restore the stack from the frame pointer when there are calls to
fast_cc functions. We just need to also do that when there are calls to setjmp.
This patch simply does that.
This was pointed out by the Julia team.
Differential revision: https://reviews.llvm.org/D92906
Even though d38205144febf4dc42c9270c6aa3d978f1ef65e1 was mostly a correct
fix for the external non-PHI users, it's not a *generally* correct fix,
because the 'placeholder' values in those trivial PHI's we create
shouldn't be *always* 'undef', but the PHI itself for the backedges,
else we end up with wrong value, as the `@pr48450_2` test shows.
But we can't just do that, because we can't check that the PHI
can be it's own incoming value when coming from certain predecessor,
because we don't have a dominator tree.
So until we can address this correctness problem properly,
ensure that we don't perform the transformation
if there are such problematic external uses.
Making dominator tree available there is going to be involved,
since `-simplifycfg` pass currently does not preserve/update domtree...
D82227 has added a proper check to limit PHI vectorization to the
maximum vector register size. That unfortunately resulted in at
least a couple of regressions on SystemZ and x86.
This change reverts PHI handling from D82227 and replaces it with
a more general check in SLPVectorizerPass::tryToVectorizeList().
Moved to tryToVectorizeList() it allows to restart vectorization
if initial chunk fails.
However, this function is more general and handles not only PHI
but everything which SLP handles. If vectorization factor would
be limited to maximum vector register size it would limit much
more vectorization than before leading to further regressions.
Therefore a new TTI callback getMaximumVF() is added with the
default 0 to preserve current behavior and limit nothing. Then
targets can decide what is better for them.
The callback gets ElementSize just like a similar getMinimumVF()
function and the main opcode of the chain. The latter is to avoid
regressions at least on the AMDGPU. We can have loads and stores
up to 128 bit wide, and <2 x 16> bit vector math on some
subtargets, where the rest shall not be vectorized. I.e. we need
to differentiate based on the element size and operation itself.
Differential Revision: https://reviews.llvm.org/D92059