Ensure that libSupport does not carry any static global initializer.
libSupport can be embedded in use cases where we don't want to load all
cl::opt unless we want to parse the command line.
ManagedStatic can be used to enable lazy-initialization of globals.
The motivation for this caching wasn't clear, remove it in an effort to
simplify the code and make libSupport free of global dynamic constructor.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D106206
Opaque values (of zero size) can be stored in memory with the
implemention of reference types in the WebAssembly backend. Since
MachineMemOperand uses LLTs we need to be able to support
zero-sized scalars types in LLTs.
Differential Revision: https://reviews.llvm.org/D105423
fixed fields with highly-aligned flexible fields.
The code was not considering the possibility that aligning
the current offset to the alignment of a queue might push
us past the end of the gap. Subtracting the offsets to
figure out the maximum field size for the gap then overflowed,
making us think that we had nearly unbounded space to fill.
Fixes PR 51131.
After rGbbbc4f110e35ac709b943efaa1c4c99ec073da30, we can move
any string type that has convenient pointer and length fields
into the PtrAndLengthKind, reducing the amount of code.
Differential Revision: https://reviews.llvm.org/D106381
This is a follow-up to https://reviews.llvm.org/D103935
A Twine's internal layout should not depend on which version of the
C++ standard is in use. Dynamically linking binaries compiled with two
different layouts (eg, --std=c++14 vs --std=c++17) ends up
problematic.
This change avoids that issue by immediately converting a
string_view to a pointer-and-length at the cost of an extra eight-bytes
in Twine.
Differential Revision: https://reviews.llvm.org/D106186
Code in getCPUNameFromS390Model currently assumes that the
numerical value of the model number always increases with
future hardware. While this has happened to be the case
with the last few machines, it is not guaranteed -- that
assumption was violated with (much) older machines, and
it can be violated again with future machines.
Fix by explicitly listing model numbers for all supported
machine models.
Ensure that libSupport does not carry any static global initializer.
libSupport can be embedded in use cases where we don't want to load all
cl::opt unless we want to parse the command line.
ManagedStatic can be used to enable lazy-initialization of globals.
We can build it with -Werror=global-constructors now. This helps
in situation where libSupport is embedded as a shared library,
potential with dlopen/dlclose scenario, and when command-line
parsing or other facilities may not be involved. Avoiding the
implicit construction of these cl::opt can avoid double-registration
issues and other kind of behavior.
Reviewed By: lattner, jpienaar
Differential Revision: https://reviews.llvm.org/D105959
We can build it with -Werror=global-constructors now. This helps
in situation where libSupport is embedded as a shared library,
potential with dlopen/dlclose scenario, and when command-line
parsing or other facilities may not be involved. Avoiding the
implicit construction of these cl::opt can avoid double-registration
issues and other kind of behavior.
Reviewed By: lattner, jpienaar
Differential Revision: https://reviews.llvm.org/D105959
We can build it with -Werror=global-constructors now. This helps
in situation where libSupport is embedded as a shared library,
potential with dlopen/dlclose scenario, and when command-line
parsing or other facilities may not be involved. Avoiding the
implicit construction of these cl::opt can avoid double-registration
issues and other kind of behavior.
Reviewed By: lattner, jpienaar
Differential Revision: https://reviews.llvm.org/D105959
Fix a bug that `computeHostNumPhysicalCores` is fallback to default
unknown when building for Apple Silicon macs.
rdar://80533675
Reviewed By: arphaman
Differential Revision: https://reviews.llvm.org/D106012
First patch in a series adding MC layer support for the Arm Scalable
Matrix Extension.
This patch adds the following features:
sme, sme-i64, sme-f64
The sme-i64 and sme-f64 flags are for the optional I16I64 and F64F64
features.
If a target supports I16I64 then the following instructions are
implemented:
* 64-bit integer ADDHA and ADDVA variants (D105570).
* SMOPA, SMOPS, SUMOPA, SUMOPS, UMOPA, UMOPS, USMOPA, and USMOPS
instructions that accumulate 16-bit integer outer products into 64-bit
integer tiles.
If a target supports F64F64 then the FMOPA and FMOPS instructions that
accumulate double-precision floating-point outer products into
double-precision tiles are implemented.
Outer products are implemented in D105571.
The reference can be found here:
https://developer.arm.com/documentation/ddi0602/2021-06
Reviewed By: CarolineConcatto
Differential Revision: https://reviews.llvm.org/D105569
FreeBSD's condvar.h (included by user.h in Threading.inc) uses a "struct
thread" that conflicts with llvm::thread if both are visible when it's
included.
So this moves our #include after the FreeBSD code.
C++23 will make these conversions ambiguous - so fix them to make the
codebase forward-compatible with C++23 (& a follow-up change I've made
will make this ambiguous/invalid even in <C++23 so we don't regress
this & it generally improves the code anyway)
This adds a new llvm::thread class with the same interface as std::thread
except there is an extra constructor that allows us to set the new thread's
stack size. On Darwin even the default size is boosted to 8MB to match the main
thread.
It also switches all users of the older C-style `llvm_execute_on_thread` API
family over to `llvm::thread` followed by either a `detach` or `join` call and
removes the old API.
Moved definition of DefaultStackSize into the .cpp file to hopefully
fix the build on some (GCC-6?) machines.
This adds a new llvm::thread class with the same interface as std::thread
except there is an extra constructor that allows us to set the new thread's
stack size. On Darwin even the default size is boosted to 8MB to match the main
thread.
It also switches all users of the older C-style `llvm_execute_on_thread` API
family over to `llvm::thread` followed by either a `detach` or `join` call and
removes the old API.
This is a mechanical change. This actually also renames the
similarly named methods in the SmallString class, however these
methods don't seem to be used outside of the llvm subproject, so
this doesn't break building of the rest of the monorepo.
Rename functions with the `xx_lower()` names to `xx_insensitive()`.
This was requested during the review of D104218.
Test names and variables in llvm/unittests/ADT/StringRefTest.cpp
that refer to "lower" are renamed to "insensitive" correspondingly.
Unused function aliases with the former method names are left
in place (without any deprecation attributes) for transition purposes.
All references within the monorepo will be changed (with essentially
mechanical changes), and then the old names will be removed in a
later commit.
Also remove the superfluous method names at the start of doxygen
comments, for the methods that are touched here. (There are more
occurrances of this left in other methods though.) Also remove
duplicate doxygen comments from the implementation file.
Differential Revision: https://reviews.llvm.org/D104819
This revision refactors the usage of multithreaded utilities in MLIR to use a common
thread pool within the MLIR context, in addition to a new utility that makes writing
multi-threaded code in MLIR less error prone. Using a unified thread pool brings about
several advantages:
* Better thread usage and more control
We currently use the static llvm threading utilities, which do not allow multiple
levels of asynchronous scheduling (even if there are open threads). This is due to
how the current TaskGroup structure works, which only allows one truly multithreaded
instance at a time. By having our own ThreadPool we gain more control and flexibility
over our job/thread scheduling, and in a followup can enable threading more parts of
the compiler.
* The static nature of TaskGroup causes issues in certain configurations
Due to the static nature of TaskGroup, there have been quite a few problems related to
destruction that have caused several downstream projects to disable threading. See
D104207 for discussion on some related fallout. By having a ThreadPool scoped to
the context, we don't have to worry about destruction and can ensure that any
additional MLIR thread usage ends when the context is destroyed.
Differential Revision: https://reviews.llvm.org/D104516
This patch aims to add the scalable property to LLT. The rest of the
patch-series changes the interfaces to take/return ElementCount and
TypeSize, which both have the ability to represent the scalable property.
The changes are mostly mechanical and aim to be non-functional changes
for fixed-width vectors.
For scalable vectors some unit tests have been added, but no effort has
been put into making any of the GlobalISel algorithms work with scalable
vectors yet. That will be left as future work.
The work is split into a series of 5 patches to make reviews easier.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D104450
One nice feature of the os_signpost API is that format string
substitutions happen in the consumer, not the logging
application. LLVM's current Signpost class doesn't take advantage of
this though and instead always uses a static "Begin/End %s" format
string.
This patch uses variadic macros to allow the API to be used as
intended. Unfortunately, the primary use-case I had in mind (the
LLDB_SCOPED_TIMER() macro) does not get much better from this, because
__PRETTY_FUNCTION__ is *not* a macro, but a static string, so
signposts created by LLDB_SCOPED_TIMER() still use a static "%s"
format string. At least LLDB_SCOPED_TIMERF() works as intended.
This reapplies the previously reverted patch with additional include
order fixes for non-modular builds of LLDB.
Differential Revision: https://reviews.llvm.org/D103575
One nice feature of the os_signpost API is that format string
substitutions happen in the consumer, not the logging
application. LLVM's current Signpost class doesn't take advantage of
this though and instead always uses a static "Begin/End %s" format
string.
This patch uses variadic macros to allow the API to be used as
intended. Unfortunately, the primary use-case I had in mind (the
LLDB_SCOPED_TIMER() macro) does not get much better from this, because
__PRETTY_FUNCTION__ is *not* a macro, but a static string, so
signposts created by LLDB_SCOPED_TIMER() still use a static "%s"
format string. At least LLDB_SCOPED_TIMERF() works as intended.
This reapplies the previsously reverted patch with additional MachO.h
macro #undefs.
Differential Revision: https://reviews.llvm.org/D103575
One nice feature of the os_signpost API is that format string
substitutions happen in the consumer, not the logging
application. LLVM's current Signpost class doesn't take advantage of
this though and instead always uses a static "Begin/End %s" format
string.
This patch uses variadic macros to allow the API to be used as
intended. Unfortunately, the primary use-case I had in mind (the
LLDB_SCOPED_TIMER() macro) does not get much better from this, because
__PRETTY_FUNCTION__ is *not* a macro, but a static string, so
signposts created by LLDB_SCOPED_TIMER() still use a static "%s"
format string. At least LLDB_SCOPED_TIMERF() works as intended.
This reapplies the previsously reverted patch with support for
platforms where signposts are unavailable.
Differential Revision: https://reviews.llvm.org/D103575
One nice feature of the os_signpost API is that format string
substitutions happen in the consumer, not the logging
application. LLVM's current Signpost class doesn't take advantage of
this though and instead always uses a static "Begin/End %s" format
string.
This patch uses variadic macros to allow the API to be used as
intended. Unfortunately, the primary use-case I had in mind (the
LLDB_SCOPED_TIMER() macro) does not get much better from this, because
__PRETTY_FUNCTION__ is *not* a macro, but a static string, so
signposts created by LLDB_SCOPED_TIMER() still use a static "%s"
format string. At least LLDB_SCOPED_TIMERF() works as intended.
Differential Revision: https://reviews.llvm.org/D103575
<string> is currently the highest impact header in a clang+llvm build:
https://commondatastorage.googleapis.com/chromium-browser-clang/llvm-include-analysis.html
One of the most common places this is being included is the APInt.h header, which needs it for an old toString() implementation that returns std::string - an inefficient method compared to the SmallString versions that it actually wraps.
This patch replaces these APInt/APSInt methods with a pair of llvm::toString() helpers inside StringExtras.h, adjusts users accordingly and removes the <string> from APInt.h - I was hoping that more of these users could be converted to use the SmallString methods, but it appears that most end up creating a std::string anyhow. I avoided trying to use the raw_ostream << operators as well as I didn't want to lose having the integer radix explicit in the code.
Differential Revision: https://reviews.llvm.org/D103888
With Twine now ubiquitous after rG92a79dbe91413f685ab19295fc7a6297dbd6c824,
it needs support for string_view when building clang with newer C++ standards.
This is similar to how StringRef is handled.
Differential Revision: https://reviews.llvm.org/D103935
This patch https://reviews.llvm.org/D102876 caused some lit regressions on z/OS because tmp files were no longer being opened based on binary/text mode. This patch passes OpenFlags when creating tmp files so we can open files in different modes.
Reviewed By: amccarth
Differential Revision: https://reviews.llvm.org/D103806
The os_signpost API already captures the begin/end part and in
Instruments, this just adds visual noise that gets in the way of the
interesting data. By removing the redundant end text, the display in
Instruments gets even less cluttered.
rdar://78636200
Differential Revision: https://reviews.llvm.org/D103577
This is a followup to D103422. The DenseMapInfo implementations for
ArrayRef and StringRef are moved into the ArrayRef.h and StringRef.h
headers, which means that these two headers no longer need to be
included by DenseMapInfo.h.
This required adding a few additional includes, as many files were
relying on various things pulled in by ArrayRef.h.
Differential Revision: https://reviews.llvm.org/D103491
incorrect std::string use. (Also remove redundant call to
RemoveFileOnSignal.)
Clang writes object files by first writing to a .tmp file and then
renaming to the final .obj name. On Windows, if a compile is killed
partway through the .tmp files don't get deleted.
Currently it seems like RemoveFileOnSignal takes care of deleting the
tmp files on Linux, but on Windows we need to call
setDeleteDisposition on tmp files so that they are deleted when
closed.
This patch switches to using TempFile to create the .tmp files we write
when creating object files, since it uses setDeleteDisposition on Windows.
This change applies to both Linux and Windows for consistency.
Differential Revision: https://reviews.llvm.org/D102876
This reverts commit 20797b129f844d4b12ffb2b12cf33baa2d42985c.